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ABSTRACT 26 

Coronavirus disease-2019 (COVID-19) pandemic caused by the SARS-CoV-2 27 

coronavirus infection is a major global public health concern affecting millions of 28 

people worldwide. The scientific community has joint efforts to provide effective 29 

and rapid solutions to this disease. Knowing the molecular, transmission and 30 
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clinical features of this disease is of paramount importance to develop effective 31 

therapeutic and diagnostic tools. Here, we provide evidence that SARS-CoV-2 32 

hijacks the glycosylation biosynthetic, ER-stress and UPR machineries for viral 33 

replication using a time-resolved (0-48 hours post infection, hpi) total, membrane 34 

as well as glycoproteome mapping and orthogonal validation. We found that 35 

SARS-CoV-2 induces ER stress and UPR is observed in Vero and Calu-3 cell lines 36 

with activation of the PERK-eIF2α-ATF4-CHOP signaling pathway. ER-associated 37 

protein upregulation was detected in lung biopsies of COVID-19 patients and 38 

associated with survival. At later time points, cell death mechanisms are triggered. 39 

The data show that ER stress and UPR pathways are required for SARS-CoV-2 40 

infection, therefore representing a potential target to develop/implement anti-41 

CoVID-19 drugs. 42 

Keywords: Coronavirus, ER stress, Unfolded protein response, SARS-CoV-2, 43 

COVID-19, proteomics, Vero CCL-81, CALU-3 44 

INTRODUCTION 45 

Coronavirus Disease 19 (COVID-19) is caused by severe acute respiratory 46 

syndrome coronavirus 2 (SARS-CoV-2) 1, an enveloped RNA virus belonging to 47 

the family Coronaviridae in the subfamily Orthocoronavirinae 2. Common 48 

symptoms of human infection are dry cough, sore throat and fever; however, a   49 

percentage   of   the   patients   can   develop   organ   failure, septic   shock, 50 

pulmonary edemas, severe pneumonia and Acute Respiratory Distress 51 

Syndrome, complications that can be fatal 3. Considering the fast increase in the 52 

infection numbers and the outbreaks of SARS-CoV-2 in other countries, on 30th 53 

January of 2020 the World Health Organization (WHO) declared COVID-19 to be 54 

a Public Health Emergency of International Concern and warned that countries 55 

with vulnerable health care systems would be at high risk 3.  56 

Understanding host-pathogen interactions and the host response to viral 57 

infection are important to develop new strategies to treat, prevent and diagnose 58 

COVID-19 4. The host-pathogen dynamics is the key to infection control and 59 

minimize spread, incidence, prevalence and mortality 5–8. In the host cell, viral 60 
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proteins are processed through the endoplasmic reticulum (ER) and Golgi 61 

apparatus shaping the glycosylation level (especially N-linked glycans) of each 62 

site and regulating their folding9. This post-translational modification is often used 63 

by viruses to evade immune recognition, to increase receptor binding, infectivity, 64 

viral release, virulence and to increase viral replication 10–12. Therefore, 65 

glycosylation process is the subject of numerous studies and often used as 66 

therapeutic target to treat viral infections 13. One strategy is to target the host 67 

glycosylation machinery to pharmacologically disrupt viral glycoproteins folding, 68 

being the inhibitors of N-linked glycosylation one of the most tested agents for 69 

antiviral use 14. In particular, recent reports have shown that not only the targeting 70 

of host machinery but a direct modification in glycosylation levels of viral 71 

glycoproteins could impair viral infection/replication of SARS-Cov-2, thus 72 

indicating that targeting this process is a promising strategy to reduce SARS-73 

CoV-2 infection. 74 

Viral infections typically lead to an increase in protein synthesis that can 75 

overwhelm the ER folding capacity, which may result in unfolded protein 76 

accumulation resulting in ER stress 15. To reduce this type of stress, the cell 77 

activates signaling pathways known as unfolded protein response (UPR), that 78 

reduces the overall protein synthesis, increases ER’s folding capacity and targets 79 

misfolded proteins to proteasome degradation 16. UPR consists of three signaling 80 

pathways activated by the transmembrane protein sensors IRE1, PERK and ATF6.  81 

Briefly, IRE1 branch activation causes the mRNA splicing of a potent 82 

transcription factor, XBP1, which induces the expression of genes that will act in 83 

ER stress response. The first step in the PERK branch activation includes the 84 

increase on its phosphorylation state, which promotes the release of ER 85 

chaperone BiP as well as the phosphorylation of the transcriptional factor eIF2α, 86 

which will then upregulate ATF4 expression. This signaling pathway culminates 87 

with protein synthesis attenuation and selective induction of translation of ER 88 

chaperones and UPR-related transcriptional factors. Finally, the accumulation of 89 

unfolded proteins causes ATF6 release from the ER membrane allowing its traffic 90 

to the Golgi apparatus, where it will be activated by cleavage and consequently 91 
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lead to upregulation of genes encoding for ER chaperones and components 92 

necessary for degradation of unfolded proteins 17.   93 

Recognizing the biomolecular features that facilitate infection and which 94 

host-mediated mechanisms the pathogen uses to favor its replication and 95 

transmission are substantial to achieve disease control and prevention18. 96 

Quantifying and analyzing the temporal changes in host and viral proteins over 97 

the biological processes of infection could provide valuable information about the 98 

virus-host interplay 19. Here we applied a temporal and spatial proteome analysis 99 

combined with assessment of N-deglycoproteome to depict the host response to 100 

SARS-CoV-2 infection. We demonstrated that SARS-CoV-2 induces ER stress 101 

response, UPR and modulation of glycosylation machinery in the host cell. ER-102 

associated transcripts upregulation was also detected in lung biopsies of COVID-103 

19 patients and associated with higher survival. We also show that sustained 104 

infection prolonged the effects of ER-stress and UPR, leading to cell death related 105 

to necroptosis and caspase induced apoptosis pathways.  106 

MATERIALS AND METHODS 107 

Cell lines, SARS-CoV-2 and infection assays  108 

Vero cell line (ATCC CCL-81) were maintained in DMEM medium supplemented 109 

with 10% (v/v) FBS, 4.5 g/L glucose, 2 mM L-glutamine, 1 mM sodium pyruvate, 110 

100 U/mL penicillin-streptomycin and 1.5 g/L NaHCO3 at 37°C with 5% CO2. 111 

Calu-3 cells (ATCC HTB-55) were maintained in DMEM medium supplemented 112 

with 20% (v/v) FBS, 1% (v/v) nonessential amino acids, 4.5 g/L glucose, 2 mM L-113 

glutamine, 1 mM sodium pyruvate, 100 U/mL penicillin-streptomycin and 1.5 g/L 114 

NaHCO3 at 37 °C with 5% CO2. 115 

SARS-CoV-2 isolate (HIAE-02: SARS-CoV-2/SP02/human/2020/BRA (GenBank 116 

accession number MT126808) 20 was used to infect Vero CCL-81 and Calu-3 cells 117 

with multiplicity of infection (MOI) of 0.02. Following adsorption in DMEM with 118 

2.5% FBS for 1h, fresh medium was added, and cells were further incubated at 119 

37 °C and 5% CO2 for different time points (2, 6, 12, 24 and 48h). After the 120 

designated incubation time, cell lysates were retrieved in 1% sodium 121 
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deoxycholate (SDC) in phosphate buffered saline solution with Protease Inhibitor 122 

Cocktail (cOmplete, Roche) buffer, 0.1M Na2CO3 with Protease Inhibitor Cocktail 123 

(cOmplete, Roche) buffer or 8M Urea with Protease Inhibitor Cocktail (cOmplete, 124 

Roche) buffer, according to the follow-up application. Aliquots of cells and 125 

supernatants were collected at the different time points for virus RNA copy 126 

number quantification by reverse transcription-quantitative polymerase chain 127 

reaction (RT-qPCR), targeting the E gene 21. The assay was reproduced in two 128 

independent experiments and expressed by standard error of the mean (SEM). 129 

Graphics and SEM were done using GraphPad Prism software version 8.1 130 

(GraphPad Software, San Diego, USA). 131 

All assays were conducted in triplicates in a BSL-3 facility at the Institute of 132 

Biomedical Sciences, University of Sao Paulo, under the Laboratory biosafety 133 

guidance related to coronavirus disease (COVID-19): Interim guidance, 28 134 

January 2021 (https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1). 135 

Total proteome analysis (cell lysis and trypsin digestion) 136 

SARS-CoV-2-infected and mock-infected control cells were lysed in 1% sodium 137 

deoxycholate (SDC), 1× PBS and 1× protease inhibitor cocktail (Sigma-Aldrich) 138 

and probe tip sonicated for three cycles for 20 s and intervals of 30 s on ice 22. 139 

Proteins were reduced with 10 mM DTT for 30 min at 56 °C and alkylated with 40 140 

mM IAA for 40 min at room temperature, in the dark. Proteins were quantified 141 

using NanoDrop 2000 spectrophotometer (Thermo Scientific) before sequencing 142 

grade porcine trypsin (Promega) was added to a 1:50 ratio. The digestion, which 143 

proceeded for 16 h at 37 °C, was blocked by adding TFA 1% (v/v) final 144 

concentration before the SDC was removed from the solution by centrifugation 145 

at 10000 x g for 10 min 22. Tryptic peptides were desalted using reversed phase 146 

C18 microcolumns before LC-MS/MS analysis. 147 

Microsomal membrane proteome analysis (cell lysis and trypsin digestion) 148 

Microsomal membrane protein fraction was isolated as previously described 23,24. 149 

Briefly, cells were lysed in 100 mM Na2CO3, pH 11 containing protease inhibitors 150 

cocktail (Sigma-Aldrich) by sonication using three rounds of probe-tip sonication 151 
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at 40% output for 20 s with 30 s resting on ice. The lysates were incubated at 4°C 152 

with gentle rotation for 1.5 h followed by ultracentrifugation at 100000 x g for 1.5 153 

h. After ultracentrifugation, the pellets were recovered and washed with 100mM 154 

triethylammonium bicarbonate (TEAB) and re-dissolved in 8 M urea in 50mM 155 

TEAB. Protein concentration determination was performed using Qubit 156 

fluorescent assay (Invitrogen). The solubilized membrane pellets were reduced 157 

and alkylated as described above. Urea was diluted to 0.8 M with 50mM TEAB 158 

and proteins were digested with trypsin at an enzyme to substrate ratio of 1:50 159 

for 16 h at room temperature. Tryptic peptides were purified using Oligo R3 160 

reversed phase SPE micro-column 25. 161 

Glycopeptide enrichment and PNGase F deglycosylation 162 

Tryptic glycopeptides obtained from microsomal membrane proteins were 163 

enriched using HILIC SPE as previously described 26,27. Briefly, dried peptides 164 

were reconstituted in 100 μL loading and washing buffer containing ACN 80% 165 

(v/v) in TFA 1% (v/v). Peptides were loaded onto a primed custom-made HILIC 166 

SPE micro-column packed with PolyHYDROXYETHYL A™ resin (PolyLC Inc). The 167 

HILIC SPE columns were then washed in 100 μL loading and washing buffer. The 168 

enriched glycopeptides were eluted with TFA 1% (v/v) followed by 25 mM 169 

NH4HCO3 and finally ACN 50% (v/v). The three eluted fractions were then 170 

combined, dried by vacuum centrifugation and purified on a primed Oligo R3 171 

reversed phase SPE micro-column. The enriched glycopeptides were 172 

resuspended in 50 mM Ambic, pH 7.5 and de-N-glycosylated using 500 U N-173 

glycosidase F (PNGase F, New England Biolabs) for 12 h at 37°C. After incubation, 174 

the de-N-glycosylated were purified on a primed Oligo R3 reversed phase SPE 175 

micro-column, before LC-MS/MS analysis. 176 

LC-MS/MS proteomics analysis 177 

Tryptic peptides were analyzed by nanoflow LC-MS/MS analysis. The nLC-178 

MS/MS analysis was performed using an Easy nano LC1000 (Thermo) HPLC 179 

coupled with an LTQ Orbitrap Velos (Thermo). Peptides were loaded on a C18 180 

EASY-column (2cm x 5 µm x 100 µm; 120 Å pore, Thermo) using a 300 nL/min 181 
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flow rate of mobile phase A (0.1% formic acid) and separated in a C18 PicoFrit 182 

PepMap (10 cm x 10 µm x 75 µm; 135 Å pore, New Objective), over 105 minutes 183 

using a linear gradient 2-30 % followed by 20 min of 30-45% of mobile phase B 184 

(100% ACN; 0,1% formic acid). The eluted peptides were ionized using 185 

electrospray. The top 20 most intense precursor ions with charge-state ≥ 2 were 186 

fragmented using CID at 35 normalized collision energy and 10 ms activation 187 

time. The MS scan range was set between 350-1800 m/z, the MS scan resolution 188 

was 60.000, the MS1 ion count was 1x10e6 and the MS2 ion count was 5x10e4. 189 

The mass spectrometry proteomics data have been deposited to the 190 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) 191 

via the PRIDE partner repository 28.  192 

Database Search and Statistical Analysis 193 

Raw data were searched using Proteome Discoverer computational platform 194 

v2.3.0.523 (PD) using the Sequest search engine. The parameters used for 195 

database search were Chlorocebus (20,699 entries downloaded on 12/2020) 196 

proteome databases supplemented with the UniProt SARS-CoV-2 proteome and 197 

with the common contaminants. Trypsin as cleavage enzyme, two missed 198 

cleavages allowed, carbamidomethylation of cysteine as fixed modification, 199 

oxidation of methionine, and protein N-terminal acetylation as variable 200 

modifications. Asparagine and glutamine deamidation were included as variable 201 

modifications in the de-glycoproteome data. In the Proteome Discoverer platform, 202 

the percolator, peptide, and protein validator nodes were used to calculate PSMs, 203 

peptides, and proteins FDR, respectively. FDR less than 1% was accepted at 204 

protein level. Protein grouping was performed using the strict parsimony 205 

principle. Label-free quantification was performed using the extracted ion 206 

chromatogram area of the precursor ions. Protein quantification normalization 207 

and roll-up were performed using unique and razor peptides and excluding 208 

modified peptides. Differentially regulated proteins between the three conditions 209 

were selected using t test with a post-hoc background-based adjusted p-value 210 

<0.05 for multiple hypothesis correction 29. 211 

Bioinformatics analysis 212 
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Gene ontology (GO) was performed using the g: profiler tool and GOplot package 213 

30, available in Bioconductor. A q-value threshold of 0.05 was used, corrected by 214 

the Benjamini-Hochberg method 31. Enriched pathways were determined by 215 

Reactome and KEGG platform (q-value < 0.05)32; complementary analyses were 216 

performed using the ReactomeFIPlugIn app 31. Protein’s subcellular locations 217 

were determined by UniProt release 12.4 218 

(https://www.uniprot.org/news/2007/10/23/release). The “Peptides” package 33 219 

was used to determine the hydropathy score of glycopeptides and the 220 

“mixOmics” package 34 was used to integrate the data for total, membrane, and 221 

deglycoproteome. Complementary analyses were performed using Perseus, 222 

ggplot2 package, Graphpad prism v.8, and RStudio software. 223 

Structural analysis of identified peptides 224 

Structural data for full-length SPIKE protein was retrieved from the CHARMM-GUI 225 

coronavirus repository, based on the model of Wrapp et al 35, while ORF8 protein 226 

structure was downloaded from PDB 36. Peptides identified through MS data 227 

analysis were searched in the protein to better visualize their regions using 228 

PyMOL 2.4.1 229 

Western blotting 230 

Cells were lysed in SDC buffer containing protease (Roche, Basel, Switzerland) 231 

and phosphatase (Sigma-Aldrich) inhibitor cocktails. Proteins (10ug of each cell 232 

lysate) were separated by SDS-PAGE and electro transferred onto PVDF 233 

membranes. They were subsequently blocked in a solution containing 5% milk in 234 

PBS-Tween 0.1% (v/v) for 1h at room temperature (RT). Primary antibodies were 235 

diluted in the blocking solution (Table 1) and were incubated overnight at 4°C. 236 

Membranes were washed three times in PBS-Tween (0.1%) and then incubated 237 

at RT for 1h with HRP-labeled secondary antibodies, diluted in a solution of 0,1% 238 

BSA in PBS-Tween 0.1% (v/v). Monoclonal anti-alpha-tubulin clone B-5-1-2 239 

antibody (T5168, Sigma-Aldrich) was used as the loading control. For phospho-240 

protein quantification, the membranes were stripped, blocked and reprobed using 241 

a solution containing the corresponding anti-fosfospecific antibody. Proteins were 242 
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visualized by using enhanced chemiluminescence (Millipore Corporation, 243 

Billerica, MA, USA). Images were acquired using Uvitec Image System (Cleaver 244 

Scientific Limited, Cambridge, UK). Quantitative densitometry was carried out 245 

using the ImageJ software (National Institutes of Health). The volume density of 246 

the chemiluminescent bands was calculated as integrated optical density × mm2 247 

using ImageJ Fiji. Phosphorylated proteins densitometry values were divided by 248 

the total protein values and the α-tubulin antibody was used as the normalizer of 249 

the amount of proteins applied in the gel. At least three independent experiments 250 

were performed for each cell type and condition. 251 

 252 

Table 1: List of primary antibodies used for protein detection by Western blot. 253 

Protein Company Catalog Dilution 

Phospho(S345) MLKL Abcam ab196436 1:1000 

MLKL Abcam ab184718 1:1000 

GPX4 Abcam ab125066 1:1000 

NRF2 Abcam ab137550 1:1000 

Phospho-PERK (Thr980) Cell Signaling #3179S 1:500 

PERK Cell Signaling #3192 1:1000 

phospho-eIF2α (S51) Cell Signaling #3597S 1:1000 

eIF2α Cell Signaling #5324 1:1000 

ATF4 Cell Signaling #11815 1:1000 

phospho-IRE1α (S724) Abcam ab48187 1:1000 

IRE1α Cell Signaling #3294 1:1000 

XBP1s Cell Signaling #12782 1:1000 

ATF6 Abcam ab11909 1:1000 

CHOP Cell Signaling #2895 1:500 

BIP Cell Signaling #3183 1:1000 

Clivead-CASP3 (Asp175) Cell Signaling #9661L 1:500 

CASP3 Cell Signaling #9668S 1:500 

CASP9 Cell Signaling #9508S 1:1000 

Alpha-tubulin clone B-5-1-2 Sigma-Aldrich T5168 1:10.000 

Anti-rabbit Vector Laboratories PI1000 1:1000 

Anti-mouse Vector Laboratories PI2000 1:1000 

 254 

Statistical analysis 255 

All western blot results were analyzed for Gaussian distribution and passed the 256 

normality test (the number of independent experiments was chosen to present a 257 

normal distribution). The statistical differences between group means were tested 258 
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by One-way ANOVA followed by Tukey´s post-test for multiple comparisons.  A 259 

value of p<0.05 was considered as statistically significant in all analysis. Results 260 

are presented as mean ± S.E.M. Each dot represents an independent experiment. 261 

RNA-seq data reanalysis  262 

The fastq files were downloaded from the https://sra-explorer.info/ platform with 263 

the BioProject accession number PRJNA646224 37 and processed on the Galaxy 264 

server 38. The 'FastQC' module was used to report the quality reads, following by 265 

the trimmed using Trim Galore (v. 0.4.3.1) set to the single-end library. The Trim 266 

Galore output sequences were aligned to the human reference genome hg38 267 

using the HISAT2 (Galaxy Version 2.1.0+galaxy7) platform. A count table was 268 

generated using the htseq-count (Galaxy Version 0.9.1). The differently regulated 269 

genes were analyzed by the limma, Glimma, edgeR, and Homo.sapiens packages 270 

applying a cut-off of |log2FC|>1 and a p-adjusted value <0.05 (Benjamini-271 

Hochberg). 272 

RESULTS 273 

To identify molecular pathways affected by viral-host interplay on the course of 274 

SARS-CoV-2 infection, a spatio-temporal MS-based quantitative approach 275 

comprised of proteome, membranome and N-deglycoproteome of SARS-CoV-2 276 

infected Vero cells was conducted at 2, 6, 12 and 48 hpi. The membranome refers 277 

to the analysis of microsomal-enriched proteins while the N-deglycoproteome 278 

refers to the analysis of formerly N-linked glycopeptides associated proteins. 279 

Validation of differentially expressed proteins was performed in human epithelial 280 

lung cells (Calu-3) by western blotting and in silico transcriptome analysis of lung 281 

biopsies from COVID-19 patients and controls (Figure 1A). 282 

A total of 1842 proteins were identified and quantified in the proteome analysis 283 

(Supplementary Data S1). Eight viral proteins were identified, being three 284 

structural proteins (M, S and N) and 5 non-structural proteins (ORF3a, ORF6, 285 

ORF9b, ORF7a and ORF1ab) (Figure 1B, Supplementary Data S1). These 286 

proteins increased over time showing a steeper upsurge already after 6 hpi, in 287 

agreement with the qPCR data (Supplementary Figure 1). Respectively, PCA 288 
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analysis of quantitative host-proteome features showed a clear separation 289 

between early (2 and 6 hpi) and late (24 and 48 hpi) infection times (Figure 1C). 290 

Host proteome regulation varied across time, showing preponderant 291 

downregulation until 48 hpi, when most regulated proteins were up-regulated 292 

compared to control (Figures 1D and E, Supplementary Data S1). For the time-293 

points of 2, 6, 12, 24 and 48 hpi, we identified a total of 110, 79, 117, 111 and 184 294 

regulated proteins, respectively (Figure 1E, Supplementary Data S1). 295 

 296 
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Figure 1. Time-resolved proteome modulation upon SARS-CoV-2 infection. 297 
Experimental approach applied to access spatiotemporal host-response to SARS-CoV-2 298 
infection included evaluation of proteome, membranome and N-deglycoproteome of 299 
infected cells combined with WB protein quantification and transcriptome analysis of lung 300 
tissue of COVID-19 patients (A). Heatmap of SARS-CoV-2 viral proteins expression. Red 301 
and blue colors indicate high and low expression, respectively (B); Principal component 302 
analysis of quantitative proteome changes during infection(C); Quantitative proteome 303 
profile of Vero cells infected with SARS-CoV-2 after 2h, 6h, 12h, 24h, and 48h. The log2 304 
ratio of infected vs control is shown (D); Vero cell proteins differentially regulated 305 
between the control (CTRL) and infected (INF) paired groups (q-value <0.05) at different 306 
time points. Red, blue and grey bars indicate up, down and total regulated proteins, 307 
respectively (E); Differentially regulated host proteins in at least one time point. Proteins 308 
were grouped into clusters associated with early, middle, and late events, respectively. 309 
Representation of enriched biological processes (BP) per cluster (q-value <0.05) (F). 310 

 311 

To understand the global changes taking place in the host proteome during viral 312 

infection, we analyzed the differences in protein levels over time in a system-wide 313 

manner (Figure 1F). The host proteome already changed in the early time-points 314 

(2 and 6 hpi), but 48 hpi showed most extensive modulation. We identified three 315 

main clusters which contained proteins that participate in several key biological 316 

processes for early, middle and late times of host response expression profile 317 

(Figure 1F). Our analysis revealed processes related to post-translational protein 318 

modification, cell death, oxidation-reduction, endocytosis, response to stress, 319 

unfolded protein response (UPR), apoptosis and N-linked glycosylation (Figure 320 

1F, Supplementary Data S1). Interestingly, assessment of protein subcellular 321 

location showed that while ER-related proteins more representative in the early 322 

time-points than at 48 hpi, the opposite pattern was observed for Nucleus-related 323 

proteins (Figure 2A). We found the expression of proteins associated with 324 

glycosylation biosynthesis modulated through the course of infection (Figure 2B, 325 

Supplementary Data S1). Of note are the ones related to nucleotide sugar 326 

biosynthesis, proteoglycans and glycosyltransferases (Figure 2C) besides 327 

intracellular membrane-bound organelle, endomembrane system and 328 

extracellular region cellular location (Figure 2D). Moreover, biological processes 329 

and pathways related to stress response and Asparagine N-linked Glycosylation 330 

were already observed at 2 hpi. In addition, alteration of proteins involved in UPR 331 

regulation were observed at 6 hpi (Figure 2E and F). These data indicate a 332 

remodeling of the host glycoproteome upon SARS-CoV-2 infection. 333 
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Since we observed glycosylation processes and multiple biological processes 334 

involving ER and membrane proteins, we proceeded with the evaluation of 335 

membranome and N-deglycoproteome (Figure 3A, Supplementary Data Set 2). 336 

We found 323 proteins identified in all three approaches, showing an increase in 337 

proteome coverage by enriching for glycosylated and membrane proteins 338 

(Figure 3A). As observed in the proteome, the number of regulated proteins in 339 

the membranome also increased over time, and at 48 hpi the number of down-340 

regulated proteins was higher than the up-regulated ones (Figure 3B). Host 341 

proteins associated to glycoconjugate biosynthesis were mapped (Figure 3C). 342 

Moreover, we identified 1,037 N-deglycopeptides from the host (Figure 3D, 343 

Supplementary Data Set 2), being 545 regulated ones belonging to 338 N-344 

deglycoproteins (Supplementary Data Set 2). The number of regulated N-345 

deglycopeptides increased over time, but differently from the total proteome, 346 

most of which were downregulated at 48 hpi (Figure 3E, Supplementary Data 347 

Set 2). Expression pattern of the regulated N-deglycopeptides indicated a 348 

formation of three clusters (Figure 3F, Supplementary Data Set 3). In the first 349 

cluster an increase in the N-deglycopeptide abundance was observed over time 350 

while in cluster 3 there was a decrease. The hydropathy score associated to N-351 

deglycopeptides in cluster 3 was significantly higher than the ones in cluster 1 352 

(Figure 3G). 353 

Moreover, abundance of viral proteins identified together with host membrane 354 

increased sharply at 48 hpi, as expected due to viral replication (Figure 3H). We 355 

were also able to quantify 20 SARS-CoV-2 formerly N-linked glycopeptides, being 356 

2 mapped to nucleoprotein, 1 to ORF8 protein and 17 to spike glycoprotein 357 

(Figures 3I and J, Supplementary Data Set 2). We modelled the spike protein 358 

and highlighted the identified glycosylation sites and their abundance change 359 

during infection (Supplementary Figure 2). Mapping the identified N-360 

deglycopeptides associated to spike (P0DTC2) and ORF8 (P0DTC8) proteins 361 

surface illustrated possible sites crucial for their function (Supplementary Figure 362 

2). 363 
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Functional enrichment analysis of host regulated membrane proteins showed cell 364 

death, stress response and transport related processes already modulated at 2 365 

hpi. Processes and pathways related to post-translational modification and 366 

asparagine N-linked glycosylation were observed at 12 hpi, while apoptosis, 367 

protein folding and oxidative stress were among up-regulated processes at 24 hpi 368 

and 48 hpi (Supplementary Data Set 3). 369 

By performing an integrated analysis of all MS-based approaches, we identified 370 

the formation of four clusters (Figures 4A and B, Supplementary Data Set 3), 371 

demonstrating again that ER-related processes and cell death are being regulated 372 

during infection (Figure 4C and D, Supplementary Data Set 3). ER-related 373 

processes were mostly regulated at intermediate time-points, similar to proteome 374 

findings. To visualize the regulated processes, we built protein networks for all 375 

clusters with regulated proteins found in the merged dataset. We found that Cell 376 

death, UPR and Response to endoplasmic reticulum stress shared common 377 

nodes (Figure 4 E-I). 378 
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 379 

Figure 2. Time-resolved functional analysis of differentially expressed proteins upon 380 
SARS-CoV-2 infection. Abundance ratio (log2 infected vs control) of differentially 381 
regulated proteins associated to nucleus, mitochondria and ER according to infection 382 
time (A); Volcano plot of proteins associated to the glycosylation biosynthesis modulated 383 
in SARS-CoV-2-infected Vero cells vs control Up and downregulated proteins are 384 
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represented in red and blue, respectively (B); Category (C) and subcellular location (D) 385 
of differently regulated proteins associated to the glycosylation biosynthesis. Enriched 386 
pathways (E) and biological processes (BP) (F) at 2, 6, 12, 24 and 48 hpi (q-value <0.05). 387 

 388 

 389 

Figure 3. Membranome and former N-linked host cells upon SARS-CoV-2 infection. 390 
Venn diagram indicating common and exclusive proteins identified in the total proteome 391 
(gray), membranome (yellow), and N-deglycoproteome (orange) analysis. Scatter plots 392 
indicate the correlation between common proteins between the three datasets (A); Vero 393 
cells proteins differentially regulated membrane proteins at 2, 6, 12, 24 and 48 hpi (q-394 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449284


17 
 

value <0.05). Up, down and total regulated proteins are represented in red, blue and grey 395 
bars, respectively (B). Regulation of membrane proteins associated with the 396 
glycoconjugates biosynthesis according to time of infection (C); Glycopeptides and 397 
glycoproteins identified in the host cells and SARS-CoV-2 (D); Differently regulated N-398 
deglycopeptides between the infected (INF) and control (CTRL) groups (q-value <0.05 399 

(E); Formerly N-linked glycopeptides differentially regulated in at least one 400 

comparison between infected (INF) and control (CTRL) groups (F); 401 

Hydrophobicity score of clusters of differently regulated peptides in heatmap A 402 

(G); SARS-CoV-2 viral proteins identified together with host membrane (H); SARS-403 
CoV-2 formerly N-linked glycopeptides mapped to nucleoprotein, replicase polyprotein 404 
1a, ORF8 glycoprotein (I) and spike glycoprotein (J). Blue sequences present N-405 
glycosylation sequon. 406 

 407 

 408 
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 409 

Figure 4. Integrative analysis of MS-based proteome, membranome and N-410 

linked deglycoproteome. Differentially regulated host proteins in at least one 411 

group of a dataset (A); Correlation map indicating the positive (red) or negative 412 

(blue) correlation between regulated proteins/peptides of different experimental 413 

approaches (B); Proteins associated to Endoplasmic reticulum (ER) stress (C) and 414 
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cell death (D) identified in the clusters of heatmap and respective enriched 415 

protein-protein interaction networks (q-value <0.05) (E-I).  416 

 417 

To further explore and confirm the effects of the viral infection, we performed 418 

immunoblotting analysis focusing on specific molecular pathways regulated in a 419 

time-course manner. In particular, we evaluated the activation of ER-stress, 420 

unfolded protein response (UPR), cell death and oxidative stress markers. This 421 

validation was performed in Vero CCL-81 monkey and Calu-3 human cell lines. 422 

Increased phosphorylation levels of PERK and eIF2α as well as protein levels of 423 

ATF4 were observed after 2h of viral infection presenting a peak at 6h in both cell 424 

lines tested (Figures 5A-D, Supplementary Figures 3 and 4). These results 425 

further confirmed that this UPR pathway was activated by the virus (Figure 5A-426 

D, Supplementary Figures 3 and 4). In addition, higher levels of ATF6 and 427 

phosphorylated IRE1α were seen only after 48h of infection (Figure 5E, 428 

Supplementary Figures 3 and 4). Interestingly, phosphorylated IRE1α was not 429 

increased in Calu-3 cells (Supplementary Figure 3). The proteomic data have also 430 

detected higher levels of proteins related to apoptosis induction. Indeed, the 431 

western blot results demonstrated that CHOP, a protein linking UPR and 432 

apoptosis activation 38, presented increased levels upon 6h of viral infection only 433 

in the more susceptible Vero cells, indicating that apoptosis has been triggered 434 

in these cells by the virus (Figure 5G, Supplementary Figures 3 and 4). The 435 

detection of higher levels of cleaved caspase-3 clearly demonstrated apoptosis 436 

activation upon 48h of viral infection (Figure 5H).  437 

Additionally, we investigated PERK-NRF2 pathway axis to understand the 438 

increased antioxidant response observed in the infected cells. Higher levels of 439 

these proteins were observed after 6 and 12h of viral infection (Figures 5F, 5H, 440 

Supplementary Figures 3 and 4). Interestingly, the proteomic data evidenced 441 

significant decreasing levels of proteins displaying a function related to 442 

antioxidant response in Vero cells at the same time points shown in Figure 5F 443 

and Supplementary Figures 3 and 4. These data pointed at a generation of 444 

oxidative stress upon viral infection with the corresponding activation of early 445 

antioxidant response in the host cells. Viral infection has been shown to induce 446 
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oxidative stress by ROS production to facilitate their replication in the host cell 447 

39,40. In some cases, viruses have the ability to suppress the NRF2 pathway in their 448 

favor 41.  449 

Since it is known that NRF2 can prevent cellular and tissue damage by decreasing 450 

the production of DAMPs (Damage-Associated Molecular Patterns) that are 451 

released by necrotic cells 42. In addition, oxidative stress generated by redox 452 

imbalance contribute to viral pathogenesis, resulting in a massive induction of cell 453 

death 43. Therefore, we decided to investigate some mechanisms of regulated cell 454 

death (RCD). Beside the caspase activation already described in Vero cells, we 455 

studied whether necroptosis and ferroptosis were also activated. For this 456 

purpose, the protein levels and/or the phosphorylation state of some components 457 

of these pathways were analyzed by western blot. Higher levels of MLKL 458 

phosphorylation were observed after 48h of viral infection in these cells indicating 459 

that part of cell death could be caused by necroptosis activation 44 460 

(Supplementary Figure 3). This effect was not seen in Calu-3 cells. Higher levels 461 

of GPX4 at 6h of viral infection, in Vero and Calu-3 cells (Supplementary Figure 462 

3 and 4), could indicate that ferroptosis was not being activated, because GPX4 463 

may be part of the antioxidant mechanism activated by the PERK-NRF2 pathway, 464 

since GPX4 is also an established NRF2 transcriptional target 45. Overall, these 465 

results indicate that at least two cell death regulated pathways are being activated 466 

by viral infection in Vero cells. Unlike what was observed in Vero cells, Calu-3 467 

cells presented no changes in cleaved caspases or MLKL phosphorylation levels 468 

upon viral activation until the last time point studied. These results led us to 469 

conclude that different cells may display different kinetics in cell death signaling 470 

pathways activation. This could be related to the existence of stronger 471 

homeostatic responses being triggered to avoid cell death. Indeed, previous 472 

results from our group have shown that Calu-3 cells exposed to viral infection 473 

start show signs of cell death only after 72h (data not shown). 474 

 475 
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  476 

 477 

Figure 5. SARS-CoV-2 infection induces ER-stress, antioxidant response and 478 

apoptosis in Vero cells. Representative images of Western blots of ER-stress, 479 

antioxidant response and apoptosis proteins, as indicated (A). The corresponding 480 

quantification of protein ratios of pPERK/PERK (B), peIF2ɑ/eIF2ɑ (C), ATF4/ɑ-481 

tubulin (D), ATF6 p50/ ATF6 p90 (E), NRF2/ɑ-tubulin (F), CHOP/ɑ-tubulin (G) and 482 

Cleaved Caspase-3/Caspase-3 (H). Schematic representation of ER-stress, 483 

antioxidant response and apoptosis pathways activated after SARS-CoV-2 484 

infection (I). Each dot represents an independent experiment (n≥3 independent 485 

experiments; **** p<0.0001; *** p<0.001; ** p<0.005; *p<0.05 vs Control). 486 

 487 

 488 

To access further translational aspects of our in vitro findings, we re-analyzed 489 

transcriptome data obtained from lung autopsies of eight patients who died as a 490 

result of COVID-19 (Figure 6A) and the respective controls 37. Using a dedicated 491 

pipeline to reprocess the data with higher stringency in the statistical test, we 492 

identified 1,398 regulated transcripts, being 636 up-regulated and 762 down-493 

regulated (Figure 6B). PCA analysis showed diverse transcriptome profile 494 

between COVID-19 patients and controls. (Figure 6C). We observed that 495 

differentially regulated transcripts were involved in several processes linked to 496 
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ER stress, such as cell death, chaperone-mediated folding, ‘de novo’ protein 497 

folding, protein localization to ER, programmed cell death, and protein folding, 498 

confirming the proteomic data (Figures 6G and H). Mapping ER-stress 499 

transcripts and proteins in clinical specimens from patients infected with SARS-500 

CoV-2, it was possible to identify that RCN3, UCHL1, and ERO1A are upregulated 501 

in the lung at the level of transcript and proteome 37. Moreover, we found 51 up-502 

regulated and 45 down-regulated confirming the alteration of the host 503 

glycosylation biosynthetic machinery upon SARS-CoV-2 infection (Figure 6F). 504 

Interestingly, hierarchal clustering analysis showed that the infected samples 1, 505 

3, and 4 had a distinguished pattern of up-regulated ER-related transcripts 506 

(Figure 6D). It is worth to mention that the average survival time after being 507 

hospitalized was significantly higher in these three patients compared to the 508 

others (Figure 6E). These data confirm the regulation of ER-stress proteins during 509 

SARS-CoV-2 infection. 510 

Taken together, our data indicated that SARS-CoV-2 infection modulates 511 

glycoconjugates biosynthetic machinery changing the host global protein 512 

glycosylation profile. Additionally, ER stress induced in infected cells activates 513 

PERK-eIF2α-ATF4-CHOP UPR pathway finally leading to apoptosis induction. Cell 514 

death might also occur by necroptosis, linked to antioxidant response and 515 

activation of PERK-NRF2 pathway and MLKL phosphorylation. These in vitro 516 

phenomena were also observed in human lung biopsies of COVID-19 patients, 517 

indicating a role of ER protein modulation and survival time.  518 

 519 
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 520 

Figure 6. RNA-seq reanalysis data including samples of the lung of patients 521 

infected with SARS-CoV-2 and healthy samples from cancer donors (A), 522 

indicating the Differently regulated genes (B); Principal component analysis (C); 523 

Heatmap for differently regulated genes that are located in the endoplasmic 524 

reticulum (ER) (D); Hospital admission to death in days (E); Genes associated with 525 

the glycosylation biosynthesis alteration (F) and Gene ontology analysis (G-J). 526 
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The (*) corresponds to Golgi-to-ER retrograde transport and the Establishment of 527 

protein localization to endoplasmic reticulum pathways. 528 

 529 

DISCUSSION 530 

SARS-CoV-2 hijacks several host machineries to control immune reaction 46, viral 531 

protein translation 47, viral genome packing into nascent viral particles as well as 532 

support the release of mature virus particles. Host cellular machineries are 533 

redirected to synthesize and remodel viral proteins through post-translational 534 

modifications such as proteolytic cleavages, disulfide bridges formation, 535 

phosphorylation, ubiquitination and glycosylation 48–53. Thus, in this study we 536 

sought out which processes and pathways could be changed by the viral 537 

infection. Our proteomics approach yielded a total of 2778 proteins being 1842, 538 

1591 and 801 proteins identified in the total, membrane and glycosylated 539 

proteome, respectively. Even if the number of total identified proteins is 540 

comparable to other studies using similar technological platforms, we analyzed 541 

different time-points, cell lines and MOI. Grenga et al. (2020) identified 3220 host 542 

proteins and 6 SARS-CoV-2 proteins over 5 time-points evaluated (1, 2, 3, 4 and 543 

7 days) and two MOI (0.1 and 0.001) 54. Stukalov et al. (2021) identified a total of 544 

5862 proteins in ACE2-expressing A549 cells infected with SARS-CoV-2 and 545 

SARS-CoV over three time points (6, 12, 24 hpi); concerning only regulated 546 

proteins, they found a total of 272 48, while we identified 443 regulated proteins 547 

using only Vero cells infected with SARS-CoV-2 over five time points. It should be 548 

noted that we used an earlier (2 h) and later (48 h) time point that influence the 549 

number of regulated proteins. Bojkova et al. (2020) identified over 7,000 proteins 550 

using Caco-2 infected cells at four time-points (2, 6, 10 and 24 hours) being over 551 

3,400 regulated proteins 55. Using two different MOI (0.1 and 3), Zecha et al. 552 

(2020) identified 7,287 proteins and approximately 1,500 regulated host proteins 553 

in SARS-CoV-2 infected Vero cells in a single time-point (24 hpi) 56. 554 

Our results pointed at host proteome remodeling upon viral infection, consisting 555 

of protein global downregulation in all evaluated time points, except at 6 and 48 556 

hpi. Such pattern was also recently reported in the total proteome analysis 557 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449284


25 
 

performed by Stukalov and collaborators (2021). Although they did not analyze 558 

the proteomic profile at 48 hpi, they observed that proteins were mostly down-559 

regulated at 12 and 24 hpi but being up-regulated at 6 hpi 48. Since it has already 560 

been shown that viral replication starts at 6 hpi 57,58, the observed global protein 561 

up-regulation at 6 hpi could imply an initial response from the cell, followed by 562 

protein inhibition due to viral influence until 48 hpi, when cell death events are 563 

most prevalent. This remodeling was supported by PCA analysis, which showed 564 

a clear time-dependent separation.  565 

Among the identified proteins, we found 8 viral proteins in all time-points. 566 

Compared with the work in Caco-2 cells performed by Bojkova et al. (2020) 58, we 567 

did not identify the non-structural protein 8, and instead of identifying the 568 

replicase polyprotein a, we have identified the replicase polyprotein 1ab. Our data 569 

have confirmed part of the data published by Davidson et al. 59using Vero cells. 570 

Indeed, we have identified the non-structural protein 9b but not proteins 8 or 9a. 571 

The viral proteins N, S, M, ORF1ab, ORF3a and ORF7a identified in this study 572 

were also found in the recent work of Grenga and collaborators (2020) 54.  573 

Regarding regulated biological processes and pathways, our results showed 574 

similarities when compared to other proteomics studies. A cluster analysis of 575 

SARS-CoV-2 infected Vero cells over a period of seven days indicated that 576 

membrane trafficking, protein pre-processing in the ER, clathrin-mediated 577 

endocytosis, vesicle-mediated transport, and viral life cycle were enriched during 578 

the infection 54. Similarly, we have reported membrane trafficking, pathways 579 

related to the viral life cycle, and post-translational protein modification enriched 580 

in the regulated protein dataset. As already shown in infected Caco-2 cells, our 581 

pathway analysis has also identified that upon viral infection, TCA and respiratory 582 

electron transport as well as the carbohydrates metabolism processes were 583 

modulated. Other common regulated processes observed in the literature are 584 

autophagy, IFN-α/β induction or signaling, cell adhesion, and extracellular matrix 585 

organization 48,56, being the regulation of IFN-α/β pathway extensively explored as 586 

a drug target for viral replication inhibition 48. Besides similar processes and 587 

pathways during SARS-CoV-2 infection, we have focused on the effects of viral 588 
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replication in the ER-stress and UPR in a time-dependent manner. Through 589 

hierarchical clusters, we identified 3 main clusters that showed the effects of the 590 

viral infection in a time-dependent manner. Among the biological processes 591 

identified in the clusters, asparagine N-linked protein glycosylation, response to 592 

stress, unfolded protein response and post-translational protein modification 593 

were increased in the intermediate time-points, but decreased at 48 hpi.    594 

Glycosylation of viral proteins is an important process that regulates viral 595 

assembly and infectivity. The structural and functional role of glycosylation in the 596 

SARS-CoV-2 spike protein has been widely investigated 52,60–66. Of note is the fact 597 

that 35% of the SARS-CoV-2 spike glycoprotein contains carbohydrate moieties, 598 

which have profound influence on the viral infectivity, susceptibility to antibody 599 

neutralization 67,68. The N-linked glycosylation sites of spike proteins have been 600 

related to alterations in its open or closed state thus interfering in its capacity to 601 

bind to the receptor 69. We found 17 formerly N-glycopeptides and 14 602 

glycosylation sites in the Spike glycoprotein. There are 22 potential glycosylation 603 

sites in the SARS-CoV-2 Spike protein and the number of reported occupied sites 604 

range between 17 and 22 51,63,70,71. The processing of the spike glycoprotein 605 

through the ER and Golgi compartments represents an important step in 606 

controlling the virion assembly and inhibition of the N- and O-glycan maturation, 607 

which has been shown to interfere with virulence 70,72–75. Additionally, we mapped 608 

the N-linked glycosylation site of ORF8 protein of SARS-CoV-2. This accessory 609 

protein has less than 20% identity with the same protein in SARS-CoV, 610 

highlighting divergencies between the two viruses 76. Although this protein does 611 

not appear to be essential for viral replication, it has been shown to disrupt IFN-I 612 

and promote MHC-I downregulation 77,78. ORF8 contains a signal peptide for ER 613 

import and interacts with several proteins within the ER. In this study, we have 614 

mapped one N-linked glycosylation site at N78. This site is close to a SARS-CoV-615 

2-specific sequence YIDI76, that has been reported to be involved in noncovalent 616 

dimerization 36. Antibodies against ORF8 were identified as serological markers 617 

of acute, convalescent and long-term response to SARS-CoV-2 infection 79. 618 

Therefore, it would be relevant to evaluate the role of site-specific ORF8 619 

glycosylation in antibody neutralization. 620 
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The fact that asparagine N-linked glycosylation was enriched in the biological 621 

processes regulated during viral infection may indicate that the continuous 622 

translation of viral glycoproteins is overwhelming the glycosylation machinery 623 

capacity, increasing the number of proteins with aberrant glycosylation. This 624 

dysregulated process could contribute with ER stress, since it can increase 625 

protein misfolding 80,81. Proteins related to asparagine N-linked glycosylation were 626 

reported among the top 10% of proteins following viral gene expression 58. Thus, 627 

indicating a metabolic challenge for the host glycosylation machinery promoted 628 

by viral infection. A recent study has demonstrated that N-glycosylation inhibitors 629 

were able to reduce SARS-CoV-2 infection in Vero and HEK293ACE-2 cells. 630 

Moreover, genetic ablation of this pathway using siRNAs and virions presenting 631 

N-glycosylation defects also reduced the infection rate 82. Since we found that five 632 

enzymes involved in the glycosylation biosynthesis (CHST12, CHST14, 633 

B4GALT3, GCNT1 and MGAT2) were mainly up-regulated in the intermediate 634 

time-points, but down-regulated at 48 hpi, our data showed a complete 635 

remodeling of the N-linked protein glycosylation process. Recently, the 636 

downregulation of this process was also evaluated by the targeting of 88 host 637 

glycogenes by siRNAs in a study on the secretion of hepatitis B surface antigen 638 

(HBsAg) and HBV DNA, which showed that targeting CHST12 reduced the HBV 639 

DNA levels by >40% in EPG2.2.15.7 cells 83. This further support the hypothesis 640 

that viral the viral infection can modulate the host glycosylation machinery.  641 

Aberrant glycosylation can interfere in protein folding (PMID: 24609034). The 642 

effects of viral infection on protein folding were also observed in the functional 643 

enrichment analysis of the differentially abundant proteins identified in this study. 644 

Indeed, at 6 hpi we observed an increase in ER stress caused by misfolded or 645 

unfolded proteins with the up-regulation of UPR. Moreover, we confirmed the 646 

activation of ER stress and UPR in SARS-CoV-2-infected Vero and Calu-3 cells 647 

using western blotting. Several evidences suggest that ER stress and UPR 648 

activation are the main contributors to the pathogenesis of various diseases 649 

including viral infections 84. Recent SARS-CoV-2 host interactome has been 650 

performed in HEK293, human bronchial epithelial 16HBEo− and A549 cells 6,48,85 651 

. Proteins related to ER stress such as thrombospondin-1, GRP78, DJB11, 652 
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calnexin and F-box only protein 2 were found to interact with the spike protein 653 

86,87. In addition, other SARS-Cov-2 proteins were found to interact with proteins 654 

involved in ER protein quality control, ER morphology and protein glycosylation 6. 655 

Cell surface GRP78 was identified to interact with the Middle East respiratory 656 

syndrome coronavirus spike glycoprotein and increase the viral entry 88. 657 

Furthermore, SARS-CoV S glycoprotein was found to bind calnexin and increase 658 

its infectivity by modulating the maturation of the glycans 89. Another host-virus 659 

protein-protein interaction analysis also pointed ER stress as being one of the 660 

pathways most affected by the SARS-CoV-2 proteins 90. SARS-CoV 3a protein 661 

has been shown to be able to induce ER stress by activating PERK pathway 662 

resulting in increasing levels of eIF2α phosphorylation and ATF4 protein level, 663 

which finally promoted the synthesis of CHOP and increased Huh7 cells apoptosis 664 

91. It is important to note that the authors have not observed signs of ATF6 665 

signaling pathway activation 91. Another study with SARS-CoV showed that the 666 

suppression of the spike protein inhibits the up-regulation of BiP and GRP94 667 

chaperones, which are targets of PERK-eIF2α-ATF4 pathway activation. 668 

Moreover, the authors reported the inhibition of this pathway promoted a 669 

decrease of these chaperones, pointing once again that UPR modulation by the 670 

virus could facilitate the infection process 92. The stress-responsive heat shock 671 

protein gene HSP90AA1 was reported to be induced in H1299 and Calu-3 cells 672 

during infection, adding more evidence of ER stress occurring upon SARS-CoV-673 

2 replication 93. The activation of CHOP due to stress can induce the expression 674 

of BIM, linking ER stress induction with apoptosis activation 94. Moreover, ATF4 675 

and CHOP can also activate the translation of genes related to translational 676 

components which will enhance protein synthesis in the cell, causing an increase 677 

in ROS production and consequently cell death 95.  678 

It has been shown prolonged ER stress can activate apoptosis pathway, which 679 

will conclude with the assembly of the apoptosome and caspase-3 activation 96. 680 

We observed that apoptotic-related processes were mainly modulated in the late 681 

time events, indicating that cell death may be more frequent at 48 hpi. 682 

Additionally, the enriched pathway analysis showed that these processes started 683 
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at 12 hpi and remained active at 24 hpi. Although ER stress is predominantly the 684 

main cause of stress observed in this study, viruses have been shown to induce 685 

oxidative stress by ROS production in to facilitate their replication in the host cell 686 

39,40. Viral infections can induce the release of pro-oxidant cytokines such as the 687 

tumor necrosis factor (TNF), which lately will produce the hydroxyl radical OH 97. 688 

A study in Huh-7 cells indicated that Ca2+ released from the ER as a consequence 689 

of the human hepatitis C virus-induced ER stress will lead to an increase Ca2+ 690 

upload by the mitochondria, where it will promote the generation of higher ROS 691 

levels and the consequent increase in oxidative stress 98–101.  692 

Besides caspase activation, we found increased phosphorylation of MLKL at 48 693 

hpi indicating a possible contribution of necroptosis induction upon viral infection. 694 

This dual mode of cell death mechanism has been reported in infected HFH4-695 

hACE2 transgenic mouse model, Calu-3 cells and in postmortem lung sections of 696 

fatal COVID-19 patients 102. 697 

Since our study clearly points towards protein folding, ER stress and UPR 698 

modulation, which lead to cell death in later events, we sought if the effects of 699 

viral infection in these processes could also be seen not only in vitro models but 700 

also in human tissue biopsies. Our re-analysis of the post-mortem lung 701 

transcriptome of COVID-19 patients showed that processes related to protein 702 

folding and cell death are being regulated, which are in accordance with 703 

proteomics analysis showing increased levels of ER stress and UPR modulation. 704 

The processes identified in our re-analysis were not explored by the authors of 705 

the original work as their results focused on neutrophil activation and neutrophil-706 

mediated immunity, extracellular traps and extracellular structure organization 37. 707 

Interestingly, ER stress related pathways and processes are not well explored in 708 

transcriptomic studies, being processes and pathways related to immune 709 

response and inflammation more commonly found in the literature, such as 710 

modulation of cytokine-mediated signaling pathway, interferon signaling, TNF-711 

signaling, and interleukin-mediated signaling 54,103–105. Nevertheless, the 712 

enrichment analysis of these works often contains processes and pathways 713 

related to proteins transport and localization to ER. For example, the 714 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.21.449284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449284


30 
 

transcriptional response of hACE2 receptor-transduced A549 and Calu-3 cell 715 

lines to SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections focused on 716 

the autophagy pathway and mitochondrial processes, but UPR modulation was 717 

observed in the A549 lung epithelial cell line 106. Interestingly, the authors 718 

compared the A549 cells infected with SARS-CoV-2 and IAV and found UPR 719 

modulated only in SARS-CoV-2 infection 106. A recent study has shown that 720 

recombinant expression of SARS-CoV-2 spike protein in HEK293T cells induces 721 

ER-stress and UPR activation 107. The increased expression of GRP78 and 722 

phosphorylated eIF2α was reported together with increased LC3 II at 24 hours 723 

post spike transfection 107. Treatment of transfected cells with UPR modulators 724 

reduced the ER stress levels 107. However, this study did not provide a kinetic and 725 

comprehensive measurement of ER-stress and UPR activation, as reported here. 726 

 Our results corroborate recent findings on the identification of serum ER stress 727 

markers (GRP78 and phosphorylated PERK) in the lungs of COVID-19 patients 728 

with severe complications 108. Proteomic analysis of multiple organs from patients 729 

infected with SARS-CoV-2 showed that, in addition to the lungs, there is an 730 

increase in ER stress in the renal cortex and liver cells. RCN3 is a protein located 731 

in the ER lumen that acts in the remodeling during lung injury 109. RCN3-deficient 732 

mice has been shown to result in increased ER stress and apoptosis 109,110. The 733 

ERO1A protein is a CHOP-activated oxidase that promotes ER hyperoxidization 734 

and affects the activation of CHOP-dependent apoptosis by stimulating the IP3R1 735 

1,4,5-triphosphate inositol receptor 111,112. The UCHL1 protein performs important 736 

functions related to protein degradation 113. In addition, it was observed that 737 

UCHL1 levels influence cell homeostasis under normal conditions of growth and 738 

oxidative stress 114. The transcriptome of silenced cells for UCHL1 showed 739 

downregulation of genes associated with proteasome activity and upregulation of 740 

genes linked to ER-stress 115. Moreover, we observed that samples from COVID-741 

19 patients with higher expression of ER transcripts were associated to longer 742 

survival period.  743 

Taken together, this study provides a time-resolved and large-scale 744 

characterization of the total, membrane and glycoproteome of SARS-CoV-2-745 
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infected Vero CCL-81 cells. The modulation of specific processes including viral 746 

and host protein glycosylation, ER-stress and UPR were validated using western 747 

blotting and reanalysis of transcriptomic data of human clinical specimens. These 748 

data highlight the importance of ER-stress and UPR modulation as a host 749 

regulatory mechanism during viral infection and could point to novel therapeutic 750 

targets.  751 
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