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Online Reference Trajectory Adaptation:
A Personalized Control Strategy for Lower Limb Exoskeletons

Mohammad Shushtari1∗, Rezvan Nasiri1,2, and Arash Arami1,3

Abstract— This paper presents a novel method for reference
trajectory adaptation in lower limb rehabilitation exoskeletons
during walking. Our adaptation rule is extracted from a cost
function that penalizes both interaction force and trajectory
modification. By adding trajectory modification term into the
cost function, we restrict the boundaries of the reference
trajectory adaptation according to the patient’s motor capacity.
The performance of the proposed adaptation method is studied
analytically in terms of convergence and optimality. We also
developed a realistic dynamic walking simulator and utilized it
in performance analysis of the presented method. The proposed
trajectory adaptation technique guarantees convergence to a
stable, reliable, and rhythmic reference trajectory with no prior
knowledge about the human intended motion. Our simulations
demonstrate the convergence of exoskeleton trajectories to those
of simulated healthy subjects while the exoskeleton trajectories
adapt less to the trajectories of patients with reduced motor ca-
pacity (less reliable trajectories). Furthermore, the gait stability
and spatiotemporal parameters such as step time symmetry and
minimum toe off clearance enhanced by the adaptation in all
subjects. The presented mathematical analysis and simulation
results show the applicability and effectiveness of the proposed
method and its potential to be applied for trajectory adaptation
in lower limb rehabilitation exoskeletons.

Index Terms— Exoskeleton Control, Rehabilitation, Trajec-
tory Adaptation, Human-Exoskeleton Interaction

I. INTRODUCTION

Each year, millions of people lose their mobility due
to aging, stroke, and spinal cord injury (SCI). While the
majority of stroke survivors can walk, many never reach a
level of walking that allows them to perform daily activities
[1]. Walking recovery is also known to be the top priority
for individuals with incomplete spinal cord injury (iSCI) [2],
i.e. the majority of SCI survivors. Therefore, several assistive
devices and techniques have been developed to facilitate their
recovery. Particularly, assistive exoskeletons made the reha-
bilitation process more accessible and efficient. For instance,
affected individuals can benefit from high-intensity training
sessions, which can boost their neuromotor control recovery
[3]. These devices also have a huge potential in enabling
individuals with motor deficits to perform more physical
activities, preventing muscle atrophy [4], and improve their
quality of life.
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Several studies have recently presented novel control
strategies for exoskeletons, ranging from force control [5]
and trajectory control [6] to pure reflex-based controllers
[7], [8]. It has been shown that a pure position control
strategy is not effective for iSCI rehabilitation since it does
not encourage users to contribute actively to the gait [9].
Accordingly, an effective control strategy should partially
assist patients while allowing voluntary active movements
and maximally engage their neuromuscular system [10], [11].
This strategy, also called Assist-as-Needed (AAN), promotes
neuroplasticity and can lead to neural control recovery. The
main challenge facing an AAN controller is to adapt itself to
the user’s neuromuscular system capacity and intention. Such
adaptation will optimize the user-exoskeleton interaction
while involving the user in the movement control as much
as possible.

Exoskeleton trajectory modification is one of the ap-
proaches which can tackle this challenge. For instance, in
[12], the proposed controller adjusts the swing trajectory
based on the joint positions at the late stance phase. An-
other framework is to adapt the trajectory to minimize the
human-robot interaction force, exoskeleton’s applied torque,
or tracking error [13-19]. For instance, [13] presented three
different control strategies for minimizing the interaction
force between the exoskeleton and the patient. Also in, [16],
an AAN control strategy was proposed to adapt the swing
phase trajectory by online minimization of applied force and
position error.

Optimization-based trajectory adaptation methods rely on
the user’s ability to generate cyclic and stable motions.
Accordingly, any trajectory that minimizes the cost function
is assumed to be an acceptable solution. However, iSCI
individuals’ movements are not always cyclic or reliable;
consequently, the AAN controller can lead to nonphysiolog-
ical movement patterns [13] .

In this paper, we propose a novel trajectory adaptation
method, which instead of solely relying on the interaction
force minimization, incorporates a secondary objective in
the cost function that guarantees convergence to a cyclic
and stable walking pattern. The proposed adaptation method
accounts for subject-specific motor capacities. Our extensive
simulations on the developed model of human walking show
the effectiveness of this approach for a variety of lower limb
impairment levels.

II. PROBLEM STATEMENT

Human and exoskeleton dynamics in interaction with each
other (Fig.1) is described as
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Fig. 1. Human and exoskeleton dynamical interaction block diagram. The
exoskeleton reference trajectory (~r(t)) is adapted based on the feedback
from interaction force (~F ). Human and exoskeleton controllers try to
minimize their tracking error.

~ΓH(~q, ~̇q, ~̈q) = ~uH + ~F , ~ΓH(.) : Rn×n×n → Rn (1)
~ΓE(~q, ~̇q, ~̈q) = ~uE − ~F , ~ΓE(.) : Rn×n×n → Rn (2)

where ~ΓH(.) and ~ΓE(.) represent the passive dynamics of
human and exoskeleton. We assume human and exoskeleton
joints are coupled and ~q ∈ Rn is the joint position of the
exoskeleton and human (n: number of joints). ~F ∈ Rn

is the interaction force between human and exoskeleton.
It is assumed that ~F is directly measured using a force
sensor. ~p(t) ∈ Rn is the desired trajectory of human (human
intention). ~r(t) ∈ Rn is the exoskeleton reference trajectory
that will be adapted in interaction with human dynamics.
~eH ∈ Rn is the human error defined as ~eH = ~p(t)−~q. ~uH ∈
Rn is the human applied torque which tries to minimize the
human tracking error. Similar to human, exoskeleton tracking
error and applied torque is considered as ~eE = ~r(t)− ~q and
~uE , respectively. Exoskeleton reference trajectory (~r(t)) is
modeled as the sum of initial trajectory (~r0(t) ∈ Rn) and a
trajectory modification term (~∆ ∈ Rn). ~r0(t) is a fixed T -
periodic function with the period of gait cycle and ~∆(t) is left
to be adapted. We parameterize ~∆(t) as a linear combination
of basis functions as

~r(t) = ~∆(t) + ~r0(t) , ∆j(t) = ~ΘT
j
~Φ(t) (3)

where j refers to jth joint. ~Φ(t) ∈ Rm is a vector of m indi-
vidual basis functions and ~Θj ∈ Rm is the coefficient vector
that is adapted to minimize the desired cost function. It is
assumed that the basis functions are T -periodic, sufficiently
smooth, and persistently exciting.

The proposed adaptation rule updates the bases coeffi-
cients at each joint (~Θj) to minimize our suggested cost
function (J) which is the sum of squared interaction force
(cost of interaction force) and a weighted norm of the
trajectory modification term (cost of modification), which
penalizes deviation from the initial trajectory (~r0(t)).

J =
1

2
(~FT ~F + ~∆Tβ~∆) (4)

β = diag(β1,...,βn) is a diagonal and positive definite
matrix. For healthy users, we set β u 0 which leads to
interaction force minimization; i.e., the exoskeleton would be
the follower of human motion. For users with lower motor
capacity (e.g., those with iSCI) the user’s executed movement
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Fig. 2. Dynamic walking simulator block diagram. The human and the
exoskeleton controllers are implemented in MATLAB interfacing with the
human and exoskeleton models which are defined in OpenSim environment
along with ground reaction forces. The human tries to control his joint
positions (~q) on his intended trajectory (~p) while the exoskeleton, with
no information about the human intended trajectory, tries to minimize the
tracking error between the exoskeleton position (~q) and reference trajectory
(~r). The saturation is added to the human control loop to simulate reduced
motor capacity.

trajectories are not fully reliable to follow. Therefore, we
consider βj > 0 to penalize the exploration of reference tra-
jectory and facilitate maintaining a physiologically-plausible
motion at those joints. The increment of βj depends on the
motor capacity of impaired users at each joint; the higher
the level of motor impairment, the larger βj should be.

Bipedal locomotion is generally an underactuated control
problem and its stability is closely associated with the
stability of zero dynamics [24]. Any conflict between the
human and the exoskeleton controllers can act as a distur-
bance on the zero dynamics and adversely affect the gait
stability and spatiotemporal parameters. In the next section,
we propose a trajectory adaptation method that minimizes
the conflict emerging in the form of human-exoskeleton
interaction forces (Eq.4) and, therefore, enhances the gait
quality. We also investigate the effect of our proposed
method on i) gait stability, using the stability margin defined
as the minimum distance between the zero moment point
(ZMP) [25] and borders of the extended base of support
[26], and on ii) spatiotemporal parameters of gait such as

Step Time Asymmetry Index (STAI) [27], and minimum Toe
Clearance (minTC) [28].

III. MATHEMATICAL ANALYSIS

A. Adaptation rule extraction

To extract the adaptation rule for coefficient vector of the
jth joint, we apply the gradient descent method to the cost
function (Eq.4) as

~̇Θj = −1

2
εj∇~Θj

J = −εj

(
∂Fj

∂~Θj

Fj + βj
∂∆j

∂~Θj

∆j

)
(5)

where εj is the adaptation rate that tunes the speed of
convergence. Without loss of generality, in the rest of this
section, we drop the j index and follow our analysis at the
joint level, therefore, ~Θ, ~Φ ∈ Rm, and the rest of the variables
are treated as scalers.

Assuming a PD controller at each join of the exoskeleton
yields uE = KpeE + KdėE where Kp and Kd are the
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proportional and derivative gains, respectively. Therefore,
from Eq.2, we obtain F = KpeE+KdėE−Γj

E(q, q̇, q̈) where
Γj
E is the jth element of ~ΓE (we drop the j superscript from

now on). According to Eq. 3, the exoskeleton error and its
derivative are

eE = r − q = r0 + ~ΘT ~Φ− q (6)

ėE = ṙ − q̇ = ṙ0 + ~̇ΘT ~Φ + ~ΘT ~̇Φ− q̇.

Therefore,

∂F/∂~Θ = Kp∂eE/∂~Θ +Kd∂ėE/∂~Θ = Kp
~Φ +Kd

~̇Φ. (7)

On the other hand, from Eq. 3, we have ∂∆/∂~Θ = ~Φ.
Substituting this expression and Eq.7 into Eq.5, we obtain
the adaptation rule as

~̇Θ = −ε
[
~αF + β∆~Φ

]
, ~α = Kp

~Φ +Kd
~̇Φ. (8)

According to the Eq.8, only the user-exoskeleton interaction
force (F ) is needed to adapt the exoskeleton trajectory.

B. Convergence analysis

To investigate the convergence and optimality of the adap-
tation rule, we substitute F = KpeE +KdėE − ΓE(q, q̇, q̈),
∆ = ~ΦT ~Θ, and Eq.6 into Eq.8, that yields

~̇Θ = −ε[~α(Kp
~Φ +Kd

~̇Φ)T ~Θ + β~Φ~ΦT ~Θ +Kd~α~Φ
T ~̇Θ

+ ~α (Kp(r0 − q) +Kd(ṙ0 − q̇)− ΓE)].

Performing some algebraic manipulations, the above equa-
tion can be rewritten as

(I + εKd~α~Φ
T )~̇Θ = −ε

[
A(t)~Θ− ~B(t)

]
(9)

A(t) = (~α~αT + β~Φ~ΦT ) (10)
~B(t) = ~α (ΓE −Kp(r0 − q)−Kd(ṙ0 − q̇)) .

Choosing ε sufficiently small, we can ignore εKd~α~Φ
T com-

pared to the identity matrix and simplify the Eq.9 as:

~̇Θ = −ε
[
A(t)~Θ− ~B(t)

]
(11)

Since r0, ṙ0, ~Φ, and ~̇Φ are periodic smooth and bounded
functions of time, and q, q̇, and q̈ are bounded smooth and
almost periodic [21] functions of time, we can compute
the averaged adaptation dynamics using General Averaging
Theorem presented in [22, pp. 413] as

~̇Θavg = −εΩ(~Θavg − ~Θ∗avg) (12)

Ω = lim
T→∞

1

T

∫ t+T

t

A(τ)dτ

~Θ∗avg = Ω−1 lim
T→∞

1

T

∫ t+T

t

~B(τ)dτ.

Since ~Φ is persistently exciting, and ~α~αT is positive semi
definite, Ω is a positive definite matrix [23]. This guarantees
the stability and convergence of the average adaptation
dynamics (Eq. 12) toward ~Θavg = ~Θ∗avg. Therefore, the
adaptation rule (Eq.8) is stable and convergent toward ~Θ∗avg
on average.

IV. SIMULATOR DEVELOPMENT

To test the proposed trajectory adaptation method, we
developed a dynamic gait simulator using exoskeleton and
human musculoskeletal models in OpenSim. State feedback
controllers were appropriately implemented within MAT-
LAB (Fig.2).

We utilized a 9-degree-of-freedom lower limb dynamical
model in the sagittal plane presented in [29], with the ground
reaction force (GRF) formulated using the model from [30],
[31]. At each joint, the input torque is the sum of human (~uH )
and exoskeleton (~uE) torque. Both human and exoskeleton
controllers are assumed as PD controllers that apply torques
based on the error from their own joint reference trajectories,
which are ~p and ~r, respectively.

A. Simulator justification on healthy subject data

The human desired trajectories (~p) are fitted to the walking
data (at 1.2 m/s) of a healthy adult (provided by OpenSim)
with an eight-harmonic Fourier series. For the validation pur-
pose, the exoskeleton model was excluded from simulation
and its torques were considered to be zero (~uE = ~0). The
human controller parameters are reported in Table I.

Fig.3 compares joint positions and torques of our simulator
with those of real healthy human data. The real and simulated
joint positions are almost equivalent with Pearson’s correla-
tion coefficient (R) of 1. In addition, the torque profiles in
all of the joints are comparable to the experimental torques
in terms of sign and magnitude. Table II compares the R
for each joint with two of the well-known biomechanical
walking simulators ( [33] and [34]). Our simulator exhibits
a more realistic hip torque profile compared to the other
simulators, while it has a comparable performance at the
knee and ankle. Finally, the ground reaction force profiles of
our model are similar to the results presented in [33] with
R of 0.96 and 0.85 in y and x directions, respectively.

TABLE I
EXOSKELETON AND HEALTHY HUMAN CONTROLLER PARAMETERS.

Exoskeleton Healthy Human
Parameter

Hip Knee Ankle Hip Knee Ankle
Kp [N/deg] 34.9 22.68 34.9 22.68 13.96 31.41

Kd [Ns/deg] 1.04 1.04 0.17 0.52 0.52 0.12
Saturation Level [N.m] − − − 90 85 130

TABLE II
SIMULATED JOINT TORQUES R-VALUE COMPARED TO OTHER WORKS.

Joint Gayer Van. Noot Our work
RHip 0.45 0.53 0.76
RKnee 0.65 0.24 0.45
RAnkle 0.99 0.92 0.88

B. Simulation of assisted walking with an exoskeleton

Four different human subjects were simulated, one healthy
and three with different motor impairments, subjects B, C,
and D. To model different motor impairment levels, we
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Fig. 3. The comparison of the simulator and experimental data of a healthy subject (provided in [20]); the gray background indicates the stance phase.
The position of the simulator joints closely follows the experimental human trajectory. The torque profiles’ sign and order of magnitude are also close to
the ones of human torque profile such that the R-values for hip, knee, and ankle torques are 88%, 45%, and 76%, respectively. In addition, timing and
order of magnitude for ground reaction forces are acceptable, and R-values for GRF in y and x directions are 96% and 85%, respectively.

considered a torque saturation block, imposing different satu-
ration levels in the human control loop (Fig.2) and decreased
the PD gains for the human controller with decreased torque
range at more distal joints, which has resemblance to the
reduced muscle recruitment in individuals with iSCI, who
has ASIA score of B, C and D [32]. Parameters of mid-
sever impairment was extracted from [32] indicating that
iSCI with ASIA score C can apply between 24% to 36%
of the knee extensor and 26% to 38% of the ankle plantar
flexor torque that can be generated by healthy subjects.
Accordingly, we limited joint torques of our mid-severely
impaired subject at 30%, 35%, and 75% of healthy subject
maximum joint torque at the ankle, knee, and hip joints,
respectively. We assumed the two other impaired subjects
to be less and more severely impaired (see Table III for
simulated impaired subjects control parameters).

TABLE III
RELATIVE CONTROLLER PARAMETERS OF IMPAIRED SUBJECTS

COMPARED TO HEALTHY SUBJECT (TABLE I).

Saturation Level [%] PD Controller Gains [%]
Subject

Hip Knee Ankle Hip Knee Ankle
D 85 60 50 90 80 60
C 75 35 30 80 70 50
B 65 25 25 70 50 30

A three-harmonic Fourier series was fitted to the data
of healthy human (provided in [20]) to define ~r0. We per-
turbed the obtained Fourier coefficients so that the resultant
exoskeleton initial reference trajectories considerably vary
from the human intended trajectories (~p), particularly at the
hip and ankle. To maintain stability, the initial reference
trajectory (~r0) at the knee joint was chosen close to the
human intended trajectory (Fig.4). Note that the exoskeleton
reference trajectories cannot fully adapt to the human tra-
jectories due to their fewer harmonics, more obvious at the
ankle as more oscillations can emerge in comparison to other
joints.

In the simulations, we assumed that the subject is walking
on a treadmill. Therefore, there is no mismatch between

the frequency of the human intended motion and the ex-
oskeleton’s trajectories. In addition, for impaired cases, we
have applied a soft constraint to regulate the orientation
of the body w.r.t. the world frame; as motor-impaired in-
dividuals usually use walkers, walking sticks, and weight
compensatory harnesses to be able to walk. The adaptation

TABLE IV
β VALUES FOR SIMULATION OF EACH SUBJECT.

βSubject
Hip Knee Ankle

Healthy 0 0 0

D 3 91 304

C 6 152 760

B 15 304 1220

rule parameters are as follows: The basis functions (~Φ) are
the same as Fourier series bases, which are used for initial
reference trajectory fitting. ε is also set to 6.5e-4, 3.2e-4,
and 1.6e-4 for the hip, knee, and ankle trajectory adaptation,
respectively, so that the basis coefficients (~Θj) converge
to their optimal values within 10 seconds. Adaptation was
disabled in the first 10 seconds (8 steps). At t = 10s
adaptation was enabled and simulations were continued for
60 seconds to ensure convergence and gait stability. We also
tuned the β matrix according to the impairment of each
subject and the saturation level at each joint Table IV.

V. RESULTS AND DISCUSSION

Fig. 4 compares the adapted, initial, and intended tra-
jectories during one gait cycle in four different simulated
subjects. It indicates that, the exoskeleton reference trajectory
at the hip joint closely follows the human intended trajectory
after the course of adaptation in all subjects regardless of
their impairment. The underlying reason is that the hip joint
was the least affected joint in simulations. Thus, it can
apply the sufficient torque required for the adaptation rule to
decode the required trajectory modifications from interaction
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Fig. 4. Exoskeleton reference trajectory adaptation at the hip, knee, and ankle joints (simulation results). The gray background indicates the stance phase.
Each plot includes the human intended trajectory (in red), which is not known by the exoskeleton controller, initial exoskeleton trajectory (in green), and
adapted exoskeleton trajectory (dashed lines). Subject B, C, and D are simulated with different reductions in motor capacity to generate the necessary joint
torques for predefined intended motion according to Table III.

force. The knee and ankle joints, in contrast, were severely
disabled in subject C and B. As a result, small deviation from
the initial trajectories was observed. On the other hand, in
the healthy subject and subject D, where those joints are
less affected, we observe closer convergence to the human
intention due to higher reliance on their performance.

Fig. 5 illustrates the cost function, tracking error, and
the trajectory modification during adaptation. The trajec-
tory modification term and the interaction force costs are
convergent while the former is increasing and the latter is
decreasing in all cases. Those opposite competing trends
provide an equilibrium point for the basis coefficients (~Θ∗),
which is adjusted (personalized) by β matrix for each
subject. Consequently, the interaction force cost decreased
in the range of 43% for severely impaired subject (subject
B) to 91% for healthy subject.

Moreover, we observed that the healthy subject initially
has a comparatively higher tracking error but eventually
converges to a lower error since β = 0 does not penalize the
trajectory modification. That is because the adaptation has
higher flexibility to explore the parameter space, suggesting
the active contribution of simulated user to the gait. As
we move toward subject B, this observation becomes less
pronounced due to the lower motor capacity of the subjects.

Adaptation of the exoskeleton reference trajectory leads
to a drop in exoskeleton applied torque across all joints.
The underlying reason is that the exoskeleton torque is
the sum of dynamics compensation and interaction torques
(based on Eq. 2) and while the former is almost fixed the
latter is decreased. Besides, the decrease in tracking error
indicates that adapted trajectories are more consistent with
the dynamics of the human-exoskeleton system.

Fig. 6 shows the improved gait stability, step time sym-
metry, and an increased minimum toe off clearance, all as a
result of trajectory adaptation which decreased the conflict
between human and exoskeleton. Stability margin increased
in the range of 60% for the severely impaired subject to
more than 350% for the healthy subject. We noticed that
the healthy subject has the lowest and the highest stability
margin before and after the adaption, respectively, while
the opposite trend was observed for the severely impaired
subject. Adaptation has also eliminated the gait asymmetry
which emerged more in the healthy subject. Finally, the min-
imum toe off clearance of the simulated subjects increased
by about 40% on average.

A limitation of the presented approach is the assumption
that the frequency of human and exoskeleton reference
trajectories are the same. While this can be held for tread-
mill walking, the assumption is not accurate in overground
walking, requiring an adaptive approach to identify the gait
frequency [35-37].

As mentioned in Section II, we did not include any adap-
tation capability for human desired trajectories. Therefore, a
large mismatch between the initial trajectories of human and
exoskeleton can lead o instability of the model. This issue is
more pronounced in case of the simulated healthy subject as
it is more capable of providing high torques to fight back the
exoskeleton. However, in real world experiments, which is
the next step of this work, human adaptation prevents severe
mismatch and triggers the adaptation rule automatically to
converge to new trajectory profiles such that both human
and exoskeleton reference trajectories converge to their Nash
equilibrium [38].

In this study, motor impairment was simulated by sat-
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Fig. 5. The adaptation performance (started at t = 10s) comparison in four different subjects. The first row presents the normalized moving average
(the window length is T = 1.23s) of the trajectory modification and interaction force terms in cost function. The second row illustrates the moving
average of exoskeleton absolute tracking error. Final row is the variations of the modification trajectories in course of adaptation. The interaction and the
modification costs are convergent while the interaction cost is always decreasing. The tracking error is also decreasing in course of adaptation which shows
the collaboration between trajectory adaptation and controller. Finally, modification trajectories are converged to a cyclic pattern, and by increasing the
impairment of subjects, their range of variation is decreased.

urating and weakening joint controllers. We acknowledge
that motor impairment can have other aspects which are
not modeled here; however, our simulation environment
provides a fair benchmark for testing the proposed trajectory
adaptation. As a future work benefiting from the OpenSim
engine integrated into Matlab, the human controllers will
be reimplemented at the muscle level. This would enable
us to simulate more complex impairments such as muscle
flaccidity [39] or spasticity [40] in dynamical simulations.

VI. CONCLUSION

In this paper, we presented an online trajectory adaptation
technique based on interaction force measurement which has
an adjustable capacity to converge to the human intended
joint trajectories. We also developed a gait simulator that
integrates MATLAB control and optimization toolboxes with
the OpenSim musculoskeletal modeling frameworks. Using
this toolbox, we applied the proposed adaptation method to
a hypothetically healthy and three motor-impaired subjects,
with similarities to iSCI patients with different levels of
injury. The simulation results show that we can adapt the
exoskeleton reference trajectories to the human intended
trajectories in healthy subjects. On motor-impaired subjects,
we also showed that the adaptation method is capable of
restricting the trajectory adaptation in order to guarantee
a stable, reliable, and rhythmic gait pattern. Exoskeleton
trajectory adaptation also led to considerable improvement
in gait stability and spatiotemporal parameters.
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