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Abstract: Many ecosystems retain an ecological memory of past conditions that affects 

responses to future stimuli. However, it remains unknown what mechanisms and dynamics may 15 

govern such a memory in microbial communities. Here, in both a human dietary intervention 

cohort and an artificial gut, we show that the human gut microbiome encodes a memory of past 

carbohydrate exposures. Changes in the relative abundance of primary degraders were sufficient 

to enhance metabolism, and these changes were mediated by transcriptional changes within 

hours of initial exposure. We further found that ecological memory of one carbohydrate species 20 

impacted metabolism of others. These findings demonstrate that the human gut microbiome’s 
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metabolic potential reflects dietary exposures over preceding days and changes within hours of 

exposure to a novel nutrient.  

 

One Sentence Summary: Recent nutrient exposures are encoded into the structure and activity 

of human gut microbial communities, which enables more efficient future metabolic responses. 5 
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Main Text:  

 

Ecological memory describes a broad range of phenomena in which past disturbances 

experienced by an ecosystem influence community responses in the present (1). Such responses 

may reflect prior abiotic experiences (e.g. past rain or fires shaping reproduction strategies in 5 

plants) or biotic ones (e.g. species extinction altering competitive phenotypes among extant 

organisms) (2). Knowing that ecosystems retain memory has helped shape frameworks for 

reintroducing locally extinct species and promoting species diversity in settings like hardwood 

forests (2, 3). Ecological memory may also amplify the severity of ecosystem damage caused by 

climate change (4).  10 

 

Despite the power of ecological memory to understand and manage ecological dynamics, 

our knowledge of how this concept applies to microbial ecosystems remains sparse. Within 

individual microbial species, evidence exists for memory-like processes. Among bacterial 

monocultures, past environmental conditions like nutrient availability affects metabolic potential 15 

(5–7), or the ability to utilize a substrate of interest. Yet, at the microbial community level, our 

understanding of how past environmental conditions affect future ecosystem function is limited. It 

has been observed that lasting changes in the abundance of taxa result from disturbances like oil 

spills (8, 9), antibiotic administration (10), dietary oscillations (11), and infection (12). In the 

human gut microbiome, it has been demonstrated that infection13 and obesogenic diet exposure12 20 

induce a memory that affects the ecological outcome of subsequent perturbations. Still, it is not 

yet known what independent role microbes play in this memory (i.e. in the absence of host factors), 

nor the mechanism and properties of this memory. Furthermore, the fastest time scales on which 

microbial communities form ecological memory remain undefined. Due to the reproductive rates 
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of bacteria, ecological memory may form in microbial ecosystems orders of magnitude faster than 

in communities of plants and animals (13). 

 

Nutrient metabolism in the human gut provides an opportunity to test for ecological 

memory in a microbial community setting. Competition for nutrients in the gut is among the 5 

strongest microbial ecological forces (14) and host intake of nutrients varies on a daily basis (15). 

We thus reasoned that if the metabolic potential of the human gut microbiome reflects recent 

nutritional availability, newly introduced nutrients would be incompletely metabolized and require 

multiple exposures to be fully utilized by intestinal bacteria. To test this hypothesis, we enrolled 

40 participants in a randomized placebo-controlled dietary intervention study. Individuals in the 10 

Prebiotic group were fed 18 g/day of inulin (Fig. S1a-d), a nutrient that can be metabolized by the 

gut microbiome (16–18), but which is typically consumed by individuals at low amounts (1-4 

g/day) (19). We measured metabolic potential before and after inulin exposure using an ex vivo 

assay of the capacity for the fecal microbiome to degrade carbohydrates over the course of 24 

hours (20). We observed a significant increase in inulin degradation after participants in the 15 

prebiotic group consumed inulin for one day (p = 0.0282, mixed-effects GLM; Fig. 1a, Fig. S2a). 

This finding suggests that within 24 hours of exposure to a novel nutrient, the human gut 

microbiome enhances its metabolic potential for that nutrient.  

  

To systematically examine how inulin exposure altered the metabolic potential of the 20 

human gut microbiome, we considered three primary facets of ecological memory: lag, duration, 

and strength (1). Lag refers to the amount of time after a disturbance before the event is translated 

into a differential response to future stimuli. To measure memory lag with greater resolution and 

control than possible among humans in vivo, we employed an “artificial gut” model of the distal  
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 Figure 1. Ecological memory 

of prior nutrient exposure is 

encoded within 24 hours. 

a, Inulin/FOS concentrations 

after incubation of slurried 

stool samples with inulin for 

24 hours ex vivo. (p = 0.0282, 

mixed-effects GLM; n = 21 

participants in Placebo group, 

19 in Prebiotic group 

Baseline, 18 in Prebiotic 

group Treatment.) b, 

Concentration of inulin 

remaining in each artificial gut vessel 6 hours after dosing. (Mixed-effects linear model with 

Dose 1 as intercept; n = 7 artificial gut vessels.) c, Concentration of inulin remaining in each 

vessel after 6 hours by time since previous dose. (Mixed-effects linear model with 1st dose as 

intercept; n = 7, 2, 2, and 7 vessels, respectively. Setting the model intercept to 1 day shows a 

significant difference (p = 0.0475) between 1 and 3 days.) d, Average final inulin concentration 

(of triplicate cultures) after 6 hours incubation on inulin, preceded by pre-treatment with an 

inulin dose of varying concentration. Log2 regression line plotted. a-c, Mean and standard error 

plotted. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

colon seeded with a fecal microbiome sample from a healthy human donor (Fig. S1e-f) (21, 22). 

To measure lag, we dosed each artificial gut vessel with a single 2 g dose of inulin each day (Fig. 
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S1e). We measured differential responses to inulin supplementation by direct measurement of 

inulin concentration at -2 hr and +6 hr from each dose, as well as by continuous monitoring of pH, 

which decreases as inulin is metabolized (23) and impacts the overall ecology of the gut 

microbiome (24). These measurements revealed that by the second day of inulin treatment, gut 

microbial metabolism was altered; significantly less inulin remained in vessels at +6 hr on the 5 

second and third days of dosing (p < 0.001, mixed-effects linear model, Fig. 1b). Likewise, 

ecosystem pH reached a significantly lower minimum value on the second and subsequent days of 

dosing compared to the first (p < 0.001, mixed-effects linear model, Fig. S2b). Together, these 

findings suggest the gut microbiome can encode memory to a nutritional stimulus within a day of 

exposure.  10 

 

We next investigated the duration and strength of microbiome memory. We added a second 

dosing week to our artificial gut model in which we varied the length between doses (Fig. S1e). 

Extending this period to two days between doses reduced, but did not entirely negate, the enhanced 

pH response (Fig. S2c). Microbiome potential to degrade inulin persisted even longer and 15 

remained enhanced when doses were separated by three days (p < 0.001, mixed-effects linear 

model; Fig. 1c). Still, our model suggested that inulin degradation capability had significantly 

decreased at 3 days between doses (p = 0.0175). We then set up a high-throughput in vitro 

anaerobic batch culture system to measure how the strength of microbiome memory varies 

following a wide range of inulin exposures (25). We observed a negative dose-dependence 20 

between concentration of inulin pre-treatment and subsequent metabolic memory (Spearman 

correlation p < 0.001; Fig. 1d, Fig. S2d). Notably, maximal inulin breakdown efficiency and 

acidification were reached below our original dose, which suggested that the gut microbiome’s 

ability to be primed for inulin metabolism could be saturated.  
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Having observed changes in community-level metabolism, we employed a multi-omics 

approach to determine the extent to which repeated nutrient exposure impacted community 

composition and function. While none of the taxa analyzed by 16S rRNA sequencing were found 

to have changed in abundance following the first inulin exposure (Dose 1 Hr +6), forty-three (47%) 5 

had altered abundance following the second exposure (95% credible interval excluding zero, 

Bayesian multinomial logistic-normal model; Fig. 2a, Fig. S3). Similarly, RNA sequencing 

revealed that across the global transcriptome (i.e. the collective transcriptome of the whole 

community), only two gene groups, both glycoside hydrolases, were differentially expressed after 

the first inulin dose; following the second dose, 18 genes were differentially expressed (p < 0.05, 10 

ALDEx2 GLM with Benjamini-Hochberg correction; Fig. 2b). Analyzing transcriptional changes 

within taxa, we found that the initial set of differentially expressed transcripts was significantly 

enriched for carbohydrate metabolism and transport functions (COG category “G”; p = 0.00779, 

chi-squared test; Fig. S4g). Following Dose 2, there was a 2.6-fold change in the number of 

transcripts with expression changes (p < 0.05, ALDEx2 GLM with Benjamini-Hochberg 15 

correction), and an additional 19 taxa (a 50% increase) had at least one such transcript (Fig. S4d). 

 

Metabolomic analyses further confirmed widespread alterations to microbial biochemical 

activity and environment following repeated nutrient exposure. Total short-chain fatty acid 

(SCFA) content was not significantly altered after the initial inulin dose, but was significantly 20 

increased after the second (p < 0.001, mixed-effects linear model; Fig. 2c), a trend which was 

driven by increases in acetate and butyrate (Fig. S5a). Since SCFA production is a major driver of 

acidification in the gut (26), these observations may explain the observed lag in  
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Figure 2: Compositional and transcriptomic changes reflect nutritional memory. 

a, Select SVs found to be significantly increased with inulin treatment by16S rDNA sequencing. 

(Multinomial logistic-normal model; n = 6 vessels.) b, Heatmap of KEGG gene functions found 

to be differentially expressed by time point in the global transcriptome. Color scale denotes 

effect size from baseline value within each KEGG function. (ALDEx2 GLM significance from 

baseline shown; n = 5 vessels.) c, Total SCFA concentration in artificial gut vessels over time. 

Vertical lines represent times of inulin dosing. (Mixed-effect linear model with Dose 1 Hr -2 

(Day 1.42 on x-axis) as intercept; n = 7 vessels.) d, Change in concentration of select metabolites 

relative to baseline. Top row: fructose metabolism intermediates. Bottom row: amino acids. 

(Mixed-effects linear model significance from baseline shown; n = 6 vessels.) Mean and 

standard error plotted. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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pH decrease (Fig. S2b-d). Untargeted metabolomics revealed a 15.5-fold increase (2 to 31) in the 

number of metabolites whose levels changed after the second dose of inulin relative to the first (p 

< 0.05, mixed-effects linear model; Fig. 2d, Fig. S5b). Notably, the set of metabolites that 

increased after the second dose included fructose breakdown intermediates and five amino acids 

(p < 0.05, mixed-effect linear model; Fig. 2d, Fig. S5b), which suggests a shift from proteolytic 5 

metabolism towards a more saccharolytic state (27, 28). More broadly, our multi-omic analyses 

point to significantly greater changes in microbiome composition and activity as being associated 

with repeated nutrient exposure.  

 

We investigated the specific ecological shifts that could amplify microbiome responses to 10 

a second inulin dose. We did not observe evidence that extracellular secretions induced memory, 

as inulin metabolism among inulin-naïve cultures could not be enhanced by adding conditioned 

media from inulin-treated cultures (Fig. 3a). We also did not find that changes to overall cell 

density in culture was related to inulin metabolic rates (Fig. S6a-b). By contrast, we were able to 

positively associate community taxonomic changes with microbiome memory to inulin exposure. 15 

Our 16S rRNA analysis of artificial gut communities in the two hours prior to the second inulin 

exposure revealed that 18 out of 92 analyzed SVs were significantly altered in abundance (95% 

credible interval excluding zero, Bayesian multinomial logistic-normal model; Fig. S3) relative to 

two hours prior to the first dose. These SVs included Bacteroides caccae, a known primary 

degrader of inulin (Virtual Metabolic Human (VMH)) (29), as well as Bacteroides spp. and 20 

Bifidobacterium spp., two genera that contain inulin-degrading species, and taxa such as 

Lachnospiraceae NK4A136 group previously shown to be associated with intestinal SCFA levels 

(30) (Fig. 2a). Adding a B. caccae isolate derived from our artificial gut community to inulin-

naïve stool-derived mixed community cultures was sufficient to enhance inulin metabolism (Fig. 
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2b), supporting the hypothesis that changes to taxonomic composition alone may drive memory in 

microbial communities.  

 
Figure 3: Bacteroides PUL activation precedes broader transcriptional and compositional 

changes. 

a, Conditioned media from inulin-exposed cultures did not increase metabolism of inulin in 

treatment-naïve cultures. (Linear model; n = 3 cultures). b, Effects of 10 or 50% B. caccae 

addition to complex community cultures. (Linear model; n = 3 cultures). c, Effects of glucose 

or inulin pre-treatment on growth curves of B. caccae monocultures grown on inulin in 

conditioned media (from inulin-naïve cultures). (Linear model; interaction term of time and pre-

treatment p < 0.05 for all points below the line; n = 3 cultures). a-c, Mean and standard error 

shown. d, Activation and repression of select PULs in Bacteroides by time point. (ALDEx2 

GLM; n = 5 artificial gut vessels). NS p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Given the known role of polysaccharide utilization loci (31) (PULs) in carbohydrate 

sensing among individual gut microbes (32), we also expected to observe changes among select 

microbes after initial exposure to inulin in our artificial gut. Indeed, we found activation/repression 5 

of PULs in twelve Bacteroides taxa in the hours preceding the second inulin dose (Fig. S7). Since 

our analysis normalized expression levels within taxa, these differences reflected changes in the 

expression of genes within a given genome and not simply changes in bacterial taxonomic 

abundance. These PULs included genes encoding inulin-degradative glycoside hydrolase family 

32 (GH32) enzymes, which were also upregulated in the global transcriptome after a second inulin 10 

dose (Fig. 2b), as well as transcriptionally linked SusC/SusD homologs, which work together to 

bind and import oligosaccharides (32) (Fig. 3d, Fig. S7). Given, however, that these PULs were 

activated even earlier, at Dose 1 Hr +6 (Fig. 3d, Fig. S7), we suspected that transcriptional changes 

played a role in enabling growth on the new substrate. In support of this hypothesis, we found that 

even after controlling for starting cell density, inulin pre-treatment enhanced the ability of B. 15 

caccae to grow on inulin (Fig. 3c, Fig. S6c). We therefore suspect that patterns of transcriptional 

change observed when monocultures of bacteria leave lag phase during diauxic shifts (33) are 

likely to also occur among Bacteroides species in a mixed species setting.  

 

We also identified upregulated sets of syntenic genes outside of the Bacteroides, 20 

identifying several putative carbohydrate-associated loci (p < 0.05, ALDEx2 GLM with 

Benjamini-Hochberg correction; Fig. S4e) in taxa that degrade products of inulin hydrolysis 

(glucose, fructose, sucrose, or short-chain fructo-oligosaccharides (scFOS)) (29). Seven 

Bacteroides and two Clostridium species had loci with at least one gene still significantly 
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upregulated two hours prior to the second prebiotic dose (Figs. S4e, 6d). Three of these Bacteroides 

taxa maintained activation of genes encoding inulin degrading enzymes, and B. caccae also 

continued to upregulate a fructokinase gene (p < 0.05, ALDEx2 GLM with Benjamini-Hochberg 

correction; Fig. S6d). This genetic activity, coupled with enhanced degradation of inulin (Fig. 1b), 

may have enabled additional taxa to upregulate genes involved in pathways downstream of inulin 5 

processing (34) (Fig. 3b) and increase SCFA production (Fig. 2c, Fig. S5a). Our metagenomic and 

metabolomic data suggest that sustained expression of GH32 enzymes, along with increased 

relative abundance of the taxa that produce them (Fig. 2a), prime microbial communities for a 

more widespread metabolic response to inulin upon re-exposure.  

 10 

Given that expression of a particular PUL or growth of a certain taxon may be activated by 

multiple substrates (29, 35), we reasoned that ecological memory of inulin may trigger, or be 

triggered by, ecological memory of related carbohydrate compounds. We found evidence for this 

model in our human dietary intervention study. Participants’ total baseline dietary fiber intake, as 

estimated by Diet History Questionnaire III (DHQ3), was negatively correlated with fecal 15 

inulin/FOS content in donor stool one day after the start of treatment in the Prebiotic group (p = 

0.0232, Spearman correlation; Fig. 4a) but not the Placebo group (p = 0.402, Spearman correlation; 

Fig. S8d). Thus, participants who naturally consumed a high rate of dietary fiber tended to excrete 

less undigested inulin than individuals with low habitual fiber consumption. 

 20 
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Figure 4: Ecological memory is cross-reactive.  

a, Correlation between participant baseline dietary fiber (DHQ3) intake and fecal inulin/FOS 

content on Treatment Day +1 in the Prebiotic group. (n = 16 participants.) b, Correlation 

between average DP of pre-treatment inulin or inulin constituent and average final inulin 

concentration (or triplicate cultures). c, Final inulin concentration after pre-treatment with 

different prebiotics. (Linear model with control as intercept; n = 3 cultures.) Mean and standard 

error plotted. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Next, we tested for the cross-reactivity of ecological memory to inulin degradation using 

in vitro models. We treated human gut microbiome cultures with the constituent components of 

inulin (fructose, glucose, sucrose, and FOS/inulin of various chain lengths). This treatment indeed 

enhanced subsequent inulin metabolism to varying degrees (p < 0.05, linear model; Fig. S8b-c). 5 

The magnitude of this effect was correlated with component chain length (Spearman correlation, 

p = 0.0499; Fig. 4b). We next tested whether treatment with non-fructan polysaccharides could 

enhance inulin metabolic rates. We found exposure to galacto-oligosaccharides (GOS) and dextrin 

resulted in partial, significant increases in inulin degradation capacity (p < 0.01, linear model; Fig. 

4c) and significant decreases in culture pH relative to control following inulin treatment (p < 0.001, 10 

linear model; Fig. S8a). Community analysis of microbiome cultures revealed that non-inulin 
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treatment effects on the abundance of a specific bacterial taxon, Clostridium ramosum, were 

correlated with subsequent inulin response (p < 0.0130, Spearman correlation; Fig. S9a). C. 

ramosum is a known degrader of scFOS, as well as the component mono- and di-saccharides of 

GOS and dextrin, respectively (29). This correlation therefore supports a model where ecological 

memory within microbiome can exhibit cross-reactive properties in which altering the abundance 5 

of a nutrient-degrading microbial species ultimately impacts the rates at which related nutrients 

will subsequently be metabolized.  

 

In concert, our findings demonstrate the existence of ecological memory of past nutrient 

exposure in the human gut microbiome. Previously, functional changes in the gut microbiome have 10 

generally been thought to take days to weeks to change (16), with evidence of transcriptomic 

changes within an individual’s gut microbiome on the order of days (36). Our findings suggest 

ecological memory can be encoded even more rapidly, on sub-daily time scales for the human gut 

microbiome. This response time is consistent with how quickly individual microbes are known to 

undergo diauxic shifts, which also occur on the order of hours (37). Indeed, it is likely that selective 15 

pressures for rapid microbial metabolic change exist in environments like the mammalian gut, 

where community members replicate on hourly timescales and nutrient availability varies in both 

stochastic and rhythmic manners within a single day (38). Such adaptation may also benefit hosts 

by providing them with an adaptative microbial response to dietary shifts (36). Yet, given the 

benefits to rapid metabolic plasticity, it is perhaps surprising that we also observe evidence that 20 

after a nutrient is withdrawn, ecological memory persists for days and therefore likely across 

multiple generations of bacteria. Bacterial communities or their members may benefit from “bet 

hedging” strategies that balance the odds that a withdrawn nutrient is reintroduced (33). It is also 
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possible that once the transcriptional, compositional, and metabolomic landscape of a microbial 

community has been altered, restoring to an original starting state will encounter delay (39). 

 

Our finding of ecological memory in human gut microbial systems also suggests avenues 

for the rational design of treatments that alter how the gut microbiome harvests energy (40) or 5 

metabolizes drugs (41, 42). To date, individualized therapies have accounted for inter-individual 

variation in microbiome composition and function (43), which have been linked to fixed 

population differences in both overall diversity and specific taxonomic differences (44). Yet, if the 

metabolic potential of the gut microbiome is plastic, observed microbiome heterogeneity may also 

reflect recent intra-individual variation in behavior or lifestyle. Rationally designed therapies may 10 

therefore benefit from monitoring changes to, and even manipulating, microbiome metabolic 

potential over time (45). For example, our work suggests that microbiome-targeting nutritional 

interventions have the most potential to impact the microbial metabolism of individuals who are 

normally deficient in that nutrient’s intake (Fig. 4a). Moreover, our finding that microbiome 

memory does not persist indefinitely suggests that such interventions will require repeated 15 

administration to sustain their microbial ecological impact. 
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