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GRAPHICAL ABSTRACT 24 

 25 

ABSTRACT  26 

Oxytocin (OXT) is a neuropeptide that can facilitate prosocial behavior and decrease 27 

social stress and anxiety. We investigated whether acute pulses of intranasal (IN) OXT 28 

influenced social behavior during social challenges that are likely to occur throughout the 29 

lifespan of a wild mouse. To test this, we examined the acute effects of IN OXT in the male 30 

California mouse (Peromyscus californicus), a monogamous, biparental, and territorial rodent, 31 

using a within-subjects longitudinal design. Social challenges included a pre-courtship male-32 

female encounter conducted during the initial aggressive and not the following affiliative phase 33 

of courtship, same-sex resident intruder test, and parental care test, with each test and dose 34 

separated by at least two weeks. Males were treated with intranasal infusions of 0.8 IU/kg OXT 35 

or saline controls 5-min before each behavioral test, receiving a total of three treatments of either 36 

IN OXT or saline control. We predicted that IN OXT would 1) decrease aggression and increase 37 

affiliation during the pre-courtship aggression phase, 2) increase aggression during resident 38 

intruder paradigms and 3) increase paternal care and vocalizations during a paternal care test. As 39 

predicted, during pre-courtship aggression with a novel female, IN OXT males displayed less 40 

contact aggression than control males, although with no change in affiliative behavior. However, 41 
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post-pairing, during the resident intruder test, IN OXT males did not differ from control males in 42 

contact aggression. During the paternal care test, IN OXT males were quicker to approach their 43 

pups than control males but did not differ in vocalizations produced, unlike our previous research 44 

demonstrating an effect on vocalizations in females. In summary, during pre-courtship 45 

aggression and the paternal care test, IN OXT promoted prosocial approach; however, during the 46 

resident intruder test IN OXT did not alter social approach. These data suggest that IN OXT 47 

promotes prosocial approach specifically in social contexts that can lead to affiliation. 48 

 49 

Keywords: oxytocin, courtship, aggression, paternal care, monogamy, pair bonding  50 
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1. Introduction 51 

In social species, interactions can be altered based on their life history stage and 52 

environment. Throughout the lifespan, social species encounter many different types of social 53 

interactions and must respond appropriately to these social interactions to acquire and maintain 54 

resources, mating opportunities, and reproductive fitness. One significant question is determining 55 

the mechanisms underlying how animals alter their social responses based on social and 56 

environmental context and life stage. Endogenous hormone and neuropeptide levels are 57 

important for biobehavioral feedback and to help animals respond appropriately to various social 58 

interactions. Oxytocin (OXT), a neuropeptide hormone, is a neuromodulator that may be 59 

important for weighing social salience and determining appropriate behavioral response to social 60 

stimuli (Shamay-Tsoory & Abu-Akel, 2016; Parr et al., 2018; Yao et al., 2018; Johnson et al., 61 

2017; Egito et al., 2020). Previous studies on OXT show its significant effects on prosocial 62 

affiliative behaviors such as trust, social bonding, social recognition, and anxiolytic behavior in 63 

both human and animal models (Theodoridou et al., 2009; Kosfeld et al., 2005; Ring et al., 2006; 64 

Bales et al., 2003; Blocker et al., 2015; Guestella et al., 2008). In addition to increasing 65 

affiliative behaviors, OXT is involved in aggressive behaviors. In humans, OXT can increase 66 

envy, schadefreude, defensive but not offensive aggression toward a competing out-group, and 67 

domestic violence in men prone to aggression (Shamay-Tsoory et al. 2009; Bethlehem et al., 68 

2015; De Dreu et al., 2016; De Dreu et al., 2010; DeWall et al. 2014). OXT is also associated 69 

with increased mate guarding in rats (Holley et al., 2015), prairie voles (Bales & Carter 2003), 70 

and marmoset monkeys (Cavanaugh et al., 2018). Furthermore, OXT is associated with increased 71 

maternal aggression toward potential predators (Bosch & Neumann 2012). In canines, OXT also 72 

increases aggression towards owners but not strangers during a threatening approach test 73 
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(Hernadi et al., 2015). These data on the role of OXT on affiliative and aggressive behavior 74 

support the hypothesis that social salience and social context are important cues influencing the 75 

behavioral effects of OXT. Based on these studies, OXT would be expected to decrease 76 

aggression and increase affiliative behavior when a male-female pair is introduced and increase 77 

aggression by a resident towards an intruder . 78 

Throughout an animal’s lifetime, OXT levels change in response to certain life events 79 

such as early life experience, pair bonding, intrasexual aggression, and parenting. This is 80 

especially true for monogamous and parental species that require flexibility in response to group 81 

membership. In prairie voles, the function of OXT can be altered in response to previous social 82 

neglect by their mother during the neonatal period (Bosch and Young, 2017). Prior to mating, 83 

OXT increases affiliative contact with familiar females (Cho et al. 1999; Bales et al., 2013) and 84 

increases speed of pair bonding in females (Williams et al., 1994; Young & Wang, 2004). Post-85 

mating, OXT enhances aggression in prairie voles during encounters with same-sex conspecifics 86 

(Winslow et al. 1993). In California mice, OXT plasma levels increase in expectant fathers, 87 

decrease in fathers, and are disrupted when the male is separated from his mate and pups 88 

(Gubernick et al., 1995). These rodent studies in prairie voles and California mice suggest that 89 

social experience may drive important changes to the OXT system. These studies further 90 

enhance expectations for OXT to increase paternal behavior. 91 

To mimic the natural pulses of OXT that may occur during these different social contexts 92 

and challenges, acute intranasal OXT (IN OXT) can be used. Previous studies in rodents have 93 

shown that IN OXT alters behavior within 5-min of administration (Bales et al., 2013) and can 94 

have behavioral effects that persist for 30-50 min after administration (Carter & Wilkinson, 95 

2015). Daily chronic doses of IN OXT induce long-term modifications to the OXT system (Bales 96 
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et al., 2013; Guoynes et al., 2018; Del Razo et al., 2020); however, single doses spread out across 97 

weeks are presumably less likely to have carry-over effects across tests (Huang et al., 2014).  98 

The California mouse (Peromyscus californicus) is a strictly monogamous, biparental 99 

rodent species well-suited to examine how OXT modulates vocal production and social behavior 100 

across different life stages. California mice show aggression toward unfamiliar conspecifics (e.g. 101 

Rieger et al. 2018) including opposite-sex conspecifics (e.g.  e.g.Pultorak et al., 2018). During 102 

pre-courtship aggression with an unfamiliar conspecific, there is a period of assessment and often 103 

aggression (Gleason & Marler, 2010) that we will refer to as the pre-courtship aggression phase. 104 

Most of this aggression is in the form of non-contact aggression such as chasing and lunging, but 105 

the aggression can escalate to contact forms of aggression such as wrestling. Based on previous 106 

experience pairing female and male California mice in the lab, most prospective pairs show some 107 

form of aggression (i.e. lunging, chasing) but fewer pairs show contact aggression (i.e. wrestling) 108 

(Gleason & Marler, 2010). Once paired, female and male California mice form strong, reliable 109 

pair bonds but will still show reliable aggression toward unfamiliar conspecifics (Bester-110 

Meredith & Marler, 2001; Trainor & Marler, 2001; Bester-Meredith & Marler, 2007); such 111 

aggression is decreased by an antagonist (V1a) to vasopressin (Bester-Meredith et al. 2005), a 112 

similar neuropeptide that is often positively associated with aggression. The period of pre-113 

courtship aggression in the California mice is significantly longer than in other monogamous 114 

animal models such as the prairie vole. While prairie voles mate within the first 41 hrs of being 115 

paired (Witt et al., 1988), California mice mate 7-14 days after being paired (Bester-Meredith et 116 

al., 2003; Trainor et al., 2001; Gleason & Marler 2010). This longer period of courtship may 117 

reflect a longer assessment period for potential mates, as expected in a monogamous species. The 118 

first litter of pups is typically born between six and eight weeks after the initial pre-courtship 119 
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aggression. Once pups are born, both fathers and mothers engage in parental care (Bester-120 

Meredith & Marler, 2001; Bester-Meredith & Marler, 2003; Lee & Brown 2002; Trainor et al., 121 

2003; Trainor & Marler, 2003; Marler et al., 2003; Lee et al., 2007; Frazier et al., 2006; Becker 122 

et al., 2010; Gleason & Marler, 2010; Bester-Meredith & Marler, 2012; Johnson et al., 2015; 123 

Rieger et al., 2019; Guoynes & Marler, 2021). 124 

California mice also have a diverse, well-characterized repertoire of ultrasonic 125 

vocalizations (USVs) including simple sweeps, complex sweeps, syllable vocalizations, barks, 126 

and pup whines (Briggs et al. 2011; Kalcounis-Rueppell et al., 2006; Pultorak et al., 2015; Rieger 127 

& Marler, 2018; Guoynes & Marler, 2021). A previous study in mother-offspring interactions 128 

demonstrated that the primary call types observed were maternal simple sweeps and pup whines; 129 

maternal simple sweeps correlated with both maternal care and pup whines (Guoynes & Marler, 130 

2021). Similar to the prevalence of call types in mother-offspring interactions, preliminary 131 

recordings between fathers and pups indicated that the primary call types from fathers and pups 132 

were also paternal simple sweeps and pup whines, respectively. Moreover, OXT stimulated 133 

production of maternal sweeps (Guoynes & Marler 2021). Based on this, we predicted a similar 134 

response to OXT in fathers involving simple sweeps and pup whines. It is important to note that 135 

paternal simple sweeps and pup whines have also been recorded in other social contexts 136 

(Guoynes & Marler, 2021; Rieger et al., 2019; Pultorak et al., 2015; Pultorak et al., 2017).  137 

Because we were not manipulating the OXT system in the pups, we did not expect to see an 138 

effect of OXT on pup whine USVs. 139 

In the current study, we aimed to address whether acute pulses of IN OXT alter an animal’s 140 

response to social challenges. We hypothesized that 1) during the pre-courtship aggression 141 

phase, IN OXT would reduce aggression, specifically the escalation to contact aggression (i.e., 142 
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wrestling) in male-female aggression and increase affiliative behavior, 2) during resident intruder 143 

paradigms IN OXT would increase aggression towards an intruding male and 3) during a 144 

parental care test, similar to the effects in mothers, IN OXT would have a positive effect on 145 

paternal care and paternal vocalizations.  146 

2. Methods and Materials 147 
 148 

2.1. Animals 149 

University of Wisconsin-Madison Institutional Animal Care and Use Committee 150 

approved this research. We used 24 male P. californicus aged 5–10 months. They were group-151 

housed (2–3 per cage; 48 × 27 × 16 cm) under a 14L: 10D light cycle with lights off at 4:00pm. 152 

Animals were maintained in accordance with the National Institute of Health Guide for the Care 153 

and Use of Laboratory Animals. Males were randomly assigned to either the saline control group 154 

(N=12) or the OXT group (N=12). The OXT group received three total doses of OXT and the 155 

saline group received three total doses of saline (one dose given 5-min before each behavioral 156 

test) over eight weeks. For pair bond initiation, 24 female mates unrelated by at least two 157 

generations were randomly assigned to the focal test males. For the resident intruder test, 24 158 

unrelated male intruders were randomly assigned to the focal test males. During the paternal care 159 

test, pup number across treatments was very similar such that the average number of pups for 160 

fathers in the saline control condition was 2.13 ± 0.23 (mean ± SE), and average number of pups 161 

for fathers in the OXT condition was 2.25 ± 0.16 (S. Table 3).  162 

 163 

2.2. Intranasal Oxytocin Preparation 164 

Male mice were infused intranasally with either sterile saline or IN OXT (0.8 165 

IU/kg) (Bachem, Torrance, California) (Guoynes & Marler, 2021). The IN OXT dose is 166 
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equivalent to doses used in other animal models (Bales et al. 2014; Guoynes et al. 2018; 167 

Murgatroyd et al. 2016) and similar to weight-adjusted doses used in clinical studies examining 168 

the effects of IN OXT on social deficits in autism (Bales et al., 2013). IN OXT was dissolved in 169 

saline and prepared in one batch that was aliquoted into small plastic tubes and frozen at 20oC. 170 

IN OXT was defrosted just prior to administration. A blunt cannula needle (33-gauge, 2.8 mm 171 

length; Plastics One, Roanoke, Virginia) was attached to cannula tubing, flushed, and filled with 172 

the compound, then attached to an airtight Hamilton syringe (Bachem, Torrance, California). The 173 

animal was scruffed and 25 uL of compound was expelled dropwise through the cannula needle 174 

and allowed to absorb into the nasal mucosa (~10-20 seconds).  One person conducted all IN 175 

OXT administrations throughout the entire procedure to maintain consistency in handling and IN 176 

OXT infusion. We chose to use the method of intranasal administration of IN OXT for two 177 

primary reasons. (1) IN OXT is used in clinical studies and is less invasive, does not require 178 

special transporters for the molecule, and is presumed to be less stressful compared to 179 

intracerebroventricular (Talegaonkar & Mishra 2004). (2) IN OXT shows similar behavioral 180 

effects as centrally administered OXT, increases CSF and plasma concentrations of OXT, and 181 

reaches the relevant brain areas in both humans and animal models (Neumann et al., 2013; 182 

Striepens et al., 2013; Lee et al. 2018; Oppong-Damoah et al., 2019; Lee et al., 2020). Several 183 

studies have also shown changes in plasma OXT concentrations that peak between 15 to 30-min 184 

post-administration (Freeman et al., 2016; Gossen et al., 2012). These results suggest IN OXT 185 

passes through the blood-brain barrier to exert central effects. In California mice, behavioral 186 

effects of IN OXT are consistent with the outcomes of central OXT manipulations suggesting 187 

that IN OXT is reaching the brain (Duque-Wilckens et al. 2018, 2020). Other studies indicate 188 

that some of the effects of IN OXT are acting through peripheral mechanisms (Churchland & 189 
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Winkielman, 2012; Quintana et al., 2015; Leng & Ludwig, 2016). Regardless of whether IN 190 

OXT is directly targeting the brain, is acting through peripheral mechanisms, or a combination of 191 

both, IN OXT has been shown to rapidly alter social behavior in adult California mice (Steinman 192 

et al., 2016). 193 

 194 

2.3. Behavioral Tests 195 

Throughout the experiment, all researchers administering treatments and handling 196 

animals were blind to treatment condition. For each test, the same researcher administered all 197 

intranasal treatments to reduce variance across handling and administration. 198 

Pre-courtship aggression test 199 

Male California mice aged 5-10 months were removed from their home cage 200 

(48 × 27 × 16 cm) and given 25 uL of 0.8 IU/kg OXT or saline. Immediately after treatment, 201 

each male was placed in a new home cage (48 × 27 × 16 cm) with fresh bedding. 5-min after the 202 

dose of OXT or saline, a novel, unrelated female was placed into the new home cage. Their 203 

interaction was videotaped for 10-min (Fig. 1A). After the recording, the male and female 204 

continued to be housed together for the remainder of the experiments.  205 

Resident intruder test 206 

We continued to use the same male and female pairs as in the pre-courtship aggression 207 

test above, but 14 days after being paired. Residency in the home cage was established by 208 

housing the mice in the same home cage for 6 consecutive days. This is more than sufficient time 209 

to establish residency in males (Bester-Meredith et al., 1999; Marler et al., 2003; Fuxjager et al., 210 

2010; Zhao et. al 2014). Immediately before testing, female pair mates were removed from the 211 

home cage and placed in a new home cage with fresh bedding adjacent to the old home cage with 212 
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soiled bedding (each 48 × 27 × 16 cm). Male pair mates were given 25 uL of 0.8 IU/kg OXT or 213 

saline (same treatment as they received in the pre-courtship aggression test) and placed back in 214 

their home cage with soiled bedding. 5-min after administration of OXT, an unrelated, novel 215 

male was placed on the far side of the resident’s cage. Their interaction was recorded for 5-min 216 

(Fig. 1A). After the test, the novel male was removed and placed back in his home cage and then 217 

the resident male given OXT or saline was removed and placed into the clean home cage with 218 

his female pair mate. 219 

Paternal care test with ultrasonic vocalizations (USVs) 220 

This test used the same male and female pairs as in the pre-courtship aggression test and 221 

resident intruder test (above) and was conducted three to six weeks after the resident-intruder 222 

test—on the first or second day after their first litter was born. Pairs were monitored and checked 223 

for pups daily. Testing occurred within 48 hrs of the pups being born during a stage of 224 

postpartum estrous. The pups were removed from the mother, and the mother was placed in a 225 

new home cage with some soiled bedding from the home cage. Next, the father and pups in their 226 

home cage were transferred from the mouse housing room to a behavior testing room capable of 227 

recording USVs. This procedure is similar to paradigms previously used in the lab (Guoynes & 228 

Marler, 2021; Pultorak et al., 2015; Rieger & Marler, 2018). Testing was done in a custom arena 229 

split into two equally sized chambers (45.0 cm × 30.0 cm × 30.0 cm) and contained two 230 

symmetrically located circular openings (3.8 cm in diameter, center of opening 7 cm from the 231 

side wall) covered by a wire mesh. Ultrasonic microphones (described below) were placed on 232 

each side of the divider. One side of the divider was designated to the focal male, the other to the 233 

pup(s). This setup allowed visual, auditory, and olfactory communication between pups and their 234 

father, but restricted physical contact between individuals until the mesh wire was removed. In 235 
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the testing room, fathers were given a third dose of either 25 uL of 0.8 IU/kg OXT or saline 236 

(same treatment as they received in the pre-courtship aggression test and aggression test) and 237 

placed back into their home cage for 5-min (Fig. 1A). At the end of the 5-min waiting period, the 238 

pups were moved into the side of the testing chamber near the door, and the fathers were moved 239 

into the chamber closest to the wall. They interacted through the mesh divider intact for the first 240 

3-min, then the divider was removed, and the fathers and pups could physically interact for an 241 

additional 5-min. Vocalizations and video were recorded for the entire 8-min period. These time 242 

periods were chosen because they minimized the time that the pups were away from their mother 243 

but allowed enough time to quantify behavioral differences in retrievals. 244 

2.4. Behavior Quantification 245 

All behavior videos were scored twice: once each by two independent observers blind to 246 

treatment and in a random order. Scores between observers had to be at least 85% similar and 247 

scores between the two observers were averaged for the final output used in statistical analysis. 248 

For an ethogram describing these different behaviors  249 

2.5. Ultrasonic Vocalization Analysis 250 

Techniques used for recording were similar to those previously used in our laboratory 251 

(Pultorak et al. 2017; Rieger & Marler 2018; Guoynes & Marler 2021). USVs were collected 252 

using two Emkay/Knowles FG series microphones capable of detecting broadband sound (10–253 

120 kHz). Microphones were placed at the far ends of each of the two chambers. Microphone 254 

channels were calibrated to equal gain (− 60 dB noise floor). We used RECORDER software 255 

(Avisoft Bioacoustics) to produce triggered WAV file recordings (each with a duration of 0.5 s) 256 

upon the onset of a sound event that surpassed a set threshold of 5% energy change (Kalcounis-257 

Rueppell et al., 2010). Recordings were collected at a 250 kHz sampling rate with a 16-bit 258 
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resolution. Spectrograms were produced with a 512 FFT (Fast Fourier Transform) using Avisoft-259 

SASLab Pro sound analysis software (Avisoft Bioacoustics). The only USVs found in these 260 

recordings were pup whines and paternal simple sweeps. Pup whines have a peak frequency 261 

around 20 kHz (Johnson et al., 2017; Kalcounis-Rueppell et al., 2018a) and the typical 262 

downward modulation at the end of the call often distinguishes these calls from adult syllable 263 

vocalizations (Guoynes & Marler, 2021; Nathaniel Rieger, Jose Hernandez, & Catherine Marler, 264 

unpublished) (Figure 1B). The lower frequencies in the pup whine can also be heard by human 265 

ears (below the ultrasonic range). Paternal simple sweeps were categorized by short downward-266 

sweeping vocalizations that sweep through multiple frequencies, typically between 80 kHz and 267 

40 kHz (Kalcounis-Rueppell et al., 2018b) (Figure 1B). It is extremely rare for pups to produce 268 

simple sweep USVs during PND 0-4 (Rieger, N. S., Hernandez, J. B., and Marler, C. M., 269 

unpublished). When young pups produce simple sweeps, they are produced much faster and 270 

present completely vertical on the spectrogram (Johnson et al., 2017). This makes these rare pup 271 

simple sweeps easy to distinguish from the slower adult simple sweep USVs (Fig. 1B). Because 272 

of their different spectrogram and acoustic properties, all USVs could be categorized and 273 

counted by combined visual and auditory inspections of the WAV files (sampling rate reduced to 274 

11,025 kHz, corresponding to 4% of real-time playback speed).  275 

2.6. Data Analysis 276 

For each behavioral test, nonparametric Mann-Whitney tests were conducted to compare 277 

the outcomes between saline control and OXT males. In the pre-courtship aggression test, one 278 

OXT mouse was dropped from the analysis because he escaped from the apparatus just prior to 279 

testing. Final group size analyzed for the pre-courtship aggression test was N=12 for control 280 

males and N=11 for OXT males. In the resident intruder test, final group size analyzed for the 281 
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pre-courtship aggression test was N=12 for controls and N=12 for OXT males.  In the paternal 282 

care test, three pairs were removed from behavioral analyses due to accidental deleting of the 283 

behavior videos (1 control male, 2 OXT males), and 5 were not tested because of either 284 

infanticide or not producing pups within eight weeks of pairing. Final group size analyzed for the 285 

behavioral and USV components of the paternal care test was N= 8 for controls and N=8 for 286 

OXT.  287 

Correlations between paternal care and USVs were conducted using the program R. To 288 

assess for mediation by IN OXT in the relationships between (a) paternal USVs and paternal 289 

behavior and (b) paternal behavior and pup USVs, a multivariate comparison was used. Factors 290 

included in the model were treatment condition and the interaction between treatment and 291 

paternal behavior (e.g. [Paternal behavior] ~ [Paternal USV] + [treatment]).  292 

Significance level was set at p < 0.05 for all analyses and all tests were two-tailed. All 293 

reported p-values were corrected using Benjamini-Hochberg false discovery rate corrections to 294 

control for multiple comparisons when effect of an X variable was tested for a relationship with 295 

multiple Y variables. False discovery rate was set at five percent. 296 

Figure 1. Experimental design. (A) Timeline of the three behavioral tests throughout 297 
the longitudinal study. (B) Representative pup whine and paternal simple sweep USVs. 298 
Pup whines have multiple harmonics, a peak frequency around 20 kHz, and downward 299 
modulation at the end of the call that distinguish these calls from adult syllable 300 
vocalizations. Paternal simple sweeps have short downward-sweeping vocalizations 301 
that sweep through multiple frequencies, typically between 80 kHz and 40 kHz. 302 

 303 

3.0 Results 304 

3.1. Pre-courtship aggression test 305 

To determine whether IN OXT influenced escalation to contact aggression during pre-306 

courtship aggression, we assessed number of wrestling bouts in male mice given IN OXT versus 307 
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saline. We found that OXT decreased the proportion of wrestling bouts out of all aggressive 308 

behaviors between the male and female during the first 10-min of pre-courtship aggression 309 

(U=33, z-score=2.00, p<0.05) (Fig. 2A). Lunging aggression levels made up a relatively small 310 

proportion of the aggressive behaviors in both control and OXT males; however, differences 311 

arose in proportion of wrestling aggression (highest in control males) and chasing aggression 312 

(highest in OXT males) (Fig. 2B). Levels of non-contact aggression were relatively similar 313 

across groups (lunging aggression: CTRL=1.29± 1.36 and OXT=0.45± 0.37; chasing aggression:  314 

CTRL=10.76± 3.73 and OXT=12.80± 3.82) (S. Table 1). The biggest difference between 315 

treatment groups was amount of time spent engaged in contact aggression (wrestling aggression: 316 

CTRL=11.58± 6.22 and OXT=0.77± 0.50) (S. Table 1). Thus, the difference in proportion of 317 

wrestling of aggression between CTRL and OXT is being driven by time spent wrestling vs. time 318 

spent chasing. Other behaviors we did not predict would be affected by IN OXT such as social 319 

investigation (body and anogenital sniffing) and activity (autogrooming, rearing) were measured 320 

but not statistically analyzed (S. Table 1). 321 

Figure 2. Pre-courtship aggression test. Males given OXT had a significantly smaller 322 
proportion of wrestling than control males during the first 10 min of courtship. (B)  Pie 323 
chart showing escalating aggressive behavior (from light: low escalation, to dark: high 324 
escalation). *p<0.05 for differences between control and OXT. 325 
 326 

3.2. Resident intruder aggression test 327 

To determine whether IN OXT influenced escalation to contact aggression during a 328 

resident intruder test, we assessed the number of wrestling bouts in males given IN OXT versus 329 

saline. Unlike the pre-courtship aggression test, we found that IN OXT did not significantly 330 

influence number of wrestling bouts between the males during a 5-min resident intruder test 331 

(U=63.50, z-score=0.46, p=0.637) (Fig. 3A). Similar to the pre-courtship aggression test, 332 
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lunging aggression levels made up a relatively small proportion of the aggressive behaviors in 333 

both control and OXT males (Fig. 3B). Both chasing and wrestling aggression made up 334 

approximately equal proportions of aggressive behavior in the resident intruder aggression test 335 

(Fig. 3B).  Levels of all types of aggression were relatively similar across groups (lunging 336 

aggression: CTRL=2.25± 1.00 and OXT=1.63± 0.71; chasing aggression:  CTRL=13.63± 5.52 337 

and OXT=11.28± 5.86; wrestling aggression:  CTRL=11.47± 4.52 and OXT=10.69± 4.63) (S. 338 

Table 2). Other behaviors we did not predict would be affected by IN OXT such as social 339 

investigation (body and anogenital sniffing) and activity (autogrooming, rearing) were measured 340 

but not statistically analyzed (S. Table 2).  341 

Figure 3. Resident intruder aggression test. (A) OXT and control males showed no 342 
difference in proportion of wrestling during a 5-min resident intruder encounter. (B)  Pie 343 
chart showing escalating aggressive behavior (from light to dark). *p<0.05 for 344 
differences between control and OXT. 345 
 346 

3.3. Paternal care test with ultrasonic vocalizations (USVs) 347 

To determine whether IN OXT would influence behavior during a paternal care challenge 348 

we assessed latency to approach pups, pup huddling, and paternal simple sweep USVs in fathers 349 

given IN OXT versus saline. Fathers given IN OXT were significantly faster at approaching their 350 

pups after a brief separation (U=10.50, z-score=2.21, p<0.05) (Fig. 4A). Despite initial 351 

differences in paternal care response, there were no differences between IN OXT and control 352 

males in total time huddling (U=22.50, z-score=-0.95, p=0.34) (Fig. 4B) or licking pups (U=20, 353 

z-score=-1.21, p=0.22) (Fig. 4C). There was one father in the control group that showed much 354 

more paternal care than other control fathers, however, this father was not a Grubb’s outlier for 355 

paternal care measures. Even if this father is removed from the analysis, the difference between 356 

control and OXT is not significant for huddling (U=14.50, z-score=1.50, p=0.13) (Fig. 4B) or 357 
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licking (U=12, z-score=1.79, p=0.07) (Fig. 4C). Neither IN OXT or control fathers engaged in 358 

any retrieval behavior throughout the test, so this type of paternal care was not analyzed (S. 359 

Table 3). There were no differences in number of pups across treatments groups (CTRL=2.13± 360 

1.84 1.84; OXT=2.25± 1.54). Other behaviors related to activity (autogrooming, freezing, 361 

rearing) were measured but were not included in the statistical analyses because we did not have 362 

a priori predictions for these behaviors during the paternal care test (S. Table 3). 363 

Next, we assessed whether IN OXT would influence paternal and/or pup USVs behavior 364 

during a paternal care challenge. We assessed number of paternal simple sweeps and number of 365 

pup whines produced and their correlations with the two types of paternal care observed, 366 

huddling and licking. Fathers given IN OXT did not produce more simple sweeps than controls 367 

(U=23.50, z-score=-0.84, p=0.40) (Fig. 4D). There were also no differences in number of pup 368 

whines produced in offspring of IN OXT versus control fathers (U=24.50, z-score=0.35, p=0.72) 369 

(Fig. 4E). 370 

Lastly, we examined the relationship between paternal care and paternal and pup USVs 371 

and any interactions with OXT treatment. Using a multivariate model controlling for the effects 372 

of treatment, we found no main effects of paternal simple sweeps on huddling (F2,16=0.21, 373 

p=0.65, η2=0.016) (Fig. 4H) or licking (F2,16=0.01, p=0.91, η2=0.00) (Fig. 4J). Similarly, we 374 

found no main effects of pup whines on huddling (F2,16=0.05, p=0.81, η2=0.00) (Fig. 4I) or 375 

licking (F2,16=0.07, p=0.80, η2=0.00) (Fig. 4K).  376 

 377 
Figure 4. Paternal care test. OXT males had shorter latencies to approach their pups 378 
than control males (A). OXT males did not show significant differences in huddling (B) 379 
or licking (C) behavior. (D) Males given OXT did not make more simple sweeps than 380 
control males. Paternal simple sweeps did not correlate with (E) huddling or (F) licking. 381 
(G) Pups with OXT versus control fathers showed no differences in number of pup 382 
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whines produced. There were no correlations between pup whines and (H) huddling or 383 
(I) or licking. *p<0.05 for differences between control and OXT. 384 
 385 

4. Discussion  386 

Our study assessed the response of male California mice to different challenges that 387 

would naturally occur during their lifespan. During contexts in which the social stimuli had the 388 

potential to become part of the in-group, a male-female bonded pair, OXT administered to the 389 

male promoted prosocial approach through reduced aggression. In contrast, during the resident-390 

intruder aggression test, the social stimuli did not have the potential to become part of the in-391 

group in a strongly territorial species, and OXT did not promote prosocial approach. Finally, in 392 

the paternal behavior test, OXT increased paternal motivation to approach pups in this biparental 393 

species. We speculate that OXT may function to promote social approach only in contexts that 394 

are or are likely to be affiliative-prone.  395 

 In the monogamous and territorial California mice, when virgins encounter an unfamiliar 396 

individual of the opposite sex, there is both an aggressive response to an unfamiliar conspecific, 397 

and possibly novelty, and a potential for pair bond formation. During the initial 10-min of this 398 

interaction, only aggressive behavior was exhibited, with no signs of affiliative behavior 399 

characteristic of later stages of courtship (Gleason & Marler, 2010) or as they are bonding 400 

(Pultorak et al., 2017); also similar to the behavioral sequence seen in research with other species 401 

between male and females prairie voles (Williams et al., 1992; Carter et al., 1995; Cho et al., 402 

1999; Willett et al., 2018; Harbert et al., 2020) and marmosets (Smith et al., 2009). Because we 403 

were testing the effect of IN OXT on this early phase of a female-male introduction, we 404 

predicted that IN OXT would reduce the escalation to contact aggression but also increase 405 

affiliative behavior as described in the introduction. We found similar levels of lunging and 406 
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chasing behavior in both OXT and control males, but control males engaged in more wrestling 407 

aggression, leading to a significantly higher proportion of control males that escalated their 408 

aggression to contact aggression. In this context, OXT may increase the rapid social assessment 409 

of and approach towards a potential mate, attenuating high levels of aggression. This change in 410 

behavior may decrease time to pair bonding and reduce the chance of injury because males are 411 

approaching females with less intense aggression. In the time frame of this test, we did not see a 412 

transition to affiliative behavior in either OXT or control males. Similar OXT-driven reductions 413 

of aggression in mating contexts have been observed in female Syrian hamsters (Harmon et al., 414 

2002). However, this is the first study reporting anti-aggressive effects of OXT during 415 

intersexual interactions in males towards females. This anti-aggressive effect of OXT may have 416 

been revealed in California mice specifically because they are a highly aggressive species that 417 

also has a prolonged courtship phase prior to mating.  418 

 In contrast to opposite-sex social interactions, encounters with unfamiliar individuals of 419 

the same sex interactions do not have the same potential for affiliative behavior in a highly 420 

monogamous and territorial species. While we predicted that IN OXT would increase escalation 421 

to contact aggression in the resident-intruder paradigm, we found that there was no difference in 422 

aggression between control and IN OXT treated males. This is consistent with another study that 423 

found the same dose of IN OXT used in this study (0.8 IU/kg) did not influence numbers of bites 424 

or attack latency in a resident intruder aggression test in California mice (Steinman et al., 2016). 425 

It is possible that in a highly territorial and monogamous species there may be selection for a 426 

maximum aggressive response to an intruding male. Interestingly, intracerebroventricular 427 

injections of vasopressin increased did not increase aggression in a resident-intruder paradigm 428 

for male California mice, but a V1a antagonist decreased aggression, further supporting the idea 429 
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of a maximum level of aggression (Bester-Meredith et al., 2005). Previous studies in less 430 

territorial species have found that OXT increases aggression. In house mice, OXTR null mice 431 

expressed increased intrasexual aggression (Devries et al., 1997). A study in female rats that 432 

manipulated OXT in lateral septum demonstrates that OXT increases and vasopressin decreases 433 

aggression towards same-sex intruders (Oliveira et al., 2021). Studies in humans have also 434 

shown an association between increased aggression, competition, and OXT (DeWall et al., 2014; 435 

Ne’eman et al., 2016; De Dreu, 2012; Fischer-Shofty et al., 2013). However, studies in 436 

monogamous marmosets (Cavanaugh et al., 2018), monogamous titi monkeys (Witczak et al., 437 

2018), female and male rats (De Jong et al., 2014; Calcagnoli et al., 2013; Calcagnoli et al., 438 

2015a; Calcagnoli et al., 2015b), house mice primed for aggressive behavior due to social 439 

isolation (Tan et al., 2019), and house mice bred for callous traits (Zoratto et al., 2018) found that 440 

OXT was associated with reduced intrasexual competition and aggression. Together with our 441 

data, these findings suggest that OXT’s effect on intrasexual aggression may depend heavily on 442 

the species, brain areas activated by OXT, and social context. 443 

 In our last test, we aimed to assess whether IN OXT had similar prosocial effects in 444 

fathers as it did in California mice mothers (Guoynes & Marler, 2021). We predicted a positive 445 

prosocial effect on both paternal behavior and vocalizations. We found that IN OXT decreased 446 

paternal latency to approach their pups but did not influence overall level of paternal care. 447 

Studies in Mandarin voles have also shown similar effects of OXT on latency to engage in 448 

paternal care (Yuan et al., 2019). Reduced latency to approach pups in IN OXT fathers suggests 449 

that IN OXT may increase paternal motivation for pup contact without altering the quality of 450 

paternal care. This is supported by studies that show activation of the OXT system can increase 451 

dopamine and reinforce rewarding behavior (Borland et al., 2018; Borland et al., 2019; Dolen et 452 
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al., 2013; Martins et al., 2021). However, it is also possible that the decreased latency to 453 

approach pups was driven by dampening anxiety during the challenge test. Several studies have 454 

also shown that OXT can reduce anxiety and facilitate prosocial approach (Steinman et al., 2019; 455 

Williams et al., 2020; Cohen & Shamay-Tsoory, 2018; Domes et al., 2019). Because we did not 456 

observe any overall differences in level of paternal care during the test, the effects of OXT on 457 

paternal care may be rapid and more likely to influence paternal responsiveness in California 458 

mice versus quality of paternal care seen in marmosets (Saito & Nakamura, 2011; Finkenwirth et 459 

al., 2016) and human fathers (Naber et al., 2010; Feldman et al., 2010; Gordon et al., 2017; Li et 460 

al., 2017; review by Guoynes & Marler, 2020). We again see species variation in the effect of 461 

OXT on paternal care, suggesting that differences across species and brain connectivity may 462 

have significant impacts on the how OXT will affect paternal care.  463 

 In contrast to the positive association between simple sweeps and maternal care, simple 464 

sweeps produced by fathers did not have any relationship with paternal care. This could be due 465 

to fathers producing a lower number of calls than mothers during the same testing time frame 466 

(mothers produced approximately 1.0 simple sweep/s compared to fathers that produced 467 

approximately 0.33 simple sweeps/s) (Guoynes & Marler, 2021). However, it is also possible 468 

that fathers are more stressed in the absence of their partner than mothers are and therefore 469 

vocalize less. This is supported by findings in several other species that show blunted 470 

vocalization in response to heighted stress (Lumley et al., 1999; Chabout et al., 2012; Simola & 471 

Granon, 2019; Riaz et al., 2015). Lastly, it is also possible that there are sex differences in the 472 

function of simple sweeps in California mice, and that mothers rely more heavily on this call 473 

than fathers. Previous research in the lab has shown that while both fathers and mothers show 474 

biparental care, there are differences in parental care expression between fathers and mothers. 475 
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For example, during a very similar paradigm, mothers showed retrieval behavior, unlike fathers 476 

in this test (Guoynes & Marler, 2021), and when both parents are together and given a resident 477 

intruder challenge in the presence of their pups, fathers were first to approach pups while 478 

mothers did significantly more retrieving behavior (Rieger et al., 2019). This suggests that 479 

fathers and mothers may divide parental care duties differently and may, therefore, vocalize and 480 

communicate differently. 481 

  Overall, the social challenges tested during these experiments show that IN OXT 482 

increases prosocial approach behavior in affiliative-prone contexts, but not during the context of 483 

direct threat or competition. These results align with the social salience hypothesis of OXT 484 

(Kemp & Guastella, 2010; Shamay-Tsoory & Abu-Akel, 2016; Peled-Avron & Shamay-Tsoory, 485 

2018). This hypothesis suggests OXT enhances the processing of social stimuli and that this can 486 

either lead to affiliative or aggressive behavior depending on the environment, social stimuli, and 487 

internal state of the animal. Across the lifespan in a monogamous, territorial species, it is critical 488 

to assess social contexts and balance the costs of aggression and challenges with the benefits of 489 

mating opportunities and offspring-rearing. To our knowledge, our study is the first to assess the 490 

effect of IN OXT during different life-stage challenges in the same animal. Furthermore, our 491 

study was the first to show an effect of OXT dampening aggression during pre-courtship female-492 

male interactions. 493 

 494 
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