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Table 4. All tyrosine-related proteins in the subgraph that received literature support

UniProt ID Gene Name Protein Name

P12931 SRC Proto-oncogene tyrosine-protein kinase SRC

P23458 JAK1 Tyrosine-protein kinase JAK1

O60674 JAK2 Tyrosine-protein kinase JAK2

P08069 IGF1R Insulin-like growth factor 1 receptor

P00519 ABL1 Tyrosine-protein kinase ABL1

Q06418 TYRO3 Tyrosine-protein kinase receptor TYRO3

P17948 FLT1 Vascular endothelial growth factor receptor 1

P35968 KDR Vascular endothelial growth factor receptor 2

P08581 MET Hepatocyte growth factor receptor

P36888 FLT3 Receptor-type tyrosine-protein kinase FLT3

P29597 TYK2 Non-receptor tyrosine-protein kinase TYK2

P07333 CSF1R Macrophage colony-stimulating factor 1 receptor

Q06187 BTK Tyrosine-protein kinase BTK

P16234 PDGFRA Platelet-derived growth factor receptor alpha

P42684 ABL2 Tyrosine-protein kinase ABL2

P42680 TEC Tyrosine-protein kinase TEC

P43405 SYK Tyrosine-protein kinase SYK

Q08881 ITK Tyrosine-protein kinase ITK/TSK

P30530 AXL Tyrosine-protein kinase receptor UFO

Q12866 MERTK Tyrosine-protein kinase MER

P00533 EGFR Epidermal growth factor receptor

P04626 ERBB2 Receptor tyrosine-protein kinase ErbB-2

Q9Y463 DYRK1B Dual specificity tyrosine-phosphorylation-regulated kinase 1B

O14733 MAP2K7 Dual specificity mitogen-activated protein kinase kinase 7

Fig. 6. Interactions between tissue, disease, and UniProt indexing nodes in the subgraph. All of the edges have is expressed in as edge relationship type.

(a) Interaction map between UniProt indexing nodes, identi�ed tissue nodes and disease nodes (b) Association between SARS-CoV-2 host interacting

proteins and tissue/disease nodes in core 69, we add SARS-CoV-2 viral proteins (red diamond with dashed links, indicating they do not exist in the

subgraph) for clarity

the literature and public databases to assemble a large human

interactome with the goal of identifying possible COVID-19

repurposing drugs. Their constructed interactome contains

17349 proteins that can be mapped to Homo sapiens UniProt
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database which results in a huge overlap (3320 proteins)

with our merged subgraph. However, there are still 165

(4.74%) UniProt indexing nodes in our subgraph that they

are not able to identify despite their extensive search in

literature. Sadegh et al. [16] developed an online platform that

implemented systems medicine algorithms for network-based

prediction of drug candidates. Using the 332 viral-interacting

human proteins identified by Gordon et al. [8] as input to

their default Multi-Steiner algorithm for drug target discovery

with default parameters we obtained a total of 393 human

proteins, with 332 being the original human proteins in the

input. In the rest of 61 proteins, 29 (47.54%) can be found in our

merged subgraph. In addition, Khorsand et al. [17] constructed

a three-layer SARS-CoV-2-human PPI network using Alpha-

influenzavirus proteins that are most similar to SARS-CoV-2

proteins and 662 (34.88%) of the identified 1898 UniProt

mapped human proteins in their network can be found in our

merged subgraph. Messina et al. [18] constructed interactomes

for three human coronaviruses: SARS-CoV, MERS-CoV and

HCoV-229E and employed random walk with restart (RWR)

algorithm to identify the top 200 closest proteins for each of

the virus (total 600 proteins). 548 proteins can be mapped to

Homo sapiens UniProt database and 241 (43.98%) of them can

be found in our merged subgraph. In total, 3323 (95.35%) of

the UniProt indexing nodes in our subgraph can be found in the

aforementioned works and 161 of the remaining 162 UniProt

indexing nodes are not found in literature and therefore can be

considered complete novel findings (Supplementary Table 6).

Then, we validate our findings against experimentally

obtained results. Stukalov et al. [10] identified the human-virus

interactomes of SARS-CoV and SARS-CoV-2 as consisting

of 1801 interactions between SARS-CoV/SARS-CoV-2 viral

proteins and 1086 human proteins (1082 of them can be mapped

to the human Biomine database). Li et al. [11] experimentally

identified 295 SARS-CoV-2 virus-host protein interactions

(between SARS-CoV-2 viral proteins and 286 human proteins)

and found potential molecular mechanism for SARS-CoV-2-

induced cytokine storm. We are able to map 284 of the

human proteins to the human Biomine database. To validate

the robustness of our discovered dense sub-communities, we

re-did our analysis and considered their discovered PPIs as

additional ground truth. Our experiments indicate that by

integrating more ground truth nodes from these two studies,

our final extended network has a nearly identical structure

as the presented ones in our paper and with exactly the

same 3625 nodes. The main change is that more nodes in

our final merged subgraph are being validated and the total

number of generated hypotheses (nodes in the extended network

that do not belong to the integrated experimentally validated

results) has decreased, indicating that our identified dense sub-

communities are robust enough. Besides validating the network,

we also validated the biological stories of our findings. For

example, SRC, ABL1, and JAK1/2 are generated hypotheses

and we identified SRC, ABL1 and JAK2 to be important

hub genes in previous section. In [10], JAK1 and JAK2 have

been experimentally validated to interact with SARS-CoV and

SARS-CoV-2 viral proteins. Similarly, we identified HSPA4,

XPO1, CDK4, KIT to be among the high quality (most

likely to be true) hypotheses in Table 3. Li et al. [11] have

experimentally validated that HSPA4 interacts with SARS-

CoV-2 N protein, XPO1 interacts with SARS-CoV-2 NSP8

protein, CDK4 interacts with SARS-CoV-2 NSP10 protein, and

KIT interacts with SARS-CoV-2 ORF3a protein.

Discussion

Using the rich Biomine database, we extended the SARS-CoV-

2-human protein-protein interaction (PPI) network identified

by Gordon et al. [8] and also integrated the discovered lists

of pro/anti-SARS-CoV-2 genes by Wei et al. [9]. Through the

proposed three-stage analysis pipeline, we were able to filter

the large extended network, uncover dense sub-communities,

and therefore generate research hypotheses related to COVID-

19 by identifying dense cores in the Biomine database that have

as many same nodes as the integrated experimentally validated

results.

There are two fundamental assumptions in this work.

Firstly, to extend the experimentally validated results (we

mainly focus on the PPI network), we assume the results

by Gordon et al. and Wei et al. to be correct. Secondly,

to identify a small list of important proteins from a large

network, we assume sub-communities of nodes (that are

highly-connected with each other and well connected with

experimentally validated nodes) to be more important than

other nodes. In the literature, highly connected nodes such as

hotspots or hub genes [10, 91, 92] have received substantial

attention. Our analysis targets ‘high-activity sub-network’ and

can be considered as an extension to hotspot (i.e. a cluster of

connected hotspots, which is a higher level structure and is

harder to detect). This is one of the novel contributions in this

work.

In the first step of our proposed pipeline, we have two

data-screening sub-steps added; this design is based on our

assumption and will enable the peeling algorithm (PA) to focus

more on cores with high activities. Furthermore, by focusing

on dense cores, the PA can run faster due to a decrease in the

input dataset size.

It is worth noting that when the network contains more than

one connected component after the two-stage data screening,

our proposed pipeline will produce the result even faster since

the network complexity will be further reduced and we can run

PA in parallel for each connected component. But in Biomine,

the network is connected after screening and we were unable to

run PA in parallel.

Based on the aforementioned assumption, the Biomine

database, and the proposed analysis pipeline, we quickly

identified sub-communities in the extended PPI network that

have high activities and we discovered novel diseases, genes, and

proteins that could potentially relate to COVID-19 as research

hypotheses. The generated hypotheses (Supplementary Table

5) provide candidates for follow-up work to validate.

Kumar et al. [20] also employed a similar graph

decomposition concept on a host-viral network. The difference

between their analysis approach and ours is that they started

with a deterministic graph and added edge weight later while we

started with probabilistic graph decomposition which is more

challenging. Another notable difference is they utilized a graph

decomposition method called weighted k-shell. In contrast to

our k-core decomposition, k-shell asks for all the nodes in the

subgraph to have coreness precisely equal to k while k-core asks

for all nodes’ coreness to be at least k. k-core has the advantage

of connecting different subsets of nodes in the network and

helps discover missing links between them. Additionally, when

we perform pathway and process enrichment analysis on the

subgraph, we also use the subset of nodes with the same

coreness, which by definition is the k-shell of the subgraph.

There are three user-defined thresholds in the first and

second steps of our proposed analysis pipeline: threshold based
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on degree expectation, threshold based on η-degree lower-

bounds, and η. These thresholds can be changed based on users’

specific needs. The first two thresholds are used to filter out

nodes with very low connectivity, which cannot be members

of dense sub-communities in the network. By filtering out low

connectivity nodes, we reduce the network volume and speed

up the analysis. So, the first threshold should be a number

much smaller than the coreness of nodes in the dense sub-

network. In our analysis, we set the threshold as 5, and we

are interested in the dense sub-network with coreness ≥ 69,

hence threshold 5 is a conservative choice. As long as the first

threshold is set relatively far away from the coreness in our

final dense subgraph, their value only affect the computation

speed, but not affect the results. The user could use a larger

thresholds to increase speed, if they are ok to take more risk

of missing important nodes. Similar rule also applies to the

second threshold. For the third threshold, η, its choice is rather

subjective, but we found the results of our analysis are robust

to the choice of its value. Figure S3 in Supplementary Methods

and Results shows the results of different settings of η (0.3,

0.5, 0.7) to be very consistent (nodes’ coreness under different

η values are in almost perfect linear relationship).

For determining the merged subgraph, we need to pick an

optimal threshold of coreness that will balance the denseness

and the complexity of the graph. We observed that core 69

and 77 are both dense, frequently appeared, and contains more

information. Compared to core 77, we preferred core 69 as we

want to include more nodes into the subgraph. In another hand,

it is not practical to involve too many nodes which results in

generating a vast amount of hypotheses to validate. Therefore

after comparing with coreness 77 and other core number in

Table 1, we chose coreness 69 as the final optimal threshold.

We did a literature review for most of the genes detected in

our subgraph and listed top genes in Table 3. Take entries with

nConnect ≥ 110 as an example, 7 genes received literature

support (we will discuss the tyrosine-related ones together in

the next paragraph). The other 15 genes with nConnect ≥ 110

might be strong candidates with high priority and worth for

future validation. For GAPDH (Glyceraldehyde-3-phosphate

dehydrogenase), Zheng et al. [42] obtained potential COVID-

19 effector targets of Chinese medicine Xuebijing (XBJ) which

was used in treating mild cases of COVID-19 patients, and

GAPDH is found to be one of the key targets. Taniguchi-

Ponciano et al. [43] identified HIF1α as a potential marker

for COVID-19 severity and GAPDH is found to be among

the expressed HIF1α responsive genes. Ebrahimi et al. [44]

found inhibiting GAPDH in patients with degenerated innate

immunity can potentially help in treating COVID-19. For

DICER1 (Endoribonuclease Dicer), Mu et al. [45] found that

SARS-CoV-2 N protein prevent Endoribonuclease Dicer from

the recognition and cleavage of virus-derived dsRNA. For

GSK3B (Glycogen synthase kinase-3 beta), Liu et al [50]

investigated COVID-19 traditional Chinese medicine treatment

ShenFuHuang formula and identified GSK3B as the medicine’s

potential drug target. Khalil [51] and Nowak et al. [52]

hypothesized lithium chloride (directly inhibits GSK3B) to be

a potential treatment for COVID-19 due to its inhibition effect

on other members of the Coronaviridae (CoV) family. Embi et

al. [53] found chloroquine treatment (preventing SARS-CoV-2

to fusion with the host cell membrane) results in the inhibition

of GSK3B.

For tyrosine-related proteins in the merged subgraph and

their associations with COVID-19, many tyrosine kinase

inhibitors have been identified to inhibit the SARS-CoV-2 virus.

Cagno et al. [93] found three ABL tyrosine-protein kinase

inhibitors imatinib, dasatinib, and nilotinib to exert inhibitory

activity against SARS-CoV-2, Alijotas-Reig et al. [94] found

two JAK tyrosine-protein kinase ruxolitinib and baricitinib

to be useful in treating the COVID-19 induced systemic

hyperinflammatory response (cytokine storm). Wu et al. and

Seif et al. [56, 95] found another JAK inhibitor fedratinib

to mitigate the serious conditions in COVID-19 patients. We

identified SRC, JAK1/2, ABL1/2 as hub nodes in Figure 5.

For SRC (Proto-oncogene tyrosine-protein kinase SRC), in Lin

et al. [46], ibrutinib is found to block SRC family kinases, which

might reduce viral entry as well as the inflammatory cytokine

response in the lungs. Morenikeji et al. [47] identified SRC to

be one of the genes associated with Bovine coronavirus and

by implication, other coronaviruses. Tiwari et al. [48] found

SRC to play a vital role in SARS-CoV-2 infection related

pathways. Xie et al. [49] found SRC participates in cytokines

storm in patients with obesity which could lead to negative

outcomes when infected with SARS-CoV-2. Additionally, many

works in literature have targeted JAK1/2 in the hope to

treat or prevent COVID-19. Shi et al. [79] found decreasing

of lymphocyte in patients with COVID-19 correlated with

low expression of JAK1-STAT5 signaling pathway. Zhang et

al. [58] found that by suppressing JAK1/2 using baricitinib,

several cytokines signals inciting inflammation will be inhibited.

Others have also suggested using drugs that inhibit JAK1/2 to

help patients with COVID-19 [59, 60, 61, 62, 63, 80, 81, 82]. As

for ABL1/2, Abruzzese et al. [55] have suggested a possibility

that patients treated with BCR-ABL tyrosine kinase inhibitors

may be protected from the virus infection.

Conclusion

With the SARS-CoV-2 outbreak being declared as a pandemic

by the World Health Organization (WHO) [96], researchers

around the globe are shifting their focus to COVID-19. In

this work, we are especially interested in the protein-protein

interaction (PPI) network between SARS-CoV-2 proteins and

human proteins identified by Gordon et al. [8] and the lists

of pro/anti-SARS-CoV-2 genes discovered by Wei et al. [9],

and our focus mainly lies in extending the network to generate

biological hypotheses for further validation. To achieve that,

we connect the single experiment derived PPI network with

the large Biomine database, also integrate the findings of Wei

et al., and aim to locate sub-communities with high activities

in the extended network. We propose a data analysis pipeline

based on a graph peeling algorithm (PA) that enabled us to

compute core decomposition efficiently. We select dense cores

in the Biomine database that overlap most with the integrated

experimentally validated results. The dense subgraph is the

resulting extended network and nodes not belonging to the

integrated experimentally validated results in the subgraph

are generated hypotheses. We then evaluate the selected

subgraph in three contexts: we performed literature validation

for uncovered virus targeting genes and proteins and found

genes that have already been validated by others on their

relationships to COVID-19; we carried out gene ontology over-

representation test on the subgraph and found underlying

enriched terms related to viral replication, viral pathogenesis,

cytokine storm, etc.; we also searched for literature support

on the identified tissues and diseases related to COVID-19

and found the possibility of drug repurposing for COVID-

19 treatment. To further assign priorities to the generated
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hypotheses, we sorted all UniProt indexing nodes in the

subgraph by their connections to the integrated experimentally

validated nodes. The top ranking nodes (Table 3) in the

list have a high proportion of literature validated nodes

(for instance, GAPDH, DICER1, GSK3B, UBC, HSP90AA1,

HSPA8, and tyrosine-protein kinase SRC, JAK1, JAK2, ABL1,

etc.), we deem the rest non-validated nodes in the table as high

quality hypotheses.

Code availability

Complete methods for data preprocessing and peeling algorithm

(PA) from analysis pipeline can be found on GitHub

(https://github.com/ubcxzhang/COVIDnetwork).

Supplementary materials

The interactive version of Figure 6-(a), Supplementary

Report 1, and Supplementary Tables 1-6 can be found

on GitHub (https://github.com/ubcxzhang/COVIDnetwork/-

tree/master/Supplementary materials).

Competing interests

There is NO Competing Interest.

Author contributions statement

X.S. and X.Z. contributed to the study concept and design.

Y.G. and F. E. contributed to the acquisition of the datasets,

data processing and data analysis. Y.G. wrote the first draft

with input from X.S. All authors have developed drafts of the

manuscript and approved the final draft of the manuscript.

Acknowledgments

The authors thank the anonymous reviewers for their valuable

suggestions. We acknowledge Compute Canada for providing

the computational resources. X.S. is supported by the National

Research Council Canada through the Artificial Intelligence for

Design program.

Funding

This work is supported in part by funds from the Natural

Sciences and Engineering Research Council of Canada: NSERC

Discovery Grants: # RGPIN-2017-04722 (YG & XZ), #

RGPIN-2017-04039 (VS), # RGPIN-2016-04022 (AT), #

RGPIN-2021-03530 (LX) and the Canada Research Chair

#950-231363 (XZ).

References

1. Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li,

Bo Yang, Jingdong Song, Xiang Zhao, Baoying Huang,

Weifeng Shi, Roujian Lu, et al. A novel coronavirus from

patients with pneumonia in China, 2019. New England

journal of medicine, 382(8):727–733, 2020.

2. Marco Cascella, Michael Rajnik, Arturo Cuomo, Scott C

Dulebohn, and Raffaela Di Napoli. Features, evaluation and

treatment coronavirus (COVID-19). StatPearls: Treasure

Island, 2020.

3. Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-

Gang Song, Yi Hu, Zhao-Wu Tao, Jun-Hua Tian, Yuan-

Yuan Pei, et al. A new coronavirus associated with human

respiratory disease in China. Nature, 579(7798):265–269,

2020.

4. Ali A Rabaan, Shamsah H Al-Ahmed, Shafiul Haque,

Ranjit Sah, Ruchi Tiwari, Yashpal Singh Malik, Kuldeep

Dhama, M Iqbal Yatoo, D Katterine Bonilla-Aldana,

Alfonso J Rodriguez-Morales, et al. SARS-CoV-2, SARS-

CoV, and MERS-COV: a comparative overview. Le

Infezioni in Medicina, 28(2):174–184, 2020.

5. Markus Hoffmann, Hannah Kleine-Weber, Simon
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