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Abstract

Phylogenetic tree confidence is often estimated from a multiple sequence alignment (MSA) using

the Felsenstein bootstrap heuristic. However, this does not account for systematic errors in the

MSA, which may cause substantial bias to the inferred phylogeny. Here, I describe the MSA

ensemble bootstrap, a new procedure which generates a set of replicate MSAs by varying

parameters such as gap penalties and substitution scores. Such an ensemble is called diagnostic if

the typical distance between MSAs is comparable to the error rate. Confidence in a prediction

derived from an MSA, e.g. a monophyletic clade, is expressed as the fraction of the ensemble

where the prediction is reproduced. This approach is implemented in MUSCLE by modifying the

Probcons algorithm, which is based on a hidden Markov model (HMM). An ensemble is

generated by perturbing HMM parameters and permuting the guide tree. Ensembles generated

by this method are shown to be diagnostic on the Balibase benchmark. To enable scaling to large

datasets, divide-and-conquer heuristics are introduced. A new benchmark (Balifam) is described

with 36 sets of 10000+ proteins. On Balifam, ensembles generated by MUSCLE are shown to

align an average of 59% of columns correctly, 13% better than Clustal-omega (52% correct) and

26% better than MAFFT (47% correct). The ensemble bootstrap is applied to a previously

published tree of RNA viruses, showing that the high reported Felsenstein bootstrap confidence

of Ribovirus phylum branching order is an artifact of systematic MSA errors.
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Data availability

Muscle source code https://github.com/rcedgar/muscle.

Balifam benchmark https://github.com/rcedgar/balifam.

Qscore source code https://github.com/rcedgar/qscore.

Palmscan source code https://github.com/rcedgar/palmscan.
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Introduction

Multiple sequence alignments (MSAs) are ubiquitous in molecular biology with applications

ranging from protein structure and function prediction to phylogenetic tree estimation. Over the

past two decades, work on practical MSA algorithms has focused primarily on the challenges of

improving accuracy and scaling to the large datasets generated by next-generation sequencing

(NGS). For a recent review see (Chatzou, Magis, et al. 2016).

Scaling to large datasets

The most computationally expensive step in most pre-NGS MSA algorithms is calculation of a

distance matrix for the input sequences, which has O(N2) complexity for N sequences. Recent

methods designed to scale to large datasets reduce this cost by divide-and-conquer strategies

which split the input into smaller clusters using fast heuristics, then combine clusters by

progressive alignment. Such methods include Clustal-omega (Sievers and Higgins 2014),

MAFFT-PartTree (Katoh and Toh 2007), PASTA (Mirarab et al. 2015), and MAGUS (Smirnov

and Warnow 2020). Here, I describe a new algorithm, Super5, which applies a

divide-and-conquer approach to the Probcons algorithm (Do et al. 2005) and a new protein MSA

benchmark, Balifam, which assesses accuracy on large datasets by adding homologs to reference

alignments from Balibase (Thompson, Plewniak, and Poch 1999).

MSA ensemble bootstrap

Downstream analysis based on an MSA, in particular phylogenetic tree inference, typically

proceeds on an implicit assumption that the MSA is correct, or that MSA errors can be

neglected, or that MSA errors are adequately accounted for by the Felsenstein bootstrap

heuristic (Felsenstein 1985). However, systematic errors in the MSA can cause bias in inferred

trees, potentially giving high confidence to incorrect tree topologies due to correlated

misalignments (Simmons, Mueller, and Webb 2011). The Felsenstein bootstrap generates an

ensemble of derived MSAs by sampling of columns from the original MSA with replacement.

This procedure is robust if each column in the alignment is well modeled by a stochastic process

following the correct branching order, but may not be if misalignments are correlated. Here, I

describe an alternative method for generating an MSA ensemble. Alignment parameters such as
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substitution scores and gap penalties are varied with the goal of generating alternative MSAs

with comparable numbers of errors to the MSA produced by default parameters. Ideally, each

member of the ensemble will have distinctly different errors, especially systematic errors. The

robustness of a downstream analysis can then be assessed on the ensemble as with the

Felsenstein bootstrap: the confidence that a given predicted feature is correct is expressed as the

fraction of the ensemble where this feature is predicted. This procedure naturally generalizes to

other analyses. For example, if an MSA is used to predict protein secondary structure, then the

confidence that a given residue is in an alpha helix can be expressed as the fraction of MSAs in

the ensemble which yield a helix prediction for this residue. I will refer to this measure as the

MSA ensemble confidence, or simply ensemble confidence.

Pair-wise alignment parameters and systematic errors

The primary parameters of a pair-wise alignment algorithm are its substitution scores and gap

penalties. Adjusting gap penalties tends to change the length of the alignment, with higher

penalties giving shorter alignments. Any fixed choice of gap penalties may result in systematic

error because higher penalties give shorter alignments and thus tend to systematically

underestimate the number of insertions and deletions (indels) compared to low-scoring

substitutions, while conversely lower gap penalties favor indels over unlikely substitutions.

Adjusting substitution scores may have a similar effect. For example, the BLOSUM90 matrix

gives negative scores to more substitutions than BLOSUM30, and BLOSUM90 will therefore

tend to induce more gaps because the penalty of introducing a gap is relatively lower compared

to less likely substitutions (assuming gap penalties are held fixed). These observations suggest

generating an ensemble by varying the substitution matrix and gap penalties. Such an ensemble

can assess confidence that inferences are robust against variations in the length and gap

placement over a collection of plausible alternative alignments.

Guide tree bias

Most MSA algorithms, including consistency-based methods such as T-Coffee (Notredame,

Higgins, and Heringa 2000) and Probcons, build the final MSA using so-called progressive

alignment following a guide tree. Phylogenetic trees inferred from such an MSA may be biased

towards recapitulating its guide tree (Mukarram Hossain et al. 2015), which can be explained as

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.20.449169doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449169


follows. At each node in the tree, the MSAs of the child sub-trees (A and B) are aligned to each

other by profile alignment, i.e. by pair-wise alignment of their columns. Columns from A and B

are kept intact; the alignment is achieved by inserting new columns of gaps into A and B. With

progressive alignment, the number of errors is necessarily non-decreasing on a path from a leaf to

the root of the guide tree, because the alignment of a pair of sequences remains fixed in all

subsequent profile alignments after it is first constructed. Errors will tend to accumulate in each

profile alignment, especially close to the root where sequence divergence is highest and the

alignment is most ambiguous. Suppose the last three sub-trees to be aligned are A, B and C.

There are three possible guide tree topologies for the final two profile alignments: ((A,B), C),

((A,C), B) and ((B,C), A). In challenging cases, these topologies will induce distinctly different

multiple alignments where the pair that is joined first has fewer errors and fewer intra-pair gap

columns compared to the out-group which is joined last. A phylogenetic tree predicted from the

MSA may then tend to follow the same topology as the guide tree, especially close to the root, i.e.

to “re-discover” groups A, B and C and infer the same branching order as the guide tree, because

groups aligned earlier appear to be more similar (fewer gaps, more well-aligned columns). An

MSA ensemble for a progressive method should therefore include alignments obtained by varying

the guide tree, e.g. by trying all three possible topologies for the final two profile alignments.

Diagnostic ensembles

Ideally, all MSAs in an ensemble would have accuracy close to the best possible fixed choice of

parameters; i.e., parameters that maximize accuracy over a representative range of practical

alignment tasks. MSAs in an ideal ensemble would have similar error rates, but the errors in each

MSA would be distinctively different, especially systematic errors. Therefore, in an ideal

ensemble, the distance between a typical pair of MSAs (the dispersion of the ensemble) would be

comparable to the distance between a typical MSA and the correct MSA (Fig. 1). I use the term

diagnostic for an ensemble which satisfies these criteria to a practically useful approximation,

implying that it can be used to diagnose the reliability of downstream analysis such as

phylogenetic tree inference. It is not clear a priori whether diagnostic ensembles can be

constructed in practice by an unsupervised method (i.e., without knowing the correct alignment),

but a proposed unsupervised method can be validated by these criteria on a benchmark set of

trusted alignments.
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Error =
distance to
correct MSA

Dispersion =
distance between
predicted MSAs

correct MSA

predicted MSA

(a) Ensemble: predicted MSAs with varying parameters

(b) Low error rate, diagnostic ensmble has low dispersion

(c) High error rate, diagnostic ensmble has high dispersion

Figure 1. MSA ensemble.

An MSA ensemble is generated by varying parameters such as gap penalties and the substitution

matrix. It can be characterized by the typical error rate and the dispersion, i.e. the typical distance

between MSAs in the ensemble (top, panel a). In a diagnostic ensemble, the dispersion is comparable to

the error rates, so that when error rates are low the MSAs are similar to each other (panel b), and when

error rates are high the MSAs are more highly dispersed (panel c).
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Methods

Multi-threaded Probcons (MPC)

Probcons generalizes the pair-wise posterior decoding alignment algorithm (Holmes and Durbin

1998) to multiple alignment, applying a consistency transformation (Notredame, Higgins, and

Heringa 2000) to the posterior probability matrices. Currently, Probcons remains among the

top-scoring methods on protein alignment benchmarks with small numbers of sequences, but is

computationally expensive, scaling to at most a few tens of sequences on a commodity computer.

Here, a commodity computer is operationally defined as a c5a.4xlarge instance on the Amazon

Web Service (https://aws.amazon.com/), which has 16 vCPU cores and 32 Gb of RAM, typical

cost 0.26 US dollars per hour at the time of writing. I implemented multi-threaded Probcons

(MPC) by parallelizing calculation of the pair-wise posterior probability matrices and the

consistency transformation, noting that in both cases a given pair of sequences can be processed

independently of other pairs. Otherwise, MPC is essentially equivalent to Probcons, except that

the guide tree for the final progressive alignment stage is constructed using the biased UPGMA

method from MUSCLE v3 (Edgar 2004a).

Hidden Markov model

MPC uses a hidden Markov model (HMM) with topology shown in Fig. 2. This topology follows

the source code for the final release of Probcons (version 1.12, posted March 2005), which differs

from the model described in (Do et al. 2005). Columns of an alignment of sequences x and y are

emitted by the match state M and by insert states Ix, Iy, Jx and Jy. M emits a column

containing an aligned pair of letters. Ix and Jx emit one letter from x, similarly Ix and Jx emit

one letter from y. The I states induce short gaps while the J states induce longer gaps. This

happens because the I → I transition probability is lower than J → J , and the M → J

transition probability is higher than M → I. Re-stated in terms of log-odds scores, short gaps

have lower open penalty and higher extend penalty, while long gaps have higher open penalty

and lower extend penalty. Alignments begin in the start state S and may end in any state other

than S. Match state emission probabilities are obtained from the joint-probability form of the

BLOSUM62 matrix (Pietrokovski, J. G. Henikoff, and S. Henikoff 1996); insert states emit letters

according to the marginal probabilities of BLOSUM62. In Probcons, transition probabilities
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were trained by expectation-maximization on version 2 of the Balibase benchmark. For MPC, I

chose somewhat arbitrary round numbers (Table 1), guided by the defaults in Probcons. These

parameters were chosen once and not subsequently tuned or adjusted.

M

I

J

S

I

J

y

y

x

x

Figure 2. HMM topology.

HMM used by the MPC and Super5 algorithms. Alignments begin in the start state S. Columns of an

alignment of sequences x and y are emitted by the match state M and by insert states Ix, Iy, Jx and Jy.

From state To state Probability ProbCons v1.12 Description

S

M 0.60 0.6814756989 First column is match

I 0.02 0.008008334786 First column opens short gap

J 0.18 0.1591759622 First column opens long gap

M

M 0.96 0.96008111723 Consecutive match columns

I 0.012 0.0119511066 Open short gap

J 0.0080 0.00800833479 Open long gap

I
I 0.40 0.3965826333 Extend short gap

M 0.60 0.6034173667 Terminate short gap

J
J 0.90 0.8988758326 Continue long gap

M 0.10 0.10112416730 Terminate long gap

Table 1. Transition probabilities. Transition probabilities for the HMM were set by hand as

shown in this table. Values from Probcons v1.12 are also shown for comparison.

Parameter perturbations

To enable MSA ensembles, I implemented a method for introducing variations (perturbations) into

HMM parameters, as follows. The function perturb(P, v), 0 < v < 1 selects a random real number from

the range (1− v) . . . (1 + v) with uniform distribution; this random number multiplies a transition or

emission probability P . Note that perturb is uniformly distributed around 1, so for a fixed value of r

there is an equal chance of increasing or decreasing P . The argument v is called the variance. Two
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variances are used: one for transition probabilities vt = 0.4 and one for emission probabilities ve = 0.3.

All transition and emission parameters are adjusted in this way, then normalized to ensure that

probabilities of exclusive alternatives sum to one. The numerical values of the range parameters are

quite arbitrary; they were selected once because they seemed intuitively reasonable, and were not

subsequently tuned or adjusted. An ensemble is generated by selecting different values of the

pseudo-random number generator seed s.

Guide tree permutations

Both MPC and Super5 use progressive alignment. Variant guide trees are constructed as follows. The

goal is to identify three large subtrees A, B, C which are joined in all three possible orders ((A,B), C),

((A,C), B) and ((B,C), A). This is achieved by considering all possible bifurcations of the original tree

(which is temporarily considered to be unrooted), and identifying the edge which most closely

approximates dividing the tree into subtrees with one third and two thirds of the sequences,

respectively. The smaller subtree is A. The larger subtree is divided into two equal-sized (or

approximately equal-sized) subtrees by a similar search for the best edge, giving B and C. Including the

original guide tree, this gives a total of four variant guide trees for generating ensembles.

Pair-wise error (PWE) and pair-wise dispersion (PWD)

Given a pair of sequences, an alignment generated by an algorithm (a test alignment) and a trusted

(reference) alignment, I define the pair-wise error (PWE) and pair-wise dispersion (PWD) as follows

(Fig. 3). PWE is the fraction of columns in the reference alignment which are not reproduced in the

test alignment (Fig. 3(a)). The pair-wise dispersion (PWD) of two test alignments of the same

sequences is defined as the fraction of letters which are aligned differently, considering only the subset of

letters annotated as alignable in the reference (Fig. 3(b)). For MSAs, the PWE or PWD is calculated as

the mean over all pairs of sequences.
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M Qm T In t mc tF-

Lw S Vd a dk iFQ-

M Qm T In t mc tF

L Qw S Vd a dk iF

L S Vd a dk iFQ-

M Qm T In t mc tF-

Ref

Test1

Test2

PWE = 3/5 = 0.4

PWE = 2/5 = 0.6

5 aligned columns / 10 aligned letters

M Qm T In t mc tF-

L S Vd a dk iFQ

M Qm T In t mc tF-

Test1

Test2

4 letters aligned differently PWD = 4/10 = 0.4

(a)

(b)

(c)

w

-w

2 reference columns misaligned

3 reference columns misaligned

Lw S Vd a dk iFQ-

Figure 3. Pair-wise error and pair-wise dispersion.

Upper-case letters in the reference are considered to be reliably aligned; lower-case letters are not

counted. Pair-wise error (PWE) is the fraction of columns in the reference alignment which are not

reproduced in the test alignment. Pair-wise dispersion (PWD) of two test alignments of the same

sequences is defined as the fraction of letters which are aligned differently, considering only the subset of

letters annotated as alignable in the reference.

Balibase ensembles

For each of the 386 alignments in Balibase v3, I generated an ensemble of 16 MSAs using the MPC

algorithm with random number seed s = 0, 1 . . . 15. The special case s = 0 indicates that the

unperturbed HMM and original guide tree are used. Accuracy by the Q and TC metrics was calculated

by qscore (https://github/rcedgar/qscore); PWE and PWD were calculated by the qscore3

command in muscle v5.
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Super5 algorithm

The Super5 algorithm was designed to scale MPC by introducing divide-and-conquer heuristics. A sketch

of the algorithm workflow is given in Fig. 4.

Input sequences

Clusters EE<0.01 Redundant sequences

Centroids

Clusters EE<0.3

Each cluster aligned by MPC Consensus sequences

UPGMA guide tree

EE distances

Progressive alignment using MPC-profile

Template MSA

Final MSA

Figure 4. Workflow of the Super5 algorithm.

Super5 applies a divide-and-conquer strategy to MPC, enabling scaling to larger datasets.

MPC profile alignment (MPC-p)

The final stage of Probcons performs progressive alignment where a pair of profiles X and Y is aligned

by maximizing the total posterior probability under the constraint that columns in each profile are held
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fixed. This is achieved by calculating a matrix M as follows,

Mij =
∑
x∈X

∑
y∈Y

P (xi ↔ yj), (1)

where x is a sequence in MSA X, y is a sequence in MSA Y , and P (xi ↔ yj) is the posterior probability

that the letter of x in column i of X aligns to the letter of y in column j of Y . In MPC, this calculation is

parallelized by observing that the contributions to Mij from different pairs of sequences in Eq. 2 are

independent, and can therefore be calculated on separate threads. The profile alignment is determined

by using dynamic programming to maximize the sum of Mij over alignment columns. I call this method

for aligning a pair of profiles MPC-p.

MPC profile alignment with subsampling (MPC-ps)

MPC-p has complexity O(NXNY ) in the number of sequences NX and NY in X and Y respectively.

When NX and/or NY are large, this cost can be prohibitive. Super5 implements a faster approximation

to MPC-p by selecting random subsets X∗ and Y ∗ of the sequences in X and Y respectively. The

subsampled matrix M∗ is then computed as follows,

M∗ij =
∑
x∈X∗

∑
y∈Y ∗

P (xi ↔ yj). (2)

The maximum posterior alignment is then calculated using M∗ rather than M . I call this method

MPC-ps. By default, Super5 aligns profiles using MPC-p if NXNY ≤ 2000, otherwise a random subset of

2000 sequence pairs is selected and MPC-ps is used.

Expected-error distance (EE)

As shown in (Holmes and Durbin 1998), the expected number of errors per column in the posterior

decoding alignment A of sequences x and y can be calculated as

EE = 1− 1

|A|
∑
i,j∈A

P (xi ↔ yj). (3)

Sequences that can be more accurately aligned (according to the HMM) have smaller EE, which can be

considered as a distance measure defined on pairs of sequences.
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Redundancy reduction

The first step of Super5 aims to identify clusters of two or more highly similar sequences in the input

data. For each cluster, a representative sequence is identified. Representatives are propagated for

subsequent processing while the remaining sequences are set aside and added back into the

representative alignment in the final step. This strategy is effective in reducing computational cost if the

number of representatives is substantially smaller than the number of input sequences, which is often

the case in practice. Clusters are constructed using a greedy list removal strategy similar to the UCLUST

algorithm (Edgar 2010). Input sequences are sorted by decreasing length, with the goal of ensuring that

shorter fragments do not become representatives. A k-mer index on the representatives is used to

prioritize sequence comparisons by U-sorting (Edgar 2010) with a maximum of 16 rejections. If an input

sequence matches a representative with EE < 0.01, it is assigned to the corresponding cluster, otherwise

it becomes a new representative. This strategy reduces the O(N2) cost of all-vs-all comparison of N

input sequences to an effective cost of O(NR), where R is the number of representatives. This clustering

method is called UCLUST-EE.

Coarse clustering

The next step divides representatives into clusters small enough to be tractable for MPC, i.e. a few

hundred sequences. A first-draft set of clusters is obtained by UCLUST-EE with EE < 0.3. Clusters

which are bigger than the maximum size (default 500) are sub-divided by UCLUST-EE with EE < 0.1.

Any remaining clusters which are still too large are sub-divided at random.

Intra-cluster alignment and consensus

Each coarse cluster is aligned by MPC, and the consensus sequence for each MSA is calculated by taking

the highest-frequency symbol from each column, deleting any positions where this symbol is a gap.

Guide tree construction

An all-vs-all EE distance matrix is calculated from the consensus sequences, and a biased UPGMA tree

(Edgar 2004a) constructed from the distance matrix.

Representative MSA

MSAs for coarse clusters are combined by progressive alignment following the guide tree. Profile

alignment is performed by MPC-p up to a size threshold (2000 pairs by default), otherwise by MPC-ps
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where the threshold number of sequence pairs is selected at random. This yields an MSA of all

representative sequences.

Final MSA

The final MSA is constructed by re-introducing the non-representative sequences set aside in the first

step, using the previously constructed pair-wise alignments to their corresponding representatives.

These pair-wise alignments imply transitive alignments of non-representative sequences to the

representative MSA, which are used to construct the final MSA.

Benchmark datasets

I used the following benchmarks for comparative validation: Balibase v3 and Prefab v4 (Edgar

2004b) for comparison with previously published results, and Balifam, a new benchmark described

below for evaluation on larger datasets.

Balifam benchmark

Balifam was constructed from reference alignments in Balibase v3 by adding homologs identified by

PFAM (Bateman et al. 2004) (Fig. 5). Each reference sequence in Balibase was aligned to PFAM. For

each PFAM domain identified in a given Balibase reference alignment, the subset of columns in the

reference which aligned to that domain were extracted, giving a seed alignment. For each domain, the

seed alignment with largest number of sequences was chosen. (This step was necessary because

Balibase is highly redundant, often re-using the same sequences in different sets). To each seed

alignment, I added homologs from the corresponding PFAM “full” alignment. The PFAM alignments per se

were not used; this procedure served only to increase the size of the datasets. Random subsets of size

100, 1000 and 10000 respectively were selected and added to the seed alignments, yielding 59 sets in

Balifam-100, 56 sets in Balifam-1000 and 36 sets in Balifam-10000. Alignment accuracy is assessed

on the subset of sequences in the seed alignment.
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PF08240 PF00107

Balibase BBS20022

ADH1_CAEEL

ADH1_KLULA

ADH1_NEUCR

PFAM full
alignments

Reference alignment
from Balibase

Expanded input
set from PFAM

Balifam PF08240 Balifam PF00107

PFAM domain

Figure 5. Construction of Balifam.

Balifam is constructed by using PFAM to identify domains in Balibase reference alignments. Here, three

of the 58 sequences in reference set BBS20022 are shown as examples. These sequences contain two

domains, PF08240 Alcohol dehydrogenase GroES-like domain and PF00107 Zinc-binding dehydrogenase.

Columns from the reference alignment matching each domain are extracted and combined with

unaligned sequences from the corresponding PFAM full alignments.

Comparative validation

I chose to validate MPC and Super5 against Probcons v1.12, Clustal-omega and MAFFT. I aimed to

include MAGUS also, but an issue with installing the software was unresolved at the time this work was

completed (https://github.com/vlasmirnov/MAGUS/issues/12#). Versions and command-line

options for the other methods are given in Table 2.
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Algorithm Short name Version Command line options 

Clustal-omega clustalo clustalo-1.2.4-Ubuntu-x86_64 -threads=16 

MUSCLE v3 muscle3 muscle3.8.31_i86linux64 (none) 

MAFFT mafft v7.453 --anysymbol --thread -1 --auto 

Probcons probcons v1.12 (none) 

 

Table 2. Methods tested in comparative validation.

RdRP alignment and tree

To illustrate a practical application of the MSA ensemble bootstrap, I analyzed a phylogenetic tree of

RNA viruses described in (Wolf et al. 2018), which has been influential in a recent major revision of

RNA virus taxonomy to introduce the new realm Ribovaria with sub-divisions into phyla (Walker et al.

2019). This tree was estimated from an MSA of 4627 RNA-dependent RNA polymerase (RdRP)

sequences. I generated an MSA ensemble from these sequences using Super5, and generated

maximum-likelihood trees using IQ-TREE (Nguyen et al. 2015) from each MSA in the ensemble. MSA

accuracy was assessed by using the Palmscan algorithm (Babaian and Edgar 2021) to identify alignment

columns containing the six essential catalytic residues of the polymerase palm domain

(D...D...G...GDD, which I call the super-motif ). Each RdRP sequence was scanned individually to

identify the positions of the super-motif residues. For each residue, the consensus column in the MSA

was identified as the column where the largest number of sequences has this residue. A sequence having

this residue in a different column is said to disagree with the consensus, indicating a misalignment.

MSA quality was assessed by measuring the fraction of sequences and fraction of super-motif letters

which disagree, respectively.

Results

Alignment benchmarks

Results on the alignment accuracy benchmarks are shown in Tables 3 and 4. Tests were run on AWS

c5a.4xlarge instances. Methods were excluded on Balifam-1000 and Balifam-10000 if they required

> 32Gb RAM or took more than 24 hours to complete any single set in the benchmark. On

Balifam-10000, Super5 aligns 59% of columns correctly, which is a 13% improvement over

Clustal-omega (52% columns correct) and a 26% improvement over MAFFT (47% columns correct). This
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difference is significant by the Wilcoxon test: Super5 > Clustal-omega with p = 1.2× 10−4 and Super5

> MAFFT with p = 1.4× 10−7.

Benchmark Method Q TC Total time Max memory

Balibase

clustalo 0.8397 0.5620 04:37 939 Mb

muscle3 0.8433 0.5317 08:49 74 Mb

super5 0.8698 0.5926 41:26 1.6 Gb

mafft 0.8708 0.6076 07:18 3.3 Gb

probcons 0.8831 0.6189 3:53:34 529 Mb

mpc 0.8843 0.6178 14:51 1.9 Gb

Prefab

muscle3 0.6496 0.6496 12:27 30 Mb

clustalo 0.6699 0.6699 05:49 80 Mb

probcons 0.6843 0.6843 11:43:47 94 Mb

super5 0.6848 0.6848 1:03:51 1.0 Gb

mpc 0.6863 0.6863 34:00 718 Mb

mafft 0.6955 0.6955 03:06 300 Mb

Balifam100

muscle3 0.8457 0.5916 05:37 56 Mb

clustalo 0.8523 0.5726 00:53 37 Mb

probcons 0.8828 0.6580 2:22:55 907 Mb

mafft 0.8840 0.6528 00:54 197 Mb

mpc 0.8878 0.6461 09:16 914 Mb

super5 0.8899 0.6380 06:54 418 Mb

Balifam1000
mafft 0.8122 0.4732 00:25 401 Mb

clustalo 0.8454 0.5249 13:17 76 Mb

super5 0.8817 0.5907 59:08 783 Mb

Balifam10000
clustalo 0.7803 0.4457 1:37:30 697 Mb

mafft 0.8072 0.4416 22:01 1.3 Gb

super5 0.8902 0.6191 5:20:48 3.3 Gb

Table 3. Alignment benchmark results. Alignment accuracy, total elapsed time and maximum

memory use for the tested methods.
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Balibase mpc probcons mafft super5 muscle3 clustalo
==================== ---------- ---------- ---------- ---------- ---------- ----------

mpc 0.8843 | . +0.0355 +1.55e-06 +2.95e-15 +4.5e-38 +1.27e-30
probcons 0.8831 | -0.0355 . +0.000379 +2.19e-12 +8.82e-37 +4.78e-27

mafft 0.8708 | -1.55e-06 -0.000379 . (+0.203) +8.82e-26 +8.44e-26
super5 0.8698 | -2.95e-15 -2.19e-12 (-0.203) . +1.44e-22 +2.29e-19
muscle3 0.8433 | -4.5e-38 -8.82e-37 -8.82e-26 -1.44e-22 . (-0.694)

clustalo 0.8397 | -1.27e-30 -4.78e-27 -8.44e-26 -2.29e-19 (+0.694) .

Prefab mafft mpc super5 probcons clustalo muscle3
==================== ---------- ---------- ---------- ---------- ---------- ----------

mafft 0.6955 | . +1.05e-05 +2.55e-08 +7.18e-08 +2.41e-27 +2.99e-63
mpc 0.6863 | -1.05e-05 . (+0.248) +0.00716 +4.12e-10 +7.41e-46

super5 0.6848 | -2.55e-08 (-0.248) . (+0.932) +2.62e-08 +1.49e-37
probcons 0.6843 | -7.18e-08 -0.00716 (+0.932) . +2.14e-09 +5.61e-40
clustalo 0.6699 | -2.41e-27 -4.12e-10 -2.62e-08 -2.14e-09 . +8.52e-14
muscle3 0.6496 | -2.99e-63 -7.41e-46 -1.49e-37 -5.61e-40 -8.52e-14 .

Balifam100 super5 mpc mafft probcons clustalo muscle3
==================== ---------- ---------- ---------- ---------- ---------- ----------

super5 0.8899 | . (-0.232) (-0.950) (-0.424) +0.000346 +0.000161
mpc 0.8878 | (+0.232) . (+0.209) (+0.101) +1.46e-06 +1.44e-07

mafft 0.8840 | (+0.950) (-0.209) . (-0.981) +3.9e-06 +2.07e-06
probcons 0.8828 | (+0.424) (-0.101) (+0.981) . +4.43e-05 +1.48e-05
clustalo 0.8523 | -0.000346 -1.46e-06 -3.9e-06 -4.43e-05 . (+0.361)
muscle3 0.8457 | -0.000161 -1.44e-07 -2.07e-06 -1.48e-05 (-0.361) .

Balifam1000 super5 clustalo mafft
==================== ---------- ---------- ----------

super5 0.8817 | . +0.000122 +1.46e-07
clustalo 0.8454 | -0.000122 . +0.00287

mafft 0.8122 | -1.46e-07 -0.00287 .

Balifam10000 super5 mafft clustalo
==================== ---------- ---------- ----------

super5 0.8902 | . +6.89e-07 +6.28e-06
mafft 0.8072 | -6.89e-07 . (+0.187)

clustalo 0.7803 | -6.28e-06 (-0.187) .

Table 4. Pair-wise method comparisons of alignment accuracy. The relative accuracy of each

pair of methods was assessed on each benchmark using the Wilcoxon signed rank test. Numbers in the

tables are p-values according to the Wilcoxon test. A plus sign indicates that the method named at the

start of the row is better than the method named at the top of the column; a minus sign indicates that

the row method is worse. P -values > 0.05 are shown in parentheses to indicate that they are

conventionally considered to be not significant. Methods are shown in order of decreasing Q.

Balibase ensembles

Fig. 7 is a scatterplot of PWE vs. PWD on the Balibase ensembles. This shows that dispersions are

comparable to error rates, and the method therefore consistently generates diagnostic ensembles. Results

for two typical example datasets are shown in Fig. 8; these ensembles are seen to be highly diagnostic.
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s Q TC 

0 0.884 0.619 

1 0.875 0.610 

2 0.880 0.612 

3 0.881 0.615 

4 0.877 0.613 

5 0.885 0.618 

6 0.883 0.615 

7 0.883 0.622 

8 0.875 0.608 

9 0.876 0.611 

10 0.882 0.620 

11 0.882 0.615 

12 0.878 0.613 

13 0.880 0.620 

14 0.884 0.622 

15 0.880 0.617 

16 0.875 0.603 

 

Table 5. MPC alignment accuracy with different random number seeds.

Columns are s, random number seed (s = 0 means no perturbations); Q letter pair accuracy, TC

column accuracy. This shows that perturbing HMM parameters and the guide tree gives similar average

accuracy to default parameters, with variations of around 1%.
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Figure 7. Correlation between dispersion and error.

Scatterplot of PWE vs. PWD on Balibase ensembles generated by MPC.
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Figure 8. MPC ensembles for two Balibase datasets.

Typical example datasets BB20023 (left, high accuracy) and BBS110060 (right, low accuracy).

Histograms at the top show PWE for each MSA in the ensemble. The matrix below is the dispersion

(PWD) of each pair of MSAs. Note that on both these datasets, (1) the error rate of each MSA is

similar, (2) the pair-wise dispersions between all pairs are similar, and (3) dispersions are similar to the

error rates. These ensembles are therefore diagnostic (see main text for definition).

RdRP MSA and tree

Results for the Palmscan analysis of super-motif misalignments are shown in Table 5. By this standard,

all Super5 variants are more accurate than MAFFT, Clustal-omega and the original alignment in (Wolf

et al. 2018). Accuracy is very robust again HMM perturbations, but consistently degrades slightly when

the guide tree is permuted. Despite these small increases in error, all of the Super5 MSAs are more

accurate than the MSAs generated by MAFFT and Clustal-omega, and also more accurate than the

MSA reported in (Wolf et al. 2018). Maximum-likelihood trees inferred from the Super5 ensemble

MSAs are shown in Fig. 9, colored by phylum. Fig. 10 shows the phylum topology of the trees in Fig.

9, demonstrating that the branching order is highly variable across the ensemble. I interpret these

results as showing that the high bootstrap values reported in (Wolf et al. 2018) for branching order near
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the root of the tree are artifacts of the progressive alignment method used to build the MSA. A more

realistic assessment is given by considering Fig. 10, where the branching order of phyla is inconsistent

and all top-level branches therefore have ensemble confidence �0.5.

Method Guide tree Seed SD LD

Super5

(default)

0 8.99% 2.11%

1 8.93% 2.08%

2 8.95% 2.10%

ABC

0 13.69% 3.12%

1 13.58% 3.11%

2 13.32% 3.02%

ACB

0 13.47% 3.05%

1 13.58% 3.11%

2 13.54% 3.10%

BCA

0 13.47% 3.05%

1 13.58% 3.11%

2 13.32% 3.02%

mafft n/a n/a 15.6% 4.98%

clustalo n/a n/a 55.28% 13.46%

Wolf2018 n/a n/a 26.65% 5.14%

Table 5. Rates of RdRP super-motif misalignment according to Palmscan.

SD is sequence disagreement, i.e. fraction of sequences where at least one super-motif residue is not in

its consensus column; LD is letter disagreement, i.e. fraction of super-motif residues placed outside their

consensus column.
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Negarnaviricota
Duplornaviricota
Pisuviricota
Kitrinoviricota
Lenarviricota

Wolf2018

Default guide tree ABC ACB BCA

s=2

s=1

s=0

Figure 9. ML trees for Super5 RdRP ensemble.

Trees are colored by phylum. The tree from (Wolf et al. 2018) is shown for comparison. Note that the

branching order of phyla is inconsistent; see also Fig. 10.
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Default guide tree ABC ACB BCA

s=2

s=1

s=0

Figure 10. Phylum branching orders in RdRP ensemble trees.

Phylum branching order for each tree in Fig. 9. Note that the branching order is highly variable

between replicates, with no apparent consensus for any subgroup. Phyla are colored as in Fig. 9.

Discussion

Related prior work

It has long been recognized that errors and biases in multiple sequence alignments may have substantial

effects on inferred phylogenies. I will give a few representative examples. In (Morrison and Ellis 1997)

the authors tried several different multiple alignment methods with varying parameters such as gap

penalties and compared inferred protist trees, concluding “many of the literature disagreements

concerning the phylogeny of the Apicomplexa are probably based on differences in sequence alignment

strategies rather than differences in data or tree-building methods.” (Wheeler 1995) investigated the

effects of varying gap penalties and transition-transversion ratio on an arthropod tree, noting:

“Transversion-transition ratios and alignment gap costs are generally not directly measurable. These
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values are statements of process, and they can only be inferred appropriately from a predetermined

phylogenetic pattern. The disturbing circularity of the interaction between the specification of values a

priori and their inference a posteriori is a general and central problem in molecular phylogenetic

analysis.” More recently, (Wong, Suchard, and Huelsenbeck 2008) investigated trees for seven yeast

species, noting that “The statistical methods applied to the analysis of genomic data do not account for

uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the

subsequent inferences depend on the alignment being correct”, concluding that “different alignment

methods [result] in different conclusions”. A modified Felsenstein bootstrap to account for sequence

input order bias was proposed by (Chatzou, Floden, et al. 2018), who found that “Maximum Likelihood

(ML) trees estimated from these MSAs [were] unstable with over 38% of the branches being sensitive to

the sequence input order.”

Validation of the MSA ensemble bootstrap

The MSA ensemble bootstrap proposed here subsumes and automates the ad hoc approaches of prior

work into a single framework which enables a quantitative estimate of uncertainty due to alignment

errors. The central question confronting the design of an automated ensemble procedure is, how much

should algorithm parameters be varied? For pair-wise parameters such as gap penalties and substitution

scores, this is answered by requiring diagnosticity, i.e. that variations between alignments in the

ensemble should be comparable to the error rate of a typical alignment. This implies that alignments in

the ensemble have similar errors but distinctly different errors. If an inference is robust within such an

ensemble, we can have high confidence that it is correct, or at least not an artifact of MSA errors. The

guide tree for progressive alignment may introduce systematic errors which persist independently of

perturbations applied to pair-wise parameters; this is accounted for by introducing permutations into

the joining order. Empirically, a simple procedure with two fixed parameters is shown to generate

diagnostic ensembles on trusted alignments in Balibase. To the extent that Balibase alignments are

typical, this validates that diagnostic ensembles can be generated in practice. Notably, perturbing HMM

parameters causes no noticeable degradation in accuracy which might otherwise have been expected.

This reinforces the intuitive justification for the ensemble bootstrap because in general there is no

reason to prefer one alignment over another; in particular, the HMM with default parameters is not

noticeably better than an HMM with perturbed parameters. In my view, the price of a small

degradation of accuracy would be well worth it to get the greatly improved estimate of confidence, but

perhaps unexpectedly it seems that no such price must be paid.
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