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ABSTRACT 

Recent advances in multi-electrode array technology have made it possible to monitor large 

neuronal ensembles at high resolution. In humans, however, current approaches either restrict 

recordings to only a few neurons per penetrating electrode or combine the signals of thousands 

of neurons in local field potential (LFP) recordings. Here, we describe a set of techniques which 

enable simultaneous recording from over 200 well-isolated cortical single units in human 

participants during intraoperative neurosurgical procedures using Neuropixels silicon probes. 

We characterized a diversity of extracellular waveforms with eight separable single unit classes, 

with differing firing rates, positions along the length of the linear electrode array, spatial spread 

of the waveform, and modulation by LFP events such as inter-ictal discharges and burst 

suppression. While some additional challenges remain in creating a turn-key system capable of 

recording, Neuropixels technology could pave the way to studying human-specific cognitive 

processes and their dysfunction at unprecedented spatiotemporal resolution.   

 

 

Major technological advances in the past decade have led to a revolution in the neurosciences. 

Many research programs now routinely rely on the analysis of single-neuron action potentials 

from hundreds and even thousands of neurons, which provide a rich understanding of the 

coordinated activity of large neuronal ensembles that underlie sensory, motor, and cognitive 

operations 1–4. While these developments have been most pronounced in animal models, there 

have been parallel, albeit slower, advances in the ability to record from single neurons in 

humans. Single-unit recordings in humans have been performed since the mid-1950s 5–8, and 

played a foundational role in developing an understanding of the role of neural circuits in 

neurologic disease. For example, such techniques helped to establish an understanding of the 
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relationship between basal ganglia dysfunction and Parkinson’s disease 9. There are currently at 

least four high-resolution neuronal recording technologies that can be used in human 

participants in acute, subacute, and even chronic settings. These include microwire bundles 

10,11, an array of microelectrodes arranged in laminar fashion 12,13, microelectrode contacts 

arranged on a grid for use above the pia or on the shaft of a depth electrode 14–16, and the 'Utah' 

planar array of penetrating microelectrodes17–19.  Recent technological developments to move 

beyond more rigid structures include thin-film based systems with organic polymer electrodes 

(often referred to as micro-electrocorticography, ‘µECoG’), which provide access to surface 

recordings in the cortex 20–25 and even from the surface of the hippocampus intraoperatively 26.  

While each of these approaches is nominally capable of recording action potentials from 

individual neurons, all are limited to capturing only 10-150 separable units (and often well below 

150) per device. In addition, these approaches can rarely isolate action potentials from more 

than one neuron on a single recording channel (and vice-versa, rarely observe a single neuron 

from multiple channels), limiting the quality of spike sorting and resulting in limited confidence in 

isolation efficacy and whether the full range of neurons (including those with small-amplitude 

waveforms or low firing rates) are being observed. An ideal system would both increase the 

quantity of neurons an experimenter can record while simultaneously allowing for high quality 

spike sorting.  

     Demonstrations of neural recording systems using animal models have advanced at a 

substantially more rapid pace. A recent landmark for these advances has been the introduction 

of the silicon Neuropixels probe, a fully-integrated linear silicon microelectrode array with a 

single 10 mm shank (Fig. 1a), which is covered with microelectrode contacts at a 20 µm site-to-

site spacing. The Neuropixels 1.0 probes can record 384 user-selectable channels 

simultaneously from the 24µm x 70µm x 10 mm shank.  This system, introduced in 2017, has 

already enjoyed widespread adoption for recording in rodents 1,2 and non-human primates 3, 

with continuing improvements to reduce the size and provide additional form factors 4. 

Meanwhile, recording single unit activity in humans is increasingly common in research, while 

also an important tool for clinical care, including the use of real-time neurophysiology to guide 

deep brain stimulating electrodes for neurological disorders like Parkinson’s disease 9,27–34. 

Research to develop clinical brain computer interfaces for individuals with severe speech and 

motor disorders have used Utah arrays to record populations of single neurons and groups of 

several neurons. These studies have proven instrumental in enabling basic neuroscience and 

clinical studies at the level of single neurons (though not necessarily well isolated single units) 

and at the population level, across a variety of contexts ranging from external device control to 
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handwriting to upper extremity reanimation to improved sensory feedback (via intracortical 

microstimulation) 35–44. Adapting the Neuropixels recording system for use in clinical research 

presents a viable approach for building on these prior demonstrations of the utility of neural 

recordings with single-cell resolution for developing neurorestorative technologies and 

expanding our understanding of human cortical function. 

We sought to test the efficacy of using Neuropixels probes to record brain activity 

acutely during clinically indicated neurosurgery, as an important prerequisite step to advanced 

fundamental neurophysiological investigations and, ultimately, as a clinical tool, such as 

detailing the single cell mechanisms underlying epilepsy at high spatial resolution27,30 or 

changes in cellular interactions induced by tumor cells45,46. The versatility of the Neuropixels 

probe allowed us to record activity both during the placement of deep brain stimulators (DBS) 

and, separately, during open craniotomies for removal of brain tissue for the treatment of 

epilepsy or brain tumors. 

Here, we demonstrate a set of methods which enable a new, thicker variant of the 

Neuropixels probes to be used for acute experiments in human patients and use this approach 

to begin characterizing the diversity of neurons in human cortex, including the dorsolateral 

prefrontal cortex and temporal lobe. We demonstrate the ability to overcome challenges related 

to sterilization, electrical isolation, and brain pulsation. We observed a wide diversity of 

extracellular waveforms (assigned into different putative cell type groupings, validated using 

three separate clustering techniques). Contrary to prior expectations 47, firing rates only differed 

slightly between narrow- and wide-waveform amplitude units. We also found single cell activity 

covaried significantly with epileptiform activity as well as anesthesia-induced burst suppression.  

 

RESULTS 

Here, we report successful recordings from the cortex of temporal and frontal lobes in patients 

undergoing brain tissue resection to treat epilepsy (N=1, under general anesthesia, lateral 

temporal lobe) or during the implantation of DBS leads to treat movement disorders (N=2, one 

awake and one under general anesthesia, dorsolateral prefrontal cortex) using Neuropixels 

probes. We also report unsuccessful recordings – and lessons learned -- from six cases 

performed while developing these approaches (Supplemental Table 1; Supplemental Figure 

1; see Methods). Unsuccessful recordings were either due to electrode fracture (N=2, with the 

devices and pieces fully recovered; Supplemental Table 1) or excessive noise during the 

recordings (N=4). Two different types of Neuropixels arrays were used: a thinner Neuropixels 

1.0 probe (thickness: 25µm, width: 70µm, length: 10 mm) was utilized in two of the six failed 
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attempts; neither of these yielded stable recordings.  Given the challenges introduced by using 

such a thin probe in the operating room context, we developed a variation of the Neuropixels 1.0 

probe, featuring a 100µm thick shank (Neuropixels 1.0-ST: thickness: 100µm width: 70 µm, 

length: 10 mm). This version enabled considerably easier insertions and robust use during 

neurosurgical cases, easing the process of inserting the probe and lowering the risk of 

mechanical failure. This probe version, combined with an improved grounding and reference 

electrode configuration enabled us to observe spiking activity from populations of isolatable 

single neurons in three participants (N=3, Supplemental Table 1; Supplemental Figure 1; see 

Methods).  

Since the Neuropixels probe is typically used for small animal neurophysiology, five 

technical developments were needed to translate this device to intraoperative use in people. 

These included 1) sterilization with ethylene oxide and maintaining sterile conditions, 2) 

mounting the probe to a neurosurgical robot or a sterile micromanipulator, and 3) 

stereotactically guided insertion through a burr hole or craniotomy window. These techniques, 

some of which were informed by our previous experience adapting Neuropixels to NHPs 3, are 

described in further details in the Online Methods. A fourth, and crucial, consideration was the 

identification and reduction of sources of noise in our recordings in the operating room (OR), 

which are considerably larger and harder to control than in experimental laboratory settings for 

animal research. We performed tests both during the neurosurgical cases as well as in the OR 

without a patient to identify the external sources of noise (e.g. anesthesia IV pumps) as well as 

internal sources of noise (e.g. we found that in this environment ground and reference should be 

separate and not tied together has is often required in mouse studies); see Methods; 

Supplemental Fig. 1. Fifth, as it was not possible to suppress the pulsating motion of the brain 

due to patient safety considerations, a post-hoc registration method was required to ensure 

stable unit isolations over time.  
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Figure 1: Human neocortical neurons recorded using Neuropixels 1.0-S probes. a-d: 

Diagram of the Neuropixels 1.0-S probe with a headstage and the ground and reference pads 
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indicated (outlined in cyan, left) and preparation in a sterile field, with the probe outlined in cyan 

(a), set-up before electrode insertion, including opening the sterile electrode in the packaging, 

(b), handling and connecting to wires and visual inspection (c), and testing in saline (d). (e) 

Electrode attached to 3 sterile stylets on the ROSA robot for insertion. (f). Electrode inserted 

into the dorsolateral prefrontal cortex (dlPFC) through a burr hole using the ROSA robot. (g). 

Electrode inserted into lateral temporal cortex using a 3-axis micromanipulator attached to a 

Greenberg retractor. h-i. Putative Neuropixels probe location overlaid on the preoperative MRI 

(top) during two DBS cases. j. Putative location and likely depth of the electrode in an open 

craniotomy case for epilepsy surgery in the lateral temporal cortex (left two columns), with the 

depth informed by the electrophysiology, where the LFP shows a clear difference between 

superficial electrodes and deeper contacts, as highlighted here in a color scale indicating 

voltage. k-l.  Example recording from participant 1 (Pt. 01) and participant 2 (Pt. 02) in the 

dlPFC across multiple channels, with action potentials shown extending across multiple 

channels. The light green filled in box in the background traces are then expanded in the green-

outlined voltage traces in the foreground. In e, h, i, and j: cyan rectangles are highlighting the 

location of the Neuropixels probe.  

 

Single unit waveforms were observed on single Neuropixels probe channels and across 

multiple channels (Fig. 1-2). However, we also observed considerable modulation of the voltage 

recording related to motion of the brain. This motion primarily results from respiratory and 

cardiac rhythms, which cause the surface of the brain to move relative to the probe. We 

observed these movement-related changes in both the LFP and action-potential bands. To 

confirm that the movement present in the neural recordings was due to tissue movement, we 

matched the neural recording itself, specifically the LFP band, to the synchronized audio of the 

EKG and video of the brain.   

Critically, the high spatial density of Neuropixels electrodes allows for post-hoc motion 

correction, and high-quality spike sorting. Estimating the timepoint by timepoint brain position 

relative to the probe was easiest using the LFP channels. (Supplemental Fig. 2). We compared 

multiple approaches for correcting tissue motion and determined that the optimal approach was 

to use a manual tracking approach (See Supplementary Methods) taking advantage of the 

high-density sampling and the high temporal resolution of the LFP (Supplemental Fig. 2).  

Following this movement alignment, we sorted waveforms into clusters using Kilosort 3.0 

software 4,48 and extracted an average of 201 ± 151.04 clusters from the recordings. Each 

cluster presumable represents action potentials generated from a single neuron or very small 
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number of neurons and has both temporal characteristics (waveform shape) and spatial 

characteristics (the pattern of waveforms across multiple recording channels). Data from the two 

participants undergoing DBS implants contained similar numbers of clusters (with the 

Neuropixels recording from the dorsolateral prefrontal cortex, Pt. 01, not awake: n= 262; Pt. 02, 

awake: n= 312), while the third participant undergoing an anterior temporal lobectomy yielded 

considerable fewer (Pt. 03, not awake: n= 29). The clusters were then classified as either multi-

unit activity clusters (MUA; Pt. 01: n= 60; Pt. 02: n= 134; Pt. 03: n = 10) or single unit clusters as 

described in detail below (Pt. 01: n= 202; Pt. 02: n= 178; Pt. 03: n = 19; Supplemental Fig. 3; 

Supplemental Table 1).  

We found a diverse set of waveforms within and across participants. Broadly speaking, 

the waveform clusters could initially be subdivided into those with a dominant positively 

deflecting or negatively deflecting peaks. We also found numerous neurons with complex, 

multiphasic waveforms which included double-peaks and triple-peaked waveforms. Some 

isolated units had more than one type of waveform across the different channels with the ability 

to record simultaneously from multiple closely spaced electrodes, a single putative unit's voltage 

changes during action potential generation could be detected as differently shaped waveforms. 

For example, there were units with positive peaks on some channels and, simultaneously, 

negative peaks on other channels or double peaks on one channel and single peaks on other 

channels (Supplemental Fig. 3). Finally, clusters’ waveforms could be highly localized as well 

as widely dispersed across electrodes, with waveforms of various durations and amplitudes 

(Fig. 1e-f; Fig. 2a; Supplemental Fig. 3). With the ability to record simultaneously from multiple 

closely spaced electrodes, a single putative unit's voltage changes during action potential 

generation was detected as differently shaped waveforms. These phenomena have been 

previously observed in non-human primates (NHPs; 49 and rodents 1,2,4), but to the best of our 

knowledge such a high-resolution view of electrophysiological waveform diversity has not been 

previously available in vivo in people. In the following sections, we describe in more detail the 

spike-sorting approaches being compared, followed by resulting electrophysiological findings of 

neurons’ spiking relationship with other neurons’ spikes and relative to the local field potential 

(LFP).    

 

Cell type classification based on extracellular waveforms 

Considering the diversity of waveforms we observed even in these short recordings, we 

decided to categorize the cluster waveforms using a three-pronged approach.  We used both 

supervised and unsupervised classification techniques to determine if there are consistent 
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waveform classes (which could relate to different cell types) across patients and if these classes 

had different firing or locations along the probe’s length. One approach involved separating units 

based on the polarity and half-peak waveform width of the largest waveform per unit (from the 

one channel with the largest waveform for that unit) using published unit type definitions (Fig. 

1e-f, 2a-c, and Online Methods 47,50). In the second approach, we performed principal 

component analysis (PCA) followed by k-means clustering to isolate clusters with unique 

waveform shapes (Fig. 2d-f). Finally, we used a novel, unsupervised, clustering technique, 

WaveMAP, which allowed us to automatically identify and separate cell types based on 

waveform shapes across channels utilizing Universal Manifold Approximation and Projection 

(UMAP) dimensionality reduction combined with Louvain clustering51. For each of these 

approaches, we identified differences between the putative unit types in their waveform 

characteristics as well as their spatial location along the probe shank. Each classification 

approach resulted in different numbers of classes, though the classes did have common 

features. 

 

Classifying waveforms based on duration and peak direction 

We used waveform half-peak width and duration (valley-peak) to separate units into 

three classes: positive spikes (PS; n=348), versus negative spikes with the later subdivided into 

negative fast spiking (FS; n=115) or negative regular spiking (RS; n=82) single units based on 

the peak-trough duration of the largest waveform across channels and the polarity (asterisks in 

Fig. 2a-c; see Online Methods) 47,50,52–55. We also included a fourth category of multi-unit 

activity (MUA) where the waveforms were mixed across the cluster and the autocorrelation and 

inter-spike-interval (ISI) distributions were more representative of MUA, which were more 

uniform in distributions as opposed to single unit distributions (Fig. 2b).  The peak-trough 

duration cutoff for FS versus RS units was at 300 µs, which is similar to the cutoff reported 

previously 47,56,57. This boundary was also near a boundary in a presumed bimodal distribution of 

peak-trough durations for events with negative polarity (purple line, Fig. 2ciii). 

This analysis yielded three different categories of neurons, each of which displayed 

differences in waveform features and spike rates (Fig. 2ci, 2e). First, it is noteworthy that PS 

units generally had wider waveforms compared to the RS and FS units. The half-peak width 

was 167.3±55.4 µs for PS and 133.8±70.9 µs for FS + RS, while spike duration was 

494.2±175.1 µs for PS and 349.6±222.2 µs for FS and RS; Fig. 2ciii. These unit types also 

showed significant differences in repolarization slope and recovery slope as well as the peak-

trough ratio (Supplemental Fig. 4). Between these three categories of units (PS, RS, and FS), 
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the PS unit mean firing rates were significantly higher than those of RS and FS units (p<0.001; 

Wilcoxon rank-sum test; RS: 0.3± 0.27; FS: 0.4±0.59; PS: 1.1±1.35 Hz mean firing rate). FS 

units trended, though non-significantly, towards slightly higher firing rates than RS units (p>0.05; 

Kruskal-Wallis multiple comparisons test; Fig. 2e). The peak-trough ratio was significantly lower 

for the FS and RS units than PS units (PS: 4.8±2.0 RS: 3.9±1.7; FS: 4.1±1.8; p<0.001; Kruskal-

Wallis multiple comparison test). For the other waveform measures, the recovery slope was 

higher in absolute amplitude for the RS units than the FS and PS units, while the repolarization 

slope was larger for the PS units than RS or PS (Supplemental Fig. 4). These differences in 

waveform characteristics resemble what has been reported in previously in other species (mice, 

cats, and macaques)2,47,55. 

 

Differences in spatial spread of waveform classes 

An important feature of the Neuropixels probe is the ability to obtain high spatial 

sampling, which permits tracking of individual spike propagation and has been used to argue for 

extracellular identification of back propagating action potentials 1,2,4.  Using published metrics 

and code 2, we calculated the spatial spread and velocity of the waveforms among the three 

identified categories of waveforms (Fig. 2f, ; Supplemental Fig. 4). We found the spatial 

spread for the FS and RS units was significantly lower than for the PS units (p<0.001; Kruskal-

Wallis multiple comparison test). However, in none of the waveform classes was there a 

significant difference in the velocity of the waves above or below the peak waveform. This 

pattern suggests that the action potentials being recorded here are generated at the soma 

(Supplemental Fig. 4) 2. 
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Figure 2: A variety of waveform types and shapes recorded in human neocortex with 

Neuropixel probes. a. Example unit waveforms (each color is a separate unit, * indicates the 

largest waveform per unit and this was used for further waveform measurements). On the left, 

original waveforms are overlaid relative to the recorded channels, with the grey bars to the left 
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indicating the location of the units along the probe. b. Example autocorrelograms and inter-

spike-interval (ISI) distributions for three different units. ci. Waveform measures on an example, 

spike waveform including the spike duration, halfwidth, peak-trough ratio, repolarization slope, 

recovery slope, and amplitude measures. cii. Largest waveforms per unit showing positive 

polarity (grey) and negative polarity (black) waveforms across the data sets. ciii. Distribution of 

positive polarity (grey) and negative polarity (black) half-peak width and spike duration (peak-

trough duration) of the largest waveform per unit (Pt. 01-03). d. The largest waveform per 

cluster, color-coded as regular spiking (RS, red), fast spiking (FS, blue), and positive spiking 

(PS, grey) clusters. e. The firing rate distributions for the different groups of putative cell or 

waveform types across patients. f. Spatial spread examples of individual units (averaged across 

all waveforms attributed to a given unit) across the left and right columns of the Neuropixels 

probe. Voltage indicated by the greyscale color scheme. Bottom plot: diagram (arrows) 

demonstrating the spatial mapping calculations, including spatial spread, velocity above (yellow 

arrow), and velocity below (cyan arrow) the center point (channel with the largest waveform). 

(Measures shown in Supplemental Fig. 4). g. Spatial spread of the putative cell or waveform 

types. In e and g: * indicate significant differences between putative cell or waveform types, 

Kruskal-Wallis multiple comparison test, p<0.001.  

 

Spatiotemporal waveform classification using PCA and k-means clustering 

 By focusing on the features of the largest waveform per unit, we are not taking 

advantage of the high spatial resolution sampling of single cell activity. Therefore, we also used 

an unbiased clustering approach to classify the units based on each cluster’s waveforms across 

multiple channels, taking into account the spatial spread and other features to classify the units 

into different groups. (Fig. 2a, f).  In this alternative clustering approach, we then applied 

principal components analysis (PCA) to the mean waveforms for each cluster (using a larger 

feature vector that includes data from multiple electrode sites) per cluster, followed by k-means 

clustering (Fig. 3ai; Supplemental Fig. 4). This analysis identified seven clusters of units using 

the waveforms from the first six channels of each cluster (with channels reordered-from largest 

to smallest waveform per unit; Fig. 3ai-ii). The resultant classes separated the positive and 

negative units into varying temporal and spatial distributions as well as triphasic waveforms, 

with two of the clusters closely resembling the RS and FS designations from the previous 

analysis, presented above (Fig. 3ai-ii). This alternative classification schema also revealed 

there were increased firing rates for the positive spikes (PS1-3) relative to FS and RS units. In 

addition, FS firing rates trended higher than RS firing rates (though this did not reach statistical 
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significance). We found that subsets of positive spikes units (PS1 and PS2) and RS units had 

increased spatial spread compared to other classes of units (PS3, triphasic units, and FS). We 

also found similar trends and differences between the PS and other waveforms with increased 

PS peak-trough ratios and varying repolarization and recovery slopes per waveform 

classification, though there was no significant difference in velocity (Fig. 3b; Supplemental Fig. 

4). Finally, mapping the different waveform classes to their location along the probe relative to 

the surface of the cortex, we found PS units were observed at sites throughout the shank of the 

probe (and throughout the cortical layers) while the RS and FS type units appeared to be 

concentrated deeper in the cortex. This spatial distribution of these broad cell categories likely 

reflects the inhomogeneous distribution of cell types throughout cortical lamina, though a 

precise mapping of PS, RS, and FS waveform groups to more detailed cell classes is 

impossible to perform using extracellularly recorded waveforms alone. (Fig. 3b). 

 

Clustering waveforms using WaveMap 

 We also utilized an automated, non-linear method for classifying extracellular 

waveforms, with the goal of identifying additional classes based on smaller and more nuanced 

features of the waveforms 51. Using the WaveMAP algorithm51, we found that certain waveform 

types were identifiable across patients. Negative RS and FS-like units were present in all three 

patient’s data, while the positive large waveforms (PS) appeared in two of the three cases (Fig. 

3c; Supplemental Fig. 5). We therefore pooled the waveforms across patients and clustered 

waveforms from across the five channels with the largest amplitude waveforms of each unit 

using WaveMAP which revealed eight total clusters, with four positive spike (PS) clusters and 

four negative spike clusters. The four negative spike clusters included FS-like, RS-like, triphasic, 

and broad classes (Fig. 3c). As with PCA and k-means clustering, we found little difference in 

the number of clusters if we included the 6 or 12 channels with the largest amplitude waveforms 

in the clustering. Interestingly, the WaveMAP classification, revealed differences in spike rates, 

spatial spread, and depth (along the Neuropixels probe) for different PS units as well as the RS 

and FS-like units. As we found with the PCA/k-means cluster results, there were subsets of PS 

units (corresponding to a unique waveform cluster) exhibiting higher spike rates and greater 

spatial spread. A subset of PS units were located in more superficial cortical lamina relative to 

the negative spikes and even other PS units (Fig. 3d; Supplemental Fig. 5).  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.20.449152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449152
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 14 
 

 

Figure 3: Classifying waveforms based on spatial and temporal features. ai. Scatter plot of 

seven clusters (using k-means clustering) in the first three principal components. Color coding 

reflects different clusters. aii. Average waveforms per unit, color-coded based on the k-means 
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clustering with added labels for each waveform type. Columns are the three channels with the 

largest amplitudes per detected unit. b. The mean firing rate, waveform spread, and depth 

location along the Neuropixels probe for the different k-means-clustered waveforms. The scatter 

plot for the depth information reflects the data from all three patients, color-coded for each 

patient: Pt. 01-light grey, Pt. 02-middle grey, Pt. 03-dark grey. c. Average waveforms of each 

unit for the first three channels per unit (each column is a channel), grouped based on the 

WaveMAP clustering across patients (each detected unit is color coded for recordings from Pt. 

01-Pt. 03 (light grey, middle grey, dark grey)).  d. The firing spike rate, peak-trough ratio, spatial 

spread, and depth violin plots for the different waveform clusters. Asterisks indicate significant 

differences between putative cell or waveform types, Kruskal-Wallis multiple comparison test, 

p<0.001, post hoc Tukey-Kramer test for multiple comparisons.  

 

Timing and interactions among single units 

From the time of probe insertion, we could observe units within seconds of insertion  on 

in the recording, though there was generally a ~2 minute period of time when both single unit 

and MUA spike rates would slowly increase in all three participants’ recordings before levelling 

off at a seemingly consistent rate (Fig. 4a). We mapped the WaveMAP clustered single units as 

well as the MUA clusters to the electrode depth and the duration of the recordings (Fig. 4a). We 

found that the different WaveMAP classes could be observed throughout the recording and 

across the Neuropixels shank (Fig. 4a). 

To determine if there were interactions between units through time, we performed 

pairwise covariance analyses between the spike times of different pairs of units and found 

correlations between individual units in two data sets (Pt. 01 and Pt. 02; Fig. 4b) 58,59, 

suggestive of inter-unit circuit activity. We found that some individual units covaried with each 

other in time (within a 0.1 sec time window), even between different classes (Fig. 4b). Across 

the WaveMAP clusters, we found an average of 6.9 ± 2.58% of all pairs had a significant 

covarying relationship (at least one binned peak in the covariance calculations 8 STD above the 

baseline covariance levels across the recording). Of the pairs with significant covariance 

relationships, the average absolute lag between the pairs was 0.0022 ± 0.0026 sec. However, a 

challenge in interpreting these temporal lead/lag relationships is that epileptiform activity or 

general anesthesia induced burst suppression could have induced correlated cluster activity in 2 

of the 3 participants (Fig. 5). We anticipate more detailed pairwise relationships between units 

can be identified in future studies without these confounds. 
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Figure 4.   Single units through time and correlation relationships between units. a. Left: 

the raster plots of spike times throughout the recording for the different classes of single units as 

clustered by WaveMAP (color coded relative to the waveform from the channel with the largest 

amplitude per unit) as well as the MUA activity (grey). Right: Spike counts binned in 5 second 

bins throughout the recordings for the three participants. b. Example cross-covariance of the 

spike times between individual units of different putative classes as clustered by WaveMAP (as 

titled). The vertical blue line shows the mean per plot. 
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Neuropixels recordings can reveal spike-field relationships 

 Numerous questions in clinical and cognitive neuroscience have been addressed by 

examining the relationships between LFPs and the timing of spikes. To that end, we sought to 

determine whether the single and multi-units detected using Neuropixels could also be used to 

extract spike-field relationships (Fig. 5). We first movement-corrected the Neuropixels LFP 

recordings using the same manual approach as for correcting spiking activity which revealed 

local field voltage reversals along with the Neuropixels depth (Fig. 5a).  

 Even without interpolating and re-aligning the LFP, we could identify interictal 

epileptiform discharges (IIDs) in the recording from the lateral temporal lobe before tissue 

resection for epilepsy (Fig. 5b). After confirming the presence of the IIDs using both automatic 

approaches 60 and visual confirmation by a trained epileptologist (SSC), we then aligned the 

single unit and multiunit activity to the peak of the IIDs (n=57). Single units increased firing 

around the peak of the IIDs, even in recordings with sparse firing (Fig. 5c). To verify this 

change, we jittered (centered on a normal distribution) the timing of the IID peak relative to the 

unit times and found that the increase in spike events around the actual IID peaks was 

significantly above the binned spike times around a jittered IID peak (Fig. 5d). Further, we 

compared the average binned spike counts (across trials per time step) to a baseline -2 to -0.5 

sec before the IID and found a significant increase in spikes in the half second after the peak of 

the IIDs (p<0.005; Wilcoxon rank sum test). Some units increased at the IID onset or only fired 

during the IID peak, while other units decreased firing around or after the IID, though we did not 

find a correspondence between unit class and spike rate modulation around the IIDs.  This 

varying pattern amongst units has also been reported in Utah array recordings 13.  

In two cases, the participants were under general anesthesia, which produced a typical 

burst suppression pattern in the average LFP (Fig. 5e-f; Supplemental Table 1; 61). Single unit 

firing increased during the bursts and decreased during the suppression periods in the LFP.  

The firing rate from -1.5 to -0.5 seconds before the onset of a detected burst relative to the -0.5 

to +1 seconds after the onset of the detected burst was significantly increased. The unit firing 

during the bursts was significantly higher compared to the burst-triggered unit firing calculated in 

a time-shuffled data set, where the burst time onset was shuffled in time relative to the spike 

data (1000 shuffled tests, Fig. 5g). This population change could also be observed at the level 

of individual units, where the firing rates of single units would increase before, during, and after 

(depending on the unit) the burst onset time in both patients (Fig. 5h). Interestingly, between 

25-55% of the individual units within different WaveMAP unit classifications groupings 

demonstrated significant spike rate modulation relative to the burst onset.  
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Figure 5. Relationship of units to the local field potential (LFP) events and epileptiform 

discharges. a. Example LFP averaged across the electrode (top) and along the depth of the 

Neuropixels probe after interpolating the LFP using manual registration. b.  Inter-ictal 
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epileptiform discharge example (IIDs, grey line) along with single unit activity (colored dots 

represent spike times for different units) through time in Pt. 03, and binned spike times (below). 

c. Top: Individual (black traces, n=57) and average IIDs (red line). Bottom: Binned spike rates of 

individual units along the Neuropixels depth (y-axis), with the brighter pixels indicating increased 

activity aligned to the peak of the IIDs. d. Individual unit example spike timing relative to the 

peak of the IIDs. e. LFP burst suppression in a participant under general anesthesia, as shown 

by the grey line (LFP) along with the detected single unit activity (raster plot in the middle figure; 

each color represents a different unit) and binned into 50 ms windows (bottom). Red bars on top 

of the figure: automated burst detection algorithm 62. fi-ii.  Detected burst onsets relative to 

binned single unit activity along the Neuropixels probe in two different patients (Pt. 01, i, and Pt. 

03, ii). g.  Binned spike rates relative to the burst onset (red) compared to time points where the 

burst onset was jittered randomly around a normal distribution of time ranges (black line). Green 

dots: spike rates (mean across units) which are significantly different compared to the -1.5 to -

0.5 sec before burst onset. hi. Left: Units separated into 6 classes for one patient (Pt. 01), color-

coded per cluster. Middle: example unit activity relative to the 1 second before and 2 seconds 

after the burst. Some units increase spiking before, during, or after the burst. Right: Bar graph 

indicating the percentage of units per class with significant changes in firing rate relative to the 

burst onset. hii. Units separated into 2 clusters for one patient (upper right, Pt. 03), color-coded 

per cluster, and example unit activity with changes in spike rates relative to the 1 second before 

the burst onset, with some units increasing spiking before, during, or after the burst. Below right: 

bar graph indicating the percentage of units per class with significant changes in spike rate 

relative to the burst onset.  

 

DISCUSSION 

 Here, we demonstrate that, the broadly available Neuropixels probes can be adapted 

for use in acute recordings of neuronal activity in the human cortex in an operating room 

environment. We found that, within minutes after inserting the Neuropixels probe into cortical 

tissue, we can observe 10s to more than 200 clear and stable units.  We could separate units 

based on waveform shapes (using duration and polarity), and we could also cluster the 

waveforms using unbiased clustering via PCA with k-means clustering and, separately, using a 

novel nonlinear clustering approach, WaveMAP 51. Similar waveform clusters were found across 

participants using each of the three separate classification approaches, indicating there were 

consistencies between individuals. This waveform diversity presumably relates to both 
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differences in cell types and differences in where electrical activity is recorded (e.g., near soma 

versus axons) 51.  

Historically, single-channel extracellular recordings have led to categorizing neurons into 

inhibitory vs. excitatory / pyramidal neuron classes.  Since Cajal’s work, we have known that 

there are subclasses of these types based on location in the cortex, channel expression, 

morphology and more. It is possible that with this very high-density recording approach enabled 

by Neuropixels we can make strides towards associating electrophysiologically identified cell 

types with some of these detailed neuronal subtypes63–65. Future work in both animal models 

and humans will be necessary to correlate functional differences in waveform morphology with 

essential cellular characteristics. In addition, even with this small sampling, we could find 

evidence of pairwise covariance between units, which is encouraging in that further data 

collection and analyses may provide detailed microcircuit maps of human cortex made entirely 

possible by the high spatial sampling of the Neuropixels probe.  

We also observed significant relationships between the LFP bursts and unit spiking 

activity, with some units’ firing increasing even before the burst and others firing during and 

after. This possibly indicates a circuit-scale phenomenon that warrants further investigation as it 

may relate to the mechanism of burst-suppression in anesthesia 66. Also, we found some units  

would fire at and after an IID, indicating that the Neuropixels probe could capture clinically 

relevant activity in the LFP while sampling high resolution information about single cells, even 

acutely in the operating room and even in Pt.03’s recording where we “only” isolated a relatively 

fewer 29 units from this single probe. 

Contrary to expectations based on previous reports from the primate literature, we did 

not observe a reliable bi-modal distribution of spike waveform duration. Historically, a bi-modal 

distribution has been used to identify putative pyramidal and inhibitory neurons (e.g. 56), but we 

did not find strong differences in firing rate for the RS versus FS units, as has been previously 

reported in the literature 47,50,56,57,67.  While such a separation has been reported with Utah arrays 

in humans 50,67, we saw no evidence of this distribution in the recordings reported here. One 

possible explanation is that the higher density of Neuropixels allows more sensitive neuron 

detection, which leads to recording a wider range of neurons with less bias towards large 

waveform action potentials. A second (not mutually exclusive) possibility is that this difference is 

due to the Neuropixels probe sampling across cortical layers, versus the more within-layer 

sampling of Utah arrays.  

A third possibility, and an important component of Neuropixels recordings in the OR, and 

a consideration when examining activity across cortical layers, is that the range of possible 
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probe angles and placement relative to gyri and sulci are both significantly increased by the 

flexibility of the small Neuropixels form factor in penetrating neural tissue from different angles 

(although approach trajectories are limited by the clinical considerations and access 

boundaries). In most cases, we could only approach the tissue with a limited set of angles (e.g. 

limited by the Burr hole) or penetrate a curved surface (with gyri more complex in humans 

compared to NHPs and mice), such that we may not be as perpendicular to the cortical layers 

as in NHP or mouse studies 1,3. One advantage of the Neuropixel probes’ single-shank form 

factor is that it allows for considerable flexibility in the angle and direction of the insertion 

compared to a planar array like the Utah array17. This additional flexibility of insertion 

configurations, however, introduces additional challenges for recording the spatial location and 

angular orientation of the probe. This requires additional measurement and documentation of 

these degrees of freedom, including: 1) mapping to whatever stereotactic placement system is 

used in 3D, 2) 3D reconstruction of the brain and Neuropixels probe relative to trajectories and 

photographs (from multiple angles, made possible with the use of Blender), and 3) the use of 

LFP (Fig. 1) and/or the use of different Neuropixels recording maps to define recording depth 

and boundaries. This approach could be additional refined in future experiments by using the 

BrainLab software package (Munich, Germany) or other intraoperative visualization tools 68 to 

improve the mapping precision and fidelity. 

For intraoperative research where time constraints can be substantial, there is a high 

priority on being able to achieve high fidelity, stable recordings quickly. Previous experiences 

suggest that this may be hampered by cortical ‘stunning’ which results in few units being 

recorded for minutes or even longer after electrode insertion 40. With the Neuropixels probe, 

however we were able to record large numbers of units within minutes of insertion. In two cases, 

we recorded more than 200 single units in a period of 5-10 minutes, while, in the third case, we 

recorded 29 units in a similar time span (10 minutes). The possible difference in the third 

participant was that the electrode was placed in the lateral temporal lobe to be resected for 

epilepsy and the patient was deeply anesthetized (as indicated by the high level of suppression 

in the detected burst-suppression waves). 

In addition to being able to record from large numbers of units, the Neuropixels 

arrangement allows for resolution of units and LFP at different cortical depths.  It was clear that 

distinct types of units are distributed differently across the recording probe, with a possibility that 

we could also record backpropagating action potentials. Indeed, the dense sampling allows 

identifying many pairs of interacting neurons (i.e., those exhibiting a consistent temporal 

lead/lag). Previous reports of groups using Neuropixels to observe backpropagating action 
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potentials, combined with the present results confirming the ability to super-sample action 

potentials across multiple electrodes, indicates that similar in vivo investigations of human 

action potential variants are possible 2. In addition, further analyses of the LFP alone could be 

mapped to sinks and sources using current source density techniques 69,70,71.  

While our Neuropixels recordings of single and multi-unit activity in humans are 

promising, we found that several important issues will need to be addressed before this 

approach can be implemented as a turn-key system that will make it easier for more groups to 

adopt this technique. As expected, we encountered substantial challenges with the electrically 

noisy environment of the operating room. This required flexibility in the arrangement of the 

ground and reference electrodes for the recordings.  Another major challenge is impact of brain 

movement on the recordings.  Here, we were able to perform a post-hoc manual analysis to 

mitigate the artifact introduced by brain pulsation and have shared detailed instructions with 

code (see Online Methods). While this was sufficient to allow for accurate spike sorting for the 

units reported in this analysis, it is likely that many theoretically isolatable units with smaller 

signals were rejected or ignored due to the challenge of isolating small waveforms across drift 

events. We found that we could not rely on alignment approaches that only used spike rates4, 

since the movement artifact was considerably faster than the 1-2 seconds needed for published 

stabilization approaches4. This is because the problem is not one of drift (i.e. slow displacement 

of the electrode) but of pulsation artifact due to the ejection of blood into the great vessels with 

each heartbeat. Our manual approach provided a reasonable fix for this problem but can likely 

be improved. To this end, we have provided open-source de-identified data which we hope will 

allow groups to develop/update automated alignment algorithms to work well with these new 

type of human electrophysiology data. Future work to automatically adjust for movement 

artifacts would ideally use the voltage fluctuations in the LFP, or a combination of LFP and spike 

rates, to align the channels and adjust for the movement.  

Other methods currently under development to address this challenge aim to directly 

minimize the tissue motion during the recordings. Most of these approaches focus on 

mechanically stabilizing the cortex around the probe. Another approach would be to allow the 

recording electrodes to move with the brain, e.g. as developed by Neuralink 72 or with a flexible 

link isolating the probe from any positioning equipment or cables. We believe that further 

development of motion stabilization techniques -- in a manner which optimizes maximizing 

patient safety – is a top priority and will result in substantially more recorded neurons, each 

sampled and isolated with more consistency.  Lastly, alternative electrode configurations, such 
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as the linear column configuration used in the Neuropixels 2.0 probe 4 specifically to facilitate 

automated post-hoc motion correction, will likely help to address this challenge. 

A further challenge to applying this technology in intraoperative studies is the necessary 

time constraints on the recordings. For patient safety, it is not appropriate to extend their time in 

the operating room significantly. Consequently, we were unable to record beyond ~15 minutes. 

In the future, this may be extended slightly, depending on the exact surgical context. For 

example, extensive language mapping in an awake tumor resection case may go on 

significantly longer. However, the short recordings could be a factor in the waveform shapes we 

observed (e.g., cell types that fire infrequently or only in certain contexts would be less likely to 

be observed). Studies in other species could indicate optimal recording stability is achieved at 

considerably longer recordings (45 minutes)3. While we cannot change this feature of our 

studies, we note it is a potential factor that affects our recordings. This open question presents 

an opportunity for comparable studies in NHPs or large animals to examine single units in those 

first moments of insertions, and then afterwards, in order to help us better contextualize human 

Neuropixels recordings. 

Nevertheless, the fact that we obtained single unit-resolution recordings almost 

immediately upon insertion of the Neuropixels is highly encouraging, since it ensures that useful 

information can still be obtained in a short period of time. Indeed, the power of these acute tests 

in the OR using Neuropixels probes will be realized with experiments in which awake subjects 

engage with a task during the recording period. All such uses cases, however, necessarily build 

on a demonstration of the feasibility of acute recordings in clinical settings given the unique 

challenges in this environment. We also note the potential for Neuropixels (or future variants) to 

accelerate clinical electrophysiology thanks to their dramatically increased channel counts 

relative to single- or low channel count probes. For example, simultaneously recording along a 

probe during deep brain stimulation targeting instead of “searching” with single electrodes would 

reduce procedure time and potentially improve patient outcomes. Additional research avenues 

can be opened by technological advances necessary to create a chronic form of the system.  

In summary, these data imply that substantial circuit details can be untangled using this 

method in humans. The Neuropixels approach suggests a pathway forward for increasingly 

sophisticated and detailed explorations of the cellular-scale code underlying higher order 

cognitive function in multiple areas of the human brain, as well generating a deeper 

understanding of the dynamics of clinically relevant neural activity. It is also a step towards 

developing high channel count chronic neural interfaces for human use which may accelerate 

and expand the therapeutic possibilities of brain-computer interfaces 73.  
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Extended Data / Supplementary Information 

Online Methods 

Supplemental Table 1. Distribution and numbers of cases and results as well as reasons 

for data exclusion and information per participant and recording 

Supplemental Figure 1. Recording challenges and lessons learned. 

Supplemental Figure 2: Realigning the data relative to heartbeat-induced movement 

artifact. 

Supplemental Figure 3. Example complex waveforms for six different units (each color-

coded set of waveforms) across the data set 

Supplemental Figure 4. Waveform measures and PCA with k-means clustering 

Supplemental Figure 5. Waveform Features of Units Clustered with WaveMAP 
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METHODS (COMPLETE ONLINE VERSION). 

Patients & clinical/research electrode placement 

All patients voluntarily participated after informed consent according to NIH guidelines as 

monitored by the Partners Institutional Review Board (IRB) Massachusetts General Hospital 

(MGH). Participants were informed that participation in the experiment would not alter their 

clinical treatment in any way, and that they could withdraw at any time without jeopardizing their 

clinical care. Recordings in the operating room were acquired with 9 participants (mean= 59 

years old, ranging from 34 to 75; 7 female; Supplemental Table 1) who were already 

scheduled for a craniotomy for concurrent clinical intraoperative neurophysiological monitoring 

or testing for mapping motor, language, and sensory regions and removal of tissue as a result of 

tumor or epilepsy or undergo intra-operative neurophysiology as part of their planned deep brain 

stimulator (DBS) placement 1–4. Prior to inserting the Neuropixels probe, a small superficial 

incision in the pia was done using an arachnoid surgical knife. The Neuropixels probe was 

inserted through this incision. Recordings were referenced to sterile ground and recording 

reference needle electrodes (Medtronic) placed in nearby muscle tissue (often scalp) as 

deemed safe by the neurosurgical team though a series of tests ground and reference tests 

were performed to identify the ideal combinations of ground and reference options, listed below 

(Supplemental Table 1). 

Following the surgery, the preoperative T1-weighted MRI was used to generate a 3D 

surface brain map using FreeSurfer scripts 5–7 (http://surfer.nmr.mgh.harvard.edu). Images 

obtained during surgery and locations as indicated using Brainlab (Brainlab, Inc.) captured 

during the surgery were aligned to the 3D reconstructions using Blender software 

(https://www.blender.org/ ) and MMVT 7–9. The method involved projecting the surgical image 

onto the patient’s reconstructed brain using Blender and then placing a 3D model of the 

Neuropixels probe on that location similar to other coregistration approaches 4,7,8,10. Angles were 

calculated from photographs taken during the surgery as well as trajectories limited by the 

location and angle of the burr hole for DBS surgery. 

 

Neuropixels recordings, data collection & analysis 

 Neuropixels probes (NP v 1.0, version S, IMEC) sterilized with Ethylene Oxide (BioSeal) 

were connected to a 3B2 IMEC headstage wrapped in a sterile plastic bag and sealed using 

TegaDerm (3M) to keep the field sterile.  Neuropixels  probes (NP v 1.0-S, IMEC) include an 

electrode shank (width: 70µm, length: 10 mm, thickness: 100µm) of 960 total sites laid out in a 

checkerboard pattern with contacts at ~18 µm site to site distances (16 µm (column), 20 µm 
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(row); 11). Handling of the electrodes and the headstage from outside the sterile bag was all 

performed in sterile conditions in the operating room.  The headstage was connected via a 

multiplexed cable to a PXIe acquisition module card (IMEC), installed into a PXIe Chassis 

(PXIe-1071 chassis, National Instruments).  All Neuropixels recordings were performed using 

SpikeGLX (http://billkarsh.github.io/SpikeGLX/) on a computer connected to the PXIe acquisition 

module recording the action potential band (AP, band-pass filtered from 0.3-10 kHz) sampled at 

30 kHz and a local field potential band (LFP, band-pass filtered from 0.5-500 Hz), sampled at 

2.5 kHz 11–13.  Since these Neuropixels probes enable 384 recording channels which can then 

be used to address 960 electrodes across the probe shank, we tested different electrode maps 

which allowed us to record different portions of the probe. One map allowed for recording the 

lower portion of the probe (the most distal channels). A second map allowed for recording two 

rows along the entire length of the electrode. This map was used to identify the depth of the 

electrode in the cortex and we switched to the distal tip map (short map) for the main recording. 

A final map allowed for recording in a series of tetrode locations, skipping rows to distribute 

recordings along the entire length of the probe.  

 Synchronization was performed through two different approaches.  TTL triggers via a 

parallel port produced either during a task via MATLAB or custom code from a separate 

computer were sent to both the National Instruments and IMEC recording systems, via a parallel 

port system.  In addition, we used the TTL output to send the synchronization trigger via the 

SMA input to the IMEC PXIe acquisition module card to allow for added synchronizing triggers 

which were also recorded on an additional breakout analog and digital input/output board (BNC-

2110, National Instruments) connected via a PXIe board (PXIe-6341 module, National 

Instruments). The TTL triggers were produced either during a task via MATLAB or custom code 

on the task computer. 

 

Recording challenges and lessons learned 

 Five main challenges were faced when performing these recordings: 1) sterilization and 

maintaining a sterile field and conditions; 2) electrode fracture and disconnects; 3) decreasing 

noise in the recordings through referencing; 4) external sources of noise; 5) mechanical 

stabilization (Fig. 1; Supplemental Fig. 1).  

Sterilization and maintaining a sterile field 

 To ensure we could use the Neuropixels probes in the OR, we worked with BioSeal 

(Placentia, CA) and sent them a sample of 25 Neuropixels probes. BioSeal took the samples 

through a validation process to determine that ethylene oxide (EtO) could be used to sterilize 
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the Neuropixels probes. We also tested whether working Neuropixels probes were operational 

before and after sterilization. An important part of the process was identifying safe sterile 

packaging for sterilization and transport. We found we could place the probes sideways inside a 

slightly modified EtO-safe sterile container (SteriBest Trays, Sterilization Instrument Tray, 

Instrument Tray Sizes (inches):Base, Lid, Mat 6x2.5x.75], item#A-CP614, from Duraline 

Biosystem; Fig. 1a; Supplemental Fig. 1g; Supplemental Table 1). When received the boxes, 

we clipped protruding silicone nubs in an area of 3 cm x 3 cm on one side of the box as well as 

a few silicone nubs on the other end of the box.  We found that we could package and safely 

ship and handle the Neuropixel probe cross-country by weaving the Neuropixels ribbon cable 

around the vertical silicone nubs in the sterilization containers with the Neuropixels probe and 

headstage perpendicular to the base of the box. We performed several tests to demonstrate the 

probe consistently survived this shipment approach, including before and after sterilization. 

Before shipping for sterilization, we soldered on a 10 cm long male touchproof cable (the white 

cable in Fig. 1a, b and d) to the reference side of the Neuropixels probe. In addition, we labelled 

the lid of the box to track individual probes. The validation of 25 probes performed by BioSeal 

was done with the Neuropixels probes in this configuration and with this specific SteriBest Tray 

packaging (including the added touchproof connection cable). Once shipped to Bioseal packed 

in bubble wrap, the company would return the probes in their sterilization boxes sealed in 

approved packaging. We have found this approach kept the electrodes intact and tracked 

throughout transport and sterilization. 

Electrode fractures and disconnects 

 We had instances of electrode fracture (N=2), both of which were with the thinner 

Neuropixels 1.0 probes (thickness: 25µm, width: 70µm, length: 10 mm).  We then switched to a 

thicker custom Neuropixels 1.0-S probe (thickness: 100µm width: 70 µm, length: 10 mm) for the 

remaining recordings and, of the 7 uses of thick probes, we only had one instance of electrode 

fracture.  In each instance, we documented whether the probes were intact afterward both via 

the SpikeGLX software and through thorough photograph documentation. In the three probes 

which were fractured, we were able to photograph the pieces to reconstruct the entire probe do 

validate probe recovery. In the remaining probes, the photographs after the case confirmed the 

electrodes were fully intact after the case. In addition, in the intact probes after the case, 

software check via SpikeGLX involved a hardware check indicating the probes were intact and 

fully functioning.  

Decreasing noise using referencing and grounding 
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Even though we had tested the Neuropixels probe as well as had considerable 

experience in using Neuropixels in NHPs which informed how we built our electrophysiological 

system 13, we found moving the Neuropixels recordings into the human OR was made much 

more difficult with considerable added noise compared to any of the other testing settings. In the 

first four tests, we followed the original recommendations to tie the reference to the ground on 

the Neuropixels probe which degraded the signal considerably in the OR (Supplemental Fig. 

1a). The signal was substantially improved by separating the ground and reference on the 

Neuropixels probe, with a single Medtronic sterile wire connected to the reference placed in the 

scalp and a separate wire attached to the ground and also placed in the scalp as deemed safe 

by the neurosurgical team. Improving the signal also involved tying the patient ground to the 

recording ground the patient to the recording via a BOVIE pad (Clearwater, FL) connected to 

the grounding BNC on the NIDAQ board used for the Neuropixels system. Placing the 

grounding lead into saline or CSF degraded the signal by saturating the LFP and increasing 

noise in the system.  

External sources of noise 

Changing the reference from the external reference in the software (using SpikeGLX) to 

the internal reference also increased noise significantly (Supplemental Fig. 1c). We also 

discovered an external source of noise was the wall-powered anesthesia IV pump (as is 

commonly used during patient transport) which, when unplugged and operating on battery, 

would decrease the physiological noise. Finally, we did a series of tests to determine if other 

signals added sources of noise and we did not find an effect of the BOVIE cautery machine, the 

ROSA robot, the lights or other machines in the room.  

Mechanical stabilization 

Two separate stabilization approaches were tested. One approach involved the patients 

receiving DBS implantations at MGH, who normally also undergo standardized micro-electrode 

recording to optimize anatomical targeting 1,14, Neuropixels probes were inserted in the same 

locations as the microelectrodes that traverse the dorsal lateral surface of the prefrontal cortex 

on the way to the target nucleus, offering a brief chance to study neuronal dynamics in the 

dlPFC and not perturbing the planned operative approach nor alter clinical care 1–3,14–16. Three 

cannulae were placed in a manipulator (AlphaOmega Engineering, Nazareth, Israel) and the 

Neuropixels probe was attached to the cannulae using SteriStrips (3M™ Steri-Strip™ 

Reinforced Adhesive Skin Closures).  The manipulator was attached to the ROSA ONE® Brain 

(Zimmer Biomet) arm. The Neuropixels probe was put over the burr hole by the ROSA robot 

arm. ROSA was then used to move the probe insert the probe using fine millimeter steps, with 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.20.449152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449152
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 36 
 

some adjustment possible using the AlphaOmega micromanipulator.The second approach 

involved securing the Neuropixels probe to a sterile syringe which was then held by a 3-axis 

micromanipulator built for Utah array placement (BlackRock, Salt Lake City, UT) which was 

attached to a Greenberg retractor.  The Neuropixels probe was in place and lowered using the 

micromanipulator.  

Compensation for tissue movement and electrode alignment through time 

 We found clear evidence of vertical tissue movement relative to the Neuropixels probe in 

the local field potential (LFP) recordings (Supplemental Fig. 2). To confirm that this was due to 

movement of the tissue as well as effects of heartbeat, we aligned the movement artifact to the 

heartbeat in time (this was possible thanks to audio tracking of the EKG in 2 participants’ 

cases).  We found the movement roughly matched this tracking. To confirm that the manual 

tracking could match the movement of the brain relative to the electrode, we performed tissue-

level tracking of the video recordings of the case and found we could align the filmed movement 

of the brain pumping relative to the electrode, which was well visualized in the LFP band across 

channels as tracked through time (Supplemental Fig. 2b). We tested several approaches to 

address this movement and correct for the alignment, including the Kilosort 3.0 drift adjustments 

and estimation (https://github.com/MouseLand/Kilosort) and spike time-informed alignment 

approaches (https://github.com/evarol/NeuropixelsRegistration). We chose to use the LFP-

informed manual tracking as it was better-resolved in the time domain since the dynamic range 

of LFP allowed for per time step (0.0004 sec) alignment and interpolation. In contrast, the 

automatic approach depended on firing rate and arrival of spikes, which were sparse (Fig. 1e-f). 

 

Manual tracking of movement using LFP signals 

 The signal was first extracted from the binary files into local field potential (LFP, <500 Hz 

filtered data, sampled at 2500 Hz) and action potential (AP, >500 Hz filtered data, sampled at 

30000 Hz) from SpikeGLX using MATLAB and available preprocessing code 

(https://billkarsh.github.io/SpikeGLX/ ). We inspected the data visually as well as examined the 

timeline of the recording to reject noisy time ranges (such as during insertion.) We then further 

examined the voltage deflections in the LFP for a prominent, bounded deflection in the voltage 

where we observed the voltage values shifting in unison(Supplemental Figure 2) which was 

consistently present throughout the recording (blue or red bands in Supplemental Figure 2). 

We attempted to use a number of algorithms to detect these shifts, but the multiple changes 

present (heartrate, slow and mid-range drifting, and other shifts) were not effectively tracked by 

these algorithms. Instead, to capture the displacement in the movement bands, we imported the 
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LFP voltage as an .stl file from MATLAB into Blender (https://www.blender.org/ ), a three 

dimensional animation program which allowed for easier manual tracing compared to MATLAB. 

Using the surface voltage and the Grease Pencil feature, we traced the shifting band of 

negatively deflecting LFP throughout the recording at a resolution of 500 Hz. The line produced 

then was exported as a .csv file and imported into MATLAB, where it was compared with the 

LFP at higher resolution to check whether the manual tracing matched the LFP displacement 

(Supplemental Figure 2a).  This traced line information was upsampled to 2500 Hz to match 

the sampling frequency of the LFP channels (interp1, ‘makima’).  

 

Preprocessing AP recordings 

 Once we had the LFP baseline to track probe movement through time, we then applied 

analyses to the AP sampled band. To account for differences in the channels before aligning the 

data (as channels can have differences in impedance), we first detrended data (which removes 

best fitted line to each channel), calculated the median, and subtracted it from all channels. We 

then normalized the voltage signal across channels by multiplying each channel’s voltage time 

series by a normalization factor where Normalized data = Channel signal * (1/std) * 600. In this 

case, the std was the standard deviation of channel data without outliers, particularly epochs 

which were relatively quiet. We defined outliers as elements which were more than 1.5 

interquartile ranges above the upper quartile or below the lower quartile of the distribution of 

voltage signals. Finally, we chose the value of 600 in the normalization to allow us to scale the 

data up to an int16 format for improved data resolution.  

 

Alignment and interpolation of AP channels for manual registration 

 To then re-align the AP channel data so as to offset the movement artifact, we 

upsampled the traced line to 30KHz to match the AP sampling rate (interp1, ‘makima’). We 

then, for each time bin, applied a spatial interpolation between channels vertically in two 

columns of the Neuropixels recording, resulting in a vertical spatial resolution of 1um. 

(Supplemental Figure 2). These steps resulted in a large, high resolution interpolated matrix 

that we could then follow through time. This let us compensate for the movement effects by 

resampling the voltage in space (Supplemental Figure 2) based on the manually registered 

movement trajectory described in “Manual Tracking of Movement using LFP signals”.   

 Specifically, for each time bin, we shifted the vertical channels vector up or down 

according the upsampled traced line, resulting in >450 ‘virtual channels’ that each contained 

voltage information putatively from a specific brain location. Finally, since the virtual channels on 
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both ends (top and bottom of the shank) contained only partial data (due to brain movement 

relative to the electrode), we selected a subset of 384 virtual channels that contained the most 

continuous information throughout the recording (and did not shift channels into the edge), 

which could be inferred from the average channel offset.  

 

Unit isolation and clustering  

Single unit sorting was performed using Kilosort 3.0 17 

(https://github.com/MouseLand/Kilosort) as well as Phy (https://github.com/cortex-lab/phy ) and 

then manually curated using in-house MATLAB code to visually inspect the template as well as 

the waveforms assigned to each cluster. The Kilosort 3.0 parameters included: Nblocks = 0 – as 

no additional registration was needed according to spiking activity after the manual registration; 

Threshold [10, 11] to be more strict in our detections (initial values were [9,9] which resulted in 

~800 units for Pt. 02). Clusters were merged in Phy if the templates were similar between 

clusters, the spatial spread of waveforms were highly similar and overlapping, and cross-

correlations of the event times indicated high levels of correlation. To further process and shift 

each individual waveform to correct for Kilosort3 misalignment, we also calculated the cross 

correlation of individual waveforms with the cluster template and adjusted waveforms according 

to location of maximal voltage value per waveform in the sampled time.  

 

Waveform feature analyses and classification 

Clusters were then separated into single units and multi-unit activity (MUA). Units were 

classified as MUA if there was a mixture of distinct waveforms (examined in Phy) as well as a 

complicated (and abnormal) autocorrelogram. For all units, we then measured the spike 

duration, halfwidth, peak-trough ratio, repolarization slope, recovery slope, and amplitude 

measures (Fig. 2; adapted from 12; https://github.com/jiaxx/waveform_classification). Further, 

we applied the spatial spread and velocity measures to each cluster to identify whether we 

could observe evidence for backpropagating action potentials or other unique spatial dynamics 

(Fig. 2; adapted from 12).  

We used three different classification approaches to group the units. First, using a 

standard approach, units were grouped into regular spiking (RS), fast spiking (FS), positive 

spikes (PS) classifications based on the spike waveform duration (valley-to-peak) of the largest 

peak across channels per unit 18–23. The ranges for each classification were as follows: negative 

going peaks included FS (duration <0.3 ms) and RS (duration>0.3 ms) and positive spikes (PS). 

Second, we applied principal components analyses on the first six channels per unit and 
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clustered these average waveforms using k-means clustering (squared Euclidean distance, 

1000 replicates, 1000 maximum iterations) into 7 clusters based on the separability of the 

clusters (using silhouette) and how clean the resulting clusters were.  Finally, we used a novel 

non-linear method, WaveMAP, which took into account the spatial and temporal waveform 

characteristics while separating out differences in the waveforms 24. WaveMAP includes a 

combination of dimensionality reduction with Universal Manifold Approximation and Projection 

(UMAP) combined with Louvain clustering to identify clusters in the data set 24. We then 

compared the waveform features across these different classifications.   

 

Local field potential analyses 

 Custom MATLAB code (version R2020a) in combination with open source code from the 

Fieldtrip toolbox (25; http://www.fieldtriptoolbox.org/).  

 

Burst suppression ratio measurement 

The burst suppression ratio (BSR) was computed using an automated method 26,27 

(https://github.com/drasros/bs_detector_icueeg). After averaging the LFP across all channels, 

this method then labels each time sample as either burst or suppression. Briefly, the method 

uses the previous data with each channel and applies the following equations: 

µt = β µt-1 + (1-β) xt 

σt2 = β σt-12 + (1-β) (xt - µt)2 

zt = δ[σt2 < θ] 

Where xt is the value of the normalized signal of one channel at time t, µt and σt2 are current 

values of the recursively estimated local mean and variance, respectively. Finally, zt is an 

indicator function that labels each data point as either a burst (0) or suppression (1). The value 

of β determines the balance between the effect of recent and past data set based on previously 

trained data 26. The classification threshold θ (i.e., the value above which a data point should be 

classified as burst) was adjusted to evaluate our dataset visually with values of θ = 50, 100, 

150, and 200 and was informed by the input from two experts who reviewed selected intervals 

to identify burst and suppression using each possible theta value. The value of θ = 200 was 

selected to reliably identify burst and suppression induced by general anesthesia. The burst 

suppression ratio for each recording in an anesthetized patient (N=2) was evaluated as the 

proportion of suppression-labeled samples in a moving window (1 s duration, no overlap).  

 

Inter-ictal epileptiform discharges  
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 In one case, the Neuropixels electrode was inserted into the lateral temporal lobe before 

tissue resection for epilepsy. As we could identify interictal epileptiform discharges (IIDs) in the 

LFP, we applied both an automatic and a visual detection approach to verify the timing and 

location of the IIDs in the Neuropixels recording. For automatic detection, we averaged the LFP 

across channels and applied the algorithm of 28, version v21, default settings except -h at 60 

and -k1 at 7 to increase the threshold for detection; http://isarg.fel.cvut.cz), which adaptively 

models distributions of signal envelopes to discriminate IIDs from LFP 28. In addition, a trained 

and experienced epileptologist (SSC) examined the average LFPs and confirmed the timing of 

the detected IIDs. This two-step process was necessary as the burst suppression from the 

anesthesia produced waveforms which could obscure the IIDs. For several analyses, the single 

unit spike times were then aligned relative to the peaks of the IIDs. 

 

Statistical analysis 

All statistical comparisons were performed using non-parametric measures, so we did not test 

for normality.  Multiple comparisons tests were performed using the Kruskal–Wallis test for non-

equivalence of multiple medians followed post hoc Tukey-Kramer method to identify statistically 

separable groups. For comparisons between individual medians, we used the Wilcoxon rank-

sum test (two-sided). We corrected by adjusting the target p-value (0.05) with a Bonferroni 

correction for the number of comparisons being done.  

 

Data availability 

The majority of the data that support the findings of this study are available from the 

corresponding author upon reasonable request, though a subset of data will be available for 

download at Dryad (https://datadryad.org/stash) upon publication. 

 

Code availability 

Open source acquisition software, SpikeGLX (http://billkarsh.github.io/SpikeGLX/) and 

record the neural data. Single unit sorting was performed using Kilosort 3.0 17 

(https://github.com/MouseLand/Kilosort) as well as Phy (https://github.com/cortex-lab/phy ) 

Custom Matlab code (version R2020a) and python code in combination with open source code 

from the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/ ) was used for the majority of the 

analyses with some code involving manual alignment available on Github 

(https://github.com/Center-For-Neurotechnology/CorticalNeuropixelProcessingPipeline).   The 

burst suppression ratio (BSR) was computed using an automated method 26,27 
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(https://github.com/drasros/bs_detector_icueeg). Reconstruction of electrode locations and the 

manual tracing was done using the open source, free software Blender 

(https://www.blender.org/ ). 
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