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Abstract 

Epigenetic age not only correlates with chronological age but predicts morbidity and 

mortality. We assumed that deconvolution of epigenetic age to its individual 

components could shed light on the diversity of epigenetic, and by inference, biological 

aging. Using the Horvath original epigenetic clock, we identified several CpG sites 

linked to distinct genes that quantitatively explain much of the interpersonal variability 

in epigenetic aging, with secretagogin and malin showing the most dominant effects. 

The analysis shows that the same epigenetic age for any given chronological age can 

be accounted for by variable contributions of identifiable CpG sites; that old epigenetic 

relative to chronological age is mostly explained by the same CpG sites, mapped to 

genes showing the highest interindividual variability differences in healthy subjects but 

not in subjects with type 2 diabetes. This paves the way to form personalized aging 

cards indicating the sources of accelerated/decelerated epigenetic aging in each 

examinee, en route to targeting specific sites as indicators, and perhaps treatment 

targets of personal undesirable age drifting. 

 

Introduction 

In the past decade, the concept of epigenetic age has attracted growing interest and 

the number of publications on epigenetic clocks has risen exponentially 1, mostly since 

it appears to reflect at least some aspects of the biological age. The epigenetic age 

can be now extrapolated using one of several independently generated epigenetic 

clocks, each mathematically constructed from time/age related changes in DNA 

methylation levels at specific multiple CpG sites that collectively, with proper weighting, 

are highly correlated with chronological age 2–6. Discrepancies between chronological 

age and the calculated epigenetic are presumed to represent a measure of biological 

aging, such that epigenetic age acceleration /deceleration signifies accelerated or a 
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relatively diminished rate of biological aging, respectively. Hence, epigenetic clocks 

can be compared to individuals' chronological ages to assess inter-individual and/or 

inter-tissue variability in the rate of aging 1. How useful and informative this approach 

could be is exemplified by reports that epigenetic age is a predictor of time of death, 

mortality rate 5–8 and susceptibility to diseases such as lung cancer 9, breast cancer 10 

and cardiovascular events 11.  

Time/age related methylation appears to be a rather extensive process as is readily 

demonstrated by the fact that there are several different epigenetic clocks, each 

calculated based on several tens or hundreds different methylation sites which mostly 

do not overlap12. Since these clocks vary with respect to their linkage to health 

outcomes, it is possible that each detects different processes which distinctly 

contribute to some facets of the biological age.  

It is presently unknown whether the changes in methylation profiles which link 

epigenetic age acceleration to mortality and morbidity are simply aging markers or, 

perhaps, active players in the aging process. The implication of the latter is that 

reversal of epigenetic age could comprise a therapeutic target or at least, a measure 

of therapeutic success achieved by various pharmaceutical means13 or perhaps 

lifestyle modification. For example, in murine studies, a reversal of the epigenetic age 

was achieved by reduced caloric intake 14. Assuming that the methylation level of the 

CpG sites, comprising the epigenetic clock, affect specific aging routs through 

modulation of gene expression, interpersonal differences in the methylation degree of 

such sites could offer clues to not only differential aging rates, but to variability in aging 

mechanisms in human subjects.  

In the present study we focused on the possibility that the epigenetic age might be 

individually determined by inter-person differences in the methylation levels of such 

sites. For example, if the epigenetic age is kept fixed at Z years, which reflects the sum 

of three CpG sites, A, B and C, how variable is the specific contribution of each of them 
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to the epigenetic age among different subjects? If A adds most years in one subject, 

but very little in another, might this reflect important differences in their aging driving 

mechanisms? What, if any, are the key epigenetic differences between "epigenetically 

young" and "epigenetically old" subjects of the same chronological age? This study, 

focuses on the interpersonal variability of the components (methylation levels at 

specific sites) comprising the epigenetic age, as a potential tool in predicting 

individual's physiological malfunction, towards the development of personalized 

medicine. To address this issue we analyzed the epigenetic age of publicly available 

methylation data of 1441 healthy individuals, of the ages of 40-80 years, retrieved from 

Illumina methylation arrays. Because of the shorter lifespan of subjects with diabetes 

mellitus we have also analyzed   135 samples from subjects with type 2 diabetes 

(DM2). The epigenetic age was calculated by Horvath's clock, which is based on 

coefficients, calculated by a regression model, relating the methylation status of 353 

CpG sites (β- values) to chronological age.  

 

Results 

The epigenetic age distribution.  

In the aim of assessing interpersonal variability in the aging mechanisms, we first 

calculated the epigenetic age of the 1441 samples. Figure 1 depicts the overall relation 

between epigenetic age and chronological age in the entire analyzed data set. 

Individuals with an epigenetic age of Avg ± 1SD, (between red and orange lines), 

comprise 71.5% of the data whereas 27% of the data is from people with an epigenetic 

age between Avg ± 1SD and Avg ± 2.5 SD (between the orange and the purple lines). 

The 1.5% of the data residing beyond the purple lines were ignored to avoid large 

effects of potentially uncertain results ("outliers"). The near linear increase of the 

epigenetic age with chronological age, demonstrates that Horvath's clock is suitable 
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as age predictor for this data set, and that the epigenetic age has a high variability 

between individuals with the same chronological age, thus implying that individuals 

may age differently. 

Figure 1: The overall relation between 

epigenetic age and chronological age. 

Each blue point represents a single 

healthy individual. Red dots are the 

average value of the epigenetic age at 

each chronological age connected by a 

regression curve (red line). All dots 

between the orange and the red line represent individuals with an epigenetic age 

between Avg and Avg ± 1SD. Dots residing between the orange and the purple lines 

represent individuals with an epigenetic age between Avg ± 1SD and Avg ± 2.5 SD. 

 

CpG sites with the highest inter-personal variability: In order to find out the possible 

cause for interpersonal variations in the epigenetic aging, we have searched for CpG 

sites that were the most variable among subjects, in terms of years added/subtracted 

by that site to/from the total epigenetic age. Nine CpG sites that were found to be the 

most variable between individuals in 8 different age groups were selected as described 

in materials and methods. These sites and the genes within/ close to which they are 

located are listed in table 1, ranked from the one showing the largest inter-personal 

variation (overall SD) to the smallest. The two most dominant variable sites are related 

to secretagogin (SCGN) and malin [NHL Repeat Containing E3 Ubiquitin Protein 

Ligase 1 (NHLRC1)]. Eight probes out of the 9 most variable probes selected, were 

found to be independent of the population size (≥80% confidence). Specifically, 

secretagogin and malin were selected in 100% and 98% of the statistical simulations, 

respectively, indicating independence of the population size (table 3S in 
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supplementary file 1). Since there was no difference in the most variable epigenetic 

age components (CpG sites) between men and women in all chronological ages 

(supplementary file 4) we have treated the data with no gender distinction.  

 

Table 1: CpG sites with the highest inter-personal methylation variability in healthy 

population 

 

 

*No sign for the contribution, in years, for each probe means a positive age 

contribution; a minus sign indicates a negative age contribution 

Notably, genes whose CpG sites showed the largest variation (SD) also contributed a 

sizable positive or negative age years to the calculated epigenetic age. However, inter-

subject variability in methylation size effect was not simply a reflection of the magnitude 

of the contribution to age (in years). For example, CpG site on type 1 hair keratin, 

protein phosphatase 1 regulatory (inhibitor) subunit 14/7 and testis expressed 

sequence 286 genes, all of which had an effect exceeding +/-6.3 years, did not add 

considerably, on the average, to the overall difference (variability) in the makeup of the 

epigenetic age. 

Related 

gene symbol
Related Gene definition/ product

Illumina's 

CpG ID

Contribution 

to epigenetic 

age (years)*

SD of the age 

contribution 

(years)

SCGN Secretagogin cg06493994 7.1 2.1

NHLRC1 Malin cg22736354 9.3 1.8

MIR7-3HG MIR7-3 Host Gene cg02479575 1.8 1.0

FZD9 Frizzled 9 cg20692569 6.8 0.9

SCAP SREBP cleavage-activating protein cg26614073 -4.7 0.7

REEP1 Receptor expression enhancing protein 1 cg01968178 2.5 0.7

CSNK1D Casein kinase 1 delta cg19761273 -4.3 0.7

FXN Frataxin cg07158339 -4.6 0.7

NDUFS5 NADH dehydrogenase Fe-S protein 5 cg07388493 -4.8 0.7
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We have examined the correlation between the methylation levels of CpG sites with 

the highest inter-personal variability (from Horvath’s clock) and other CpG sites 

residing on the same gene. The level of the correlation was found to be related to the 

proximity of the CpG sites to one another and their location on the gene or its regulatory 

elements (figure 1S in supplementary file 1, and supplementary file 5). This indicates 

that the methylation level of the site included in the calculation of the epigenetic age 

provides good representation of the methylation status of neighboring sites and is 

therefore likely to be related to gene expression, if it resides on the promoter or another 

regulatory region. 

Large interpersonal variations in the epigenetic age composition in subjects with 

identical epigenetic age 

Quantitative variability in the aging vectors was not only found in individuals with 

identical chronological age and different epigenetic age but also in subjects with 

identical chronologic and epigenetic age. Figure 2 illustrates the heterogeneity of the 

contribution to the epigenetic age (in years) of the nine CpG sites that tend to vary the 

most among subjects. Figure 2A, shows two men, both at the chronological age group 

of 40-41, with a similar epigenetic age of 40-41. Despite these similarities, malin 

(NHLRC1) contributes more than 9.5 years to the epigenetic age in man P2 but only 

7.5 years in man P1, a difference which is offset by larger contributions of at least two 

CpG sites- linked to age lowering, which are mapped on SCAP and FXN genes. Next, 

figure 2B shows two men at a chronological age of 40-41 years. Larger "aging" 

contribution of all major positive contributors, generated a larger cumulative aging 

effect in subject P3 compared to subject P4, amounting to a pro-aging effect of 9.5 

years. Since both men have an epigenetic age of 45-46 years, this is offset, to some 

extent, by methylation state of CpG sites that lower the epigenetic age, particularly, in 

this case, sites mapped on the genes: CSNK1D FXN and SCAP. In the final example 

(figure 2C), two men of the same chronological age group of 40-41 have a markedly 
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accelerated epigenetic aging of 50-51 years. However, age acceleration is driven by 

higher aging effect of CpG sites mapped to NHLRC1, SCGN and REEP1 in man P5, 

with a higher age-reducing effect of CSNK1D and SCAP, which only slightly make up 

for the stronger pro-aging CpG sites in this person. Presumably, the cumulative effect 

of other negative age contributors (that are less variable) are responsible for equalizing 

the epigenetic age in this later pair. This data implies that age acceleration at the same 

chronological age to the same higher or to the same equal epigenetic age can be 

reached by a highly variable 

methylation profile of the genes 

whose variation in general is the 

largest. This could signify that 

different mechanisms underlie 

the aging processes which 

people undergo. 

Figure 2: Interpersonal variability 

in the epigenetic age 

composition of individuals with 

the same chronological age of 

40-41 years old and the same 

epigenetic age of (A) 40-41 

years, (B) 45-46 years and (C) 

50-51 years. Left and right 

panels are for CpG sites on 

genes which add or subtract 

from the epigenetic age, 

respectively. The genes 

presented according to the color 
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codes at the bottom of each graph, are related to the CpG sites which belong to the 

nine sites with the highest variability  

Key CpG sites as age accelerators or decelerators  

Figure 1 shows that almost a third (27%) of the individuals in our data set, spanning all 

chronological ages, reside between Avg ± 1SD and Avg ± 2.5SD (dots between orange 

and purple lines).  To detect which CpG sites (and their associated genes) were the 

major contributors to age acceleration we applied a "greedy algorithm" to the group of 

"epigenetic old" individuals (individuals whose epigenetic age resides between 1SD to 

2.5SD, above the average epigenetic age line) and found that the site responsible for 

the largest "unfavorable aging" effect in 29% of the "epigenetically old" individuals, is 

mapped to the secretagogin gene (figure 3A). The remaining 70% of the "epigenetically 

old" individuals were then tested for the second largest ager, found to be malin. Once 

malin is consecutively normalized into the average zone, the epigenetic age of 12% of 

"epigenetically old" individuals is shifted to the average zone. This is followed by 

frataxin, responsible for 7%, and so on. Since frataxin is a negative age contributor, its 

effect is depicted by smaller age lowering vector. The entire group of genes related to 

the CpG sites, responsible for the accelerated aging of 80% of the healthy population, 

is presented in figure 3A. The CpG sites associated with secretagogin, malin MIR-7 

and SCAP were found to be age accelerating components, independent of the 

population size (≥95% confidence, table 4S in supplementary file 1).  

The same key players, with some change in the magnitude and order of their effect 

and some new effectors', stood out when we searched for the genes associated with 

the CpG sites responsible for lowering the epigenetic age (age decelerators) from the 

Avg - 1SD age zone to an epigenetic age of less than -1SD down to – 2.5 SD (Fig. 

3B). Secretagogin and malin were the largest contributors to age deceleration, 

accounting for 25% and 14% of the "epigenetically young" individuals, respectively. 
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The cumulative percentage of individuals moving from the epigenetic old/young group 

to the Avg ± 1SD (black line in figure 3A and B) shows that up to 80% of the 

epigenetically old/young individuals had a single key prominent gene, responsible for 

accelerated or decelerated aging. 

Figure 3: key genes associated with 

CpG sites, considered as age 

accelerators/ decelerators. (A) Blue 

bars present the percentage of 

individuals from the "epigenetically 

old" group which moved to the Avg 

+ 1 SD group after setting 

consecutive CpG sites (presented 

with the name of their related gene) 

to their mean epigenetic age 

contribution, starting from the CpG 

site which moved the highest 

number of individuals to the lowest. 

(B) Blue bars are the percentage of 

individuals from the "epigenetically 

young" group who moved to the Avg - 1 SD after setting consecutive CpG sites to their 

mean epigenetic age contribution, starting from the site which moved the highest 

number of individuals to the lowest. The black line is the accumulative percentage of 

individuals moving from the "epigenetically old (A) /young (B)" group to the average 

group.    

Collectively, then, many of the CpG sites or their associated genes that are responsible 

for interpersonal variation in the makeup of the epigenetic age, are also major players 

that act as "age accelerators" or "decelerators", depending on their methylation status. 
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Personalized epigenetic aging card  

Finally, a putative "personal epigenetic aging status card" can be produced for each 

individual tested by the Horvath epigenetic clock. Such card, as shown in figure 4 for 

7 individuals, all at the same chronological age of 40-41, grades each subject for the 

accelerating (orange to red cells, figure 4) or decelerating effect (green cells, figure 4), 

in years of each of the major CpG sites with the largest SDs. The grades are the 

relative deviation of the age contribution of each CpG site from its average contribution 

to the epigenetic age. If the difference between the calculated epigenetic age of a 

certain individual and the average epigenetic age cannot be significantly explained by 

these sites, the clock can be further interrogated to reveal other sites, with less 

common age effect, which might explain deviations from the average epigenetic age. 

This process may eventually evolve as an individualized panel of aging effects, much 

like a routine biochemistry panel as presently assessed at the clinician's office to detect 

indicators of disease, by their actual deviation from the normal range.  

Figure 4: Personalized epigenetic gene card: colored cells are the deviation of the 

epigenetic age contribution (in years) of the CpG sites or their associated genes from 

their average epigenetic age contribution, for seven individuals at chronological age of 

40-41 years (sample number is # GSM). The average epigenetic age for 40-41 years 

old men, is 45.7 years. We show two samples ~5 years below epigenetic average age 

(light gray), three samples at average epigenetic age (darker gray) and two samples 

~5 years above epigenetic average age (dark gray). Cells with orange to red colors 

are for genes associated with CpG sites with age contribution above average. Cells in 

EA 

(years)
Person NHLRC1 SCGN FZD9 REEP1

MIR7-

3HG
CSNK1D FXN SCAP NDUFS5

41.3 P1 -0.4 -0.2 0.0 0.1 -0.2 0.3 0.4 1.7 0.4

40.6 P2 1.5 -0.4 -0.2 0.2 -0.6 -1.0 -1.2 -0.9 0.2

46.5 P3 0.8 1.5 0.2 0.4 1.0 -0.2 0.4 0.1 0.1

45.4 P4 -2.0 -1.7 -0.9 -0.6 -0.3 1.3 0.7 0.6 -0.7

45.3 P6 1.0 1.7 -0.2 -0.4 0.9 -0.8 0.2 0.3 0.6

50.8 P5 2.4 1.9 0.5 1.0 0.5 -0.8 0.4 -0.2 0.7

50.6 P7 2.0 0.7 0.7 0.0 0.3 -0.8 0.7 -0.1 0.4
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green, or light green associate with CpG sites on genes with age contribution below 

average.   

Aging variability and the CpGs responsible for accelerated aging in a cohort of  type 2 

diabetes mellitus (DM2)   

In order to find the CpG sites responsible for accelerated aging in DM2, we first 

calculated the epigenetic age of 135 subjects at the ages of 45-79 years, in parallel to 

the age span of the healthy subjects. Using Horvath's epigenetic clock, there was no 

significant difference between the average epigenetic age of the diabetes cohort and 

the healthy cohort (fig. 2S in supplementary file 1). In addition, seven out of the nine 

most variable CpG sites are shared by the healthy and diabetic samples, with some 

difference in the order of the size of the standard deviation (in years). Secretagogin, 

malin and a new player, beta-1,3-Galactosyltransferase 6 (B3GALT6) were the leading 

genes related to the most variable CpG sites (table 2S in supplementary file 1). Six 

probes, out of the 9 most variable probes selected, were found to be independent of 

the population size (≥78% confidence). Specifically, secretagogin and malin were re-

selected in 99% of statistical simulations, indicating independence of the population 

size (table 3S in supplementary file 1). These results emphasize how robust the 

selection of the CpG sites is for secretagogin and malin as the most interpersonally 

variable sites in all age groups. 

We analyzed the group of “epigenetic old”, diabetic subjects (the 21 individuals whose 

epigenetic age resides between 1SD to 2.5SD, above the average epigenetic age line) 

by the greedy algorithm method, in order to find the CpG sites accounting for the 

accelerated ageing of these specific individuals (figure 2S in supplementary file 1). In 

this analysis, a different group of CpG sites is responsible for accelerating aging in the 

diabetic cohort compared to the healthy population (Figure 5): 70% of the subjects 

could have "acquired" an average +1SD epigenetic age once the pro-aging effects of 

the CpG sites linked to casein kinase 1- delta 1 isoform (CSNK1D), NADH 
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dehydrogenase (ubiquinone) Fe-S protein 5 (NDUFS5), small nuclear ribonucleotin 

polypeptide B (SNRPB2) and structure specific recognition protein 1 (SSRP1), are 

removed. Of these, only CSNK1D and NDUFS5 were present among the CpG sites 

that contributed to the shifting of age to above Average+1SD in the healthy cohort, but 

at a different order of magnitude. The independence of these results of the population 

size was found to be at a confidence of ≤ 25%. This can be explained by the small 

number of “epigenetically old” individuals in the diabetic cohort. Although these results 

may not, therefore, reflect the pattern of the diabetic population at large, they do point 

out a different age acceleration pattern for this specific diabetic cohort relative to the 

healthy cohort. 

Figure 5: key genes associated with 

CpG sites, considered as age 

accelerators in the diabetic cohort. 

Blue bars present the percentage of 

individuals from the "epigenetically 

old" group which moved to the Avg + 

1 SD group after setting consecutive 

CpG sites (presented with the name 

of their related gene) to their mean epigenetic age contribution, starting from the CpG 

site which moved the highest number of individuals to the lowest. The black line is the 

accumulative percentage of individuals moving from the "epigenetically old group to 

the average group.    

 

Discussion 

Following the pioneering reports by Horvath 2 and Hannum 3, it is now widely 

recognized that epigenetic age and chronological age correlate well with each other in 

many populations, regardless of the tissue studied 2. In several publications a potential 
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functional role has been ascribed to the CpG sites that participate in the algorithms 

developed to derive the epigenetic age 4. For example, accelerated epigenetic age 

relative to chronological age is reportedly linked to preferential activation of pro-

inflammatory and interferon pathways, along with reduced stimulation of 

transcriptional/translational machinery, blunted DNA damage response, and 

weakened mitochondrial signatures 4,15. This supports the notion that the epigenetic 

age does not simply mirror randomly the passage of time but reflects specific anti- 

homeostatic effects that may lead to or indicate specific unfavorable conditions which 

facilitate disease and affect life span.   

The possibility that specific epigenetic aging drivers can be targeted to achieve 

personalized epigenetic/biological age deceleration, can become a testable approach. 

In the present study we examined which of the CpG sites included in the original 

Horvath DNAm algorithm are the major contributors to inter-personal differences in the 

epigenetic age. We found that the CpG sites related to malin and secretagogin have 

relatively high contribution to the epigenetic age and the most variable methylation 

status in between individuals both in the healthy and the diabetes cohorts. Additionally, 

in the healthy cohort, differences in the methylation status of secretagogin and malin, 

contributed more than any other methylation loci, to the difference between 

epigenetically old and epigenetically young subjects, across the entire age span 

screened by us (40-80yrs) (figure 3). This was not the case, however, in samples from 

diabetic subjects, in whom neither secretagogin's nor malin's-related methylation loci 

accounted for the higher epigenetic age in subjects who were epigenetically old. This 

may indicate that different biological mechanisms are involved in the accelerated aging 

of "epigenetically old" in the diabetes subjects analyzed, relative to "epigenetically old" 

healthy subjects (figure 5).  

Notably, both the secretagogin and malin-related CpG sites are among the 5 shared 

by three known DNA-mAge epigenetic clocks: Hannum DNAm Age score (based on 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.20.449142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449142


15 
 

71 methylation sites)3, Horvath DNAm Age measure (353 sites) 2 and the DNAm 

PhenoAge score (513 sites) 6 and were also suggested to be the most dominant key 

age predictor sites 16. Might these genes, then, be mechanistically involved in aging? 

The malin gene encodes a RING type E3-ubiquitin ligase which forms a functional 

complex with laforin, a glucan phosphatase 17. Mutations in either malin or laforin in 

humans lead to the development of Lafora progressive myoclonus epilepsy, a rare 

fatal neurodegenerative disease with early manifestations in the early childhood. Brain 

damage is incurred due to deposition underbranched and hyperphosphorylated 

insoluble glycogen in the brain and peripheral tissues 18–20. It is notable that glucan 

deposits have been described in the setting of aging animals and humans 21–23, 

unrelated to LaFora disease, which raises the possibility of lesser malin activity with 

age. Indeed, malin appears to participate in a delicate homeostatic network linking 

neuronal glycogen synthesis and energetic utilization, interacting with autophagy, 

mitochondrial function and response to thermal stress, which could collectively affect 

lifespan 17,23–26. The possibility that malin expression, which is critical for inhibition of 

polyglucan deposits in neurons, plays a role in healthful longevity in humans is 

intriguing and requires targeted research. In animal studies malin deficiency can lead 

to impaired autophagy and accumulation of dysfunctional mitochondria, which 

eventually promote neurodegeneration, immune disorders, cancer, and accelerated 

aging 27.  

Secretagogin is an intracellular calcium sensor and facilitator of insulin secretion by 

pancreatic islet beta cells 28. Recently it was shown that secretagogin play a critical 

role in the second phase of glucose-stimulated insulin secretion 29, protect against 

insulin aggregation and enhance peripheral response to insulin 30. Concordant with this 

broad role in carbohydrate handling, secretagogin knockout leads to hyperglycemia 31. 

Secretagogin is also expressed in neuroendocrine cells where it likely regulates 

exocytosis and hormone release 32,33. Concordantly, it is also involved in danger 
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avoidance behavior through the control of post synaptic cell-surface availability of 

NMDA receptors in the central amygdala 34. We are not aware, however, of published 

reports examining the relation between induced changes in secretagogin expression 

and lifespan or longevity.  

Of major interest in the Horvath algorithm are CpG sites with a negative contribution 

to the epigenetic age, such as frataxin. Frataxin is a nuclear-encoded mitochondrial 

protein which is part of the Fe-S-cluster-containing proteins acting as an iron 

chaperone, thereby allowing normal function of the mitochondrial respiratory chain 35. 

In our analysis frataxin shows both high interpersonal variability and also partly 

explains some (~8%) of the calculated age difference between epigenetically old and 

average subjects (Figure 3A). The fact that higher methylation of frataxin can extend 

life, as indirectly suggested by its epigenetic age lowering effect is somewhat 

counterintuitive: defects in the expression of this mitochondrial protein cause the 

neurodegenerative syndrome of Friedreich's ataxia 36,37, which is also accompanied by 

cardiomyopathy, diabetes mellitus and reduced life expectancy 38. However, 

inactivation of many mitochondrial genes in the nematode Caenorhabditis elegans by 

RNAi was actually shown to extend lifespan 39. Ventura et al reported that suppression 

of the frataxin homolog gene (frh-1) prolonged lifespan in the nematode, along with an 

altered phenotype of smaller size, diminished fertility and variant responses to 

oxidative stress. Thus, whereas sizable inactivation of frataxin causes a disabling 

disease, a more moderate frataxin suppression, such as achieved by RNAi could lead 

to higher lifespan as seen in C. elegans 40. There is evidence that frataxin silencing 

induces mitochondrial autophagy as an evolutionarily conserved response to the 

ensuing iron starvation 35. In a broader sense, lesser frataxin availability might 

comprise a surmountable challenge which elicits mitophagy that eventually 

preconditions the cell's capacity to sustain future stress, thereby increasing the 

likelihood of extended lifespan. 
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Overall, our analysis reveals sizable interpersonal differences in the contribution to age 

of methylation sites of several genes. It is also possible that there is a shift in the 

epigenetic age vectors in diabetes mellitus patients, that are not necessarily detected 

by the computation of the mean epigenetic age per se. In the healthy cohort, genes 

such as, but not limited to, secretagogin, malin and frataxin stand out in terms of either 

the size of their effect on interpersonal differences in the composition of the epigenetic 

age as well as their influence on the likelihood for an individual to acquire enhanced or 

delayed epigenetic aging. This analysis also unravels that even healthy subjects with 

average epigenetic aging could show accelerated aging with respect to some genes. 

In the same venue, epigenetically healthy older subjects are also heterogeneous and 

could be pushed to unfavorable epigenetic drifting by different aging vectors. The high 

epigenetic age of the “epigenetically old” diabetic individuals was driven by a repertoire 

of genes that are mostly different from the cluster driving accelerated aging in the 

healthy cohort, potentially implying a different aging mechanism in such conditions. 

Not necessarily representative of aging in DM2 at large, the findings add further 

strength to the notion of heterogeneity of epigenetic aging. This paves the way for 

future attempts to personalize the perception of epigenetic aging by deconvolution, 

addressing aging not as a general process in search of reversal, but as a collection of 

individual effects requiring personalized attention.  

 

Materials and methods 

Methylation Data  

The β values which reflects the methylation status of each CpG site were retrieved 

from the Gene Expression Omnibus (GEO) Datasets repository. Following filtration for 

whole blood and healthy subjects at the relevant age range we obtained 2298 samples, 

from 23 different data sets. All filtered samples were normalized using an R-code 
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provided by Horvath et al.2. Samples that failed Horvath's normalization process 2, 

were removed, leaving a total of 1,441 samples for interrogation, (867 females and 

574 males). We also analyzed a distinct cohort of 135 whole blood samples from 

subjects of the same age range (55 females and 80 males), diagnosed with diabetes, 

a disease possibly linked to accelerated biological aging 41–43. Detailed description on 

the datasets and the processes involved in the selection of the samples we have 

analyzed can be found in table 1S, detailed materials and methods section, in 

supplementary file 1. 

Epigenetic vs Chronological age: 

For each sample we extracted the β values of Horvath’s 353 CpGs clock sites and 

converted them to age contribution based on their coefficients, calculated as explained 

by Horvath et al. 2. The epigenetic age of each of the 1,441 individuals is the sum of 

the contribution plus a constant (representing the intercept of the linear correlation), in 

years, of all 353 CpGs (supplementary file 3). In order to smooth the average (Avg) 

and standard deviation (SD), we used a running average and a running standard 

deviation of the epigenetic age with a window size of 3 (details in materials and 

methods section of supplementary file 1). 

CpG sites with the highest inter-personal variability 

We divided the 1441 healthy samples to 8 chronological data sets by age groups 

spanning from the age of 40 to the age of 80 years regardless of the gender (40-45 

(189); 46-50 (215); 51-55 (217); 56-60 (223); 61-65 (220); 66-70 (177); 71-75 (120); 

76-80 (80), years (number of subjects)). The 135 diabetic subjects were divided to 7 

chronological age groups spanning from the age 45 to the age of 80 regardless of 

gender (45-49 (6); 50-54 (10); 55-59 (10); 60-64 (6); 65-69 (28); 70-74 (34); and 75-

80 (50), years (number of subjects)). At each chronological data set, we recorded the 

20 CpG sites from Horvath's clock, with the highest inter-individual variability (standard 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.20.449142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449142


19 
 

deviation, SD, in years). We then identified 9 out of these 20 CpG sites with the largest 

inter-individual variability, which were also consistently present in each of the 8 

chronological age data sets of the healthy cohort and 6 of the 7 chronological age data 

sets of the diabetes cohort. A statistical simulation, examining the relation between the 

identified CpG sites and the size of the cohort was manifested as explained in table 

3S in supplementary file 1. 

CpG sites as age accelerators or decelerators  

Key epigenetic age accelerators or decelerators were found by looking for the probes 

with the highest cumulative contribution to the epigenetic age. The data set was divided 

to: 1) the "epigenetically average" group including all samples with epigenetically age 

of the running average ± 1 SD (the population in between the two orange lines), 2) the 

"epigenetically old/young" group, with an epigenetic age between 1 SD and 2.5 SD 

above or below the average (the population in between the upper/lower orange and 

purple lines, respectively),  3) the outliers, which have an epigenetic age with more 

than 2.5 SD from the average (the population above the upper or below the lower 

purple lines).  

For the "epigenetically old" and the "epigenetically young" population, a greedy 

algorithm was applied. The algorithm calculates, for each probe, the number of 

individuals that moved from the "epigenetically old" or the "epigenetically young" to the 

"epigenetically average" group, as a result of setting a particular probe to its mean 

epigenetic age contribution value (in years). In each iteration, the algorithm selects the 

probe which moves the largest number of samples into the "average group": In the first 

iteration, the CpG site selected is the one which moves the highest number of subjects 

into the average zone, (by setting it to its average value). In the second iteration, the 

probe selected is the one which moves the most individuals in the residual "epigenetic 

older/ younger" zone to the average epigenetic age group and so on. The bars in the 
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graphs shown in figure 3 and 5 presents the percentages of individuals from the entire 

1441 population, passing from the "epigenetically old/ young" to the average group 

when all consecutive CpG sites are set to their mean epigenetic age contribution 

(supplementary file 1) 

 

Personalized epigenetic aging card 

A personal epigenetic card is presented for 7 healthy individuals, with chronological 

age of 40-41 years, as the deviation (in years) from the mean epigenetic age 

contribution of each of the 9 chosen probes. The mean epigenetic age contribution of 

each probe is the average addition/subtraction of each probe, to/ from the average 

epigenetic age at 40-41 years.    

 

Supplementary material: 

Supplementary file 1: Detailed materials and method, tables 1S-4S and figures 1S-2S 

Supplementary file 2: an R code for the conversion of idat values β values  

Supplementary file 3: The age contribution, in years, for each of the 353 CpG sites 

comprising Horvath's clock, for each of the 1441 individuals 

Supplementary file 4: The SD and the rank by SD of the most variable CpG sites from 

Horvath's clock in three different populations: Men, Woman and gender mixed 

population 

Supplementary file 5: The correlation between the methylation of the CpG site included 

in Horvath clock and other CpG sites related to the same gene, as a function of their 

distance, for the nine selected most variable genes found in all age groups.  
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