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 38 

ABSTRACT: 39 

 40 

A remarkable feature of primate behavior is the ability to predict future events based on 41 

past experience and current sensory cues. To understand how the brain plans 42 

movements in the presence of unstable cues, we recorded gaze-related activity in the 43 

frontal cortex of two monkeys engaged in a quasi-predictable cue-conflict task. Animals 44 

were trained to look toward remembered visual targets in the presence of a landmark 45 

that shifted with fixed amplitude but randomized direction.  As simulated by a 46 

probabilistic model based on known physiology/behavior, gaze end points assumed a 47 

circular distribution around the target, mirroring the possible directions of the landmark 48 

shift. This predictive strategy was reflected in frontal cortex activity (especially 49 

supplementary eye fields), which anticipated future gaze distributions before the actual 50 

landmark shift. In general, these results implicate prefrontal cortex in the predictive 51 

integration of environmental cues and their learned statistical properties to mitigate 52 

spatial uncertainty.   53 

 54 

 55 

 56 

  57 
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INTRODUCTION: 58 

 59 

A major purpose of the brain is to create predictive internal models of the surrounding 60 

environment to prepare for imminent action 1,2.  This is challenging in a dynamic visual 61 

environment, with varying degrees of stability. But often we create expectations based 62 

on past probabilities, and these expectations manifest as behavioral strategies. For 63 

example, a soccer forward must integrate dynamic sensory information (goalie position 64 

relative to goal posts) with past knowledge of goalie behavior to aim the winning kick. 65 

Here, the forward is not just using visual landmarks to stabilize current spatial cognition 66 

3–9, but also to generate predictions. The challenge here is that one of these landmarks 67 

(the goalie) is himself moving and only partially predictable. To mitigate this spatial 68 

uncertainty, some neural mechanism must integrate current sensory information with 69 

past experience. 70 

The prospective influence of visual landmarks for predictive behavior has received little 71 

attention compared with their retrospective influence on spatial coding. For example, 72 

humans and non-human primates appear to optimally weigh allocentric and egocentric 73 

visual cues in cue-conflict tasks, e.g., where a shift in allocentric landmarks causes 74 

reach and gaze to deviate in the same direction 6,10,11. This behavior appears to involve 75 

neural computations in frontal cortex. In the absence of a visual landmark, gaze-related 76 

frontal activity simply grows more ‘noisy’ through time 12–14. However, in the presence of 77 

a shifting landmark, both the frontal (FEF) and supplementary (SEF) eye fields detect 78 

these shifts, ultimately integrating this information into their egocentric (eye-centered) 79 

gaze commands 15,16. However, other oculomotor studies suggest that these areas, 80 
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especially the SEF, are involved in predictive gaze behaviors 17–19. We therefore 81 

hypothesized that frontal cortex (in particular SEF) might also be involved in predictive 82 

gaze behavior based on probabilistic spatial relations of environmental cues to future 83 

events.  84 

We tested this hypothesis by simultaneously recording FEF and SEF neurons using the 85 

cue-conflict memory-guided saccade task developed and employed in our previous 86 

studies on the same animals 11,15,16 (Fig. 1A). In these previous studies, we showed a 87 

retrospective influence of a shifted visual landmark on gaze responses to a 88 

remembered visual target. But here, we focused on prospective coding, i.e., neural 89 

responses before the landmark shift. Guided by a theoretical framework based on 90 

prediction of probabilistic events and the neural computations noted above, we 91 

hypothesized that if the landmark shifted with a fixed amplitude but random direction, 1) 92 

animals might unconsciously develop a predictive gaze strategy to mitigate the future 93 

landmark influence 1,2, and 2) this strategy might be encoded prospectively in frontal 94 

cortex activity, particularly the SEF. Indeed, we found that, 1) animals developed a 95 

circular distribution of final gaze positions around the target, slightly biased toward the 96 

actual shift, and 2) both FEF and (especially) SEF neurons predicted these final gaze 97 

distributions just before the actual landmark shift. Collectively, these results implicate a 98 

critical role of frontal cortex in the integration of environmental cues and their learned 99 

statistical properties to predict and mitigate spatial uncertainty. 100 

RESULTS:  101 

Task  102 
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To investigate how the brain might use visual landmarks to generate predictive gaze 103 

behavior, animals were trained on a cue-conflict task: a large landmark appeared in the 104 

background, then a target flashed briefly, followed by a surreptitious landmark shift 105 

(during a visual mask). Finally, animals were cued to aim their gaze toward the 106 

remembered target location (Fig. 1A). Figure 1B schematically shows 4 possible initial 107 

target-landmark configurations (B1) and the possible landmark shifts (B2). These shifts 108 

occurred in 1 of 8 directions around the original landmark location, but always had the 109 

same 8° amplitude, thereby forming a circular distribution. Animals were rewarded if 110 

gaze end points landed within 8-12° of the original target location (T, right panel), so 111 

that training did not bias their gaze behavior toward or away from the landmark shift. 112 

During experiments, the target position was varied throughout the visual field while 113 

randomly varying the relative landmark configuration and the direction of landmark shift. 114 

In previous experiments, we studied the influence of this landmark shift on subsequent 115 

premotor activity, and showed that it causes the one-dimensional distributions of final 116 

gaze position to shift in the same direction (B3) 11,15,16.  117 

It is noteworthy that animals spent several months learning and performing this task for 118 

a water reward (see methods), so they had ample opportunity to implicitly learn its 119 

probabilistic properties (i.e., a fixed amplitude, variable direction landmark shift 15,16). To 120 

determine if these rules were incorporated into some predictive gaze control 121 

mechanism, here we analyzed final two-dimensional gaze distributions and examined 122 

neural activity before the actual landmark shift.  123 

 124 
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 125 

 126 

 127 

Fig. 1. Experimental paradigm and behavior (A) Cue-conflict experiment and its time128 

course. The trial began by the monkey fixating on a red dot for 500 ms in the presence129 

of a landmark (L, white intersecting lines) that was already present on the screen. A130 

target (white dot) was then presented for 100 ms, followed by a first delay period of 300131 

ms and a grid-like mask (200 ms). After the mask, the landmark shifted (L’) in one of132 

eight radial directions around the original landmark. Post-mask, and after a second133 

variable memory delay (200-600 ms), the animal was cued (fixation dot off, i.e., go134 

signal) to saccade to the remembered location of the target T. Accordingly, the animal135 

was rewarded for landing its gaze (G) within a radius of 8-12° centered on the original136 
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target (i.e., either for looking at T = original target, at T’ = virtually shifted target fixed to 137 

landmark, or between T and T’). The cyan arrow denotes the head-unrestrained gaze 138 

saccade to the remembered location. Note for clarity purpose, the landmark shift is 139 

exaggerated in the figure. Importantly, the pink, yellow and cyan items were never 140 

present on the screen and are only shown for illustrative purpose. (B1) Schematic of 141 

four possible oblique landmark locations (black cross) in relation to a specific target 142 

(black dot). The red dot represents the initial eye fixation and the red circle corresponds 143 

to the typical fixation jitter. (B2) Schematic of a possible post-mask landmark shift (eight 144 

possible directions, 8° each, light pink) for an example shift (dark pink) away from the 145 

target. Note the radial distribution of possible landmark shifts around the original 146 

landmark. (B3) Schematic of a gaze shift (broken black line) with the gaze endpoint (G) 147 

between T and T’. 148 

 149 

Predictive Gaze Behavior: Actual and Simulated Distributions 150 

Gaze Behavior. Figure 2A summarizes the distributions of gaze end points, for our two 151 

animals. Gaze distributions (blue-yellow color scale) are plotted relative to the 152 

remembered target position T (0°,0°; black dot), and the pink dots represent idealized 153 

target locations (T’) if they remained fixed to the landmark after shifting in the 8 possible 154 

directions (the dotted line connecting them represents the area where final gaze 155 

position gaze would result in a reward). The highest gaze densities (yellow) appear to 156 

cluster around the pink dots. At first glance one might assume that the animals simply 157 

waited for the landmark shift, and then deviated gaze in that direction, but in these plots, 158 

one cannot tell if there was any correlation between gaze and the actual shift direction.  159 

To understand the real relationship between 2D gaze and the actual landmark shift, we 160 

rotated all of the data such that the direction of the actual landmark shift is always to the 161 

right (Fig. 2B). Now, the pink dot to the right represents the idealized target (T’), and the 162 

other 7 lighter dots represent the potential targets for the seven landmark shifts that did 163 

not occur. Gaze endpoints still produced a circular distribution (Fig. 2B, upper panels), 164 

reminiscent of the potential directions of the landmark shift. This pattern was also 165 
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observed when each of the eight individual shift directions were analyzed separately166 

(Supplementary Fig. 1). In other words, animals ‘guessed’ at the radial distribution of167 

future landmark shifts, regardless of the actual direction of the landmark shift. 168 

Fig. 2. Gaze behavioral data and simulation (A): 2-D distribution of the gaze169 

endpoints (36084 trials in animal L, 27651 in animal V) relative to the actual location170 

and directions of the landmark shifts. The black circle indicates the target position T, the171 

pink circles indicate the shifted target positions T’. The x-component is given by the172 

projection of the gaze endpoint173 

scatter in the direction of the174 

landmark shift and the y-175 

component is given by the176 

projection of the scatter177 

orthogonal to the landmark shift.178 

Note that these behavioral data179 

were derived from the exact same180 

trials used in the181 

neurophysiological analysis182 

provided below. (B) Displayed183 

(top) is the normalized 2D184 

distribution of the gaze endpoints185 

shown in (A) around the target. All186 

the shifted landmark positions187 

(light pink circles) were188 

graphically rotated such that they189 

were all located to the right (dark190 

pink circle). In other words, the191 

light pink circles indicate shifted192 

targets associated with landmark193 

shifts that did not occur and the194 

white dashed circle indicates the195 

minimal reward window used in196 

the experiment. The color map is197 

indicative of the number of gaze198 

endpoints in this region ranging199 

from low (blue) to high (yellow).200 

Gaze endpoints scatter in circular201 

distribution with the highest202 

density of gaze endpoints in a crescent area next to the target. Bottom: the 1D203 

projection of the 2-D distribution of gaze endpoints along the direction of the landmark204 

shift for both animals shows a bias in this direction. The blue line indicates the mean205 

whereas the magenta line indicates the median. A comparison with the simulated data206 

(C) shows the similarity between the real and simulated data for both monkeys.     207 
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 208 

 209 

This does not mean that the actual landmark shift did not have an influence on gaze 210 

behavior. When data were collapsed into one dimension, i.e., shifts connecting T and T’ 211 

(Fig. 2B, bottom panels), they confirmed our previous findings 11,15,16: the overall gaze 212 

distributions were in fact shifted in the direction of the landmark shift (p < 0.01; Wilcoxon 213 

Rank Sum test), by a median of 3.2° in animal L and 2.4° in animal V. Thus, overall, 214 

both animals produced a predictive, circular distribution of gaze end points (similar to 215 

the possible landmark shifts) that was biased in the direction of the actual landmark 216 

shift. 217 

Model. The behavioral data described above appears to support our hypothesis that 218 

animals learned to expect a fixed-amplitude landmark shift of varying direction. To 219 

understand how they might do this (and to make neurophysiological predictions), we 220 

developed a probabilistic model based on two known properties of the gaze control 221 

system, and one hypothetical property (see methods for mathematical description). The 222 

known properties are that 1) target memory is initially fairly precise but then 223 

progressively degrades through time, resulting in a broader distribution of variable gaze 224 

errors 12,13,20 and that 2) the landmark shift influences subsequent premotor codes, 225 

resulting in a shifted distribution of gaze end points 15,16. The third and novel component 226 

of the model is a ‘guess’ concerning the future landmark shift. Since the direction is 227 

unknown, this component results in a circular distribution of gaze estimates. We allowed 228 

these three model components (prediction, noise, actual shift influence) to “guess” a 229 
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saccade vector and then calculated the weighted average across them to simulate the 230 

expected gaze distribution in our task.     231 

After adjusting the model parameters (see methods), the simulated output almost 232 

exactly replicated the data (Fig. 2C), i.e., a ring-like distribution of gaze endpoints that 233 

was densest near the target but shifted in the direction of the landmark shift. (with a 234 

correlation of 0.81 and 0.81 between the actual and simulated data for monkey L and V 235 

respectively). Conversely, if we removed the predictive element of the model it resulted 236 

in a shifted gaussian distribution of gaze endpoints. Consistent with this, when we 237 

subtracted no-shift trials from the shift trials (Supplementary Fig. 2), the circular 238 

distribution collapsed to a shifted gaussian. These two findings confirm that the actual 239 

gaze distributions were a result of a probabilistic process, where landmark prediction 240 

explained the circular distribution, actual landmark influence explained the overall bias 241 

in this distribution, and interactions with a degraded target representation caused 242 

greater gaze density near the target. Again, the physiological basis of the latter two 243 

phenomena have already been described 13,15,16, but, the model makes a new and 244 

strong prediction: there must be some neural mechanism that predicts the future 245 

landmark influence before it actually happens.  246 

Neural Analysis: SEF predicts the future gaze distribution. 247 

The model described above suggests that the gaze control system implicitly anticipates 248 

the amplitude and guesses the direction of an impending probabilistic landmark shift, 249 

ultimately influencing the actual distribution of future gaze saccades. Based on the 250 

literature of oculomotor prediction 21–24, we expected the prefrontal gaze system, 251 
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especially the SEF, to play a prominent role in this strategy. If so, their predictive neural 252 

signals should pass two criteria: 1) they should be present before the actual landmark 253 

shift, and 2) since the predictive strategy dominated final gaze position (Fig. 2B) then 254 

these signals should encode the observed deviations of final gaze from the original 255 

target. 256 

 257 

 258 

To test this hypothesis, we analyzed early (pre-landmark shift) activity from 312 FEF 259 

and 256 SEF neurons recorded during the task described above (Fig. 3A). During 260 

experiments, we recorded neural response fields (the area of space that modulates 261 

neural activity). Targets were presented throughout the response field of each neuron, 262 

while randomly varying the 4 landmark configurations, and the 8 landmark shift 263 

directions. Consistent with previous studies, many of our neurons, especially in SEF 264 

25,26, did not show significant spatial tuning. After removing these and applying our other 265 

exclusion criteria (see METHODS), we were left with 147 FEF and 68 SEF neurons for 266 

analysis. Mean spike density plots for these neuron populations, up until the landmark 267 

shift, are shown in Figure 3B. In both areas, visual targets evoked a strong visual 268 

response, followed by a lower-level memory response that lasted past the landmark 269 

shift 15,16. The 7 half-overlapping time steps shown above these plots show the temporal 270 

windows that we used in the following analysis. We then tested if activity predicted gaze 271 

in any of these periods. 272 

To do this, we characterized if neurons were coding original target location (T), the 273 

future final gaze position (G), or something in between, called the ‘T-G continuum’ 274 
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(discretized in ten steps), calculated relative to initial eye orientation 12,13,15,16,27. In this275 

analysis, a value of 0 indicates a pure target-relative-to-eye encoding, while a value of 1276 

indicates a final-gaze-relative-to-eye encoding, values between 0-1 indicate an277 

intermediate code, and values beyond 0 / 1 could indicate a negative (perhaps278 

inhibitory) influence of the opposite factor (Fig. 3C1). This analysis allowed us to plot279 

the response field data in each of these coordinate frames, and to perform a non-280 

parametric fit to each dataset 28.  The one spatial step (out of ten, see above) that281 

yielded the lowest residuals (deviations)  282 

283 

     Figure 3. SEF and FEF recordings (A) Left: The green and the gray sites represent284 

the location of the SEF and FEF respectively. Right: Zoomed-in overlapped sections285 

for FEF and SEF with sites of neural recordings (dots) that were confirmed with 50286 

µA current micro-stimulation. Blue and red dots correspond to recordings sites in287 
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Monkey L and Monkey V respectively. (B) Mean (± 95 % confidence) of the spike-288 

density plots from target onset until landmark shift [dark; all trials from all neurons; 289 

light: top 10% best trials most likely depicting the hot spot activity of every neuron’s 290 

response field (RF) in visual responses, aligned to target onset (blue vertical line)]. 291 

The blue shaded region corresponds to the analysis window divided into 7 half-292 

overlapping x ms wide time-steps, as depicted above the shaded area. (C) A 293 

schematic behind the logic of response field analysis. (C1) Shown is a schematic of 294 

the continuum between Te(0) and Ge(1) with intermediate steps. (C2) The X-axis 295 

denotes the coordinate frame, and the Y-axis represents the corresponding activity. 296 

Briefly, if the activity related to a specific target is plotted in the correct/best 297 

reference frame, this will result in lowest residuals, i.e., if the neural activity to a 298 

target is fixed (left) then the data (blue) would fit (black curve) better on that, yielding 299 

lower residuals compared with when the activity is plotted in an incorrect frame, 300 

yielding higher residuals (right).  301 

 302 

between the actual neural responses and the fit was deemed to provide the best fit and 303 

hence indicate the coordinate system employed by a given neuron at a given time (Fig. 304 

3C2). We performed this analysis for each of the time steps shown in Figure 3B, to 305 

track the temporal evolution of the spatial coding before the landmark shift. Note since 306 

G is derived from the actual gaze data constituting the predictive distribution in Figure 307 

2, neurons / populations that approach G must be involved in prediction. 308 
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309 

Figure 4. Typical examples of spatial encoding of an SEF and FEF neuron (A)310 

Raster with spike density plot (red curve) for the FEF neuron. The blue arrow311 

corresponds to the target onset and the blue shaded area represents the analysis312 

window divided into 7 half-overlapping time-steps. The green rectangles correspond to313 

the time-steps 2 and 5. (B) Response field plot at time-step 2. The response field fits at314 

1st point from T. The yellow blob represents the hot spot of the response field.  (C)315 

Response field plot at time step 5 and it fits best at 4th step from T. (D) Same316 

convention as A but for SEF neuron. (E) Response field plot at time-step 2 and it fits317 

best at 3rd point from T. (F) Response field at time step 5 and it fits best at 9th point from318 

T suggesting a predictive shift toward gaze. The color bar stands for both response319 

fields. The circle size is proportional to response magnitude. Note: 0,0 denotes the320 

center of the coordinate system (the fovea) that yielded lowest residuals (best fit). 321 

 322 

Figure 4 shows a typical example of the response field fitting for an FEF (upper row)323 

and an SEF (lower row) neuron. The leftward panels (A, D) display raster with the spike324 

density plot for these neurons, aligned to the target onset (blue arrow). The blue shaded325 
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area corresponds to the analysis window that is divided into our 7 half-overlapping time-326 

steps. To the right of these plots are response fields calculated at the 2nd and 5th time 327 

steps (indicated by green rectangles in A/D) and plotted in their best T-G coordinate 328 

frame (indicated by the yellow dot on the scale above each plot). Each circle in the 329 

response field map corresponds to neural activity from a single trial, where the larger 330 

the circle the larger the response (i.e., number of action potentials). The colored heat 331 

maps represent the non-parametric fit to these data, where red depicts the ‘hot-spot’.  332 

At time step 2 (Fig. 4 B/E; spanning the late phasic response to target presentation), 333 

both the SEF and FEF examples show a best fit near T, indicating that these neurons 334 

were coding target location relative to the eye. At time step 5 (Fig. 4 C/F; just after mask 335 

onset, and just before the anticipated landmark shift), there were no obvious shifts in the 336 

response fields. However, there were shifts in the best T-G fits, signifying a change in 337 

the underlying neural code. In the FEF example, there was a 30% shift toward G, 338 

signifying a closer relation to future gaze position. Further, the SEF example shifted 339 

90% toward G. This means that this SEF neuron was predicting the circular distribution 340 

of gaze deviations from T, on a trial-by-trial basis, just before the actual landmark shift. 341 

To document these observations through time, we pooled the T-G fits across all FEF (n 342 

=147) and across all SEF (n = 68) neurons and then analyzed each population code as 343 

a function of time (Fig. 5).  Figure 5A illustrates the mean spike density plots for the 344 

SEF and FEF neurons across 7 time steps ranging from visual response onset until the 345 

(invisible) landmark shift. The pink shaded area corresponds to the duration of the 346 

mask. 347 
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348 

Figure 5: Spatial code evolution with time. (A) Spike density plots (mean ± SEM) for349 

SEF (green) and FEF (gray) from visual response onset until the landmark shift divided350 

into 7-half overlapping time-steps. (B) Spatial code evolution with time for SEF (green)351 

and FEF (gray) neurons along the target-to-gaze (T-G) continuum. A sudden predictive352 

shift toward G was noticed for SEF neurons at 5th step that significantly differed from353 

corresponding FEF step (p = 0.028, unpaired t-test) and the 4th SEF step (p = 0.02,354 

unpaired t-test).The pink area corresponds to the duration of the mask. 355 

 356 

Both the FEF and SEF showed significant deviations from T at all time steps, which357 

could partially be accounted for by the degraded T representation in our model.358 

However, they followed different time courses.  For the FEF (grey symbols and curve),359 

there was a gradual progression from T towards G coding along the time-steps, as360 

noted previously 12,15. However, for the SEF population (Fig. 5B, green symbols and361 

curve) the spatial code already started midway between T and G at time-step 1 (the362 

visual response to the target in the presence of the landmark) with a significantly greater363 

shift than FEF (p=0.01, Mann-Whitney test). Then, after reverting toward the FEF curve364 

for several steps in the memory period, the SEF again displayed a sudden shift of 78 %365 

toward G at time-step 5 (just after mask onset and just before the probabilistic landmark366 
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shift), with a significantly greater shift than FEF (p = 0.028, Mann-Whitney test).367 

Further, there was a significant difference between the 4th and 5th steps for the SEF (p =368 

0.02, unpaired t-test). The FEF appears to follow a small trend at this point, but this did369 

not reach significance (p > 0.05, Mann Whitney test) population. These data suggest370 

that the SEF played a special role in predicting future gaze direction, just before the371 

landmark shift, including (and possibly causing) the trial-to-trial ‘guess’ at the direction of372 

landmark shift.   373 

Figure 6: Detailed evolution of spatial codes through time. (A) Violin plots for FEF374 

(top) and SEF (bottom). The width of each plot indicates the relative number of neurons375 

with fits at a particular point on the T-G continuum. The mean of each distribution is376 

indicated by the red line and median by the blue line. Such plots combine the strengths377 

of bar graphs and frequency histograms (arranged in the vertical dimension), (B)378 

Dissociation of neurons into three379 

distinct (colour coded) clusters of380 

neurons using a clustering approach.381 

The main graph plots means and382 

confidence intervals of T-G fits for the383 

combined FEF/SEF population,384 

plotted through five time steps. Inset385 

shows the relative numbers of386 

neurons in SEF and FEF that fit within387 

these three clusters. 388 

 389 

To illustrate how this predictive shift390 

occurred across the full distribution of391 

our FEF and SEF populations, we392 

computed ‘violin’ plot fits to the T-G393 

distributions of all spatially tuned394 

neurons (Fig. 6) for time steps 1-5395 

(where the G prediction peaked).396 
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These populations showed means and medians between T and G, but extend beyond T 397 

and G, a phenomenon that has been noted in previous studies of intermediate 398 

reference frames in both real and artificial neural populations 12,15,16,20,29–31. Both 399 

populations revealed relatively stable code distributions for the first 3 time steps. The 400 

FEF showed a simpler distribution that remained fairly stable, except for the slight 401 

expansion of a bimodal ‘head’ at time steps 4 and 5. In contrast, the more complex SEF 402 

population distribution started to shift upward at step 4, with a dramatic upward shift at 403 

step 5. 404 

 405 

Finally, to test if distinct sub-populations of neurons contribute differently to these 406 

coding shifts through time, we employed a dimensionality reduction approach on the 407 

first five time-steps by hierarchical clustering. To be objective, (and because FEF and 408 

SEF are highly interconnected with similar responses) we pooled neurons from both 409 

areas for this analysis. We then used the Ward method in conjunction with the Euclidian 410 

metric (see methods) to identify clusters of neurons within the spatiotemporal (T-G fit 411 

versus time) coding patterns of the entire population. This resulted in three distinct 412 

neuron clusters (Fig. 6B), somewhat reminiscent of the three components in our model. 413 

Cluster 1 (red) neurons showed a predictive shift toward G beginning at step 3 and 414 

peaking at step 5, resembling the predictive response seen in the whole population 415 

analysis. Cluster 2 (blue) neurons reached and maintained preference gaze coding as 416 

early as the second step, whereas cluster 3 (green) neurons maintaining a slightly 417 

degraded target code. Proportionately, more SEF neurons (10.3%) participated in 418 

cluster 1 compared to FEF (7.5%), whereas both areas contributed nearly equally 419 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.20.449147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449147


19 

 

(39.7% SEF/ 42.8% FEF in cluster 2; 50% SEF/ 49.7% FEF in cluster 3) to the other 420 

clusters (Fig. 6B, inset). This analysis suggests a considerable degree of signal sharing 421 

between FEF and SEF, but this signal distribution manifests itself differently in their 422 

whole population codes (Figs. 5, 6A). This sharing may explain why the overall FEF 423 

population shows a small trend toward gaze prediction, whereas the SEF explicitly 424 

predicts final gaze direction, coding (and perhaps producing) a strategy to mitigate the 425 

expected future landmark influence.  426 

 427 

DISCUSSION 428 

 429 

To investigate how the frontal cortex (FEF and SEF) integrates environmental cues and 430 

learned probabilities for predictive gaze behavior, we used a cue-conflict memory-431 

guided saccade task, where a visual landmark shifted in a quasi-predictive radial pattern 432 

after a mask. We found that: 1) final gaze formed a circular pattern around the original 433 

target, resembling the shift probability distribution but slightly biased in the direction of 434 

actual shift, 2) a probabilistic model of the above data yielded a circular pattern that was 435 

strikingly similar to the real data. 3) this behavioral strategy was reflected in 436 

supplementary eye field response fields, which showed a transition to gaze coding just 437 

before the actual landmark shift and 4) a clustering algorithm dissociated three types of 438 

neurons in both areas, suggesting a shared modular specificity. Collectively, this study 439 

provides new insights into how the brain uses visual cues for predictive, probabilistic 440 

gaze behavior, especially in a dynamic but quasi-predictable visual environment. 441 

Relation to previous behavioral studies 442 
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Various previous studies have addressed the use of landmarks in the retrospective 443 

coding of target memory for action planning 32–35, and other studies have considered the 444 

prospective use of cues for predictive gaze coding 2,36,37, but here have we considered 445 

the combination of these two factors for spatial behavior involving probabilistic 446 

environmental cues. In our task, an environmental cue that would normally augment 447 

visual stability 38,39 becomes unstable. Imagine if you used a certain landmark to 448 

navigate to work every day, but some malicious prankster started relocating it every 449 

night. After a while, one might learn to predict and mitigate the effects of this trick, either 450 

by choosing other landmarks, or learning the trickster’s pattern. Although our task was 451 

visually impoverished compared with this example, the general principle of combining 452 

environmental cues and prediction based on prior knowledge appears to be a central 453 

(some might say primary) aspect of gaze control and brain function in general for real 454 

world behavior 37,40. Thus, although the mechanisms observed here pertain to a very 455 

specific task, they likely generalize to many other daily tasks, i.e., wherever there is 456 

spatial uncertainty in our future environment. 457 

 458 

In the gaze control system, it has been suggested that spatial predictions based on 459 

environmental cues guide goal selection 36,37,40,41. Prior knowledge/memory 460 

representation facilitates visual search 42, influences goal-directed movements to the 461 

target 43,44, allows predictions based on the history and motion of a target 45–47.  462 

Moreover, it has been proposed that many aspects of behavior are governed by 463 

Bayesian models. Previous studies have shown that the brain integrates visual 464 

landmarks with target information in a Bayesian fashion for gaze control 11,15,48,49  and 465 
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other goal-directed movements 5,6,50,51. In one study 52, a target acquisition model (TAM) 466 

based on a target map (essentially the proposed/possible locations for gaze in a defined 467 

scene) exhibited similar levels of performance as human participants for a target search 468 

from a set of previewed targets and identical display later on, suggesting that the brain 469 

creates a probabilistic map of possible targets. Furthermore, it is widely shown that the 470 

brain creates cognitive maps through repetitive reinforcement, learning, prediction and 471 

reward maximization 53,54.  472 

 473 

The landmark shifts in this experiment were masked, but even if monkeys ‘noticed’ the 474 

change in position, it seems unlikely that they developed a ‘conscious’ predictive 475 

strategy to deal with the landmark shifts. For example, humans are influenced by 476 

landmark shifts even when told to ignore them 6. Instead, it seems likely that their 477 

strategy was learned implicitly over the course of many thousands of trials during 478 

training and data collection. The constant repetition of a landmark shift with a fixed 479 

amplitude but variable direction may have allowed the brain to generate a probabilistic 480 

map of the distribution of possible landmark shifts, as in our model.  And the actual 481 

influence of a landmark shift appears to be developed naturally as a prior 2,37,52. By 482 

combining a probabilistic map with a noisy gaze distribution and the influence of the 483 

actual target shift, our model was able to replicate the actual gaze strategy (Fig. 2 C). 484 

But how could the brain achieve this? 485 

A neural algorithm for landmark-based gaze prediction 486 

In this section we link the behavioral data to our neurophysiology by speculating how 487 

the steps in our model could relate to internal brain events. In Figure 7, we have 488 
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speculatively superimposed simulations of the three main model components (Rows 489 

R1-3) against the seven main events of our task (Columns C1-7). Each panel 490 

represents the contribution of the corresponding model component to the relevant 491 

event. As in Figure 2C, the simulation shows probability distribution of gaze end points 492 

around the target, superimposed on a circle showing the possible directions of the 493 

landmark shift (with the actual shift direction normalized to the right). Row 1 illustrates a 494 

Gaussian representation of target position, which is initially fairly precise (R1,C2) but 495 

then progressively degrades through time, resulting in a broader distribution of variable 496 

gaze errors by the time of the final gaze command (R1,C6). This has already been 497 

observed both in behavior and in FEF memory responses 12,13. It is noteworthy that in 498 

our model this area corresponded to the spatial ‘reward window’ provided to the 499 

monkey, suggesting a constrain related to reward maximization 55. Row 3 shows the 500 

influence of the actual landmark shift, resulting in a partial shift in the gaze distribution in 501 

the same direction (R3,C4). This  has been observed in the premotor FEF/SEF 502 

responses that follows the landmark shift 15,16 and can be explained by optimal 503 

integration theory 6,56. 504 

Importantly, row 2 shows the novel aspect of the model. Here, our SEF data suggest 505 

that predictive information about the future landmark influence is already present 506 

(perhaps at the synaptic level) when the visual target response interacts with the 507 

background landmark (R2,C2). Second, the high (78%) SEF gaze prediction during this 508 

mask (R2,C3) suggests that the mask might ‘warn’ of the upcoming landmark shift, 509 

triggering a comparison between the target representation and the landmark prediction 510 

that produces the future circular gaze distribution (minus only the bias due to the actual 511 
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shift). Finally, when this probability distribution combines with the other two probability 512 

distributions (gaussian gaze error and influence of the landmark shift) to produce the 513 

final motor command (Column 7), it results in a ring-like distribution of gaze end points 514 

that is somewhat denser near the target but shifted in the direction of the landmark shift. 515 

Note that individual trials are directed pseudorandomly (as in our data) but the overall 516 

gaze distribution maximizes reward across trials. Overall, this strategy maximizes 517 

reward outcome based on visual cues and their link to expected probabilistic events 518 

57,58. In lay terms, the model makes an educated ‘guess’. Accordingly, this approach 519 

provides a model framework for understanding how neurons might actually implement 520 

such algorithms. 521 

Neural Implementation: role of the SEF and FEF 522 

 523 

While both the FEF and SEF showed a trend toward gaze coding early in the task, the 524 

slow rise in FEF could be interpreted as noise accumulation 12,13,15. However, the SEF 525 

passed both our criteria for predictive coding: it showed a sudden shift toward gaze 526 

coding (along with its prediction-dominated circular pattern of gaze deviations) just 527 

before the actual landmark shift. FEF and SEF are reciprocally interconnected and 528 

show similar 529 

 Mod el Layo u 530 
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 531 

 532 

Figure 7:  Schematic representation of the contributions of the three major components 533 

of our model (rows R1-3) with respect to the 7 major events in our task (Columns C1-7). 534 

The small pictograms show 2D simulations of gaze distributions produced by the model 535 

components during key events. As in Figure 2C, simulations are directionally 536 

normalized so that the landmark shift is to the right. In each simulation, the black dot 537 

represents the target, the magenta dot represents the virtually shifted target (T’), the 538 

light-colored magenta dots represent potential target shifts that did not occur, and the 539 

dashed white circle indicates the minimal reward window used during the experiment. 540 

See Results text for explanation and methods for mathematical details of the 541 

simulations. 542 

 543 

properties, but the general consensus is that the FEF is more tightly linked to the 544 

generation of saccades. In contrast, the SEF holds ‘executive’ control and influences 545 

oculomotor centers with a multitude of signals such as reward, prediction, decision 546 

making, learning, rank dependency, surprise, conflict monitoring and behavioral 547 

supervision 22,24. Both areas are involved in eye-centered and allocentric visuomotor 548 

transformations 12,13,15,16, but the SEF is also implicated in object-centered coding 59,60. 549 
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Furthermore, the SEF encodes two types of errors that are relevant for learning and 550 

prediction: 1) amount of reward, and 2) subjective probability of feedback 21.  551 

Based on our model (Fig. 7) and the general principle of reward/effort maximization 552 

57,58, we propose the following explanation for our neurophysiological data. Our previous 553 

results suggest that the FEF and SEF continue to show an eye-centered target-relative-554 

to-eye to gaze-relative-to-eye transformation for saccades in the presence of a 555 

landmark 15,16, but their visual signals are influenced by landmarks in a fashion that 556 

depends on target-landmark configuration 32. Thus target-landmark configuration 557 

information is present from the start of each trial, but our new data here suggest that 558 

these interactions are influenced over time by the expectation of future probabilistic 559 

events and reward 16,61.  560 

Overall, the three population clusters identified in Figure 6 are somewhat reminiscent of 561 

the three conceptual channels in our model, but the analogy is not perfect. One (Fig. 562 

6B: green) seems to maintain a slightly noisy target code, one (red) appears to be 563 

involved in prediction just before the landmark shift, and the progressive transition in the 564 

third (blue) could be interpreted either as noise build up or prediction. However, one 565 

cannot know if the analysis algorithm is separating clusters on the same basis as our 566 

conceptual model.  567 

Despite the general similarities between FEF and SEF distribution across clusters, our 568 

current data suggest that only the SEF plays a stronger role in the predictive gaze 569 

strategy: only SEF shows a significant shift toward gaze coding just before the landmark 570 

shift, perhaps triggered by visual input from the mask. Although it is not possible to infer 571 
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causality from neural activity alone (particularly in such a highly interconnected system), 572 

we propose that the circular distribution of gaze positions around the target originates in 573 

the predictive SEF code. Interestingly, this predictive peak in the SEF coding then 574 

dissipates somewhat, perhaps exerting its influence thereafter through synaptic 575 

modulation of distribution of signals across the SEF — posterior parietal cortex, 576 

dorsolateral prefrontal cortex — FEF memory loop 62–64. Most likely prefrontal predictive 577 

activity influences final motor output in both structures, because SEF and FEF motor 578 

responses encode future gaze position in this task 15,16, which must include the circular 579 

patterns observed here in the behavior.  One would expect the same to hold true in the 580 

motor response of the superior colliculus.  581 

As we observed previously, the actual landmark shift influence appears during the 582 

following delay activity in both the FEF and SEF, through slightly different and 583 

complementary mechanisms (specifically the balance of activity in  visuomotor vs. motor 584 

neurons 15,16). This would implement the shift in the ‘donut’ shown here (Fig. 2). Initially 585 

these allocentric and egocentric signals were multiplexed in separate codes, but 586 

became fully integrated in the final motor response, as they must to influence the actual 587 

behavior. 588 

 589 

In short, we are able to explain most of the behavior described here in terms of our own 590 

data and previous literature, with a minimum of speculation. This explanation is 591 

admittedly highly specific to the current task and training, but it is exceedingly unlikely 592 

that these circuits developed for such a specialized purpose. More likely, the circuits 593 

described here illustrate the flexible capacity of this system to contribute to predictive 594 
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strategies based on learned environmental heuristics, and thus should generalize to 595 

other situations. 596 

General Conclusions and implications 597 

Prediction is fundamental to brain function and gaze behavior 37,65, but becomes 598 

challenging when environmental cues themselves are unstable. In such situations, the 599 

brain can only incorporate experienced statistical properties of the environment, and 600 

then essentially ‘guess’ at the properties that remain uncertain. Using a quasi-601 

predictable gaze paradigm involving a series of visual cues (a landmark, a target, a 602 

mask, and landmark shift in an unpredictable direction) we showed that 1) Rhesus 603 

macaques developed a predictive strategy to — most likely implicitly — anticipate the 604 

future consequences of a probabilistic landmark shift, and 2) that frontal cortex (SEF in 605 

particular) carries and perhaps produces the predictive signals that underlie this 606 

behavior. This shows that frontal cortex is involved in the use of environmental cues and 607 

the learned statistics of their future motion to generate predictive behaviours. It is likely 608 

that this role of frontal cortex generalizes to other visual behaviors, i.e., whenever 609 

movements are planned in the presence of spatial uncertainty. Conversely, frontal 610 

damage should adversely affect one’s ability to generate predictive behavior in a 611 

dynamic environment. 612 

 613 

MATERIALS AND METHODS: 614 

 615 

 616 

Surgical Procedures and Recordings of 3D Gaze, Eye, and Head 617 

 618 

 619 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.20.449147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449147


28 

 

The experimental protocols followed the guidelines of Canadian Council on Animal Care 620 

on the use of laboratory animals and were also approved by the York University Animal 621 

Care Committee. Neuronal recordings were done on two female Macaca mulatta 622 

monkeys (Monkey V and Monkey L). Their left eyes were implanted with 2D and 3D 623 

scleral search coils for eye-movement recordings 66,67. The eye coils permitted us to 624 

register 3D movements of the eyes (i.e., gaze) and orientation (horizontal, vertical, and 625 

torsional components of eye orientation relative to space). Two head coils (orthogonal 626 

to each other) were also connected during the experiment that allowed similar 627 

recordings of the orientation of the head in space. Then, in both animals a recording 628 

chamber was implanted on FEF and SEF, centered in stereotaxic coordinates at 25 mm 629 

anterior and 19 mm lateral for FEF and 25 mm anterior and 0 mm lateral for SEF. A 630 

craniotomy of 19 mm (diameter) on FEF and SEF covering the chamber bases 631 

(adhered over the trephination with dental acrylic) allowed access to the right FEF and 632 

SEF. Animals were seated within a custom-made primate chair during experiments, 633 

allowing free head movements at the center of three mutually orthogonal magnetic 634 

fields 66. The values recorded from the 2-D and 3-D eye and head coils allowed us to 635 

compute other variables such as eye orientation relative to the head, eye- and head-636 

velocities, and accelerations 66. 637 

 638 

Basic Behavioral Paradigm 639 

 640 

The visual stimuli were presented on a flat screen (placed 80 cm in front of the animal) 641 

using laser projections (Fig. 1A). The animals were trained on a standard memory-642 

guided saccade task where they had to remember a target location relative to a visual 643 
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allocentric landmark (two intersecting lines). This led to a temporal delay between the 644 

presentation of the target and beginning of the eye movement. The experiment was 645 

conducted in dark to avoid any other allocentric cue. A single trial consisted of the 646 

animal fixating on a red dot (placed centrally) for 500 ms in the presence of the 647 

allocentric landmark. This was followed by a brief flash of the visual target (T, white dot) 648 

for 100 ms, and then a brief delay (300 ms), a grid-like mask (200 ms, this hides the 649 

past visual traces, and also the current and future landmark) and a second memory 650 

delay (200-600 ms, i.e., from the onset of the landmark until the go signal). As the red 651 

fixation dot extinguished, the animal was signaled to saccade head-unrestrained 652 

(indicated by the solid green arrow) toward the memorized location of the target either in 653 

the presence of a shifted landmark (90 % of trials) or in absence of it (10 %, no-654 

shift/zero-shift condition, i.e., the landmark was present at the same location as before 655 

mask). These trials with zero-shift were used to compute data at the ‘origin’ of the 656 

coordinate system for the T-T’ spatial model fits as described below. The saccade 657 

targets were flashed one-by-one randomly throughout the response field of a neuron. 658 

Note: magenta color highlights the items that were not presented on the screen (they 659 

are shown only for representational purposes).  660 

 661 

The spatial details of the task are depicted in Figure 1B illustrating the gaze shift (blue 662 

curve) to an example target (T) in presence of a shifted landmark (L’). Figure 1B1 663 

shows possible original landmark locations (L, black cross) to an example target (black 664 

dot). The red dot corresponds to the eye fixation and the red circle represents the jitter 665 

in initial home fixations. The landmark vertex could initially appear at one of four 666 
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locations, 11° obliquely relative to the target. Figure 1B2 illustrates possible landmark 667 

shifts (magenta crosses) to an example original landmark location. In this case the 668 

landmark shifted (8°) to the top left as depicted by the black arrow. Notably, the timing 669 

and amplitude of this shift was fixed. Figure 1B3 shows an example gaze shift from 670 

initial eye fixation to final gaze endpoint (G). T’ stands for the virtual target (fixed to the 671 

shifted landmark). Since these animals had been trained, tested behaviorally 11  and 672 

then retrained for this study over a period exceeding two years, it is reasonable to 673 

expect that they may have learned to anticipate the timing and the amount of influence 674 

of the landmark shift. However, we were careful not to bias this influence: animals were 675 

rewarded with a water-drop if gaze was placed (G) within 8-12° radius around the 676 

original target (i.e., they were rewarded if they looked at T, toward or away from T’, or 677 

anywhere in between). Based on our previous behavioral result in these animals 11, we 678 

expected this paradigm to cause gaze to shift partially toward the virtually shifted target 679 

in landmark coordinates (T’). 680 

 681 

Note that this paradigm was optimized for our method for fitting spatial models to neural 682 

activity (see below), which is based on variable dissociations between measurable 683 

parameters such as target location and effectors (gaze, eye, head), and various 684 

egocentric / allocentric reference frames 12,28. This was optimized by providing variable 685 

landmark locations and shift directions, and the use of a large reward window to allow 686 

these shifts (and other endogenous factors) to influence gaze errors relative to T. We 687 

also jittered the initial fixation locations within a 7-12° window to dissociate gaze-688 

centered and space-centered frames of reference (note that no correlation was 689 
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observed between the initial gaze location and final gaze errors). Further dissociations 690 

between effectors and egocentric frames were provided by the animals themselves, i.e., 691 

in the naturally variable contributions of the eye and head to initial gaze position and the 692 

amplitude/direction of gaze shifts. Details of such behavior have been described in 693 

detail in our previous papers 12,28. 694 

 695 

Behavioral Recordings and Analysis 696 

 697 

During experiments, we recorded the movement of eye and head orientations (in space) 698 

with a sampling rate of 1000 Hz. For the analysis of eye movement, the saccade onset 699 

(eye movement in space) was marked at the point in time when the gaze velocity 700 

exceeded 50°/s and the gaze offset was marked as the point in time when the velocity 701 

declined below 30°/s. The head movement was marked from the saccade onset till the 702 

time point at which the head velocity declined below 15°/s.  703 

When the landmark shifted (90% of trials), its influence on measured future gaze 704 

position (Gi) was called projected gaze offset (���
�), computed as follows:  705 

���
� � ���  ��||,�  �1

0
 � ���  ���,�  �0
1
 

where ���
� is allocentric weight; ��||,� is the landmark shift in trial i, ���,� is the landmark 706 

shift rotated by 90° counterclockwise and ��� is the gaze offset (difference between the 707 

actual target location and the final measured gaze position). This computation was done 708 

for each trial i, and then averaged to find the representative landmark influence on 709 

behavior in a large number of trials. A projected gaze offset ���
� of �0

0
  signifies  a gaze 710 
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shift that landed exactly on T. A projected gaze offset ���
� of �1

0
 means that the gaze 711 

headed toward a virtual target position (T’) that remained fixed to the shifted landmark 712 

position.  A projected gaze offset ���
� of �0

1
 means that the gaze headed towards a 713 

point rotated by 90° counterclockwise virtual target position (T’).  714 

 715 

Simulation 716 

 717 

We were interested in how the behavior data can be explained. To this end, we 718 

designed a stochastic process serving as means to simulate the neuronal process 719 

leading up to the behavior (Fig. 7).  The stochastic process starts with three base 720 

distributions. The three distributions represent the visual input in one of three codes, 721 

egocentric  ����(C2R1) and predictive codes ����� (C1R2) and allocentric influence 722 

����� (C4R3).  723 

���� �  
	�0, ����� 

�
���


 �  
���
���, �
���� 

�
���

� �  � 

����� �  
	���, ������ 

 724 

These distributions are then sampled resulting in three “guesses”: 725 

����  ~ ���� 

�����  ~ �
��� 
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�����  ~ ����� 

Then the weighted average of these guesses is calculated resulting in the intermediate 726 

distribution ����,����(C3R2),  ����,����  (C5R3) and ����,����,���� (C6R3).  727 

����,
��� � � ���� �  � �����

� � �  

����,���� � � ���� �  � �����
� � �  

����,
���,���� � � ���� �   ����� �  ! �����
� �  � !  

 728 

Finally the combined distribution is reweighted by a faded ego centric target memory 729 

����(C6R1) resulting in the final distribution � (C7R2).  730 

� �  "���  ����,
���,���� 

To produce one simulated saccade this distribution � is sampled. This sampling was 731 

repeated 10000 times. The results of this process are displayed in Figure 2.     732 

 733 

Cluster analysis 734 

 735 

To visualize the dynamics of coding of single units, we aimed to reduce the time course 736 

to a small number of archetypical time courses. This dimensionality reduction was 737 

achieved by hierarchical clustering. For the clustering, we considered the coding and 738 

tuning time courses of the individual neurons. We employed the ward method 68 in 739 

conjunction with the Euclidian metric. The clustering resulted in three distinct clusters 740 
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representing archetypical single neuron time courses. The average time courses for 741 

each of these three clusters are shown in Figure 6B.  742 

 743 

Electrophysiological Recordings and Response Field Mapping 744 

 745 

 746 

We lowered tungsten electrodes (0.2–2.0 MΩ impedance, FHC Inc.) into the FEF and 747 

SEF [using separate Narishige (MO-90) hydraulic micromanipulators for each area] to 748 

record the neuronal activity. We then digitized, amplified, filtered, and saved the 749 

recorded activity for offline spike sorting. Sorting was performed using template 750 

matching and the principal component analysis on the isolated clusters (done with 751 

Plexon MAP System). The recorded sites (in head-restrained conditions) were further 752 

confirmed by low-threshold electrical microstimulation (50 μA) 69. The recorded sites 753 

from both animals are shown in Figure 3A (Monkey L in Blue and Monkey V in red).  754 

 755 

Neurons were mainly searched while the monkey freely (head-unrestrained) scanned 756 

the environment. Once reliable neuronal spiking was noticed, the experiment started. 757 

The response field of a neuron was mapped while the animal performed the memory-758 

guided saccade. After determining the horizontal and vertical extent of the response 759 

field, we presented the targets (one per trial) in a 4 x 4 to 7 x 7 array (5 –10° from each 760 

other) ranging 30-80°. This allowed characterization of visual and motor response fields. 761 

We aimed at collecting approximately 10 trials for each target. Thus, for bigger 762 

response fields (hence more targets), a greater number of recorded trials were needed 763 

and vice versa. On average 343 ± 166 (mean ± SD) and 331 ±  156 trials/neuron were 764 

recorded in SEF and FEF respectively, again depending on the size of the response 765 
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field.  We did such recordings from > 200 SEF and FEF sites, often in conjunction with 766 

each other. 767 

 768 

Data Inclusion Criteria, sampling window and neuronal classification 769 

 770 

 771 

In total, we isolated 256 SEF and 312 FEF neurons. Of these, we only analyzed task-772 

modulated neurons with clear visual burst and/or with perisaccadic movement 773 

response. Neurons that only had post-saccadic activity (activity after the saccade onset) 774 

were excluded. Moreover, neurons that lacked significant spatial tuning were also 775 

eliminated (see ‘Testing for Spatial Tuning’ below). In the end, after applying our 776 

exclusion criteria, we were left with 68 SEF and 147 FEF spatially tuned neurons. We 777 

only included those trials where monkeys landed their gaze within the acceptance 778 

window for reward, however, from our analysis we removed gaze end points beyond ± 779 

2° of the mean distribution.  780 

 781 

Intermediate spatial models used in main analysis 782 

 783 

Our previous findings on FEF and SEF neurons have reported that response fields do 784 

not fit exactly against canonical models like Te or Ge, but actually may fit best against 785 

intermediate models between these canonical ones 14.  From our previous studies 786 

12,15,16 we found that a Te-Ge (T-G, target-to-gaze) continuum (specifically, steps along 787 

the ‘error line’ between Te to Ge) best quantified the egocentric visuomotor 788 

transformation in the FEF and SEF (Fig. 3C1), thus, in current analysis we particularly 789 

focused on this continuum. Essentially, the continuum represents a concept that is 790 
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similar to an intermediate reference frame (e.g., between the eye and head) but here it 791 

is intermediate between the target and the final gaze position within the same frame of 792 

reference.  793 

 794 

Fitting Neural Response Fields against Spatial Models 795 

 796 

 797 

To differentiate/test between different spatial models, conceptually, they should be 798 

spatially separable 12,28. The variation in natural behavior of monkeys allowed this 799 

spatial separation (see Results for details). For example, the variability produced by 800 

memory-guided gaze shifts allowed us to dissociate target coding from the gaze coding; 801 

the initial location of eye and head permitted us to differentiate between different 802 

egocentric reference frames and variability of eye and head movements for a gaze shift 803 

allowed us to distinguish different effectors. Notably, as in decoding methods that 804 

mostly test if a spatial property is implicitly coded in patterns of neuronal population 805 

activity 70,71  , our method directly tests which model best predicts the activity in the 806 

spatially neurons. The logic of our response field fitting method is shown in Fig. 3C2. 807 

Specifically, if the response field activity is plotted in the correct best/reference frame, 808 

this will lead to the lowest residuals (errors between the fit and data points) in 809 

comparison with other models, i.e., if a fit calculate to its response field matches the 810 

data, then this will lead to low residuals (Fig. 3C2, left). Conversely, if the fit does not 811 

describe the data well, this will yield higher residuals (Fig. 3C2, right). For instance, an 812 

eye-fixed response field calculated  in eye-coordinates will lead to lower residuals and if 813 

it is computed in any other inferior/incorrect coordinate, this will yield higher residuals 814 

12,16. 815 
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In  reality, a non-parametric fitting method was employed to characterize the neural 816 

activity with reference to a spatial location and we also varied the kernel bandwidth of 817 

the fit to plot response field of any size, shape, or contour 28. The Predicted Residual 818 

Error Some of Squares (PRESS) statistics was used to test between various spatial 819 

models. To independently calculate the residual for a single trial, the actual activity 820 

associated with it was subtracted from the corresponding point on the fit calculated over 821 

all the other trials (similar to cross-validation). Importantly, if the physical shift (spatial) 822 

between two models leads to a systematic shift (direction and amount), this will be 823 

visible as a shifted or expanded response field and our model fitting method would fail 824 

to distinguish these two models as they would virtually yield indistinguishable/similar 825 

residuals. Because in our investigation, the distribution of relative positions in different 826 

models also includes a non-systematic variable component (e.g., variability in gaze 827 

endpoint errors, or pseudo-random landmark shifts), the response fields invariably were 828 

fixed at the same location, but the separation between different spatial models was 829 

based on the residual analysis.  830 

Because the size and shape of response fields were not known beforehand and since 831 

the spatial distribution of datapoints was different for every spatial model (e.g., the 832 

models would have a higher range for eye than the head models), we calculated the 833 

non-parametric fits with different kernel bandwidths for each neuron (2-25°) thus 834 

ensuring that we did not bias the spatial fits toward a particular size and spatial 835 

distribution.  836 

 837 

Testing for Spatial Tuning 838 
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 839 

The model fitting method assumes that neuronal activity is structured as spatially tuned 840 

response fields, but this does suggest that other neurons do not participate in the 841 

overall population code 72–76  but with our analytical tool-box only tuned neurons can be 842 

explicitly tested. The neuronal spatial tuning was tested as follows. The firing rate data 843 

points were randomly (100 times to obtain random 100 response fields) shuffled across 844 

the position data that we got from the best model.  We then statistically compared the 845 

mean PRESS residual distribution (PRESSrandom) of the 100 randomly generated 846 

response fields with the mean PRESS residual (PRESSbest-fit) distribution of the best-fit 847 

model (unshuffled, original data). If the best-fit mean PRESS was outside the 95% 848 

confidence interval of the distribution of the shuffled mean PRESS, we then deemed the 849 

neuron’s activity as selective. At the spatiotemporal level, some neurons were spatially 850 

tuned at certain time-steps and others were untuned because of low signal/noise ratio. 851 

We thus removed the time steps where the populational mean spatial coherence 852 

(goodness of fit) was statistically indistinguishable from the baseline (before target 853 

onset) since there was no task-related information at this time and thus neural activity 854 

had no spatial tuning. We defined an index (Coherence Index, CI) for spatial tuning of a 855 

single neuron which was calculated as 12: 856 

 857 

Coherence Index = 1- (PRESSbest-fit/PRESSrandom)                                                                858 

 859 
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If the PRESSbest-fit was similar to PRESSrandom then the CI would be roughly 0, whereas 860 

if the best-fit model is a perfect fit (i.e., PRESSbest-fit = 0), then the CI would be 1. We 861 

only included those neurons in our analysis that showed significant spatial tuning. 862 

 863 

Spatiotemporal analysis 864 

 865 

A major goal of this study was to track the progression of the T-G code in spatially tuned 866 

neuron populations, from the visual response onset until the mask offset / landmark 867 

shift. To finely track the evolution of the spatiotemporal code, we smoothed and binned 868 

the activity form visual response onset until the landmark shift into 7 half-overlapping 869 

bins. To this aim, the neural firing rate (in spikes/second; the number of spikes divided 870 

by the sampling interval for each trial) was sampled into 7 half-overlapping time 871 

windows (with a width of 120 ms). The bin number was chosen in such a way so that 872 

the sampling time window was wide enough, and thus robust enough to account for the 873 

stochastic nature of neuronal spiking activity (ensuring that there were enough neuronal 874 

spikes in the sampling window for effective spatial analysis) 13,16. Once we estimated the 875 

firing rate for each trial at a given time-step, they were pooled together for spatial 876 

modeling. This procedure allowed us to treat the whole sequence of visual-memory 877 

responses from the visual response onset until the onset of landmark shift as a 878 

continuum. 879 

 880 
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Supplementary Figures: 1079 

 1080 

Supplementary Figure 1: The ‘donut like’ pattern was also observed when the 1081 

data were analyzed separately for each of the eight individual shift directions for both 1082 

animals (A: Monkey L; B: Monkey V). The white arrow indicates the direction of the 1083 

shift. 1084 
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1086 

Supplementary Figure 2: Subtraction of the no-shift trials from the shift trials leads1087 

to the collapse of torus into a gaussian distribution in both animals (Left: Monkey L,1088 

Right: Monkey V). 1089 
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