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Dendrites are important determinants of the input-output re-
lationship of single neurons, but their role in network com-
putations is not well understood. Here, we used a com-
bination of dendritic patch-clamp recordings and in silico
modeling to determine how dendrites of parvalbumin (PV)-
expressing basket cells contribute to network oscillations in
the gamma frequency band. Simultaneous soma-dendrite
recordings from PV basket cells in the dentate gyrus re-
vealed that the slope, or gain, of the dendritic input-output
relationship is exceptionally low, thereby reducing the cell’s
sensitivity to changes in its input. By simulating gamma os-
cillations in detailed network models, we demonstrate that
the low gain is key to increase spike synchrony in PV neu-
ron assemblies when cells are driven by spatially and tempo-
rally heterogeneous synaptic input. These results highlight
the role of dendritic computations in synchronized network
oscillations.
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Introduction
Network oscillations in the gamma frequency band (40-
110 Hz) are a prominent circuit feature of many brain areas
and likely support a variety of cognitive processes such
as perception (Gray et al., 1989), attentional selection
(Fries et al., 2001), and memory (Lisman and Idiart, 1995;
Lundqvist et al., 2016). The important roles for gamma
oscillations have triggered numerous studies investigating
how they are generated. These show that parvalbumin-
expressing inhibitory neurons, that form axonal "baskets"
around the soma of target neurons (hence called PV bas-
ket cells (Hu and Jonas, 2014)), play a central role in the
cortex (Fuchs et al., 2007; Cardin et al., 2009; Sohal et al.,
2009). Although previous studies have identified a number
of synaptic mechanisms in basket cells that seem optimal
to generate gamma oscillations (Bartos et al., 2002, 2001;
Vida et al., 2006; Strüber et al., 2015; Bartos et al., 2007;
Erisir et al., 1999; Pike et al., 2000; Hormuzdi et al., 2001;
Whittington et al., 1995; Fisahn et al., 1998; Cornford et al.,
2019; Kopell and Ermentrout, 2004), the dendritic proper-
ties that allow PV cells to transform synaptic inputs into
synchronous output firing remain elusive.

Spike synchrony in an ensemble of inhibitory interneu-
rons is a key mechanism for generating network oscilla-
tions (Bartos et al., 2007; Buzsáki and Wang, 2012). In the
simplest of models, when a sufficiently large number of in-
hibitory neurons fires within in a small time window, it gen-
erates an pronounced inhibitory conductance in the net-

work. If the excitatory input drive is homogeneous across
cells, neurons will escape inhibition together and fire sub-
sequently at the same time, leading to synchronous activ-
ity (Bartos et al., 2007; Buzsáki and Wang, 2012). How-
ever, when the excitatory drive varies from neuron to neu-
ron, cells will fire at different rates, escape the common
rhythm, and synchrony is lost (Wang and Buzsáki, 1996;
Wang, 2010). In biological networks, a plethora of hetero-
geneities enhance spike rate variability (Softky and Koch,
1993). Each cell, even of the same type, has a different
excitability and morphology, and spatially distributed cells
receive different amounts of excitation (spatial heterogene-
ity) which also fluctuates rapidly over time (Destexhe et al.,
2003; Calvin and Stevens, 1967) (temporal heterogene-
ity). These different forms of heterogeneity have been a
long-standing challenge of network models studying syn-
chrony (Bartos et al., 2002, 2001; Vida et al., 2006; Bartos
et al., 2007; Wang and Buzsáki, 1996; Moca et al., 2012;
Tikidji-Hamburyan et al., 2015; Tiesinga and José, 2000;
Tort et al., 2007; Neltner et al., 2000; White et al., 1998).

The unique biophysical properties of PV basket cells
further exacerbate this problem. How neurons integrate
sustained excitatory synaptic input and transform it into
output firing rate is captured by their input-output (I-O) re-
lationship (Silver, 2010). This is typically measured by in-
jecting current in the soma and measuring spike frequency.
In the case of PV basket cells, the gain of the I-O rela-
tionship is about ten times steeper compared to cortical
principal neurons (Goldberg et al., 2008). Therefore, in an
ensemble of PV neurons that all receive different amounts
of input, the cells will spike at dramatically different rates,
making it challenging to synchronize (illustrated in Fig. 1a).

Previous work on gamma oscillations only performed
network simulations using so-called "point-neuron" mod-
els that disregard the dendritic morphology. However, we
hypothesized that PV basket cell dendrites are key for
enhancing the robustness of gamma oscillations in het-
erogeneous networks. We made simultaneous whole-cell
recordings from the dendrites and soma of PV cells in the
dentate gyrus of the rat hippocampus, a circuit that gen-
erates prominent gamma oscillations (Towers et al., 2002;
Csicsvari et al., 2003; Hu et al., 2010). We found that,
compared to the steep I-O relationship measured from the
soma, the gain of the dendritic I-O relationship is scaled
down. Therefore, PV cells are far less sensitive to differ-
ent amounts of input than previously thought (Wang and
Buzsáki, 1996). Furthermore, PV cell dendrites reduce
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Figure 1. Dendritic input results in a lower I-O gain
compared to somatic input. (a) A steeper hypothetical
input-output (I-O) relationship maps the same input dis-
tribution to a broader output firing rate distribution. (b)
Example of a dual soma-dendritic patch-clamp record-
ing of a parvalbumin-expressing (PV) basket cell in the
dentate gyrus. Cartoon shows the recording configura-
tion and the input from the lateral and the medial entorhi-
nal cortex (LEC, MEC). Membrane potential traces show
soma and dendrite responses to current injections in ei-
ther the soma (left) or the dendrite (right). Inset, example
of a reconstructed morphology of a PV basket cell used
for computer simulations. (c) I-O relationships when in-
jecting current steps in the soma. Grey lines, individual
experiments (n=8); Blue lines, individual models (n=5);
Dashed thick lines, averages. (d) I-O relationships when
injecting current steps in the dendrite. Average dendritic
recording distance is 240 ± 7µm (n = 8 experiments)
and 230µm from the soma (n = 5 models). In 5/8 experi-
ments and 5/5 models, cells fired only a few or no spikes,
resulting in near flat I-O relationships. (e) Dendritic mem-
brane potential in response to current steps injected in
the dendrite (n = 6 experiments, n = 5 models). Light blue
dashed line is the average dendritic membrane potential
when no voltage-dependent K+-channels are present on
the dendrites.

the amplitude of fast-fluctuating synaptic input, enhancing
regular spiking. We used anatomically detailed networks
models to show that PV cell dendrites indeed dramatically
increase the robustness of gamma oscillations in a wide
variety of network architectures. Closer examination of
the underlying biophysical mechanisms revealed that the
high-threshold and fast activating K+-currents in the den-
drites (Hu et al., 2010) act to dampen heterogeneities and
thereby enhance spike synchrony.

Results
Dendritic input results in a lower I-O gain compared to
somatic input. To compare the I-O relationship of soma-
driven and dendrite-driven output firing in PV basket cells,
we made dual whole-cell recordings from the soma and
dendrites using confocal microscope-guided patching (Hu
et al., 2010). We targeted the dendrites in the middle and
outer third of the molecular layer where these cells re-
ceive input from the medial and lateral entorhinal cortex,
respectively (Amaral et al., 2007) (Fig. 1b, range: 214 to
262µm from the soma; 240 ± 7µm, n = 8 cells). Current
injections of increasing amplitude in the soma increased
the spike frequency rapidly, leading to a steep I-O rela-
tionship (Fig. 1c, gain = 390 ± 26 Hz nA−1). In stark con-
trast, current injection in the dendrites triggered no, or low-
frequency, spiking, resulting in a nearly flat average I-O re-
lationship (Fig. 1d). Inspection of the dendritic membrane
potential revealed that responses to local current injection
were linear up to ∼ -30 mV but then became sub-linear,
making it increasingly hard to drive the cell to fire (Fig. 1e,
and example in b). These data show that, compared to the
soma, the gain of the dendritic I-O relationship is scaled
down.

Previous work has characterized the biophysical prop-
erties of PV neurons, such as the passive electrical mem-
brane properties and ion channel distributions (Hu et al.,

2014, 2010; Nörenberg et al., 2010; Hu and Jonas, 2014).
To test whether these known properties can account for
the low I-O gain, we used a computational approach.
We simulated the I-O relationship using five anatomically
detailed PV neuron models that included dendrites and
the axon (example in Fig. 1b, Suppl. Fig. S1a, see Meth-
ods PV Basket Cell Model). The only voltage-dependent
conductance we inserted in the dendrites was a high-
threshold and fast-activating K+-channel that is a hallmark
of PV basket cells in the dentate gyrus (Hu et al., 2010).
These models recapitulated the fast-spiking phenotype,
the strong attenuation of backpropagating action poten-
tials (Hu et al., 2010) and the steep soma I-O relation-
ship (Fig. 1c, Suppl. Fig. S1b,c, gain = 370 ± 32 Hz nA−1,
n = 5 models). Consistent with the majority of experi-
ments, injecting current into the distal dendrites produced
a nearly flat I-O relationship (Fig. 1d, Suppl. Fig. S1b,c, dis-
tance = 230µm from the soma). Furthermore, the models
recapitulated the sub-linear increase of the dendritic mem-
brane potential, which was dependent on the dendritic K+-
channels (Fig. 1e).

In summary, the PV basket cell models capture the
essential I-O properties that we measured experimentally,
and collectively, these data show that the dendrite-driven
I-O relationship has a lower gain compared to soma-driven
output firing.

Distributed dendritic input results in a lower I-O gain
and more regular spiking. In vivo, PV basket cells likely
receive both clustered and spatially distributed input on the
dendritic tree. Dual soma-dendritic patch-clamp record-
ings, however, can only mimic clustered dendritic input.
Therefore, to examine how distributed input affects the I-
O relationship, we used the PV neuron models. To per-
form these simulations, we needed to verify that the mod-
els could reproduce some of the most elementary prop-
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Figure 2. Distributed dendritic input results in a lower I-O gain
and more regular spiking. (a) Cartoon shows the recording config-
uration. Membrane potential traces show spontaneous EPSPs. We
used the fast-rising slope (<0.5 ms) to determine which EPSPs orig-
inate close to the recording pipette. Right panel shows the mean
EPSP amplitude of all cells, plotted as a function of input distance from
the soma, for both dendritic (orange) and somatic recordings (green,
n=5). (b) EPSP amplitude attenuation during propagation from the
dendrites to the soma. Grey data points, experiments (n=5); Blue
lines, model predictions (n=5); Blue dashed line, average model pre-
diction. Data and average model prediction were fitted with a sin-
gle exponential decay function (∼ e−x/λ, with length constant λ).
(c) I-O relationships of PV cell models using perisomatic (green) or
distributed dendritic input (orange, n=5 models). Cartoon shows the
synaptic input locations; perisomatic: 50 synapses ≤50µm from the
soma. Dendritic: 100 synapses≥120µm from the soma. Black ticks
illustrate a Poisson train of synaptic inputs. Synapses were randomly
distributed. Total input rate is the number of synapses × the rate per
synapse. The number of synapses was fixed, and we varied only the
rate per synapse. (d) Insets, example spike trains from the data in
(c). Normalized count histograms show the interspike intervals (ISI)
of the example spike trains. (e) ISI irregularity quantified by the Co-
efficient of Variation (CV) as a function of output spike rate (based
on the data in c). (f) Membrane potential traces along the dendrites
and the soma, when the input is dendritic- (orange) or perisomatic
(green). For dendritic input, membrane potential fluctuations attenu-
ate towards the soma, leading to more regular spiking. Right panel
shows the mean and standard deviation of the membrane potential as
a function of distance to soma. The amount of input was adjusted to
achieve the same mean depolarization of the soma. Na+ channels
were blocked to prevent action potentials.

erties of dendritic integration such as the kinetics and
the attenuation of excitatory synaptic potentials (EPSPs)
along the dendrites. Therefore, we further analyzed the
soma-dendritic experiments. The amplitude of dendritic
EPSPs increased with distance from the soma, while their
amplitude at the soma decreased (Fig. 2a, n = 5 cells).
The space-constant of dendrite-to-soma attenuation was
84µm, and this was similar to the value predicted by our
models (74 ± 19µm, n = 5 models, Fig. 2b).

Having validated the PV neuron models, we next simu-
lated the I-O relationship for distributed synaptic input. We
randomly positioned excitatory synapses on the outer two-
thirds of the dendrites (≥ 120µm from the soma) or within
50µm from the soma (Fig. 2c). Simulating sustained input
revealed that the gain of the I-O relationship for dendritic
drive was again lower than for somatic drive (Fig. 2c).

In addition, we observed that the dendrite-driven out-
put firing was also more regular, as illustrated by the nar-
rower distribution of spike intervals (Fig. 2d), a property
that may help spike synchronization between PV neurons.
Quantifying the spike interval variability by the coefficient
of variation (CV, the ratio of the standard deviation to the
mean) showed that dendrite-driven firing was more regu-
lar across the entire spike frequency range (Fig. 2e). We
hypothesized that this was due to the strong EPSP attenu-
ation along the dendrites (Fig. 2b); Because distal dendritic
EPSPs are small when arriving at the soma compared to
proximal EPSPs (Fig. 2a), the membrane potential fluctu-
ations are also smaller, leading to more regular spiking.
To test this, we examined the standard deviation of the
membrane potential along the dendrites during dendritic
stimulation (Fig. 2f). These data show that, indeed, during

sustained dendritic input, the membrane potential fluctua-
tions are small near the soma.

In summary, these data suggest that PV basket cell
dendrites may enhance gamma synchrony in two ways.
First, the low gain of the dendritic I-O relationship will re-
duce the sensitivity of PV basket cell output to different
amounts of input, and second, more regular spiking may
facilitate spike synchronization between PV cells.

PV neuron dendrites make gamma synchrony more
robust to heterogeneities. To test whether PV cell den-
drites enhance gamma synchrony in heterogeneous net-
works, we performed network simulations using the recon-
structed PV cells coupled with inhibitory synapses based
on empirical data (Bartos et al., 2002) (Fig. 3a, see Meth-
ods Network models). We included two forms of hetero-
geneity; (1) Each PV cell received a different amount of
synaptic input to create spatial heterogeneity (so-called
"input heterogeneity"), and (2), the input consisted of noisy
Poisson trains of synaptic conductances to create tem-
poral heterogeneity. Each cell in the network received
a mean input rate taken from a normal distribution with
a mean µ and standard deviation δ. We could then in-
crease the spatial heterogeneity in the network by increas-
ing the width of this distribution (that is, the ratio of µ/δ×
100). In homogenous networks (0% input heterogeneity),
spike synchrony in the gamma frequency range emerged
rapidly in both soma-driven and dendrite-driven networks
(Fig. 3b). However, when we increased the input hetero-
geneity, dendrite-driven neurons fired more synchronously
(Fig. 3b, compare raster plots).

The amplitude of the excitatory drive and the strength
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Figure 3. PV neuron dendrites make gamma synchrony more robust to input heterogeneity. (a) Ring network of 200 PV neuron models with a reconstructed morphology,
symbolically arranged along a ring to illustrate a network with local inhibitory connections. Cells are randomly coupled by inhibitory synapses following a Gaussian connection
probability (grey curve). Cartoon shows the synaptic input locations; 50 synapses ≤50µm from the soma (green); 100 synapses ≥120µm from soma (orange). (b) PV
cell activity in networks driven by perisomatic (green) or dendritic (orange) excitation. Input heterogeneity increases from left to right. Top row, example membrane potential
traces showing spikes from 20 random cells. Bottom row, raster plots of all 200 PV cells in the network. Network starts uncoupled and inhibitory synapses activate at t = 0 ms.
(c) Network oscillation frequency (top row), mean spike rate (middle row) and Synchrony Index (bottom row) as a function of total input rate and the strength of inhibitory
conductance (gGABA). The surface colours show the oscillation frequency range (see colour legend in d). White dots on the Synchrony Index corresponds to the examples
in (b). (d) The maximum Synchrony Index per frequency band, as a function of input heterogeneity for perisomatic and dendritic input (based on data in (c)).

of inhibitory connections are critical determinants of the
spike rates, oscillation frequency and synchrony, therefore,
we examined how they affect the results (Fig. 3c). To quan-
tify network synchrony, we defined the Synchrony Index,
which is 1 for perfect spike synchrony and approaches 0
when the network is fully desynchronized (see Methods
Analysis). For soma-driven networks, increasing the in-
put heterogeneity to 40% reduced the Synchrony Index
for a broad range of excitation and connection strengths
(Fig. 3c, bottom row). In stark contrast, the dendrite-driven
networks maintained a high Synchrony Index (Fig. 3c).
To summarize the relationship between Synchrony Index
and heterogeneity for different gamma frequency bands,
we divided the gamma spectrum into smaller frequency
bands and calculated the maximum Synchrony Index for
each band (Fig. 3d). These data show that regardless
of the gamma frequency range, dendrite-driven networks
are far more tolerant to heterogeneities. Even increas-
ing the input heterogeneity to 100% caused only a small
reduction in network synchrony (Suppl. Fig. S2a). Fur-
thermore, dendrite-driven networks synchronized robustly
even when the strength of inhibitory connections was an
order of magnitude less compared to previous influential
models (Vida et al., 2006) (see side-by-side comparison in
Suppl. Fig. S2a-c). Finally, we found similar results regard-
less of which PV basket cell model we used for building

networks, illustrating that the results do not depend on a
specific cell morphology or specific biophysical properties
(Suppl. Fig. S2d).

Notably, we observed that network synchrony in
dendrite-driven networks was also higher in homogeneous
networks in which all cells receive the same input (Fig. 3d,
0% input heterogeneity case). Therefore, we hypothe-
sized that the dendrites also reduced temporal hetero-
geneities by reducing the amplitude of the membrane po-
tential fluctuations at the soma (see Fig. 2f). This could
facilitate spike synchrony by enhancing spike regularity
(see Fig. 2d,e). To test this, we substituted the Pois-
son synaptic inputs with tonic input currents to produce
noiseless excitation (Suppl. Fig. S3). Indeed, synchrony in
soma-driven and dendrite-driven networks was now sim-
ilar (Suppl. Fig. S3d, 0% input heterogeneity case). Alto-
gether these data show that both spatial and temporal het-
erogeneities are important determinants of network syn-
chrony, and that dendrite-driven synchrony is more robust
to both for a wide range of parameters.

So far, we used the most elementary network models
that produce gamma synchrony. To investigate whether
our results depend on specific neuronal or network prop-
erties, we performed additional simulations. First, we
explored the impact of adding electrical synapses (Hor-
muzdi et al., 2001) (Suppl. Fig. S4a-c). Electrical synapses
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Figure 4. Biophysical mechanisms of
PV neuron dendrites that underlie robust
gamma oscillations. (a) Top, I-O relation-
ships of a simplified PV neuron model (car-
toon), driven by excitatory input on the soma
(green, 50 synapses) or dendrites (orange,
100 synapses, ≥150µm from the soma).
Bottom, coefficient of variation (CV) of the
interspike intervals (ISI) as a function of out-
put spike rate. Insets, example spike trains.
(b) Data from ring networks using 200 sim-
plified PV cell models, driven by either soma
or dendritic input. Histograms show maxi-
mum Synchrony Index per frequency band,
as a function of input heterogeneity. Colour
legend indicates the oscillation frequency
bands. (c) As (a), but using synaptic current
sources instead of synaptic conductances
(these synapses have the same kinetics, but
with a fixed driving force). Faint lines are
the data from (a) for comparison. (d) As
(a), but without dendritic voltage-dependent
K+-channels. (e) As (a), but using synap-
tic current sources and without dendritic K+
channels. (f,h) The maximum Synchrony In-
dex per frequency band, as a function of in-
put heterogeneity, based on ring networks
built from PV models described in (c-e). The
three different conditions can be compared
with the control histograms in (b).

between PV neurons increase the Synchrony Index for
both dendrite-driven and soma-driven networks but do not
change the conclusion that dendrite-driven synchrony is
more robust (Suppl. Fig. S4c). Second, adding N-Metyl-
D-Aspartate (NMDA) receptors (Koh et al., 1995b; Sam-
bandan et al., 2010) enhances the I-O gain for both so-
matic and dendritic input (Suppl. Fig. S4d), but did also not
change our conclusion (Suppl. Fig. S4f). Third, because
inhibition can be hyperpolarizing or shunting (Vida et al.,
2006), we performed network simulations while varying
the reversal potential of inhibition. However, this did also
not affect the outcome (Suppl. Fig. S4g-i). Fourth, when
we changed the network from a 1D ”ring structure” to a
2D network with local connectivity based on recent empir-
ical data (Espinoza et al., 2018), dendrite-driven gamma
synchrony was also more robust (Suppl. Fig. S5a-c). Fi-
nally, we constructed composite networks by using a mix-
ture of all five reconstructed PV neuron models. Because
the models have a substantially different excitability (in-
put resistance varies between 57-119MΩ) and morphol-
ogy (Suppl. Fig. S1a), this cell-to-cell variability adds fur-
ther spatial heterogeneity and increases the realism of the
network. Nevertheless, dendrite-driven gamma synchrony
remained more robust (Suppl. Fig. S5d-f).

In summary, using anatomically and biophysically de-
tailed network models, we found that input arriving on
the dendrites strengthens the robustness of gamma syn-
chrony in heterogeneous networks, and we show that
these results hold for a wide range of neuronal and net-
work parameters.

How do PV basket cell dendrites enhance gamma os-
cillations? This question is difficult to address in anatom-

ically and biophysically detailed PV neuron models be-
cause manipulating the dendritic properties also affects
the fast-spiking phenotype (Hu et al., 2010). There-
fore, we constructed a simpler model to determine the
underlying biophysical mechanisms. We used a single
soma compartment and five apical dendrites with simi-
lar length and diameter as real PV basket cells (Fig. 4a).
For the spiking mechanism, we used a well-known model
that recapitulates the spiking properties of these cells
(Wang-Buzsáki model (Wang and Buzsáki, 1996)), and
we added the high-threshold activated K+-conductance
also to the dendrites (Hu et al., 2010), see Methods
Ball-and-sticks model. The model resembled the mea-
sured I-O properties (Suppl. Fig. S6a), and reproduced
the Synchrony Index of the anatomically-detailed models
(Fig. 4a,b, Suppl. Fig. S6b-e).

We explored two hypotheses to explain the robustness
of dendrite-driven synchrony. First, thin PV cell dendrites
have a high impedance and strongly depolarize when ex-
cited by synaptic inputs. Therefore, a reduced driving force
in the dendrites will limit the synaptic current generated
(Bush and Sejnowski, 1994) and will decrease the I-O
gain. A reduced driving force will also reduce the ampli-
tude of the membrane potential fluctuations and enhance
spike regularity. To test this hypothesis, we converted ex-
citatory synaptic conductances to currents (which are in-
dependent of driving force). Synaptic currents indeed in-
creased the gain of the I-O relationship (Fig. 4c) but did
not significantly affect spike regularity (quantified by the
CV), and the Synchrony Index was only slightly reduced
(compare Fig. 4f with Fig. 4b). Therefore, this mechanism
appears to play only a minor role in enhancing network
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Figure 5. PV dendrites enhance the robustness of theta-nested gamma rhythms. (a) Ring network of 200 PV neuron models with a reconstructed morphology.
PV cells receive a theta frequency-modulated input current to the soma. In addition, networks receive rate-coded excitatory input either close to the soma (green, 50
synapses ≤50µm from the soma) or to the dendrites (orange, 100 synapses ≥120µm from soma). (b) PV cell activity in a network driven by perisomatic excitation. Input
heterogeneity increases from left to right. Top row, example membrane potential traces showing spikes from 30 random cells. Middle row, mean membrane potential. Dashed
line is the theta phase. Bottom row, raster plots of all 200 PV cells in the network. Black box, phase-interval during which the Synchrony Index was calculated. (c) As (b) but
networks are driven with dendritic excitation. (d) The maximum Synchrony Index per frequency band, as a function of input heterogeneity.

synchrony, and other mechanisms must exist.
A second hypothesis is that the K+-conductances in

the dendrites reduce the gain of the dendritic I-O rela-
tionship by actively opposing dendritic depolarization (Hu
et al., 2010). Deleting the K+-conductance from the den-
drites indeed increased the gain (Fig. 4d) and spike in-
tervals became more irregular (Fig. 4d). Furthermore,
dendrite-driven synchrony became slightly more sensitive
to input heterogeneity (Fig. 4g). However, the difference
between soma-driven and dendrite-driven synchrony was
still striking, indicating that the K+ conductance alone does
not explain why dendrite-driven synchrony is more robust
(Fig. 4g).

Finally, we considered the following possibility. We
hypothesized that the depolarization caused by deleting
the voltage-dependent K+-conductances –which should
steeply increase the gain– may be limited because it is
compensated by a strong reduction in driving force for
synaptic excitation. To test this, we deleted the K+-
conductance from the dendrites and we used synaptic
currents. In this condition, the gain of both the soma-
driven and dendrite-driven I-O relationship sharply in-
creased (Fig. 4e). Furthermore, spike intervals became
very irregular (Fig. 4e). And finally, dendrite-driven net-
works were now equally sensitive to input heterogeneity
as the soma-driven networks (Fig. 4h).

Altogether, these data show that dendritic K+-currents,
and to a lesser degree, the reduced driving force for exci-
tation, decrease the I-O gain (enhancing robustness to in-
put heterogeneity) and reduce membrane potential fluctu-
ations (enhancing robustness to temporal heterogeneity).

PV dendrites enhance the robustness of theta-nested
gamma rhythms. Gamma oscillations often occur super-
imposed on the slower theta (5-12 Hz) oscillations (Bra-

gin et al., 1995; Pernía-Andrade and Jonas, 2014). Such
cross-frequency coupling may serve to couple remote cor-
tical circuits (Colgin, 2015). Therefore, we tested whether
dendrites also enhance gamma synchrony when modu-
lated by the theta rhythm. We used the anatomically de-
tailed network models and simulated the theta rhythm by
a sinusoidal current (Fig. 5a, see Methods External drive).
We then compared the robustness of gamma synchrony
when driving the network with somatic or dendritic input.

Similar to observations in the dentate gyrus of explor-
ing rats (Bragin et al., 1995), the simulated gamma fre-
quency was in the range of 80-100 Hz. For homogeneous
networks (0% heterogeneity), both soma and dendrite-
driven synchrony emerged within a single theta cycle
(Fig. 5b,c). Furthermore, dendrite-driven synchrony was
substantially higher compared to soma-driven synchrony
(Fig. 5b,c). With increasing input heterogeneity, soma-
driven network synchrony fell rapidly, while dendritic-
driven synchrony remained intact for all frequency bands
(Fig. 5d). These data show that dendrite-driven gamma
synchrony superimposed on theta oscillations is also more
robust to network heterogeneities.

PV dendrites enhance synchrony in networks of
synaptically coupled excitatory and inhibitory neu-
rons. Models of gamma oscillations in cortical circuits
generally fall into two classes. One that generates oscil-
lations with a single pool of inhibitory cells, and one that
generates oscillations by the reciprocal connections be-
tween pools of inhibitory and excitatory principal neurons
(Tiesinga and Sejnowski, 2009; Whittington et al., 2000).
While it is generally thought that the former class captures
gamma oscillations in the dentate gyrus (Vida et al., 2006;
Espinoza et al., 2018; Ewell and Jones, 2010; Diamantaki
et al., 2014), we wanted to test whether our findings also
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generalize to networks of coupled excitatory and inhibitory
neurons.

To test this, we built a model composed of 200 anatom-
ically detailed PV neurons and 800 principal neurons
that were synaptically coupled based on empirical data
(Fig. 6a, cartoon, see Methods Ring networks of PV bas-
ket cells and principal cells). Both neuronal populations re-
ceived Poisson type synaptic stimulation. We considered
again two cases that depended on whether PV neurons
were driven by input close to the soma (Fig. 6a-c) or on
the dendrites (Fig. 6d-f). In networks with homogeneous
input across neurons, synchrony among PV cells and, to
a lesser degree, principal neurons emerged rapidly, but
as the input heterogeneity increased, synchrony was only
maintained when PV cells received input on the dendrites
(compare Fig. 6c and f). Moreover, even in homogeneous
networks (0% input heterogeneity cases) dendrite-driven
networks showed a higher synchrony. This further illus-
trates, as discussed earlier, that PV neuron dendrites not
only buffer spatial input heterogeneities but also temporal
heterogeneities in a variety of network architectures, lead-
ing to high neuronal synchrony.

Discussion
We show that PV neuron dendrites are critically important
for enhancing synchronous activity at gamma frequencies
in heterogeneous networks. We found that the dendrites
scale down the gain of the I-O relationship and reduce the
cell’s sensitivity to input fluctuations due to the high levels
of dendritic K+-channels. Anatomically detailed network
models reveal that these properties help to homogenize
firing rates so that PV neurons can synchronize at a com-
mon frequency. Therefore, we propose that the unique
biophysical properties of PV neuron dendrites enhance the
robustness of gamma oscillations.

For decades, experiments and theory tried to explain
how spike synchrony emerges in heterogeneous networks.
Classic work studying gamma oscillations in vitro, by per-
fusing brain slices with excitatory receptor agonists (Whit-
tington et al., 1995; Fisahn et al., 1998), showed that fast-
spiking cells can synchronize when their input varies be-
tween ∼ 35% to ∼ 53% (Vida et al., 2006). However, this
likely underestimates the conditions in vivo when synap-
tic input is more cell-selective and noisier (Destexhe et al.,
2003), favoring desynchronization. Early network models
tolerated only 3-5% heterogeneity of the tonic drive (Wang
and Buzsáki, 1996), until reports showed that inhibitory
connections between PV neurons are faster and stronger
than previously thought (Bartos et al., 2002, 2001). Based
on these data, network models could tolerate a hetero-
geneous tonic drive up to 10% (Bartos et al., 2002). A
landmark study showed that shunting inhibition further en-
hances robustness and increases tolerance to heteroge-
neous input of 30-70% (Vida et al., 2006). However, the
enhancing effects of shunting inhibition work only under re-
strictive conditions (Kotani et al., 2014; Tikidji-Hamburyan
and Canavier, 2020a), and simulations show that shunt-

ing inhibition depends on low excitatory drive and strong
inhibitory coupling (Vida et al., 2006) (Suppl. Fig. S2a-c).
Therefore, a key mechanism for synchrony in heteroge-
neous networks with realistic inhibitory coupling was lack-
ing.

By considering the dendrites, we show that networks
can tolerate high levels of input heterogeneity, well be-
yond 100%. This finding is independent of whether inhi-
bition is hyperpolarizing or shunting and relaxes the re-
quirement for strong inhibitory coupling by an order of
magnitude (Suppl. Fig. S2c). We also increased biologi-
cal realism to the model network by adding other forms
of heterogeneity. Previous models mainly used tonic ex-
citation. Instead, we used Poisson trains of synaptic con-
ductances, adding a significant amount of synaptic noise
that reduces synchrony (Suppl. Fig. S3d). We also used
networks composed of different cell models, each with a
unique morphology and excitability, resembling biological
networks (Suppl. Fig. S5f). Finally, we show that PV cells
in highly heterogeneous networks can synchronize dur-
ing hippocampal theta oscillations (Fig. 5) and in different
network architectures (Fig. 6). In summary, PV dendrites
strongly enhance spike synchrony in inhibitory networks
under a wide range of conditions, which is necessary to
withstand the plethora of heterogeneities that is typical for
biological networks.

What are the biophysical mechanisms that enable PV
neuron dendrites to enhance spike synchrony? We find
that two factors play a role. First, PV neuron dendrites
lack regenerative events such as Na+ and Ca2+-spikes
(Hu et al., 2010), and have only low levels of NMDA recep-
tors (Koh et al., 1995b). Instead, they are dominated by
high-threshold and fast-activating K+-conductances (Hu
et al., 2010). Second, thin PV dendrites have a high
input impedance and rapidly depolarize when driven by
synaptic input. This reduces the driving force for excita-
tion and limits the amount of synaptic current that can be
generated (Bush and Sejnowski, 1994). While both fac-
tors reduce the gain of the I-O relationship and the am-
plitude of membrane potential fluctuations, the dendritic
K+-conductances play a more important role (Fig. 4). Yet,
surprisingly, K+-channels are not necessary. Without K+-
channels, PV neuron networks remain robust to hetero-
geneities because of the enhanced contribution of a reduc-
tion in driving force (Fig. 4g). These properties of PV neu-
rons in the dentate gyrus may not be exceptional. There
is evidence that the dendrites of PV cells in other cortical
circuits have similar properties (reviewed in Hu and Ver-
vaeke (2018), but see Chiovini et al. (2014)). Further-
more, rhythm-generating inhibitory neurons in the cere-
bellar cortex, such as stellate (Abrahamsson et al., 2012)
and Golgi cells (Vervaeke et al., 2012) have also thin, high
impedance dendrites lacking regenerative properties, and
the sub-linear integration in these cells is dominated by a
reduction in synaptic driving force. Therefore, we specu-
late that some inhibitory interneurons have dendrites that
are ideally suited for rhythm generation. Altogether, this
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Figure 6. PV dendrites enhance synchrony in networks of synaptically coupled excitatory and inhibitory neurons. (a) Simulations using networks of reciprocally
coupled PV neurons and principal cells (PC, see Methods Ring networks of PV basket cells and principal cells). The PV neurons are also coupled among themselves.
Both populations of cells are driven by an excitatory drive with varying mean rate and input heterogeneity (green and red arrow). The external drive to PV cells is located
perisomatically (green shaded area). Spike raster diagrams show activity of 200 PV cells (black) and 800 PCs (red) for 0%, 20% and 40% input heterogenety. (b) The
Synchrony Index as a function of inhibitory coupling strength (between PV cells) and total input rate to PV cells for 0% and 40% input heterogeneity (top row: PCs, bottom
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illustrates that care should be taken when simplifying in-
hibitory neurons as point neurons without dendrites in net-
work models (Tzilivaki et al., 2019; Poirazi and Papoutsi,
2020).

Neurons integrate input from different origins that is
spatially segregated on their dendrites. A corollary of our
results is that input from the entorhinal cortices on the
outer two-thirds of the apical dendrites is more likely to
generate gamma oscillations compared to the commis-
sural input that targets the proximal dendrites. Spatial seg-
regation of synaptic inputs on the dendrites is common
in the brain. For example, PV cells in the layer 4 of the
neocortex receive thalamic inputs close to the soma, while
intra-cortical contacts are rather located on the distal den-
drites (Freund et al., 1985; Bagnall et al., 2011). Depend-
ing on whether the cortical circuit is dominated by sensory
or intracortical activity, this may promote network desyn-
chronization and synchronization, respectively. In conclu-
sion, our results suggest that the biophysical properties
of PV neuron dendrites promote spike synchrony in the
gamma frequency range, and support the many cognitive
functions associated with this rhythm.
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Methods
Experimental procedures

Dendritic patch-clamp recordings Experiments were ethi-
cally approved by the Norwegian Food Safety Authority
(Mattilsynet), and were performed in strict accordance with
institutional, national, and European guidelines for animal
experimentation.

Transverse hippocampal slices (thickness 350µm)
were prepared from brains of 17- to 23-day-old male Wis-
tar rats. Rats were housed under a 12h light (7 am-7 pm)
and dark (7 pm-7 am) cycle and were kept in a litter of
8-10 animals together with the mother in a single cage.
Slices were cut in ice-cold, sucrose-containing physio-
logical extracellular solution using a vibratome (VT1200,
Leica Microsystems), incubated in a storage chamber
filled with standard physiological extracellular solution at
∼ 34◦C for 30 min, and subsequently stored at room tem-
perature. Slices were then individually transferred into a
recording chamber and perfused with standard physiolog-
ical extracellular solution containing 125 mM NaCl, 25 mM
NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2,
1 mM MgCl2, and 25 mM D-glucose (equilibrated with 95%
O2 and 5% CO2 gas mixture). Current-clamp record-
ings were performed at near-physiological temperature (∼
33◦C; range: 31-34◦C).

For recordings from interneuron dendrites, we used the
following strategy. First, a somatic recording was obtained
using an internal solution containing Alexa Fluor 488 (50
or 100µM, Invitrogen). Second, after ∼ 30 min of so-
matic whole-cell recording, the fluorescently labeled axon
and dendrites were traced from the PV basket cell soma
with a Nipkow spinning disk confocal microscope (Voloc-
ity, Perkin Elmer, equipped with an Orca camera, Hama-
matsu and a solid-state laser with excitation wavelength
of 488 nm). Total exposure time was minimized to avoid
photodamage. Finally, fluorescent and infrared differential
interference contrast (IR-DIC) images were compared and
dendrites were patched under IR-DIC.

Patch pipettes were fabricated from thick-walled
borosilicate glass capillaries (outer diameter: 2 mm, in-
ner diameter: 1 mm) with a horizontal pipette puller (P-

97, Sutter Instruments). The intracellular solution for
soma-dendritic whole-cell recordings contained 120 mM
K-gluconate, 20 mM KCl, 10 mM EGTA, 2 mM MgCl2,
2 mM Na2ATP and 10 mM HEPES, pH adjusted to 7.3
with KOH. When filled with internal solution, they had
a resistance of 2-10 MΩ for somatic recordings and 6-
40 MΩ for dendritic recordings. Current-clamp recordings
were performed using a Multiclamp 700B amplifier (Molec-
ular Devices). Series resistance was 12-90 MΩ. Cells
with somatic resting potentials more positive than -50 mV
were discarded. Pipette capacitance and series resistance
compensation (bridge balance) were applied throughout
experiments. The input-output relationship was deter-
mined by injecting 1-second depolarizing current pulses of
various amplitudes into the soma at the resting membrane
potential (-60.7± 0.8 mV). The resistance of patch pipttes
was between 6.7 and 11.6 MΩ.

Signals were sampled at 50 or 100 kHz with a Digidata
1322 converter board (Molecular Devices) and low-pass
filtered at 10 kHz. Data acquisition and generation of pulse
protocols were performed with pClamp 9 or 10 (Molecular
Devices).

PV basket cells were identified based on the non-
accommodating, fast-spiking phenotype (steady-state
spike frequency >150 Hz at physiological temperature in
response to 1-s, 0.3- to 1-nA somatic current pulses), and
the morphological properties of the axonal arbor, which
was largely restricted to the granule cell layer and estab-
lished basket-like structures around granule cell somata
that were visible in the confocal images. In a previous
publication (Hu et al., 2010) a large sample of fast-spiking
interneurons in the dentate gyrus was analyzed in detail
by light microscopy. It was concluded that the fast-spiking
phenotype was tightly correlated with the expression of
parvalbumin (Hu et al., 2010). Furthermore, 78 of 83 cells
were classical basket cells with tangential axon collater-
als and basket-like branches around granule cell somata,
whereas 5 out of 83 were axo-axonic cells with radial axon
collaterals (Hu et al., 2010). Based on these results, the
recorded cells were termed PV basket cells throughout the
present study.

To describe the propagation of EPSPs from PV bas-
ket cell dendrites to the soma (Fig. 2a), miniature EPSPs
were evoked by injecting a high osmotic external solu-
tion to the proximity of the dendritic recording site dur-
ing simultaneous soma–dendrite recordings with a third
patch pipette. 30µM ZD7288 and 2µM SR95531 were
added to the standard physiological solution in these ex-
periments to block HCN channels and GABAA recep-
tors. The high osmotic external solution contained 125 mM
NaCl, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4,
2 mM CaCl2, 1 mM MgCl2, 25 mM D-glucose, 300 mM su-
crose, 50µM DL-APV, 30µM ZD7288, 2µM SR95531 and
1µM tetrodotoxin.”
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Passive parameters
Cell PV1 PV2 PV3 PV4 PV5
Cm [µF/cm2] 0.99 1.06 0.77 0.92 0.97
Ri [Ωcm] 149 137 141 178 258
Eleak [mV] -80 -73 -80 -75 -75

Table 1. Passive parameters of the detailed PV cell models Adapted from Nörenberg et al. (2010).

gleak [mS/cm2]
Cell Soma Proximal Den-

drites (< 120µm)
Distal Dendrites
(≥ 120µm)

Proximal Axon
(< 120µm)

Distal Axon
(≥ 120µm)

PV1 0.157 0.157 0.079 0.003 0.003
PV2 0.157 0.157 0.079 0.003 0.003
PV3 0.1 0.1 0.05 0.0014 0.0014
PV4 0.2 0.2 0.048 0.007 0.007
PV5 0.093 0.093 0.065 0.0037 0.0037

Table 2. Leak conductances of the detailed PV cell models Adapted from Hu et al. (2010); Nörenberg et al. (2010).

PV Basket Cell Model

Passive and active properties of PV basket cell models

Passive parameters A previous study (Nörenberg
et al., 2010) meticulously constrained the pas-
sive parameters of the five PV basket cell models
based on experimental data, see Suppl. Fig. S1a and
https://senselab.med.yale.edu/ModelDB/
showmodel.cshtml?model=140789. We summarize
the membrane capacitance Cm, axial resistance Ri, leak
reversal potential Eleak and membrane conductances gleak
for each of the models in Table 1 and 2. The leak conduc-
tance gleak is spatially inhomogeneous along the dendrites
(higher for closer distance d to the soma, lower more
distally), as this was found to fit the passive response
properties of dentate gyrus PV cells best (Nörenberg
et al., 2010). In particular,

gleak(d) =
{
gleak,prox if d < 120µm

gleak,dist otherwise
(1)

Voltage-dependent currents The voltage-dependent cur-
rents INa, IK1 and IK2 are Hodgkin-Huxley-type and based
on the Wang-Buzsaki model (Wang and Buzsáki, 1996; Hu
et al., 2010). Here, IK1 has the same parameterization as
in (Wang and Buzsáki, 1996; Hu et al., 2010), while IK2 is
modified from (Wang and Buzsáki, 1996; Hu et al., 2010)
to match the more depolarized activation threshold in the
distal dendrites (see Fig. 1e).

Sodium current INa The sodium current INa has an acti-
vation variable m and an inactivation variable h. The dy-
namics of m is assumed to be fast and substituted by the
steady-state value m∞ (Wang and Buzsáki, 1996). In par-

ticular,

INa = gNam
3
∞h(V −ENa) (2)

m∞ =
αm

αm+βm

with αm(V ) =
−0.1(V + 35)

exp
[
−0.1(V + 35)−1

]
and βm(V ) = 4exp

[
−
V + 60

18

]
,

and
dh

dt
= φNa

(
αh(V )(1−h)−βh(V )h

)
with αh(V ) = 0.07exp

[
−
V +58

20

]
and βh(V ) =

1
exp[−0.1(V +28) + 1]

.

Potassium current IK1 The potassium current IK1 has ac-
tivation variable n1, such that

IK1 = gK1n
4
1(V −EK1) (3)

dn1

dt
= φK1

(
αn1 (V )(1−n1)−βn1 (V )n1

)
with αn1 (V ) =

−0.01(V + 34)
exp
[
−0.1(V + 34)−1

]
and βn1 (V ) = 0.125exp

[
−
V + 44

80

]
.

Potassium current IK2 The potassium current IK2 has ac-
tivation variable n2, such that

IK2 = gK2n
4
2(V −EK2) (4)

dn2

dt
= φK2

(
αn2 (V )(1−n2)−βn2 (V )n2

)
with αn2 (V ) =

−0.01(V + 20)
exp
[
−0.1(V + 20)−1

]
and βn2 (V ) = 0.125exp

[
−
V + 30

40

]
.

Parameters φ, E and g are summarized in Table 3 and 4.
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Active Channel Parameters
ENa [mV] 55
φNa 5
EK1 [mV] -90
φK1 2
EK2 [mV] -90
φK2 5

Table 3. Parameters of voltage-dependent channels

Activation curves x∞ = αx
αx+βx and time constants τx =

1
αx+βx of the variables x= {m,h,n1,n2} as function of V
are plotted in Fig. M1.
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Figure M1. Voltage-dependent steady-state activation curves and time con-
stants of INa and IK1/2 Left side: Steady state activation of the (a) activation vari-
ablem3 and inactivation variable h of the sodium channel, and (b) of the activation
variables n1, n2 of the potassium channels. Right side: respective time constants.

Model fitting For all five reconstructed basket cell mod-
els, we used the passive properties as measured in Nören-
berg et al. (2010), see Tables 1,2. Next, we systematically
varied gNa, gK1 and gK2 to find good fits to the average I-O
relationship that was experimentally measured using so-
matic current injections (Fig. 1c). Next, we conducted sim-
ulations to test whether the model matches several other
experimental observations, in particular the dendritic I-O
relationship (Fig. 1d), the steady-state membrane potential
responses to dendritic (Fig. 1e) and somatic current injec-
tions, the spike attenuation along the apical dendrites (not
shown), and the attenuation of EPSPs (Fig. 2b). If nec-
essary, we slightly adapted gNa and gK1 to obtain a better
fit to the experimental data. The resulting channel densi-
ties are listed in Table 4. Compared to IK1, we shifted the
steady-state activation curve of IK2 to more depolarized
potentials to obtain a better fit to the sublinear membrane
potential in response to current injections in the dendrites
(Fig. 1e). Note that using only IK1 on the entire dendritic
tree has no significant effects on any of the main results
apart from a worse fit of the dendritic V-I-curve. After intro-
duction of the voltage-dependent channels the input resis-
tance of the models remained relatively close to the exper-

imental observation in Nörenberg et al. (2010), see Table
5.

Ball-and-sticks model This model comprises one
soma compartment (diameter=length=25µm) and
five equal dendritic compartments (diameter=1µm,
length=300µm). Passive properties are Cm=1µF/cm2,
gleak, soma=0.16 mS/cm2, gleak, dend=0.08 mS/cm2,
Eleak=-75 mV, and Ri=100 Ωcm. The soma has IK
(gK=20 mS/cm2, EK=-90 mV, φK1=5 in Eqn. (3)) and INa
(gNa=80 mS/cm2, ENa=55 mV, φNa=5 in Eqn. (2)). The
dendrites have IK (gK=20 mS/cm2, EK=-90 mV, φK1=5
in Eqn. (3)). For comparison to experimental data, see
Suppl. Fig.S6a.

Principal cell model The regular-spiking princi-
pal cell model was adapted from Strüber et al.
(2017) and can be downloaded on ModelDB
(https://senselab.med.yale.edu/ModelDB/
showmodel.cshtml?model=229750).
In short, it comprises one soma compartment (di-
ameter=length=5.642µm) with passive parameters
Cm=1.01µF/cm2, gleak=0.1 mS/cm2, Eleak=-75 mV, and
Ri=194Ωcm. Active properties comprise a voltage-gated
Na+ (gNa=10 mS/cm2, EK=55 mV), and a delayed-rectifier
voltage-gated K+-conductance (gK=15 mS/cm2, EK=-
90 mV; the original model in Strüber et al. (2017) had
three K+-conductances, delayed rectifier, A-type, and
M-type, however, only the delayed rectifier had non-zero
peak-conductance in the published code on ModelDB, so
we adopted this choice).

Network models

Ring networks of PV basket cells The ring networks are
based on previous models of gamma oscillations (Bar-
tos et al., 2002; Vida et al., 2006) (for overview of net-
work connectivity, see Appendix Simulation parameter ta-
bles, Table 7). We arranged 200 PV basket cells along
a ring where the distance between neighboring cells is
50µm. The probability that two neurons are coupled by in-
hibitory synapses follows a Gaussian distribution pring(d) =
e−d

2/2σ2
, with d being the distance between the cell so-

mata, and σ= 1 200µm (Bartos et al., 2002; Vida et al.,
2006) (Fig. M2a). Synaptic connections are not allowed
between cells that are more than 2 500µm apart. Accord-
ing to these connectivity rules, each PV basket cell is con-
nected to approximately 58 other PV basket cells (Bartos
et al., 2002; Vida et al., 2006) (see Appendix Ring net-
works for a derivation). These rules are constrained by the
PV basket cell density and the extent of their axonal tree
in hippocampal area CA1 (Sik et al., 1995).

When two cells are synaptically connected, we ran-
domly distributed n synapses in the perisomatic region
(≤ 50µm from soma). The number of synapses between
two PV basket cells was distance-dependent following the
same equation as the coupling probability, but with a max-
imum of five synapses. The number of synaptic contacts
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Active Channel Densities
Densities
[mS/cm2]

Soma Proximal
Dendrites

Distal
Dendrites

Proximal Axon Distal Axon

PV1
gNa 100 5 5 400 35 (>120µm)
gK1 40 40 0 (>200µm) 40 40
gK2 0 0 30 (>200µm) 0 0
PV2
gNa 250 5 5 550 35 (> 120µm)
gK1 50 50 0 (>200µm) 50 50
gK2 0 0 30 (>200µm) 0 0
PV3
gNa 200 5 5 400 35 (>120µm)
gK1 50 50 0 (>200µm) 50 50
gK2 0 0 30 (>200µm) 0 0
PV4
gNa 120 5 5 400 35 (>120µm)
gK1 60 60 0 (>200µm) 60 60
gK2 0 0 30 (>200µm) 0 0
PV5
gNa 150 5 5 450 35 (>120µm)
gK1 50 50 0 (>200µm) 50 50
gK2 0 0 30 (>200µm) 0 0

Table 4. Fitted parameters of voltage-dependent channels of the detailed PV cell models Channel density of sodium gNa and the two potassium channels gK1/2.

Input Resistance
Cell PV1 PV2 PV3 PV4 PV5
Rinp [MΩ] exp (Nörenberg
et al., 2010)

119.2 57.3 118.8 63.4 60.7

Rinp [MΩ] model 97.5 63.1 108.3 48.7 64.5

Table 5. Input resistances: experiment vs. model Input resistance as measured in cell models in comparison to experimental data (Nörenberg et al., 2010).

was rounded down to an integer (Fig. M2b, more details in
Appendix Ring networks).
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Figure M2. Connection probabilities (a) Connection probability in the ring net-
works (Bartos et al., 2002; Vida et al., 2006). (b) Number of synaptic contacts as
a function of distance. (c) Connection probability in the two-dimensional network.
Curve adapted from Espinoza et al. (2018).

GABAergic synaptic conductances We modeled synap-
tic conductances as two-state kinetic scheme synapses
(“Exp2Syn” model in NEURON) i.e.,

gsyn(t) = ḡsyn
e−t/τ

rise
syn −e−t/τ

decay
syn

e−tpeak/τ
rise
syn −e−tpeak/τ

decay
syn

Θ[t] (5)

tpeak = log

[
τdecay

syn

τ rise
syn

](
τ rise

syn τ
decay
syn

τdecay
syn − τ rise

syn

)
(6)

For GABAergic inhibitory synapses, the rise time con-
stant τ rise

syn,GABA=0.16 ms (Bartos et al., 2002; Vida et al.,

2006), and the decay time constant τdecay
syn,GABA=1.8 ms (Bar-

tos et al., 2002; Vida et al., 2006) (for overview of pa-
rameters, see Appendix Simulation parameter tables, Ta-
ble 6). We varied the peak amplitude of the individual
GABAergic synaptic conductances ḡsyn,GABA between 0.5
and 10 nS (≈ 0.008-0.08 mS/cm2), with a synaptic reversal
potential Esyn,GABA=-75 mV for hyperpolarizing inhibition,
and -60 mV for shunting inhibition (for shunting inhibition,
we varied ḡsyn,GABA up to 30 nS, because synchronous
states typically require very strong inhibition (Vida et al.,
2006; Tikidji-Hamburyan and Canavier, 2020b)). Synaptic
currents are described by IPSC(V,t) = gsyn,GABA(t)(V −
Esyn,GABA).

The spike detection threshold of PV basket cells and
the Ball-and-Stick model was set to 0 mV. The delay τ of
spike transmission comprised a constant synaptic delay
of τ0=0.5 ms (Bartos et al., 2002; Vida et al., 2006) and
a distance dependent conduction delay of τ(i)=0.2·ims
(Bartos et al., 2002; Vida et al., 2006), where i is the ab-
solute difference between the indices of two neurons on
the ring network. Given that neighboring neurons are sep-
arated by 50µm, this corresponds to a conduction velocity
of 0.25 m/s (Bartos et al., 2002; Strüber et al., 2017). In a
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network of 200 cells, the conduction delays varied between
between 0.7 ms and 10.5 ms, with an average delay 〈τ〉 ≈
4.1 ms (see also Appendix Ring networks). To avoid onset
transients, the network synapses were only activated after
150 ms.

Electrical synapses Where mentioned, we also included
electrical synapses. We positioned ten gap junctions of
0.1 nS (Bartos et al., 2002; Vida et al., 2006) randomly
on the perisomatic area (≤ 50µm from soma), and cou-
pled each cell to four out of eight randomly chosen near-
est neighbors (four to the left, four to the right). Therefore,
gap junctions were only present between cells that were at
most 200µm apart (Espinoza et al., 2018). We tested the
strength of gap junction coupling by measuring the cou-
pling coefficient between electrically coupled cells which
was typically around 9% (Hormuzdi et al., 2001; Venance
et al., 2000) (Suppl. Fig. S4a).

Ring networks of PV basket cells and principal cells Net-
works of coupled excitatory and inhibitory cells consisted
of NI=200 PV basket cells and NE=4NI principal cells
(PC) arranged on two rings, respectively. The spa-
tial footprint of PV→PC was the same as for PV→PV,
i.e., pring(d) = ce−d

2/2σ2
with σ=1 200µm. For PV→PV

connectivity, c=1, resulting in ∼58 connections per cell,
while for PV→PC, c=0.35, resulting in ∼20 connections
from PV cells to any PC (Strüber et al., 2017). The
footprint from PC→PV was Gaussian with a footprint of
σ=500µm and c=0.5, resulting in ∼50 connections from
PCs to any PV cell (Strüber et al., 2017). Synapses from
PV→PV were the same as for the PV network with varied
peak conductance ḡsyn,PV→PV ∈ {1,2,4,6,8} nS. Synapses
from PV→PC were ”Exp2Syn”-synapses Eqn. (5) with
τ rise

syn,PV→PC=0.16 ms (Strüber et al., 2017), decay time

constant τdecay
syn,PV→PC=7 ms (Strüber et al., 2017), and

peak conductance ḡsyn,PV→PC=0.1 mS/cm2, correspond-
ing to ∼0.5 nS for a typical dentate gyrus granule cell
of size ∼500µm2 (Clairborne et al., 1990). Synapses
from PC→PV were AMPA-type ”Exp2Syn”-synapses with
τ rise

syn,PC→PV=0.1 ms (Strüber et al., 2017), decay time con-

stant τdecay
syn,PC→PV=1 ms (Strüber et al., 2017), and peak

conductance ḡsyn,PC→PV=2 mS/cm2 (Strüber et al., 2017)
(for overview of parameters, see Appendix Simulation pa-
rameter tables, Table 6). Spike detection threshold was
set to 0 mV for PV basket cells, and to -20 mV for principal
cells.

Two-dimensional PV basket cell network In addition to
ring networks, we also created two-dimensional networks
based on recent empirical data describing the distance
dependence of the coupling probability between PV bas-
ket cells in the dentate gyrus (Espinoza et al., 2018) (for
overview of network connectivity, see Appendix Simula-
tion parameter tables, Table 7). It is given by the following
equation and plotted in Fig. M2c:

p2dN(d) =
1

1 + exp
(
d−a
b

) . (7)

Here, we used a=50 and b=115 to approximately match
the connection probability fit in Espinoza et al. (2018).
Notably, the spatial reach of connectivity is much smaller
compared to the ring networks (Fig. M2a,c), which means
that assuming the same conduction velocity as used in ring
networks, i.e., 0.25 m/s, the effective delays will be much
shorter. Therefore, the effect of synchronized inhibition
will be shortened and oscillations will be faster. To com-
pare synchrony in both network types in terms of network
structure only, we thus assumed a three-times slower con-
duction velocity (0.0833 m/s) to match compound inhibi-
tion GGABA(t) in fully synchronous networks (for a detailed
derivation see Appendix Ring networks). Neurons were
distributed uniform-randomly on a torus to avoid boundary
effects.

External drive

PV ring and 2d-networks In most simulations, neurons
were driven by Poisson-type excitatory synapses, that
were distributed uniformly either perisomatically (<50µm
from the centre of the soma) or on the outer two-thirds
of the apical dendrites, i.e., &120µm (&150µm for ball-
and-stick cells) from the soma centre. The total input rate
rstim = nsyn×r, where nsyn is the total number of synapses
and r is the rate per synapse. We did not observe any
qualitative or quantitative differences when varying nsyn
or r while keeping rstim fixed. Therefore, we decided to
use nsyn=50 for perisomatic, and nsyn=100 for distal apical
drive, and varied r between 20 and 200 Hz.

In most cases the synapses were AMPA-type
synapses modeled as ”Exp2Syn”-synapses, see
Eqn. (5). In the model, we used a rise time con-
stant τ rise

syn,AMPA=0.2ṁs and a decay time constant of

τdecay
syn,AMPA=0.2 ms, consistent with previous data (Geiger

et al., 1997; I.C. and H.P., 1999), and our own mea-
surements in Fig. 2. The peak conductance was
ḡsyn,AMPA=2 nS (except in the ball and stick model,
where it was 0.5 nS). The synaptic reversal potential
was 0 mV. The postsynaptic currents are given by
EPSC(V,t) = gsyn,AMPA(t)(V −Esyn,AMPA), see overview
Appendix Simulation parameter tables, Table 6.

PV basket cell-PC networks PV basket cells and
PCs were driven by Poisson-type excitatory AMPA-
type synapses (”Exp2Syn”-synapses, τ rise=0.1 ms
(Strüber et al., 2017), decay time constant τdecay=1 ms
(Strüber et al., 2017), peak conductance ḡstim→PV=2 nS,
ḡstim→PC=0.1 mS/cm2, corresponding to ∼0.5 nS for
a typical dentate gyrus granule cell of size ∼500µm2

(Clairborne et al., 1990)). Input rates were covaried, such
that input rates to PCs ranged from rstim,PC=2 000-6 000/s,
and rate per synapse for PV basket cells was rstim,PC/40
(100 synapses for dendritic stimulation, 50 synapses for
perisomatic stimulation).

AMPA/NMDA synapses We also simulated co-localized
AMPA/NMDA synapses (Fig. S4d-f). The NMDA-
conductance is given by an exponential rise and decay
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time constant, and is voltage-dependent to model the
Mg2+-block (Farinella et al., 2014) as (see also Eqn. (5)):

gNMDA(t) =
ḡNMDA

1 +0.3e−0.08V (t)
e−t/τ

rise
syn,NMDA −e

−t/τdecay
syn,NMDA

e
−tpeak/τ

rise
syn,NMDA −e

−tpeak/τ
decay
syn,NMDA

, (8)

The rise and decay time constant were τ rise
syn,NMDA=3 ms

and τdeday
syn,NMDA=70 ms (Farinella et al., 2014), respectively.

The time course of the NMDA conductance is plotted in
Fig. S4d. The ratio between the maximum NMDA and
AMPA conductance (0.22) and the voltage-dependence of
the Mg2+-block (Fig. M3a,b) was based on measurements
from fast spiking basket cells of the dentate gyrus reported
in Koh et al. (1995a) (Appendix Simulation parameter ta-
bles, Table 6).
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Figure M3. NMDA synapse (a) I-V-relationship of the NMDA conductance. (b)
Voltage dependence of the NMDA conductance.

Current-based synapses Finally, to simulate distributed
synaptic current sources that have the same kinetics as
AMPA synapses, but that are independent of the driving
force (Fig. 4c,e), we kept the membrane potential variable
constant to the leak reversal potential (Eleak=-75 mV for
the anatomically detailed models, and -65 mV for the Ball-
and-stick model). That is, EPSC(t) = gsyn,AMPA(t)(Eleak−
Esyn,AMPA) = const×gsyn,AMPA(t).

Simulations of theta-nested gamma oscillations In order
to simulate theta-modulated activity we added a sinu-
soidally modulated current to the somatic compartment of
all cells:

Istim(t) =Asin
(
φ+

2πt
T

)
, (9)

with oscillation period f=5 Hz, and amplitude A=1 nA. Ad-
ditionally, all cells received a heterogeneous amount of
Poisson-type excitatory synaptic input as described above.

Simulations and analysis

Simulation Single cell simulations typically covered
2 000 ms. For neurons driven with noisy or randomly
distributed input we repeated the simulation ten times with
different initial conditions for each parameter combination.

Network simulations typically covered 500 ms. After an
initial period of 150 ms, the GABA-ergic synapses were

activated. Some simulations (e.g., theta-nested gamma-
oscillations) were run for 3 000 ms to obtain sufficient data.
Each simulation was repeated at least 5 times with differ-
ent random seeds per parameter combination to ensure
different network structures, initial conditions, synapse lo-
cations and input spike trains.

The simulation time step was chosen between
δt=0.005 ms and 0.025 ms, depending on simulation re-
quirements, e.g., to avoid numerical errors in case
of rapidly fluctuating noisy inputs, or when electrical
synapses were included.

All neurons and networks were simulated in
NEURON/7.4 via the pyNeuroML-interface in Neu-
roML/v2beta4 (https://www.neuroml.org/neuromlv2).
Larger network simulations were run on the
Sigma2 high-performance clusters Abel and Saga
(https://www.sigma2.no). Versions of the models and sim-
ulation scripts to reproduce the figures in the manuscript
are available at [INSERT OpenSourceBrain-link for
publication]. Data handling and analysis were done in
Python/2.7.15, using the NumPy/1.11.9, SciPy/0.17.0,
and Matplotlib/1.5.1 libraries.

Analysis For analysis of single neuron dynamics we used
the last 1 500 ms of 2 000 ms simulated time for analysis,
while for the analysis of network activity we used the last
300 ms of 500 ms of the simulations (Section Simulation).
For spike-based synchrony (Synchrony Index, Coherence)
and regularity (CV) measures, we excluded neurons that
spiked less than two times in the considered time interval.
The number of neurons to average over was adapted ac-
cordingly.

Rate Individual spike rates were computed as the num-
ber of spikes emitted by a neuron over the considered time
interval T . Population spike rates were individual spike
rates averaged across all neurons (spiking or not) in a net-
work.

Coefficient of variation of interspike intervals The coeffi-
cient of variation CV of interspike intervals ISI is defined
as the standard deviation of its ISIs σ(ISI) over the mean
of ISIs µ(ISI), i.e., CV(ISI) = σ(ISI)/µ(ISI).

Oscillation frequency We computed the average mem-
brane potential of all neurons and calculated its power
spectrum. The frequency of the dominant peak then de-
fined the oscillation frequency.

Synchrony Index We first binned the spikes of all neu-
rons that spiked at least two times in δ=2 ms bins to obtain
the spike histrogram (Fig. M4a). Next, we calculated the
Fano Factor (FF) of the spike histogram (see Fig. M4a),
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i.e.,

FF =
σ2[count]
µ[count]

(10)

with count = hist

[
N∑
i=1

Xi

]
and Xi = hist[Si(t)|δ],

with spike trainsSi(t) =
∑
j

δj(t− tj)

We then divided FF by the number of spiking neurons
in the network. Thus, if all cells spike synchronously, the
variance of the bin size will be maximal and FF/N equal to
1. If all cells spike asynchronously, the variance of the bin
size will be minimal and FF/N will approach 0.
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Figure M4. Synchrony Index: Fano Factor measures population wide syn-
chrony (a) Cartoon showing how the Synchrony Index is computed. Upper panel:
spike raster plot. Lower panel: population spike count histogram. (b) Example scat-
ter plot of Synchrony Index and Coherence (Bartos et al., 2002; Wang and Buzsáki,
1996).

To quantify network synchrony, previous work used
the so-called Coherence Measure (Bartos et al., 2002;
Wang and Buzsáki, 1996). To compare the Synchrony
Index with the Coherence Measure, we plotted their re-
lationship (Fig. M4b). Note that both measures give very
similar results. However, FF/N had several advantages:
First, it does not have the floor effect that we observed for
coherence-based measures (Fig. M4b, see also Appendix
Synchrony Index and Coherence). Second, the Synchrony
Index is simpler and infers the population-wide synchrony
more directly, because it is inherently a population-activity
measure, whereas the Coherence Measures are based on
pairwise synchrony (see Appendix Synchrony Index and
Coherence for a discussion and more detailed analysis).

Appendix
Simulation parameter tables Tables 6 and 7 summarize
synaptic and network parameters, respectively.

Connectivity statistics of ring and two-dimensional
networks In Section Network models we introduced the
network model we generally used in the paper, the choice
motivated by one of the most prominent models for study-
ing biophysically constrained gamma-oscillations (Bar-
tos et al., 2002; Vida et al., 2006). In some simula-
tions (Suppl. Fig. S5a-c) however, we also simulated net-
works constrained by recent connectivity statistics data

measured in simultaneous patch-clamp recordings of PV
basket cells (Espinoza et al., 2018), see Section Two-
dimensional PV basket cell network. These networks dif-
fer from ring networks in several ways. First, the connec-
tion probabilities are quite different, especially with respect
to the spatial reach, see Suppl. Fig. S5a,b. Second, the
density of cells as a function of distance differs in one-
dimensional ring networks and two-dimensional torus net-
works. This will have pronounced impact on the number
of connections at any given distance, and also on the de-
lay distribution and, hence, timing of incoming spikes. This
makes a direct comparison difficult.

In this section we will quantitatively analyze these dif-
ferences in formal detail and discuss our choice to match
the compound inhibitory conductance GGABA(t) each neu-
ron would receive given total synchrony in both networks.
This choice allows us to directly relate results for the two
networks with an emphasis on topology.

Ring networks The standard network setting is derived
from the networks considered in Bartos et al. (2002); Vida
et al. (2006), with N neurons arranged equidistally on a
ring. Connectivity was established randomly following a
Gaussian connection probability

pring(d) = e−d
2/2σ2

Θ[dmax−d], dmax =
⌊
N

4

⌋
, (11)

with Heaviside step-function Θ[x] = 0 if x < 0, Θ[x] = 1
otherwise, and floor-operator bxc that rounds x to the next
lowest integer. The standard deviation was chosen σ = 24
neuron distances (Bartos et al., 2002; Vida et al., 2006).
Autapses were usually excluded, and test network runs in-
cluding autapses did not show any palpable differences
(not shown). In a ring network neuron density is discrete,
but constant with distance, i.e.,

ρring(d) =
N

L
δ(di−d)Θ[dmax−d] , di ∈ Z\0,dmax =

⌊
N

4

⌋
(12)

with Dirac measure δ(x) = 1 if x= 0, and zero otherwise.
Hence the probability mass function of distances f(d) (see
Fig. M5a) is given by

fring(d) =
ρring(d)pring(d)∫ dmax

d=0 ρring(x)pring(x)dx
, (13)

where the denominator yields the expected number of
connected neurons per neuron 〈k〉,

〈kring〉 =
∫ dmax

d=0
ρring(x)pring(x)dx (14)

=
N/4∑

di=−N/4,di 6=0

N

2L
e−d

2
i /2σ2

≈
√
πNσ

2
√

2L
erf
(

L
√

2σ

)
≈ 58 .

If two neurons were connected, a total number of nsyn =
bnmaxp(d)c (nmax = 6, so max(nsyn) = 5 in absence of au-
tapses) GABAergic synapses were randomly distributed
across a perisomatic region including the soma (with prob-
ability 1/3) and dendrites (with probability 2/3) upto 50µm
from the the somatic center. This yielded an average num-
ber of synapses 〈nsyn〉 ≈ 3.7 between any two connected
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Synaptic Parameters
Synapse Type τ rise

syn [ms] τdecay
syn [ms] ḡ [nS] Erev [mV]

GABA (PV→PV) 0.18 1.8 0.5-10 −75 (hyperpol),−60
(shunting)

AMPA 0.2 2 2 0
NMDA 3 70 0.44 0
PV→PC 0.16 7 0.1 −65
PC→PV 0.1 1 2 0

Table 6. Parameters of ”Exp2Syn”-synapses (Eqn. (5)).

Network Specifications
Network Type Dimension Metric Boundary

Condition
Cell
Distribution

Connectivity Profile

ring network one absolute dif-
ference

periodic equilateral grid boxcar
p(d) = Θ[dmax − d]

random network two euclidean periodic uniform random sigmoid p(d) =
1

1+exp( d−a
b )

Table 7. Specifications of network models.

neurons.
The distance-dependent total conductance nsyn(d)× ḡ be-
tween any two neurons (also known as unitary conduc-
tance) is plotted in Fig. M5b,c for three different synaptic
strengths in absolute and relative (to cell membrane area)
terms, respectively.

The spike transmission delay τ is a linear function of
the distance, i.e.,

τ(d) = τ0 +vcd. (15)

The constant offset τ0 represents a synaptic delay, while
the distance dependent delay is a conduction delay that
represents the finite velocity vc of action potential propaga-
tion along the axon. The resulting probability mass func-
tion fring(τ) of delays is given by (see Fig. M5e)

τ0 +fring(τ) = τ0 +
eτ

2/2σ2
τ∑τmax

τ=τmin
eτ

2/2σ2
τ

(16)

with στ = 0.2σ and expectation value

〈τ〉= τ0 +
τmax∑
τ=τmin

τ ×fring(τ) . (17)

For our choice of parameters (N=200, vc=0.2 m/s (Bartos
et al., 2002; Strüber et al., 2017), τ0=0.5 ms) the delays in
the network varied between 0.7 ms and 10.5 ms in steps of
0.2 ms, yielding an average 〈τ〉 ≈ 4.1 ms.

If all neurons spike synchronously, and taking into ac-
count the multiplicity of synapses per connection nsyn,
we thus expect a compound inhibitory conductance time
course (see Fig. M5d)

Gsyn,GABA(t) = 2
τmax∑
τ=τmin

eτ
2/2σ2

τ bnmaxe
τ2/2σ2

τ cgsyn,GABA(t− τ) . (18)

Two-dimensional networks To avoid boundary effects,
we embedded N neurons in a two-dimensional torus
of size L×L. Neuron positions were chosen uniform-
randomly. Networks were created following the spatial
connection probability of PV basket cells measured in Es-
pinoza et al. (2018) (Fig. M2b, Suppl. Fig. S5a). In particu-
lar,

p2dN(d) =
1

1 + exp
(
d−a
b

) Θ[L/
√

2−d] . (19)

The expected number of connections per cell is then given
by

〈k2dN〉=
∫ dmax

dmin

ρ2dN(x)p2dN(x)dx=
∫ L/

√
2

0

ρ2dN(x)
1 + exp

(
d−a
b

) dx (20)

with cell density at a given distance d given by (assuming
homogeneous cell density 2N/L2)

ρ2dN(d) =


2Nπd
L2 for 0≤ d≤ L/2

2Nd
L2 (π−4arccos(L/2d)) for L/2< d≤ L/

√
2

0 otherwise .

(21)

The cases in Eqn. (21) arise from the necessity to avoid
ambiguity on a torus due to overlap. The connection prob-
ability p2dN(d) is small for d >500µm, so we chose a
layer size L=1 000µm for which Eqn. 21 is well approxi-
mated by 2Nπd/L2 (Fig. M5a, solid vs. dashed line). The
expected number of connected neurons is then given by
〈k2dN〉 ≈0.097N . To match 〈kring〉=58 we would need
N=600 cells in the 2d-network, which proved computa-
tionally difficult. We thus chose N=300 and increased the
number of synapses nsyn,2dN per connected pair to com-
pensate for the missing connections.
In order to constrain the conduction velocity vc,2dN and
nsyn,2dN, we matched the compound synchronous in-
hibitory conductance Gsyn,2dN(t) to the one expected for
ring networks, see Eqn. (18) and Fig. M5d. Due to the lin-
ear increase in the number of cells at a given distance
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ḡsyn, GABA = 10 nS

0 1 2
distance d (m m )

0.0

0.2

0.4

n
sy

n
·ḡ
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as estimated from a network instantiation versus the theoretical prediction (thin dark blue lines). For the two-dimensional (2dN) network we also show f(d) for the network
without a maximal distance of L=1 mm (dashed line, see text). (b) Unitary, i.e., total inhibitory synaptic conductance between two PV cells at distance d for three different
individual synaptic peak conductances ḡsyn. (c) Same as (b) in terms of the specific conductance, i.e., normalized by the cell area. Dark blue lines are respective analytical
expectations. (d) Total inhibitory conductance received by a PV cell from all presynaptic cells assuming full synchrony for the ring network and peak conductance ḡsyn=1 nS
(≈0.008 mS/cm2) (light blue). The two-dimensional network was fitted to obtain a similar Gsyn (dark blue, parameters τ2dN(d) = τ0+12s/m× d and nsyn,2dN=7). (e) The
respective delay distributions for ring and 2d-network after fitting Gsyn,rand. Wide lines in (d,e) are as measured from a network instantiations, dark blue lines are analytical
expectations.

it follows that there are only few cells at very short dis-
tances, explaining the shift of Gsyn,2dN(t) towards later
times compared to Gsyn,ring(t). We found that otherwise
a good fit is established for τ2dN(d)=12s/m×d (i.e. a three
times smaller conduction velocity vc,2dN=0.0833 m/s than
for ring networks) and nsyn,2dN=7 (independent of distance,
for sake of simplicity), see Fig. M5e. The respective delay
distribution f(τ) is a rescaled version of f(d) with mean
delay 〈τ2dN〉 ≈ 3.3 ms (shown for comparison in Fig. M5e).

Synchrony Index and Coherence
In several key studies (Bartos et al., 2002; Wang and
Buzsáki, 1996; Bartos et al., 2001; Vida et al., 2006)
a coherence-based measure was used to quantify syn-
chrony in a network. In particular,

κ =
2

N(N −1)

N∑
i=1

N∑
j=i+1

κij (22)

with κij(∆) =

∑K

k=1Xi(k)Xj(k)√∑K

k=1Xi(k)
∑K

k=1Xj(k)
,

where if Xi(k)Xj(k)> 1 : Xi(k)Xj(k) = 1

with binsize ∆, spike count histogram Xi = hist[Si(t)|∆]
and number of bins K =

⌈
T
∆
⌉

for considered time interval
T . In the coherence measure employed in Bartos et al.
(2002, 2001); Vida et al. (2006) the bin size is, moreover,
adapted to the network firing rate r as ∆(r)=0.1/r. We
find that the Synchrony Index FF/N as a global population
activity-based measure is much simpler to quantify oscilla-
tory behavior. The coherence measure potentially ignores
spikes (it sets presence of any number of spikes per bin

per neuron to one, see Eqn. (22)) and can also be high
for non-oscillatory states, e.g., travelling waves. For the
regimes we were considering, we found that the coherence
measure κ also produces a floor at low or no synchrony
(see Fig. M4b, M6d), which the FF-based Synchrony Index
does not show. The FF on the other hand needs a very
small time bin (smaller or equal to the sampling time) to
correctly estimate FF=N for perfect synchrony (Fig. M6a),
which for Poisson process driven neuron actvity is never
quite the case. We optimized the time bin to yield maxi-
mal FF for a wide range of synchrony, see light blue solid
curves in Fig. M6.
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log(∆ )
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κ, adapt ∆
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Figure M6. Fano-factor-based Synchrony index vs. Coherence Measure (a-d)
Upper row: Different variations of synchrony measures: Synchrony Index FF/N as
function of fixed bin size (solid light blue), FF/N for adaptive bin size, i.e. dependent
on the inverse of the firing rate (dashed light blue, firing rate is constant across pan-
els at 70 Hz), coherence κ as function of bin size (Wang and Buzsáki (1996), solid
dark blue, see Eqn. (22)), and κ for adaptive bin size (Bartos et al. (2002, 2001);
Vida et al. (2006), dashed dark blue). Circle: δ=2 ms is the value we consistently
used to compute the synchrony index in our results. Lower row: respective spike
data used to compute FF/N and κ. We used surrogate data, i.e., N=40 copies of
the same regular spike train with increasing normally distributed jitter with standard
deviation σ. (a) σ=0 ms, (b) σ=0.1 ms, (c) σ=10 ms, (d) σ=50 ms.
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Figure S1. Morphology and physiological properties of the PV neuron models (a) Reconstructed cell morphologies
of five parvalbumin-expressing basket cells in the rat dentate gyrus used for simulations. (b) Example of dual soma-
dendritic patch clamp recording. Voltage traces show soma and dendrite responses to current injections in either the
soma (left) or the dendrite (right). Recording distance was 214µm from the soma. (c) Same recording configuration
as in (b). Model responses can be compared with experiments in (b). Model example is PV cell #2 (see (a), recording
distance is 230µm). Note that the fast transient at the onset of dendritic depolarization is a simulation artefact due to the
instantaneous nature of the stimulus.
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Figure S2. Robust dendrite-driven synchrony is maintained for high levels of input heterogeneity and is a property
of all PV models tested. (a) 3D planes; Synchrony Index as a function of increasing input heterogeneity (0, 40, 60,
100%). Right, histogram of the maximum Synchrony Index per frequency band, as a function of input heterogeneity. (b)
Synchrony Index of a previously published landmark model using single compartment cells and shunting inhibition (Vida
et al., 2006). Same levels of heterogeneity as in (a). (c) Comparison of the total inhibitory synaptic conductance that is
received by a single PV basket cell, using either the dendrite-driven model (top) or the the shunting inhibition model. The
traces correspond to the orange and red dots on the 3D planes in (a) and (b). Note that we chose the network parameters
with the lowest gGABA that still produced synchrony. (d) Comparison of network simulations using the five different PV cell
models. Histograms show the maximum Synchrony Index per frequency band, as a function of input heterogeneity.
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Figure S3. Noisy synaptic input is an important determinant of network synchrony. (a) Cartoon illustrating a PV
neuron model driven by noiseless direct current (DC) inputs, distributed either perisomatically (green, 50 inputs ≤50µm
from the soma), or on the dendrites (orange, 100 inputs ≥120µm from the soma). Bottom panel shows I-O relationships
using either perisomatic or dendritic DC input. (b) PV cell activity in ring networks consisting of 200 PV neurons driven
by perisomatic (green) or dendritic (orange) excitation. Input heterogeneity increases from left to right. Top row, example
membrane potential traces showing spikes from 20 random cells. Bottom row, raster plots of all 200 PV cells in the
network. Network starts uncoupled and inhibitory synapses activate at t=0 ms. (c) Network oscillation frequency (top
row), average spike rate (middle row) and Synchrony Index (bottom row) as a function of total input rate and the strength
of unitary inhibitory connections (gGABA). Colour legend shows the oscillation frequency ranges. The dots on the 3D planes
of the Synchrony Index corresponds to the examples in (b). (d) The maximum Synchrony Index per frequency band, as a
function of input heterogeneity for perisomatc and dendritic input (based on data in (b) and (c)). The Synchrony Index is
shown for DC inputs (left panels) and for Poisson trains of synaptic conductances (right panels).
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Figure S4. Enhanced robustness of
dendrite-driven synchrony does not
depend on electrical synapses, NMDA
receptors or shunting inhibition. (a-c)
Network simulations of PV neurons con-
nected with electrical synapses in addi-
tion to chemical inhibitory synapses. (a)
Cartoon of the recording configuration
to test electrical coupling strength be-
tween two nearby PV neurons. Electrical
synapses are inserted on the soma and
proximal dendrites (≤ 50µm) (see Meth-
ods Network models). Bottom, mem-
brane potential responses of a coupled
PV cell pair in response to a current pulse
(-0.1 nA) in one of the cells. Electrical
coupling strength is defined by the Cou-
pling Coefficient (CC; the ratio of voltage
changes in the cell pair, V2/V1×100). In
this example, CC is 9%. (b) I-O rela-
tionships showing the mean spike rate
of all PV cells in the network. This
graph corresponds to a slice along the
y-axis of the 3D plots as in Fig. 3c for
gGABA=4 nS. Left, soma-driven networks.
Right, dendrite-driven networks. Light to
dark grey lines: increasing heterogeneity
(0, 10, 20, 30, 40%) for networks with-
out electrical synapses (control). Light
to dark coloured lines, increasing het-
erogeneity for networks that also include
electrical synapses. (c) The maximum
Synchrony Index per frequency band, as
a function of input heterogeneity. Left,
soma-driven networks. Right, dendrite-
driven networks. (d-f) Network simu-
lations of PV neurons with co-localized
AMPA and NMDA receptors. (d) Top, I-
O relationships of a PV neuron model,
driven by excitatory input either close to
the soma or on the dendrites. Faint
curves are I-O relationships with only
AMPA receptors. Bottom, kinetics and
conductance of AMPA and NMDA re-
ceptors. The maximum conductance ra-
tio between NMDA (0.42 nS) and AMPA
receptors (2 nS) is ∼0.21 (Koh et al.,
1995b). Inset, voltage dependence of
the NMDA receptors. (e,f) Same as (b,c)
for networks with co-localized AMPA and
NMDA receptors. (g-i) Network simu-
lations of PV neurons with shunting in-
hibition. (g) Example voltage traces
of PV neurons in a ring network with
shunting inhibitory connections (Erev=-
60 mV). Grey, simulation with hyperpolar-
izing inhibition. Green, soma-driven net-
works with shunting inhibition; Orange,
dendrite-driven networks with shunting
inhibition. (h,i) Same as (b,c) for net-
works with shunting inhibition.
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Figure S5. Enhanced robustness of dendrite-driven synchrony is maintained in PV neuron networks with a 2D
organization and in mixed PV neuron networks. (a-c) Simulations using PV cell networks with a 2D organization. PV
cells were arranged on a 2D torus (see Methods). (a) Connection probability of PV cells as a function of distance between
their somata. Adapted from experimental data on PV cells in the dentate gyrus reported in (Espinoza et al., 2018).
Bottom, cartoon showing a 2D patch of PV neurons with local spatial connectivity. (b) I-O relationships showing the mean
spike rate of all PV cells in the network (this graph corresponds to a slice along the y-axis of the 3D plots as in Fig. 3c
for gGABA=4 nS). Left, somatic-driven networks (50 synapses ≤50µm from the soma). Right, dendrite-driven networks
(100 synapses ≥120µm from the soma). Light to dark grey lines: increasing heterogeneity (0, 10, 20, 30, 40%) for ring
networks with local connectivity (control). Light to dark coloured lines, increasing heterogeneity for networks with random
spatial connectivity. Most I-O relationships overlap. (c) The maximum Synchrony Index per frequency band as a function
of input heterogeneity. Left, soma-driven networks. Right, dendrite-driven networks. (d-f) Simulations using networks
consisting of a mix of all five PV models with a reconstructed morphology (see Methods). (d) Top, I-O relationships of all
five PV models. Bottom, cartoon illustrating a ring network consisting of a mix of five different PV neuron models. (e,f)
Same as (b,c) for mixed PV cell networks.
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Figure S6. A simplified PV neuron model approximates the biophysical and network properties of the detailed
PV models. (a) Comparison of the biophysical properties of the simplified model (blue) and the experimental data (grey,
same experimental data as in Fig. 1 and 2). Left, I-O relationship when injecting current steps in the soma. Middle, I-O
relationship when injecting current steps in the dendrite. Dendritic recording distance is 230µm from the soma. Right,
attenuation of the EPSP amplitude during propagation from the dendrites to the soma. (b) PV cell activity in the network
driven by perisomatic excitation. Input heterogeneity increases from left to right. Top, example membrane potential traces
from 20 random PV cells. Bottom, raster plots of all 200 cells in the network. Network starts uncoupled and inhibitory
synapses activate at t=0 ms. (c) Characterization of soma-driven networks as a function of input heterogeneity. Top,
network oscillation frequency. Middle, average spike rate. Bottom, Synchrony Index. All are shown as a function of total
input rate and inhibitory synaptic conductance. Colour legend indicates the oscillation frequency bands. White dots on
the Synchrony Index corresponds to the data in (b). (d) As in (b), but for PV cell networks driven with dendritic input (100
synapses ≥150µm from the soma). (e) As in (c), but for PV cell networks driven with dendritic input.
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