Abstract
In the visual system, signals from the two eyes are combined to form a coherent representation through the convergence of synaptic input populations onto individual cortical neurons. As individual synapses originate from either monocular (representing one eye) or binocular (representing both eyes) cortical networks, it has been unclear how these inputs are integrated coherently. Here, we imaged dendritic spines on layer 2/3 binocular cells in ferret visual cortex with in vivo two-photon microscopy to examine how monocular and binocular synaptic networks contribute to the interocular alignment of orientation tuning. We found that binocular synapses varied in degree of ‘congruency’, namely response correlation between left and right eye visual stimulation. Binocular congruent inputs were functionally distinct from binocular noncongruent and monocular inputs, exhibiting greater tuning selectivity and connection specificity. Using correlative light and electron microscopy, we found no difference in ultrastructural anatomy and instead, observed strength in numbers using a simple model simulating aggregate synaptic input. This model demonstrated a predominate contribution of binocular congruent inputs in sculpting somatic orientation preference and interocular response alignment. Our study suggests that, in layer 2/3 cortical neurons, a binocular network is responsible for forming a coherent representation in individual neurons through recurrent intracortical interactions.
Competing Interest Statement
The authors have declared no competing interest.