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2 

Abstract 30 

Epigenetic changes are required for normal development, yet the nature and respective contribution 31 

of factors that drive epigenetic variation in humans remain to be fully characterized. Here, we as-32 

sessed how the blood DNA methylome of 884 adults is affected by DNA sequence variation, age, 33 

sex and 139 factors relating to life habits and immunity. Furthermore, we investigated whether these 34 

effects are mediated or not by changes in cellular composition, measured by deep immunopheno-35 

typing. We show that DNA methylation differs substantially between naïve and memory T cells, 36 

supporting the need for adjustment on these cell-types. By doing so, we find that latent cytomegalo-37 

virus infection drives DNA methylation variation and provide further support that the increased dis-38 

persion of DNA methylation with aging is due to epigenetic drift. Finally, our results indicate that 39 

cellular composition and DNA sequence variation are the strongest predictors of DNA methylation, 40 

highlighting critical factors for medical epigenomics studies. 41 

  42 
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Introduction 43 

Epigenetic research has improved our understanding of the existing links between environmental 44 

risk factors, aging, genetic variation and human disease1,2. Epigenome-wide association studies 45 

(EWAS) have shown that DNA methylation (i.e., 5-methylcytosine, 5mC), the most studied 46 

epigenetic mark in humans, is associated with a wide range of environmental exposures along the 47 

life course, such as chemicals3 or past socioeconomic status4-7. Changes in DNA methylation have 48 

also been associated with non-communicable diseases, such as Parkinson’s and Alzheimer’s 49 

diseases, multiple sclerosis, systemic lupus erythematosus, type 2 diabetes and cardiovascular 50 

disease8-11. These studies collectively suggest that DNA methylation marks could be of tremendous 51 

value as gauges of the exposome and as clinical biomarkers12,13. 52 

However, interpretation of EWAS remains limited. First, because the epigenome of a cell 53 

reflects its identity14,15, a risk factor or a disease that alters cellular composition also alters 5mC 54 

levels measured in the tissue16. It is thus necessary to determine if an exposure affects cellular 55 

composition or DNA methylation states of cell-types, in order to better understand the link between 56 

such an exposure, DNA methylation and disease17. Previous studies have accounted for cellular 57 

heterogeneity in blood by using cell sorting experiments, or cellular proportions estimated from 58 

5mC profiles through in-silico cell mixture deconvolution techniques18,19, but these approaches 59 

focus on a subset of frequent cell-types that capture only a part of blood cellular composition. 60 

Second, the strong links between DNA methylation and DNA sequence variation, attested by the 61 

numerous DNA methylation quantitative trait loci (meQTLs) detected so far20-23, suggest that 62 

environmental effects on the epigenome may operate through gene-by-environment interactions, but 63 

evidence for such interactions remains circumstantial. Finally, environmental risk factors with a yet-64 

unknown effect on DNA methylation, such as common infections, could confound associations 65 

between other risk factors, DNA methylation and human phenotypes. Thus, a detailed study of the 66 

factors that impact DNA methylation at the population level, and the extent to which their effects 67 

are mediated by changes in cellular composition, is required to understand the role of epigenetic 68 

variation in health and disease. 69 

To address this gap, we generated whole blood-derived DNA methylation profiles at >850,000 70 

CpG sites for 884 healthy adults of the Milieu Intérieur cohort. We leveraged the deep 71 

characterization of the cohort, including high-resolution immunophenotyping by flow 72 

cytometry24,25, to determine whether and how cellular composition, intrinsic factors (i.e., age and 73 

sex), genetic variation and 139 health- and immunity-related variables and environmental exposures 74 

affect the blood DNA methylome. We first assessed differences in the DNA methylation profiles of 75 

16 different immune cell-types. We then performed EWAS, adjusted or not for the measured 76 
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proportions of the 16 immune cell subsets, and mediation analyses to robustly delineate effects on 77 

DNA methylation that are direct, i.e., acting through changes within cells, from those that are 78 

mediated, i.e., acting through subtle changes in cellular composition26. We show that adjusting 79 

EWAS for 16 measured cell proportions better accounts for cellular heterogeneity than current cell 80 

mixture deconvolution methods. We identify latent cytomegalovirus (CMV) infection as a key 81 

factor affecting population variation in 5mC levels, through the dysregulation of human 82 

transcription factors and profound changes in the proportion of differentiated T cells. We show that 83 

the increased dispersion of DNA methylation with aging is independent of cellular composition, 84 

supporting instead a decrease in the fidelity of the epigenetic maintenance machinery. Furthermore, 85 

we show that a large part of the effects on DNA methylation of aging, smoking, CMV serostatus 86 

and chronic low-grade inflammation is due to subtle changes in blood cell composition, and 87 

characterize the DNA methylation signature of cell-types affected by these factors. Finally, we find 88 

that the largest effects on DNA methylation are due to DNA sequence variation, whereas the most 89 

widespread differences among individuals are the result of blood cellular heterogeneity. This work 90 

generates new hypotheses about mechanisms underlying DNA methylation variation in the human 91 

population and highlights critical factors to be considered in medical epigenomics studies.  92 

  93 
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Results 94 

Proportions of naïve and differentiated T cells markedly contribute to DNA methylation 95 

variation 96 

To investigate the non-genetic and genetic factors that affect population variation in DNA 97 

methylation, we quantified 5mC levels at >850,000 CpG sites, with the Illumina Infinium 98 

MethylationEPIC array, in the 1,000 healthy donors of the Milieu Intérieur cohort (Fig. 1a). The 99 

cohort includes individuals of Western European origin, equally stratified by sex (i.e., 500 women 100 

and 500 men) and age (i.e., 200 individuals from each decade between 20 and 70 years of age), who 101 

were surveyed for detailed demographic and health-related information24, including factors that are 102 

known to affect DNA methylation (i.e., age, sex, smoking, BMI and socioeconomic status), that 103 

have been proposed to affect DNA methylation (e.g., dietary habits, upbringing) or that pertain to 104 

the immune system (e.g., past and latent infections, past vaccinations, antibody levels; 105 

Supplementary Data 1). All donors were genotyped at 945,213 single-nucleotide polymorphisms 106 

(SNPs), yielding 5,699,237 accurate SNPs after imputation25. After quality control filtering, high-107 

quality measurements of DNA methylation were obtained at 644,517 CpG sites for 884 unrelated 108 

individuals27 (Supplementary Fig. 1; Methods). We found that 5mC levels well reproduce expected 109 

patterns across chromatin states15, supporting the good quality of the data (Supplementary Fig. 1 110 

and Supplementary Notes).  111 

Whereas most epigenome-wide studies adjust on estimated cellular composition to detect direct 112 

effects on DNA methylation (i.e., acting through changes within cells), we sought to assess both 113 

direct effects and effects that are mediated by changes in cellular composition, as the genomic 114 

location and magnitude of mediated effects can inform us about how cell differentiation is regulated 115 

in response to environmental exposures17. We thus measured, in all donors, the proportions of 16 116 

immune cell subsets by standardized flow cytometry, including neutrophils, basophils, eosinophils, 117 

monocytes, natural killer (NK) cells, dendritic cells, B cells, CD4-CD8- T cells and naive, central 118 

memory (CM), effector memory (EM) and terminally differentiated effector memory cells (EMRA) 119 

CD4+ and CD8+ T cells25. 120 

We first determined which immune cell populations most affect DNA methylation variation, by 121 

quantifying differences in 5mC levels between the 16 blood cell subsets with multivariable 122 

regression models including log-ratios of cell subsets, defined according to the hierarchical and 123 

compositional nature of the data28 (Methods). We verified that our models are accurate, using 124 

simulations and comparisons with independent DNA methylation data from sorted cellular 125 

subsets29. We found that our estimated effects of cell subset log-ratios on 5mC levels perform as 126 

expected on simulated data (Supplementary Fig. 2 and Supplementary Notes) and are highly 127 
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correlated with DNA methylation differences observed between sorted immune cell fractions (R > 128 

0.6; Supplementary Data 2). When applying these models on our data, we found that 5mC levels of 129 

134,079 CpG sites (20.8% of CpG sites, Supplementary Data 2) are associated with the log-ratio of 130 

myeloid vs. lymphoid lineages (Bonferroni corrected Padj < 0.05). Furthermore, the log-ratio of 131 

these subsets is the factor most associated with the first three Principal Components (PCs) of the 132 

DNA methylation data (multiple linear mixed model of PC1: P = 5.0×10-18; PC2: P = 1.6×10-43; 133 

PC3: P = 6.7×10-17), which respectively explain 11.4%, 7.5% and 5.5% of variation in DNA 134 

methylation. Importantly, we also found that 20,758 and 44,919 CpG sites are associated with the 135 

log-ratios of naïve and differentiated (CM, EM and EMRA) CD4+ and CD8+ T cell subsets, 136 

respectively (Padj < 0.05, Supplementary Data 2), supporting the view that 5mC levels differ 137 

substantially among T cell sub-populations30,31. Furthermore, the log-ratios of naïve and 138 

differentiated CD4+ and CD8+ subsets are also associated with PC1 and PC3 (P < 1.2×10-4; 139 

Fig.1c,d). These results indicate that differences in the proportion of naïve and differentiated subsets 140 

of CD4+ and CD8+ T cells contribute substantially to DNA methylation variation and may mediate 141 

associations between DNA methylation and environmental exposures or diseases. 142 

 143 

Cell mixture deconvolution methods partially account for blood cell heterogeneity 144 

Direct effects of environmental exposures or diseases on DNA methylation are often estimated by 145 

adjusting EWAS on major cell-type fractions, which are predicted in-silico from 5mC levels with 146 

cell mixture deconvolution methods18,32. However, standard methods only predict the overall 147 

proportions of CD4+ and CD8+ T cells and may therefore overestimate the direct effects on DNA 148 

methylation of factors that affect T cell composition, such as aging and viral infections25,33. To test 149 

this hypothesis, and to assess more generally how intrinsic and environmental factors affect the 150 

DNA methylome, we conducted EWAS of 141 candidate factors, by using linear mixed models 151 

adjusted on batch variables, genetic factors (i.e., associated meQTL variants), genetic ancestry, 152 

smoking status, sex and a non-linear age term (Methods). Models were adjusted, or not, for the 16 153 

measured cell proportions, to estimate total (i.e., direct and mediated) or direct effects, respectively. 154 

Mediated effects were estimated by mediation analysis34 (Methods). We considered that each 155 

EWAS constitutes a separate family of association tests and used the Bonferroni correction for 156 

multiple testing adjustment (Padj < 0.05).  157 

Out of the 141 candidate factors, those that have significant total effects on DNA methylation 158 

include age (n = 97,219 CpG sites; 15.1% of CpG sites), cytomegalovirus (CMV) serostatus (n = 159 

79,654; 12.4%), sex (n = 23,002; 3.6%), heart rate (n = 2,924; 0.5%), smoking (n = 839; 0.1%), 160 

body temperature (n = 175), C-reactive protein (CRP) levels (n = 53), the hour of blood draw (n = 161 
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36) and traits related to lipid metabolism (n = 3; Fig. 1b and Supplementary Data 1). Accordingly, 162 

the first PCs of DNA methylation are most strongly associated with CMV (PC1: P = 8.3×10-13; 163 

PC2: P = 7.8×10-10), age (PC3: P = 5.7×10-29) and sex (PC4: P = 2.2×10-5), when not considering 164 

immune cell fractions (Fig. 1c,d and Supplementary Fig. 1i,j). When adjusting on blood cell 165 

composition, factors that have significant direct effects on DNA methylation include age (n = 166 

35,701; 5.5%), sex (n = 17,067; 2.6%), smoking (n = 428; 0.07%), CMV serostatus (n = 245; 167 

0.04%), CRP levels (n = 39) and lipid metabolism-related traits (n = 3; Fig. 1b, Supplementary Fig. 168 

3 and Supplementary Notes). These results suggest that, whereas most CMV effects are mediated by 169 

cellular composition, the effects of sex on DNA methylation are mainly direct, and a substantial 170 

direct effect of age is also retained, even after adjusting for naïve and memory CD4+ and CD8+ T 171 

cell subsets. Accordingly, first PCs of DNA methylation remain associated with sex (PC4: P = 172 

1.3×10-3) and age (PC3: P = 1.1×10-9; Fig. 1c), when considering immune cell fractions, but not 173 

with CMV serostatus (PC1: P > 0.05; Fig. 1d). No significant direct effects of heart rate, body 174 

temperature and hour of sampling were detected, indicating that the effects of these factors on DNA 175 

methylation are due exclusively to changes in immune cell composition35,36. 176 

We then evaluated the performance of three reference-based in-silico cell mixture deconvolution 177 

methods: Houseman et al.’s method, IDOL and EPIC IDOL-Ext18,29,32. We observed that cell 178 

proportions estimated by the three methods are substantially correlated with measured cell 179 

proportions (Supplementary Fig. 4). We then compared EWAS results adjusted either on our flow 180 

cytometric data or on cell proportions estimated by the three deconvolution methods. We found that 181 

EWAS adjusted by the IDOL method detects more CpG sites associated with most candidate 182 

factors, relative to EWAS adjusted on the measured proportions of 16 cell-types, particularly for age 183 

(n = 131,142 vs. 35,701) and latent CMV infection (n = 31,159 vs. 245) (Fig. 1b,e,f). Similar results 184 

were found with Houseman’s method (Fig. 1b). Accordingly, the first PC of DNA methylation 185 

remains strongly associated with CMV serostatus and age when adjusting on IDOL cellular 186 

fractions (P = 7.5×10-6 and P = 3.2×10-17, respectively), whereas it is not when considering 16 187 

measured cell proportions (P > 0.01). Conversely, EWAS adjusted by the EPIC IDOL-Ext method, 188 

which estimates subsets of naïve and memory CD4+ and CD8+ T cell populations29, provide results 189 

that are similar to those of EWAS adjusted for high-resolution flow cytometric data (Fig. 1b). These 190 

results suggest that first-generation deconvolution methods do not fully distinguish direct effects on 191 

DNA methylation from those that are mediated by fine-grained changes in blood cell composition.  192 

To further test this scenario, we conducted EWAS adjusted on flow cytometric data for only six 193 

major cell-types and found results comparable to those for Houseman et al.’s and the IDOL 194 

methods (Fig. 1b). Furthermore, CMV effect sizes adjusted on IDOL cellular fractions or the 6 195 
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major cell proportions were twice more correlated with estimated measures of DNA methylation 196 

differences between naïve and differentiated CD4+  T cells, relative to CMV effect sizes adjusted on 197 

16 measured cell proportions (R = 0.66, relative to R = 0.31, respectively; Fig. 1g,h). Together, these 198 

results indicate that adjustment for the proportions of only the six major cell-types is not able to 199 

fully account for blood cell heterogeneity, particularly when estimating the effects of age and CMV 200 

infection on DNA methylation, two factors that are known to skew CD4+ and CD8+ T cell 201 

compartments toward differentiated phenotypes25.  202 

 203 

Cytomegalovirus infection alters the blood DNA methylome through regulation of host 204 

transcription factors 205 

We identified CMV serostatus as one of the exposures that is associated with the largest number of 206 

CpG sites (Fig. 1b). CMV is the causative agent of a latent, mainly asymptomatic, infection that 207 

ranges in seroprevalence from 30% to 100% across populations37. CMV is known to drastically 208 

alter the composition of the CD4+ and CD8+ T cell compartments in blood25,33. Accordingly, we 209 

found that 85,922 CpG sites show a significant cell-composition-mediated effect of CMV serostatus 210 

on DNA methylation (Padj < 0.05; Supplementary Data 1), indicating that the effects of the latent 211 

infection are mainly mediated by cellular composition. Furthermore, we observed a strong 212 

correlation between mediated and total effect sizes of CMV serostatus (R = 0.93; Fig. 2a) and 213 

99.5% of CpG sites with a significant direct effect also show a significant mediated effect (n = 244 / 214 

245). We found that mediated effect sizes of CMV are strongly correlated with estimated measures 215 

of DNA methylation differences between naïve and memory CD4+ and CD8+ T cells (R = 0.68 and 216 

R = 0.53, respectively; Fig. 2b), suggesting that cell-composition-mediated effects of CMV are 217 

predominantly attributable to changes in these T cell subsets. 218 

One of the strongest cell-composition-mediated effects of CMV infection was observed in an 219 

intron of DNMT3A (β value scale 95% confidence interval [CI]: [1.8%, 2.4%], Padj = 1.1×10-23), 220 

encoding a key DNA methyltransferase playing a role in the replication of some herpesviruses38. 221 

CMV+ donors show a substantial increase in the proportion of CD4+ and CD8+ TEMRA cells (P = 222 

6.8×10-35 and P = 1.9×10-50, respectively), which in turn are associated with higher 5mC levels at 223 

DNMT3A (P = 3.3×10-25 and P = 1×10-53, respectively), supporting mediation by differentiated 224 

memory T cell subsets (Fig. 2c). To test if the effects of CMV infection on 5mC levels are cell-type-225 

dependent, we derived and verified an interaction model similar to CellDMC39 (Methods). We 226 

restricted this analysis to interactions with the proportion of cells from the myeloid lineage, as 227 

previously reported40, and found only one CpG site where CMV effects depend on the proportion of 228 

myeloid cells (Padj < 0.05; Supplementary Data 3). These results indicate that CMV infection affects 229 
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a large fraction of the blood DNA methylome primarily through changes in blood cell proportions, 230 

rather than through cell-type-dependent changes. 231 

However, when adjusting for blood cell composition, including CD4+ and CD8+ T cell sub-232 

types, a significant direct effect of CMV serostatus was detected for 245 CpG sites. Increased 5mC 233 

levels in CMV+ donors localize predominantly in enhancers and regions flanking transcription start 234 

sites (odds ratio [OR] > 3.0, Padj < 5.3×10-8; Supplementary Fig. 5), suggesting dysregulation of 235 

host gene expression as a result of latent infection. The second strongest direct effect of CMV 236 

infection was observed nearby the TSS of LTBP3 (β value scale 95% CI: [1.9%, 3.1%], Padj = 237 

7.1×10-17; Fig. 2d and Supplementary Fig. 6). LTBP3 is a regulator of transforming growth factor β 238 

(TGF-β)41, which is induced in CMV latently infected cells42. Strikingly, CpG sites showing 239 

increased 5mC levels in CMV+ donors are strongly enriched in binding sites for the BRD4 240 

transcription factor (TF) (n = 187 / 189, OR = 48.0, 95% CI: [13.1, 399.0], Padj < 1.1×10-27; Fig. 2e 241 

and Supplementary Data 4), a bromodomain protein that plays a critical role in the regulation of 242 

latent and lytic phases of CMV infection43. Conversely, CpG sites showing a decrease in DNA 243 

methylation in CMV+ donors are strongly enriched in binding sites for BATF3 (OR = 24.8, 95% CI: 244 

[13.8, 42.2], Padj < 1.3×10-14; Fig. 2f), which is paramount in the priming of CMV-specific CD8+ T 245 

cells by cross-presenting dendritic cells44. Collectively, these analyses imply that CMV infection 246 

directly affects the human blood DNA methylome through the dysregulation of host TFs implicated 247 

in viral latency and host immune response. 248 

Finally, to motivate future research on the epigenetic effects of CMV infection, we used elastic 249 

net regression and stability selection to predict CMV serostatus from DNA methylation (Methods). 250 

Based on 547 CpG sites, the model predicts CMV serostatus with an out-of-sample accuracy of 251 

87%, using 10-fold cross-validation. We anticipate that this model will be useful to determine if 252 

latent CMV infection can confound epigenetic risk for disease45,46.  253 

 254 

Aging elicits DNA hypermethylation related to Polycomb repressive complexes and increased 255 

epigenetic dispersion 256 

Although the effects of aging on DNA methylation are well established47-51; it remains unclear the 257 

extent to which they are due to changes in unmeasured proportions of differentiated T cells (Fig. 1b) 258 

or CMV infection, which are both strongly associated with age25,52. Indeed, age has a significant 259 

total effect on 5mC levels at 97,219 and 113,742 CpG sites, when adjusting or not on CMV 260 

serostatus, and CMV infection mediates a substantial fraction of total age effects (n = 10,074 CpG 261 

sites). We thus investigated how the blood DNA methylome is shaped by the intertwined processes 262 
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of cellular aging (i.e., direct effects) and age-related changes in blood cellular composition (i.e., 263 

mediated effects), while accounting for CMV serostatus.  264 

We found that, out of the 35,701 CpG sites associated directly with age, more than 97% were 265 

associated with age in a previous EWAS53, indicating a strong overlap (OR 95% CI: [35.6, 40.8]). 266 

In line with previous findings54, direct effects of age are typically larger than mediated effects (Fig. 267 

3a). Furthermore, the strongest direct age effects, such as those observed at ELOVL2 and FHL2 268 

(Supplementary Fig. 6), are not mediated by cellular composition (Padj = 1.0), suggesting that age-269 

related changes at these CpG sites are typically shared across cell-types. We observed that 61% of 270 

the CpG sites directly associated with age show a decrease in 5mC levels. Age-associated 271 

demethylation predominates outside of CpG islands (CGIs) and in regions flanking transcription 272 

start sites and in enhancers (Fig. 3b and Supplementary Fig. 7a,b). Conversely, DNA 273 

hypermethylation was observed in 95% of age-associated CpGs within CGIs. Consistently, CpG 274 

sites exhibiting increasing 5mC levels with age are mainly found in Polycomb-repressed regions, 275 

bivalent TSSs and bivalent enhancers (Fig. 3b,c), which are CGI-rich regions (Supplementary Fig. 276 

1M,N). Furthermore, these CpG sites are most enriched in binding sites for RING1B, JARID2, 277 

RYBP, PCGF1, PCGF2 and SUZ12 TFs (OR > 10.0; Fig. 3d and Supplementary Data 4), which are 278 

all part of the Polycomb repressive complexes 1 and 2. PRC1 and PRC2 mediate cellular 279 

senescence and modulate longevity in invertebrates55,56. Importantly, when restricting the analysis 280 

to CpG sites outside of CpG islands, we found similar enrichments in Polycomb-repressed regions 281 

(OR 95% CI [17.7, 20.0]) and PRC TF binding sites (RING1B OR 95% CI: [19.9, 22.4]; PCGF2 282 

OR 95% CI [17.8, 20.7]). Finally, genes with age-increasing 5mC levels are strongly enriched in 283 

developmental genes (Padj = 1.7×10-48; Supplementary Data 5), which are regulated by PRCs57. 284 

Overall, these results confirm previously described effects of age on the blood DNA methylome, 285 

while accounting more comprehensively for blood cell composition and CMV infection, and 286 

support a key regulatory role of Polycomb proteins in age-related hypermethylation58.  287 

We then assessed whether age-related changes in blood cell composition or CMV seropositivity 288 

could contribute to age-related changes in the variance of 5mC levels, a phenomenon known as 289 

“epigenetic drift” (i.e., the divergence of the DNA methylome as a function of age owing to 290 

stochastic changes)51,59-61. We observed that the proportion of several cell-types in blood are 291 

increasingly dispersed with aging, such as CD4+ TEMRA cells (Fig. 3e). Therefore, we fitted models 292 

parameterizing the residual variance with a linear age term, and adjusting for 16 immune cell 293 

proportions, age, CMV serostatus, smoking status and sex in the mean function (Methods). We 294 

observed a significant dispersion of DNA methylation with age for 3.1% of all CpG sites (n = 295 

20,140, Padj < 0.05). We compared these CpG sites with those previously reported to be increasingly 296 
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variable with age in whole blood and monocytes60 and replicated 2,604 out of 5,075 CpG sites, 297 

supporting a strong overlap between the two different approaches (OR 95% CI: [36.2, 40.8]). An 298 

example of a CpG site with a large, age-increasing dispersion is found in the TSS of MAFA (Padj = 299 

4.4×10-43; Fig. 3f), encoding a transcription factor that regulates insulin. Strikingly, 99.4% of CpGs 300 

with age-related dispersion show an increase in the variance of 5mC levels with age (Fig. 3g), 301 

supporting a decrease in the fidelity of epigenetic maintenance associated with aging. In addition, 302 

we found that, out of 20,140 CpG sites with age-related dispersion, 87.3% show no significant 303 

changes in mean 5mC levels with age, and we detected no correlation between estimates of 304 

dispersion and direct age effect sizes (Fig. 3h), implying that these results are not driven by 305 

relationships between the average and variance of 5mC levels. Furthermore, when also adjusting the 306 

variance function for cellular composition, we found evidence of dispersion in 8,576 CpG sites (Padj 307 

< 0.05), with similar effect sizes as in the previous model (R = 0.93; Methods). Collectively, these 308 

findings indicate that aging elicits numerous DNA methylation changes in a cell-composition-309 

independent manner, including global epigenome-wide demethylation, hypermethylation of PRC-310 

associated regions and increased variance, highlighting the occurrence of different mechanisms 311 

involved in epigenetic aging. 312 

 313 

Immunosenescence-related changes in cellular composition mediate DNA methylation 314 

variation with age 315 

We detected a significant cell-composition-mediated effect of age at ~1.1% of CpG sites (n = 7,090; 316 

Fig. 3a and Supplementary Data 1), indicating that a substantial fraction of age-related changes in 317 

DNA methylation are due to age-related changes in immune cell proportions. Mediated effects are 318 

most often associated with demethylation (76% of age-associated CpG sites), regardless of the 319 

chromatin state or CGI density of the loci considered (Fig. 3j and Supplementary Fig. 7c,d). 320 

Enhancers and regions flanking transcription start sites are enriched in CpG sites with a significant 321 

cell-composition-mediated effect of age (Fig. 3i), possibly because these regions tend to be 322 

regulated in a cell-type-dependent manner15. In contrast with direct age effects, CpG sites with a 323 

cell-composition-mediated increase in DNA methylation are enriched in TF binding sites for 324 

RUNX1-3 (OR = 8.5, 95% CI: [4.5, 14.7], Padj < 1.2×10-8), which are key regulators of 325 

hematopoiesis (Fig. 2k and Supplementary Data 4). Genes with CpG sites showing a mediated 326 

increase or decrease in DNA methylation with age are enriched in genes involved in lymphoid (Padj 327 

= 2.0×10-7) and myeloid (Padj = 6.1×10-13) cell activation, respectively (Supplementary Data 5). 328 

This indicates that mediated effects of age on DNA methylation are related to progressive, lifelong 329 

differences in the composition of the lymphoid and myeloid cell lineages. 330 
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We then determined if age effects on 5mC levels depend on the proportion of cells from the 331 

myeloid lineage, by using an interaction model (Methods). In line with a previous study54, we found 332 

that cell-type-dependent effects of age (Supplementary Data 3) are limited; only 10 CpG sites show 333 

DNA methylation changes with age that depend on the proportion of myeloid cells (Padj < 0.05; 334 

Supplementary Data 3). Importantly, age also has a strong mediated effect on all these CpG sites 335 

(Padj < 1.0×10-10), implying that these loci are associated with age because of changes in blood cell 336 

composition, although their relation to age is cell-type-dependent. Collectively, our findings provide 337 

statistical evidence that DNA methylation variation with age results from different, non-mutually 338 

exclusive mechanisms: the progressive decline of the epigenetic maintenance system that is 339 

common to all cell-types, the increased heterogeneity of immune cell subsets that characterizes 340 

immunosenescence62 and, to a lesser extent, accelerated changes within specific blood cell 341 

compartments. 342 

 343 

Sex differences in DNA methylation are predominantly cell- and age-independent 344 

Given that substantial differences in immune cell composition have been observed between women 345 

and men25, we next assessed how cellular heterogeneity contributes to sex differences in DNA 346 

methylation63-65. We found 3.6% of CpG sites (n = 23,002) with a significant total effect of sex, 347 

2.6% (n = 17,067) with a significant direct effect, and only 0.2% (n = 1,385) with a significant cell-348 

composition-mediated effect (Padj < 0.05; Supplementary Fig. 8a and Supplementary Data 1). Out 349 

of CpG sites directly associated with sex, 96.2% were already associated with sex in a previous 350 

EWAS53, indicating again a strong overlap (OR 95% CI: [39.6, 46.5]). The largest direct effects of 351 

sex were observed at DYRK2, DNM1, RFTN1, HYDIN, and NAB1 genes (Padj < 1.0×10-263; 352 

Supplementary Fig. 6). For example, the DYRK2 promoter is 11.7% and 45.6% methylated in men 353 

and women, respectively, at a CpG site that we found to be bound by the X-linked PHF8 histone 354 

demethylase (Supplementary Fig. 8b,c). DYRK2 phosphorylates amino acids and plays a key role 355 

in breast and ovarian cancer development66. 356 

DNA methylation levels are higher in women at 79.7% of sex-associated autosomal CpG sites 357 

(Supplementary Fig. 8d,e), a pattern also observed in newborns64. This proportion is similar across 358 

different genomic regions, based on either chromatin states or CpG density (Supplementary Fig. 359 

8e,g). When quantifying how sex differences in DNA methylation vary during adulthood, by adding 360 

a sex-by-age interaction term to our models (Methods), we found only 7 CpG sites with a 361 

significant, sex-dependent effect of age (Padj < 0.05; Supplementary Data 3). Confirming previous 362 

findings53,67, the strongest sex-by-age interaction effects were found at FIGN (Padj < 7.1×10-15), 363 

associated with risk-taking behaviors68 and educational attainment69, and PRR4 (Padj < 5.6×10-3), 364 
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associated with the dry eye syndrome, a hormone-dependent, late-onset disorder70. Overall, our 365 

findings indicate that the blood DNA methylome is widely affected by sex, but its effects are 366 

typically not mediated by cellular composition and do not change during adulthood. 367 

 368 

Gene × cell-type and gene × environment interactions affect DNA methylation variation 369 

Gene × environment interactions are thought to underlie adaptable human responses to 370 

environmental exposures through epigenetic changes71. To test if gene × environment interactions 371 

affect DNA methylation, we first estimated, for each CpG site, the effects on 5mC levels of local 372 

and remote DNA sequence variation, defined as genetic variants within a 100-Kb window and 373 

outside a 1-Mb window centered on the CpG site, respectively (Methods). We considered local and 374 

remote meQTLs to be independent families of tests and used the Bonferroni correction to adjust for 375 

multiple testing. We found a significant local meQTL for 107,048 CpG sites and a significant 376 

remote meQTL for 1,228 CpG sites (Padj < 0.05; Supplementary Fig. 9 and Supplementary Data 6). 377 

In agreement with previous studies21,23, CpG sites with a local meQTL are enriched in enhancers 378 

(OR 95% CI: [2.09, 2.21]) and depleted in TSS and actively transcribed genes (OR 95% CIs: [0.52, 379 

0.56] and [0.57, 0.60]; Fig. 4a). Conversely, CpG sites under remote genetic control are enriched in 380 

TSS regions (OR 95% CI: [2.10, 3.11]) and regions associated with ZNF genes (OR 95% CI: [1.26, 381 

6.17]; Fig. 4b). Furthermore, we found that remote meQTL variants are also strongly concentrated 382 

in ZNF genes (OR 95% CI: [14.6, 29.8]; Fig. 4c), suggesting that zinc-finger proteins (ZFPs) play a 383 

role in the long-range control of DNA methylation, in line with their role in the regulation of 384 

heterochromatin72-74.  385 

We next explored whether effects of genetic variants on 5mC levels depend on the circulating 386 

proportion of myeloid cells. We found evidence for cell-type-dependent meQTLs at only 249 CpG 387 

sites (Padj < 0.05; Fig. 4d and Supplementary Data 3), supporting the notion that genetic effects on 388 

5mC levels are generally shared across blood cell subsets75. The strongest signal was found between 389 

5mC levels upstream of CLEC4C and the nearby rs11055602 variant, which has been previously 390 

shown to strongly affect CLEC4C protein levels76. This C-type lectin, known as CD303, is used as a 391 

differentiation marker for dendritic cells, suggesting the epigenetic regulation of the locus is cell-392 

type-dependent. Accordingly, rs11055602 genotype effects on DNA methylation depend on the 393 

circulating proportions of myeloid cells (β scale interaction effect, 95% CI: [0.16, 0.22], Padj = 394 

7.4×10-20; Fig. 4e), and dendritic cells (95% CI: CI: [-8.3, -5.0], Padj = 3.5×10-15). 395 

We then evaluated whether the main non-heritable determinants of DNA methylation variation 396 

in our cohort, i.e., age, sex, CMV serostatus, smoking status and chronic low-grade inflammation 397 

(CRP levels; Fig. 1b, Supplementary Fig. 3 and Supplementary Notes), can affect 5mC levels in a 398 
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genotype-dependent manner. We thus tested for genotype × age, genotype × sex, genotype × 399 

smoking jointly (Methods). Genotype × CRP levels interactions were tested in a separate model that 400 

include the other interaction effects. We found statistical evidence for genotype-dependent effects of 401 

age and sex at 68 and 20 CpG sites, respectively (Padj < 0.05, MAF > 0.10; Fig. 4d and 402 

Supplementary Data 3), the interacting meQTL variant being local in all cases. We detected a strong 403 

genotype × age interaction for two CpG sites located in the BACE2 gene, the 5mC levels of which 404 

decrease with age only in donors carrying the nearby rs2837990 G>A allele (β scale 95% CI: [0.11, 405 

0.13], Padj = 7.28×10-10; Fig. 4f). BACE2 encodes beta-secretase 2, one of two proteases involved in 406 

the generation of amyloid beta peptide, a critical component in the etiology of Alzheimer’s 407 

disease77. Another strong genotype × age interaction effect was found for a CpG site upstream of 408 

FCER1A, encoding the high-affinity IgE receptor. FCER1A 5mC levels decrease with age in 409 

rs2251746 T>C carriers only (95% CI: [0.05,0.07], Padj = 8.6×10-9), a variant known to control 410 

serum IgE levels78. Collectively, our analyses identify few, albeit strong, environment- and cell-411 

type-dependent meQTLs, supporting the relatively limited impact of gene × cell-type and gene × 412 

environment interactions on the blood DNA methylome. 413 

 414 

Cellular composition and genetics drive DNA methylation variation in human blood 415 

Having established how cellular composition, intrinsic factors, genetic variation, and a broad 416 

selection of non-heritable factors shape the blood DNA methylome, we next sought to compare the 417 

relative impact of these factors on DNA methylation. We classified the factors into four groups: (i) 418 

the cellular composition group, which consists of the 16 measured cell proportions; (ii) the intrinsic 419 

group, which consists of age and sex; (iii) the genetic group, which consists of the most associated 420 

local-meQTL variant around each CpG site; and (iv) the exposure group, which consists of smoking 421 

status, CMV serostatus and CRP levels. Since these groups vary in their degrees of freedom, we 422 

measured the relative predictive strength for each CpG site by the out-of-sample prediction 423 

accuracy, estimated by cross-validation (Methods). To ensure unbiased estimates, we mapped local 424 

meQTLs anew within each training set.  425 

The full model that includes all groups explains < 5% of out-of-sample variance for 52.3% of 426 

CpG sites (Fig. 5a), which are typically characterized by low total 5mC variance (Supplementary 427 

Fig. 10). This suggests that these sites are constrained in the healthy population and that small 428 

fluctuations in 5mC levels determine their variation, possibly due to measurement errors or 429 

biological noise. Nevertheless, the model explains > 25% of DNA methylation variance for 20.8% 430 

of CpG sites (n = 134,305). The strongest predictor for these CpG sites is cellular composition, 431 

genetics, intrinsic factors and exposures in 74.7%, 21.5%, 3.8% and 0.01% of cases, respectively. 432 
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Cellular composition explains > 25% of out-of-sample variance for 1.0% of CpG sites (n = 90,033; 433 

Fig. 5a,c and Supplementary Data 7), with the highest variance explained by cellular composition 434 

for one CpG site being 71.8%. For the 2,580 CpG sites where the model explains > 75% of 435 

variance, local DNA sequence variation is the strongest predictor in 99.2% of cases (Fig. 5c and 436 

Supplementary Data 7). Local genetic variation explains > 25% of DNA methylation variance at 437 

23,677 CpG sites, and almost as many when adjusting for cellular composition (n = 22,865) (Fig. 438 

5a,b), indicating that genetic effects on 5mC levels are mainly cell-composition-independent. 439 

Intrinsic factors explain > 25% of out-of-sample variance at 3,669 CpG sites, and > 75% at 16 sites 440 

(Fig. 5c). When conditioning on cell composition, these numbers dropped to 334 and 6 CpG sites, 441 

respectively, suggesting that the predictive ability of age and sex is partly mediated by immune cell 442 

composition (Fig. 5b). Interestingly, environmental exposures are the weakest predictor of 5mC 443 

levels, explaining > 25% of the variance at only 29 CpG sites and with a maximum variance 444 

explained for a CpG site of 50.1%.  445 

Finally, we estimated the proportion of variance explained by genotype × age, genotype × sex 446 

and genotype × exposure interactions, by considering the difference of the out-of-sample variance 447 

explained by models including interaction terms and models with only main effects (Methods). We 448 

found a significant increase in predictive ability when including interaction terms for 431 CpG sites 449 

(ANOVA Padj < 0.05). However, the effects were typically modest: only 13 CpG sites showed an in-450 

crease in the proportion of variance explained larger than 5% (Fig. 5b). Collectively, these results 451 

show that cellular composition and local genetic variation are the main drivers of DNA methylation 452 

variation in the blood of adults, reinforcing the critical need to study epigenetic risk factors and bi-453 

omarkers of disease in the context of these factors.  454 
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Discussion 455 

Here, we present a rich data resource that delineates the contribution of blood cellular composition, 456 

age, sex, genetics, environmental exposures and their interactions to variation in the DNA 457 

methylome. All the results can be explored via a web-based browser (MIMETH browser), to 458 

facilitate the exploration of the estimated effects of these factors on DNA methylation variation. We 459 

found that CMV infection elicits substantial changes in the blood DNA methylome, in contrast with 460 

other herpesviruses such as EBV, HSV-1, HSV-2 and VZV. Latent CMV infection is known to 461 

profoundly alter the number, activation status and transcriptional profiles of immune cell 462 

populations, yet its epigenetic consequences have attracted little attention. We observed that most 463 

CMV effects on DNA methylation are mediated by the profound changes in blood cell 464 

composition25, including the CMV-driven inflation of memory CD4+ and CD8+ T cells33. However, 465 

we also detected cell-composition-independent effects of CMV infection, suggesting that the 466 

herpesvirus can directly regulate the host epigenome. Notably, differentially methylated CpG sites 467 

in CMV+ donors are strongly enriched in binding sites for BRD4, a key host regulator of CMV 468 

latency43, suggesting that the recruitment of BRD4 by CMV during latent infection affects BRD4-469 

regulated host genes. Furthermore, CMV+ donors are characterized by a strong increase in 5mC 470 

levels at LTBP3, the product of which is involved in TGF-β secretion. TGF-β is a well-known 471 

immunosuppressive cytokine induced by CMV infection42, which represents a possible strategy of 472 

the virus to escape host immunity. These results suggest that the capacity of CMV to manipulate the 473 

host epigenetic machinery results in epigenetic changes of latently infected cells. 474 

Our study provides further support to the notion that three different biological mechanisms un-475 

derlie age-related changes in DNA methylation. The first elicits an increased dispersion of 5mC lev-476 

els with age that is related to epigenetic drift51,59-61. We found that dispersion of DNA methylation 477 

with age is not due to cellular heterogeneity, supporting instead the progressive decline in fidelity of 478 

the DNA methylation maintenance machinery across cell populations. The second mechanism re-479 

sults in cell-composition-independent, global DNA demethylation and CGI-associated hypermethyl-480 

ation. Age-associated DNA demethylation could be related to the downregulation of DNMT3A/B 481 

de novo methyltransferases, whereas CGI-associated hypermethylation may result from the down-482 

regulation of the Polycomb repressive complexes 1 and 2 and/or TET proteins, coupled with a loss 483 

of H3K27me3 marks79-81. Alternatively, these changes may be related to the mitotic clock, which 484 

assumes a progressive accumulation of DNA methylation changes with mitotic divisions, including 485 

loss of methylation at partially methylated domains (PMD) and gain of methylation at PRC2-486 

marked CpG-rich regions82-84. Both scenarios are supported by the enrichment of Polycomb-re-487 

pressed regions in age-associated CpG sites, and of binding sites of PRC-related TFs in CpG sites 488 
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methylated with age. The third mechanism elicits cell-composition-mediated demethylation at all 489 

compartments of the epigenome, particularly at enhancers of myeloid activation genes. This process 490 

likely reflects an increased degree of differentiation in the lymphoid compartment with age. Single-491 

cell methylomes of differentiating and dividing white blood cells will help determine the role of mi-492 

totic and post-mitotic 5mC changes during epigenetic aging. 493 

Another interesting finding of our study is that environmental exposures explain a small fraction 494 

of the variance of DNA methylation in healthy adults, at odds with the common view that the epige-495 

nome is strongly affected by the environment85. Twin studies have estimated the heritability of DNA 496 

methylation to range from ~20-40% (ref.86-88), suggesting that environmental effects, along with 497 

gene × environment interactions, account for the remaining 60-80% (ref.89). However, other factors, 498 

including cellular composition and measurement error, may account for most of the unexplained 499 

variance. Consistently, we estimated that cellular composition explains >25% of the variance for 500 

~13% of the DNA methylome, and it has been estimated that measurement error may explain >50% 501 

(ref.90). Nevertheless, a limitation of our study is that perinatal and early life exposures, which are 502 

thought to contribute extensively to epigenetic variation in adulthood85, have not been extensively 503 

assessed in the Milieu Intérieur cohort. In addition, it has been hypothesized that gene × environ-504 

ment interactions are central to understand the role of epigenetics in development91, but statistical 505 

evidence for interaction effects requires larger cohorts92, suggesting that our results might represent 506 

a small, perceptible fraction of a large number of weak effects93,94. Large, longitudinal cohorts ad-507 

dressing the developmental origins of disease are needed to shed new light on the role of DNA 508 

methylation in the interplay between genes and the environment. 509 

Collectively, our findings have broad consequences for the study and interpretation of epige-510 

netic factors involved in disease risk. First, our analyses show that first-generation cell mixture de-511 

convolution methods18,32 do not fully distinguish direct from cell-composition-mediated effects of 512 

CMV infection and age on DNA methylation, probably because these two factors alter the propor-513 

tions of blood cell subsets that are not estimated by these methods. This reinforces the view that 514 

EWAS must be interpreted with great caution, particularly when the studied diseases or conditions 515 

are known to affect unmeasured immune cell fractions. Encouragingly, our findings suggest that, 516 

when blood cell composition is not measured directly, high resolution cell mixture deconvolution 517 

methods29,95 provide a more complete correction for cellular heterogeneity and are therefore ex-518 

pected to improve the interpretation of future epigenomic studies. Second, because age, sex, CMV 519 

infection, smoking and chronic low-grade inflammation can influence disease risk45,96-99, our results 520 

emphasize the critical need to consider such factors in EWAS, as these factors can confound associ-521 

ations. Lastly, our findings reveal the epigenetic impact of aging and persistent viral infection 522 
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through fine-grained changes in blood cell proportions, highlighting the need to assess the respec-523 

tive role of altered cellular composition and DNA methylation in the etiology of disease17. Large-524 

scale studies using single-cell approaches will help overcome these challenges, and are anticipated 525 

to further decode the epigenetic mechanisms underlying healthy aging and the environmental causes 526 

of human disease. 527 

  528 
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Methods 529 

The Milieu Intérieur cohort 530 

The Milieu Intérieur cohort was established with the goal to identify genetic variation and 531 

environmental exposures that affect phenotypes related to the immune system in the adult, healthy 532 

population. The 1,000 healthy donors of the Milieu Intérieur cohort were recruited by BioTrial 533 

(Rennes, France), and included 500 women and 500 men. Donors included 100 women and 100 534 

men from each decade of life, between 20 and 69 years of age. Donors were selected based on 535 

various inclusion and exclusion criteria that are detailed elsewhere24. Briefly, donors were required 536 

to have no history or evidence of severe/chronic/recurrent pathological conditions, neurological or 537 

psychiatric disorders, alcohol abuse, recent use of illicit drugs, recent vaccine administration, and 538 

recent use of immune modulatory agents. To avoid the influence of hormonal fluctuations in 539 

women, pregnant and peri-menopausal women were not included. To avoid genetic stratification in 540 

the study population, the recruitment of donors was restricted to individuals whose parents and 541 

grandparents were born in Metropolitan France.  542 

 543 

Ethical approvals 544 

The study is sponsored by the Institut Pasteur (Pasteur ID-RCB Number: 2012-A00238-35) and was 545 

conducted as a single center study without any investigational product. The Milieu Intérieur clinical 546 

study was approved by the Comité de Protection des Personnes — Ouest 6 (Committee for the 547 

protection of persons) on June 13, 2012 and by the French Agence Nationale de Sécurité du 548 

Médicament (ANSM) on June 22, 2012. The samples and data used in this study were formally 549 

established as the Milieu Intérieur biocollection (study# NCT03905993), with approvals by the 550 

Comité de Protection des Personnes – Sud Méditerranée and the Commission nationale de 551 

l'informatique et des libertés (CNIL) on April 11, 2018.  552 

 553 

DNA sampling and extraction 554 

Whole blood was drawn from the 1,000 Milieu Intérieur healthy, fasting donors every working day 555 

from 8AM to 11AM, from September 2012 to August 2013, in Rennes, France. Different 556 

anticoagulants were used, depending on the downstream analyses. For DNA methylation profiling, 557 

blood samples were collected on EDTA, whereas samples for flow cytometry and genome-wide 558 

DNA genotyping were collected on Li-heparin. Tracking procedures were established in order to 559 

ensure delivery to Institut Pasteur (Paris) within 6 hours of blood draw, at a temperature between 560 

18°C and 25°C. Upon receipt, samples were kept at room temperature until DNA extraction. DNA 561 

for DNA methylation profiling was extracted using the Nucleon BACC3 genomic DNA extraction 562 
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kit (catalog #: RPN8512; Cytiva, Massachusetts, USA). High-quality genomic DNA was obtained 563 

for 978 out of the 1,000 donors. 564 

 565 

DNA methylation profiling and data quality controls 566 

Extracted genomic DNA was treated with the EZ DNA Methylation Kit (catalog #: D5001; Zymo 567 

Research, California, USA). Bisulfite-converted DNA was applied to the Infinium 568 

MethylationEPIC BeadChip (catalog #: WG-317-1003; Illumina, California, USA), using the 569 

manufacturer’s standard conditions. The MethylationEPIC BeadChip measures 5mC levels at 570 

866,836 CpG sites in the human genome. Raw IDAT files were processed with the minfi R 571 

package100. All samples showed average detection P-values < 0.005. No sample showed a mean of 572 

methylated intensity signals lower than 3 × standard deviations (SD) from the cohort average. 573 

Therefore, no samples were excluded based on detection P-values or methylated intensity signals. 574 

The sex predicted from 5mC signals on sex chromosomes matched the declared sex for all samples 575 

(Supplementary Fig. 1a). Using the 59 control SNPs included in the MethylationEPIC array, a 576 

single sample showed high genotype discordance with the genome-wide SNP array data (see 577 

‘Genome-wide DNA genotyping’ section) and was thus excluded (Supplementary Fig. 1b). 578 

Unmethylated and methylated intensity signals were converted to M-values. A total of 2,930 probes 579 

with >1% missingness (i.e., detection P-value > 0.05 for more than 1% of donors) were excluded 580 

and remaining missing data (missingness = 0.0038%) were imputed by mean substitution. Using the 581 

irlba R package, Principal Component Analysis (PCA) of M values identified nine outlier samples, 582 

including eight that were processed on the same array (Supplementary Fig. 1c), which were also 583 

excluded. The “noob” background subtraction method101 was applied on M values for the remaining 584 

968 samples, which showed highly consistent epigenome-wide DNA methylation profiles 585 

(Supplementary Fig. 1d,e). 586 

To identify batch effects on the DNA methylation data, we searched for the factors that were the 587 

most associated with the top 20 PCs of the PCA of noob-corrected M values. We used a linear 588 

mixed model that included age, sex and cytomegalovirus (CMV) serostatus as fixed effects, and 589 

slide position and sample plate as random effects. The models were fitted with the lme4 R 590 

package102. Strong associations were observed between the first four PCs and slide position and 591 

sample plate (Supplementary Fig. 1f, g). M values were thus corrected for these two batch effects 592 

using the ComBat function, from the sva R package103. After ComBat correction, the ten first PCs 593 

of a PCA of M values were associated with factors known to affect DNA methylation, including 594 

blood cell composition, age and sex (Supplementary Fig. 1h-j), indicating no other, strong batch 595 

effect on the data (see section ‘Associations with principal components of DNA methylation’).  596 
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M-values were converted to β values, considering that β = 2M / (2M + 1). Because outlier 5mC 597 

values due to measurement error could inflate the type I error rate of regression models, we 598 

excluded, for each CpG site, M or β values that were greater than 5 × SD from the population 599 

average, corresponding to <0.1% of all measures. We also excluded (i) 83,380 non-specific probes 600 

that share >90% sequence identity with several genomic regions (see details in104), (ii) 118,575 601 

probes that overlap a SNP that is within the 50 pb surrounding the CpG site and has a MAF>1% in 602 

the Milieu Intérieur cohort or in European populations from the 1,000 Genomes project105, (iii) 558 603 

probes that were absent from the Illumina annotations version 1.0 B4 and (iv) 16,876 probes located 604 

on sex chromosomes. As a result, the final, quality-controlled data was composed of 968 donors 605 

profiled at 644,517 CpG sites. 606 

 607 

Flow cytometry 608 

Immune cell proportions were measured using ten eight-color flow-cytometry panels25. The 609 

acquisition of cells was performed using two MACSQuant analyzers, which were calibrated using 610 

MacsQuant calibration beads (Miltenyi, Germany). Flow cytometry data were generated using 611 

MACSQuantify software version 2.4.1229.1. The mqd files were converted to FCS compatible 612 

format and analyzed by FlowJo software version 9.5.3. A total of 110 cell proportions were 613 

exported from FlowJo. Protocols, panels, staining antibodies and quality control filters used for 614 

flow cytometry analyses are detailed elsewhere25. Abnormal lysis or staining were systematically 615 

flagged by trained experimenters. We removed outliers by using a scheme detailed previously25. We 616 

used a distance-based approach that, for each cell-type, removes observations in the right tail if the 617 

distance to the closest observation in the direction of the mean is larger than 20% of the range of the 618 

observations. Similarly, observations in the left tail were removed if the distance to the closest 619 

observation in the direction of the mean is more than 15% than the range the observations. We 620 

removed 22 observations in total, including a maximum of 8 observations for a single cell-type (i.e., 621 

for the proportion of neutrophils). Problems in flow cytometry processing, such as abnormal lysis or 622 

staining, were systematically flagged by trained experimenters, which resulted in 8.7% missing 623 

data. Because imputing missing data for donors who show large missingness could be inaccurate, 624 

we excluded 74 donors with no data for the T cell panel. Finally, the remaining missing data were 625 

imputed using the random forest-based missForest R package106.  626 

 627 

Genome-wide DNA genotyping 628 

The 1,000 Milieu Intérieur donors were genotyped on both the HumanOmniExpress-24 and the 629 

HumanExome-12 BeadChips (Illumina, California, USA), which include 719,665 SNPs and 630 
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245,766 exonic SNPs, respectively. Average concordance rate between the two genotyping arrays 631 

was 99.9925%. The combined data set included 732,341 high-quality polymorphic SNPs. After 632 

genotype imputation and quality-control filters25, a total of 11,395,554 SNPs was further filtered for 633 

minor allele frequencies > 5%, yielding a data set composed of 1,000 donors and 5,699,237 SNPs 634 

for meQTL mapping. Ten pairs of first to third-degree related donors were detected with KING 1.9 635 

(ref.107). Out of the 894 donors whose blood methylome and blood cell composition were accurately 636 

profiled, 884 unrelated donors were kept for subsequent analyses.  637 

 638 

Immune cell proportions 639 

One of the key questions in this study is whether differences in 5mC levels observed with respect to 640 

different factors are due to epigenetic changes occurring within cell-types or if they in fact reflect 641 

changes in blood cell composition. To answer this question, we considered the proportions of 16 642 

major subsets of blood: naïve, central memory (CM), effector memory (EM) and terminally 643 

differentiated effector memory (EMRA) subsets of CD4+ and CD8+ T cells, CD4-CD8- T cells, B 644 

cells, dendritic cells, natural killer (NK) cells, monocytes, neutrophils, basophils and eosinophils25. 645 

As these cellular proportions were measured by flow cytometry using a hierarchical gating 646 

strategy25, they are expected to sum to one. Yet, because of measurement errors, cell fractions do 647 

not exactly sum to one in all donors. For a measure of proportion of a given cell subset in a given 648 

donor, we therefore used the absolute count of the cell-type divided by the sum of absolute counts 649 

of all the 16 measured cell subsets. We used the same approach when considering a reduced set of 650 

six major cell-types, comprising neutrophils, monocytes, NK cells, B cells, and CD4+ and CD8+ T 651 

cells, for comparison purposes. 652 

 653 

Compositional analysis of cellular composition 654 

We sought to study the association between 5mC levels and blood cell composition, experimentally 655 

measured by flow cytometry. However, the 16 measured cellular proportions are constrained to be 656 

positive and to sum to one. Consequently, a change in one cellular proportion must necessarily 657 

change one or more of the other cellular proportions, complicating the interpretation of parameters 658 

estimated from linear regression models with measured immune cell proportions as 659 

predictors28,108,109. Here, we investigated instead the effect of balances, which are transformations of 660 

cell-type proportions that can be seen as a generalization of the logit-transform. These balances 661 

model the effect of a relative change between two groups of cell-types. They are defined in a 662 

hierarchical manner of increasing granularity, by a sequential binary partition (SBP) of the 16 663 

measured cell-types, generating 15 balances in total (Supplementary Data 2). As an example, we 664 
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describe the first two balances. The other balances are defined in an analogous manner according to 665 

the SBP and the general procedure detailed elsewhere108. The first balance captures the relative 666 

effect on 5mC levels of the myeloid cell-types compared to the lymphoid cell-types. Of the 16 667 

measured cell-types, five are myeloid and eleven are lymphoid. Let 𝑐𝑖
𝑀1 , … , 𝑐𝑖

𝑀5 be the measured 668 

myeloid proportions and 𝑐𝑖
𝐿1 , … 𝑐𝑖

𝐿11 be lymphoid proportions for the i:th individual. The first 669 

balance predictor for that individual is defined by 670 

 671 

 

𝑏𝑖
1 = √

5 × 11

5 + 11
log {

∏ 𝑐𝑖
𝑀𝑚5

𝑚=1

∏ 𝑐𝑖
𝐿𝑙11

𝑙=1

}, (1) 

 672 

The second balance is defined within the lymphoid group and captures the relative effect on 673 

5mC levels of T cells with respect to NK cells and B cells. Let 𝑐𝑖
𝑇1 , … , 𝑐𝑖

𝑇9 be the measured 674 

proportions of the nine types of T cells and let 𝑐𝑖
𝐵 and 𝑐𝑖

NK be proportions of B cells and NK cells. 675 

The balance contrasting T cells with NK cells and B cells is given by 676 

 677 

 

𝑏𝑖
2 = √

9 × 2

9 + 2
log {

∏ 𝑐𝑖
𝑇𝑚9

𝑚=1

𝑐𝑖
𝐵𝑐𝑖

NK
}. (2) 

 678 

All balances were computed from the SBP using the robCompositions R package110. To evaluate the 679 

validity of our approach, we compared the estimated effects on 5mC levels of balances contrasting 680 

two groups of cell-types with the measured differences in 5mC levels between the same two groups, 681 

obtained from MethylationEPIC data in sorted cell-types29 and found strong correlations (R > 0.6; 682 

Supplementary Fig. 2 and Supplementary Data 2). We further evaluated the accuracy of our 683 

approach by performing a simulation study. First, we simulated 5mC levels based on observed cell 684 

composition data and evaluated how the balances capture 5mC differences in the relevant cell-685 

types. Second, we simulated cell composition data from a Dirichlet distribution and again evaluated 686 

that regression models including the balances as predictors give the expected results 687 

(Supplementary Notes). 688 

The 15 balances were used to investigate the effects of immune cell composition on 5mC levels 689 

at individual CpG sites (see section ‘Epigenome-wide association study of cell composition’) and 690 

on principal components of epigenome-wide DNA methylation levels (see section ‘Associations 691 

with principal components of DNA methylation’). 692 
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 693 

Epigenome-wide association study of cell composition 694 

To investigate how immune cell composition affects the blood DNA methylome, we investigated 695 

effects of cell-type balances on 5mC levels at each CpG site. For the 𝑝:th CpG site and the i:th 696 

individual, introduce observed 5mC levels 𝑦𝑖
𝑝
 measured on the M value scale. Let 𝐛𝒊 be a vector of 697 

15 cell-type balances with corresponding parameter vector 𝛃𝒃
𝒑

. Let the vector 𝐒𝐍𝐏𝒊
𝒑
 contain the 698 

significant local SNP with the smallest P-value and all independently associated remote SNPs (see 699 

section ‘Local meQTL mapping analyses’ and section ‘Remote meQTL mapping analyses’) with 700 

corresponding parameter vector 𝛃𝐒𝐍𝐏
𝒑

. We performed an epigenome-wide association analysis of 701 

cellular composition by fitting the models, 702 

 703 

 𝑦𝑖
𝑝 = 𝜇𝑝 + 𝐛𝒊

𝒕𝛃𝒃
𝒑

+ (𝐒𝐍𝐏𝒊
𝒑

)
𝒕
𝛃𝐒𝐍𝐏

𝒑
+ ε𝑖 , (3) 

 704 

where ε𝑖 ∼ (0, 𝜎𝑝
2). Models were fitted by ordinary least squares. For each balance in 𝐛𝒊 (see Eq. 705 

(1) and Eq. (2) for examples), the parameters in 𝛃𝒃
𝒑
 are interpreted as the change in 5mC levels for 706 

an increase in the first cell-type group and the corresponding decrease in the second cell-type group. 707 

 708 

Associations with principal components of DNA methylation 709 

To evaluate how principal components (PCs) of DNA methylation levels are related to cell 710 

composition, we first computed PCs of 5mC levels at 644,517 CpG sites, with the irlba R package. 711 

Let 𝑦𝑖
𝑘 be the observed value of the 𝑘:th PC of the DNA methylation data and 𝐛𝒊 a vector of 15 cell-712 

type balances measured for individual 𝑖 with the corresponding parameter vector 𝛃𝒃
𝒌. Given that we 713 

observed variability in 5mC levels across dates of blood draw, we included them as random effects. 714 

Let 𝑗 be the day of blood draw for the 𝑖:th individual. The model we used to estimate the effects of 715 

cellular composition on PCs of DNA methylation was, 716 

 717 

 𝑦𝑖
𝑘 = 𝜇𝑘 + 𝐛𝒊

𝒕𝛃𝒃
𝒌 + DateOfSampling𝑗(𝑖) + 𝜀𝑖

𝑘, (4) 

 718 

with DateOfSampling𝑗(𝑖) ∼ 𝒩(0, 𝜏𝑘
2) and ε𝑖 ∼ (0, 𝜎𝑘

2). The models were fitted with the lme4 R 719 

package102. 720 

To evaluate how PCs of DNA methylation levels are related to the candidate non-heritable 721 

factors, i.e., age, sex, smoking status, CMV serostatus, introduce the variables Age𝑖, Woman𝑖, 722 
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Exsmoker𝑖, Smoker𝑖 and CMV𝑖 with corresponding parameters 𝛽Age
𝑘 , 𝛽Woman

𝑘 , 𝛽Exsmoker
𝑘 , 𝛽Smoker

𝑘  723 

and 𝛽CMV
𝑘 . Let PC1𝑖 and PC2𝑖 be the two first PCs of the genotype matrix. Let 𝐜𝒊 be a vector of 15 724 

measured cell proportions, excluding neutrophils because of the sum-to-one constraint, and 𝛃𝒄
𝒌 the 725 

corresponding parameter vector. The model we used to estimate the effects of non-genetic factors 726 

on PCs of DNA methylation was,  727 

 728 

 𝑦𝑖
𝑘 = 𝜇𝑘 + 𝐜𝒊

𝒕𝛃𝒄
𝒌 + Age𝑖𝛽Age

𝑘 + Woman𝑖𝛽Woman
𝑘 + Exsmoker𝑖𝛽Exsmoker

𝑘

+ Smoker𝑖𝛽Smoker
𝑘 + CMV𝑖𝛽CMV

𝑘 + PC1𝑖𝛽PC1
𝑘 + PC2𝑖𝛽PC2

𝑘

+ DateOfSampling𝑗(𝑖) + 𝜀𝑖
𝑘 . 

(5) 

 729 

The models were fitted with the lme4 R package102. Inference was performed using the Kenward-730 

Roger F-test approximation for linear mixed models, implemented in the pbkrtest R package111. 731 

 732 

Epigenome-wide association studies of non-genetic factors 733 

We assessed the effects of 141 non-genetic variables (Supplementary Data 1) on the blood DNA 734 

methylome of adults. The measured 5mC levels at a CpG site are the average of the DNA 735 

methylation state at this CpG site of all cells in the blood sample. Many of the 141 candidate 736 

variables might influence cell composition, which will cause a corresponding change in 5mC levels. 737 

We denote this effect the “(cell-composition-)mediated effect”. In addition, the variable might alter 738 

5mC levels within individual cells, or within cell-types. We denote this effect the direct effect (see 739 

Supplementary Fig. 11 for a schematic directed acyclic graph of the system). Several factors are 740 

known to have a large effect on blood cell composition in healthy donors, the most important being 741 

age, sex, CMV serostatus and smoking25. As an added complexity, these factors are also associated 742 

with most of the other variables in the study. Based on this framework, we investigated four 743 

questions, each one targeted by a separate statistical model.  744 

 745 

The total effect 746 

The total effect includes both changes in 5mC levels induced by changes in cellular composition 747 

(i.e., cell-composition-mediated effects) and those induced within cell-types (i.e., direct effects). For 748 

each variable of interest 𝑥 and each CpG site, the total effect was estimated in a regression model 749 

including, as response variable, the 5mC levels of the CpG site on the M value scale and, as 750 

predictors, 𝑥𝑖, a nonlinear age term of 3 DoF natural splines, sex, CMV serostatus, smoking status, 751 

the significant local SNP with the smallest P-value, independently associated remote SNPs and the 752 
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first two PCs of the genotype matrix. Again, since we observed variability in 5mC levels across 753 

dates of blood draw, we included them as a random effect term. For the p:th CpG site, let 𝑦𝑖
𝑝
 be the 754 

5mC levels of the 𝑖:th individual on the M value scale, 𝑓Age
𝑝 (Age𝑖) a nonlinear age term of 3 DoF 755 

natural splines and 𝐒𝐍𝐏𝒊
𝒑
 a vector of the minor allele counts for the significant local SNP with the 756 

smallest P-value and independently associated remote SNPs, with corresponding parameter vector 757 

𝛃𝐒𝐍𝐏
𝒑

. The total effect of the variable 𝑥𝑖 was estimated by the corresponding parameter 𝛽𝑥
𝑝
 in the 758 

models, 759 

 760 

 𝑦𝑖
𝑝 = 𝜇𝑝 + 𝑥𝑖𝛽𝑥

𝑝 + 𝑓Age
𝑝 (Age𝑖) + Woman𝑖𝛽Woman

𝑝 + Exsmoker𝑖𝛽Exsmoker
𝑝

+ Smoker𝑖𝛽Smoker
𝑝

+ CMV𝑖𝛽CMV
𝑝

+ PC1𝑖𝛽PC1
𝑝

+ PC2𝑖𝛽PC2
𝑝

+ (𝐒𝐍𝐏𝒊
𝒑

)
𝒕
𝛃𝐒𝐍𝐏

𝒑
+ DateOfSampling𝑗(𝑖) + 𝜀𝑖

𝑝, 

(6) 

 761 

where DateOfSampling𝑗(𝑖) ∼ 𝒩(0, 𝜏𝑝
2) and 𝜀𝑖 ∼ (0, 𝜎𝑝

2). The effect of aging was tested in models 762 

with 𝑥 removed and the non-linear age term replaced by a linear one. The effects of sex, smoking 763 

status and CMV serostatus were tested in models where we removed 𝑥. For variables relating to 764 

women only (e.g., age of menarche), we excluded men from the analysis and removed 765 

Woman𝑖βWoman
𝑝

. The models were fitted with the lme4 R package102.Hypothesis tests were 766 

performed using the Kenward-Roger approximation of the F-test for linear mixed models, 767 

implemented in the pbkrtest R package111. 768 

 769 

The direct effect 770 

Let the vector 𝐜𝒊 be measured proportions of the 15 immune cell-types, excluding neutrophils, for 771 

the i:th individual and 𝛃𝒄
𝒑
 the corresponding parameter vector. Using the same notation as for the 772 

total effect, the direct effect of the variable 𝑥𝑖 was estimated by 𝛽𝑥
𝑝
 in the models, 773 

 774 

 𝑦𝑖
𝑝 = 𝜇𝑝 + 𝑥𝑖𝛽𝑥

𝑝 + 𝐜𝒊
𝒕𝛃𝒄

𝒑
+ 𝑓Age

𝑝 (Age𝑖) + Woman𝑖𝛽Woman
𝑝 + Exsmoker𝑖𝛽Exsmoker

𝑝

+ Smoker𝑖𝛽Smoker
𝑝 + CMV𝑖𝛽CMV

𝑝 + PC1𝑖𝛽PC1
𝑝 + PC2𝑖𝛽PC2

𝑝

+ (𝐒𝐍𝐏𝒊
𝒑

)
𝒕
𝛃𝐒𝐍𝐏

𝒑
+ DateOfSampling𝑗(𝑖) + 𝜀𝑖

𝑝, 

(7) 

 775 

We also tested the interaction effect of sex, CMV serostatus and smoking status with age by 776 

including one interaction term at a time in the model specified in Eq. (7). The models were fitted 777 
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with the lme4 R package102. Hypothesis tests were performed by the Kenward-Roger approximation 778 

of the F-test for linear mixed models, implemented in the pbkrtest R package111.  779 

 780 

The mediated effect 781 

The cell-composition-mediated effect was estimated as the effect on 5mC levels mediated by 782 

changes in proportions of the 16 cell subsets due to the given factor. We estimated the mediated 783 

effect of aging, sex, variables related to smoking, CMV serostatus and heart rate. The mediated 784 

effect was estimated using a two-stage procedure. First, we fitted models with measured proportions 785 

of immune cells as response variables. Let 𝐜𝒊 be a vector of measured proportions of the 15 blood 786 

subsets, excluding neutrophils. Let 𝑐𝑖
𝑛 denote the n:th entry of the vector 𝐜𝒊, i.e., the measured 787 

proportion of the n:th cell-type for the i:th individual. Introduce the vector 𝐤𝒊 of covariate values for 788 

the i:th individual, including age (3 DoF spline with an entry for each term), sex, smoking, CMV 789 

serostatus and ancestry (2 PCs), but excluding the variable of interest 𝑥𝑖 (mediated effect of aging 790 

was estimated with a linear term). For the model of the 𝑛:th cell-type, let 𝛃𝒌
𝒏 be the parameter vector 791 

for the covariate vector 𝐤𝒊 and 𝛽𝑥
𝑛 the parameter for the variable of interest 𝑥i. In the first stage, we 792 

fitted the models, 793 

 794 

 𝐸{𝑐𝑖
𝑛 ∣ 𝑥𝑖 , 𝐤𝒊} = 𝛽0 + 𝑥𝑖𝛽𝑥

𝑛 + 𝐤𝒊
𝒕𝛃𝒌

𝒏,  𝑛 = 1, . . ,15. (8) 

 795 

Next, let 𝑦𝑖
𝑝
 be 5mC levels in the M value scale for the p:th CpG site, 𝜃𝑥

𝑝
 the parameter for the 796 

variable of interest, and 𝛉𝒄
𝒑
 and 𝛉𝒌

𝒑
 parameter vectors for the effects of cell proportions and 797 

covariates. In the second stage, we fitted the models, 798 

 799 

 𝐸{𝑦𝑖
𝑝 ∣ 𝑥𝑖 , 𝐜𝒊, 𝐤𝒊} = 𝜃0

𝑝 + 𝑥𝑖𝜃𝑥
𝑝 + 𝐜𝒊

𝒕𝛉𝒄
𝒑

+ 𝐤𝒊
𝒕𝛉𝒌

𝒑
. (9) 

 800 

The mediated effect of 𝑥i on DNA methylation was estimated by 𝛃𝒙
𝒕 𝛉𝒄

𝒑
 (ref.34). Inference was 801 

performed by the parametric bootstrap.  802 

 803 

The direct effects adjusted by deconvolution methods 804 

To compute the IDOL and Houseman-adjusted effects, we estimated proportions of CD4+ and CD8+ 805 

T cells, B cells, NK cells, monocytes and neutrophils, using the estimateCellCounts2 function in the 806 

FlowSorted.Blood.EPIC package with either Houseman et al.’s CpG sites, or IDOL optimized CpG 807 

sites112. For age, sex, smoking status, CMV serostatus, heart rate, ear temperature and hour of blood 808 
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draw, we estimated the IDOL- and Houseman-adjusted effect by adjusting for estimated 5 809 

proportions in the model specified by Eq. (7), instead of the 15 measured proportions, excluding 810 

neutrophils because of the sum-to-one constraint. To compute the EPIC IDOL-Ext-adjusted effects, 811 

we estimated proportions of 12 major cell-types in blood, including CD4+ and CD8+ T cells, naïve 812 

and differentiated subtypes of CD4+ and CD8+ T cells, neutrophils, monocytes, basophils, 813 

eosinophils, NK cells, regulatory T cells, naïve and memory B cells, using the IDOL-Ext reference 814 

matrix in the estimateCellCounts2 function from the FlowSorted.BloodExtended.EPIC R package29. 815 

We estimated the IDOL-Ext-adjusted effect by including 11 estimated proportions in Eq. (7) instead 816 

of the 15 measured proportions, excluding neutrophils because of the sum-to-one constraint. 817 

Finally, for comparison purposes, we also computed the association between non-genetic factors 818 

and 5mC levels by adjusting, in Eq. (7), for the proportions of the 5 major cell-types measured by 819 

flow cytometry, instead of the 15 measured proportions, excluding again neutrophils. 820 

 821 

Prediction of CMV serostatus 822 

We built a prediction model to estimate CMV serostatus from DNA methylation data using elastic 823 

net regression for binary data113, implemented in the glmnet R package114. We included all CpG 824 

sites as predictors in the model, including those on the X and Y chromosomes. The model was built 825 

from 863,906 CpG sites in 969 samples. The elastic net model has two tuning parameters that 826 

determine the degree of regularization of the predictor function. We selected both tuning parameters 827 

by two-dimensional five times repeated cross-validation over the two parameters. The final model 828 

fitted on the full data set includes 547 CpG sites with non-zero parameters.  829 

 830 

Detection of the dispersion of DNA methylation with age 831 

To estimate changes in dispersion of 5mC levels with age, we fitted regression models where the 832 

residual variance depends on age. Let 𝑦𝑖
𝑝
 be 5mC levels on the M value scale for the 𝑝:th CpG site 833 

and the 𝑖:th individual. Using similar notations as above, we estimated the dispersion effect of age 834 

by the parameter 𝜃𝑝 in the models, 835 

 836 

 𝑦𝑖
𝑝 = 𝜇𝑝 + 𝐜𝒊

𝒕𝛃𝒄
𝒑

+ (𝐒𝐍𝐏𝒊
𝒑

)
𝒕
𝜷𝐒𝐍𝐏

𝒑
+ 𝑓Age

𝑝 (Age𝑖) + Woman𝑖𝛽Woman
𝑝

+ Exsmoker𝑖𝛽Exsmoker
𝑝 + Smoker𝑖𝛽Smoker

𝑝 + CMV𝑖𝛽CMV
𝑝 + PC1𝑖𝛽PC1

𝑝

+ PC2𝑖𝛽PC2
𝑝 + 𝜀𝑖

𝑝, 

(10) 

 837 

where 838 
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 𝜀𝑖
𝑝 ∼ 𝒩(0, 𝜎𝑖,𝑝

2 ),  log 𝜎𝑖,𝑝 = 𝜏𝑝 + Age𝑖𝜃𝑝. (11) 

 839 

We devised a hypothesis test for 𝜃 by a likelihood ratio test comparing the model in Eq. (11), to a 840 

model with  841 

 𝜀𝑖
𝑝 ∼ 𝒩(0, 𝜎𝑝

2),  log 𝜎𝑝 = 𝜏𝑝. (12) 

 842 

As a sensitivity analysis, we also fitted a model with 843 

 844 

 𝜀𝑖
𝑝 ∼ 𝒩(0, 𝜎𝑖,𝑝

2 ),  log 𝜎𝑖,𝑝 = 𝜏𝑝 + Age𝑖𝜃
𝑝 + 𝐜𝒊

𝒕𝛃𝒄
𝒑

. (13) 

 845 

In this case, the hypothesis test for 𝜃 was done by comparing to a model with 846 

 847 

 𝜀𝑖
𝑝 ∼ 𝒩(0, 𝜎𝑖,𝑝

2 ),  log 𝜎𝑖,𝑝 = 𝜏𝑝 + 𝐜𝒊
𝒕𝛃𝒄

𝒑
. (14) 

 848 

These models were fitted with the gamlss R package115. 849 

 850 

Local meQTL mapping analyses 851 

Local meQTL mapping was performed using the MatrixEQTL R package116. Association was tested 852 

for each CpG site and each SNP in a 100-Kb window around the CpG site, by fitting a linear 853 

regression model assuming an additive allele effect. Models included, as predictors, the 15 immune 854 

cell proportions, a nonlinear age term encoded by 3 degrees-of-freedom (DoF) natural splines, sex, 855 

smoker status, ex-smoker status and CMV serostatus. We also adjusted for the top two PCs of a 856 

PCA of the genotype data. We did not include more PCs because of the low population substructure 857 

observed in the cohort25. For the 𝑖:th individual and the 𝑝:th CpG site, let 𝑦𝑖
𝑝
 be the measured 5mC 858 

levels on the M value scale, SNP𝑖
𝑝,𝑚

 the minor allele count of the m:th tested SNP for the CpG site 859 

and 𝑓Age
𝑝,𝑚(Agei) a nonlinear age term of natural splines. Moreover, let the vector 𝐜𝒊 be measured 860 

proportions of the 15 immune cell-types for the i:th individual, excluding neutrophils, and 𝛃𝒄
𝒑,𝒎

 the 861 

corresponding parameter vector. The additive allele effect of the SNP was estimated by the 862 

parameter 𝛽𝑚
𝑝,𝑚

 in the models, 863 

 864 
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 𝑦𝑖
𝑝 = 𝜇𝑝,𝑚 + SNP𝑖

𝑝,𝑚𝛽𝑚
𝑝,𝑚 + 𝑓Age

𝑝,𝑚(Age𝑖) + Woman𝑖𝛽Woman
𝑝,𝑚 + Exsmoker𝑖𝛽Exsmoker

𝑝,𝑚

+ Smoker𝑖𝛽Smoker
𝑝.𝑚

+ CMV𝑖𝛽CMV
𝑝,𝑚

+ PC1𝑖𝛽PC1
𝑝,𝑚

+ PC2𝑖𝛽PC2
𝑝,𝑚

+ 𝐜𝒊
𝒕𝛃𝒄

𝒑,𝒎

+ 𝜀𝑖
𝑝,𝑚, 

(15) 

 865 

where 𝜀𝑖
𝑝,𝑚

 is a symmetrical zero-mean distribution with constant variance. 866 

 867 

Remote meQTL mapping analyses 868 

Testing all possible associations between 644,517 CpG sites and 5,699,237 SNPs would require 869 

performing 3,769 billion statistical tests. To reduce the multiple testing burden, remote meQTL 870 

mapping was conducted on a selection of 50,000 CpG sites with the highest residual variance in the 871 

model described in Eq. (15), but with m indexing in this case only the most associated local SNP for 872 

the p:th CpG site. For each of the 50,000 selected CpG sites, we then fitted one model per SNP 873 

located outside of a 1-Mb window around the CpG site. For each SNP-CpG pair, we estimated the 874 

additive allele effect of the remote SNP using the model specified in Eq. (15) but with m now 875 

indexing remote SNPs for the p:th CpG site. Both local and remote meQTL mapping tests were 876 

corrected for multiple testing by the Bonferroni adjustment.  877 

 878 

Detection of independent remote meQTLs 879 

We designed the following scheme to compute a set Φ of independently associated remote SNPs for 880 

each CpG site, where all such SNPs are associated with 5mC levels 𝑦𝑝 at the 𝑝:th CpG site, 881 

conditional on the most associated local SNP and other SNPs in Φ. Define 𝑋1 to be the set of SNPs 882 

with a remote association to 𝑦𝑝 and let 𝑥0 be the most associated significant local SNP, if it exists. 883 

The set 𝑋1 typically includes several SNPs that are in linkage disequilibrium (LD). The algorithm 884 

uses an iterative procedure to build sets 𝑀𝑗  of SNPs, where in the 𝑗:th iteration, SNPs that are not 885 

associated with 5mC levels at the CpG site conditional on SNPs included in 𝑀𝑗−1 are discarded, 886 

while the most associated is retained in 𝑀j. In the final step, the set Φ is constructed by elements of 887 

the final set 𝑀 that are associated with 5mC levels at the CpG site conditional on all the other 888 

elements in 𝑀. Intuitively, Φ consists of the most associated SNP in each LD block. The algorithm 889 

is given in pseudocode in Algorithm (1), where the condition 𝛽𝑝 ≠ 0 is determined by an F-test on 890 

the level 𝛼 = 10−6. 891 

 892 

Algorithm (1): Forming a set of remote independently associated SNPs with a CpG site  
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If the CpG site is under local genetic control then let 𝑀1 = 𝑥0, otherwise let 𝑀1  =  ∅ 

Repeat for 𝑗 =  1, 2, … 

𝑃 = {𝑥 ∈ 𝑋𝑗 ∖ 𝑀𝑗: 𝛽𝑥
𝑝 ≠ 0 in 𝑦𝑖

𝑝 = 𝜇𝑝 + 𝑥𝑖𝛽𝑥
𝑝 + ∑ 𝑧𝑖𝛽𝑧

𝑝
𝑧∈𝑀𝑗

+ 𝜀𝑖
𝑝, 𝜀𝑖

𝑝 ∼ (0, 𝜎𝑝
2)} 

If 𝑃 =  ∅  Exit 

𝑋𝑗+1 = 𝑃 

𝑀𝑗+1  =  𝑀𝑗   ∪ {𝑥: 𝑥 SNP with the smallest P-value in P} 

End 

𝛷 = {𝑥 ∈ 𝑀𝑗+1 ∖ 𝑥0: 𝛽𝑥
𝑝 ≠ 0 in 𝑦𝑖

𝑝 = 𝜇𝑝 + 𝑥𝑖𝛽𝑥
𝑝 + ∑ 𝑧𝑖𝛽𝑧

𝑝
𝑧∈𝑀𝑗+1∖{𝑥} + 𝜀𝑖

𝑝, 𝜀𝑖
𝑝 ∼ (0, 𝜎𝑝

2)} 

 893 

Cell-type-dependent effects of genetic and non-genetic factors on DNA methylation 894 

To investigate whether the effects of a factor on DNA methylation depend on the proportion of 895 

myeloid cells in blood, we fitted models that included an interaction term between the factor of 896 

interest (i.e., age, sex, smoking status, CMV serostatus and genetic variants) and the proportion of 897 

myeloid cells, 𝑐𝑖
𝑚, defined as the sum of the proportions of cell-types from the myeloid lineage. 898 

With the same notations as above, but with 𝑦𝑖
𝑝
 being 5mC levels on the β value scale for the p:th 899 

CpG site and the i:th individual, we estimated the cell-type-dependent effects of non-genetic factors 900 

by fitting the models, 901 

 902 

 𝑦𝑖
𝑝 = 𝜇𝑝 + Age𝑖𝛽Age

𝑝 + CMV𝑖𝛽CMV
𝑝 + Woman𝑖𝛽Woman

𝑝 + Smoker𝑖𝛽Smoker
𝑝 + PC1𝑖𝛽PC1

𝑝

+ PC2𝑖𝛽PC2
𝑝 + 𝑐𝑖

𝑚𝛽𝑐𝑚
𝑝

+ 𝑐𝑖
𝑚(Woman𝑖𝜃Woman

𝑝 + Age𝑖𝜃Age
𝑝 + Smoker𝑖𝜃Smoker

𝑝 + CMV𝑖𝜃CMV
𝑝 )

+ 𝜀𝑖
𝑝. 

(16) 

 903 

We also investigated whether the effect of genotypes could be dependent on the proportion of 904 

myeloid cells in the sample. For the p:th CpG site and the i:th individual, let SNP𝑖
𝑝,𝑘

 be the minor 905 

allele counts of the significant local SNP with the smallest P-value and independently associated 906 

remote SNPs. In this case, we also use 5mC levels on the β value scale. We estimated the cell-type-907 

dependent effects of genetic factors by fitting the models, 908 

 909 
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 𝑦𝑖
𝑝 = 𝜇𝑝 + 𝑓Age

𝑝 (Age𝑖) + CMV𝑖𝛽CMV
𝑝 + Woman𝑖𝛽Woman

𝑝 + Smoker𝑖𝛽Smoker
𝑝

+ PC1𝑖𝛽PC1
𝑝 + PC2𝑖𝛽PC2

𝑝 + 𝑐𝑖
𝑚𝛽𝑐𝑚

𝑝 + ∑ SNP𝑖
𝑝,𝑘𝛽SNP𝑝,𝑘

𝑘

+ 𝑐𝑖
𝑚 (∑ SNP𝑖

𝑝,𝑘𝜃SNP𝑝,𝑘

𝑘

) + 𝜀𝑖
𝑝. 

(17) 

 910 

Inference in both cases was done by Wald tests with heteroscedasticity-consistent standard 911 

errors estimated by the sandwich R package117. 912 

 913 

Detection of gene × environment interactions 914 

We tested whether age, sex, CMV serostatus, smoking status or CRP levels could have a genotype-915 

dependent effect on the DNA methylome. For the i:th individual and the p:th CpG site, let 𝑦𝑖
𝑝
 be the 916 

5mC levels on the M value scale, SNP𝑖
𝑝,𝑘, 𝑘 = 1, … , 𝐾𝑝, the minor allele counts of the significant 917 

local meQTL with the lowest P-value and the 𝐾𝑝 − 1 independently associated remote meQTLs, 918 

and 𝐜𝒊 the vector of 15 measured immune cell proportions with corresponding parameter vector 𝛃𝒄
𝒑
. 919 

Interaction effects were estimated for each CpG site in the model, 920 

 921 

 𝐸{𝑦𝑖
𝑝 ∣ SNP𝑖

𝑝,1, … , SNP𝑖
𝑝,𝐾𝑝

, Age𝑖, Woman𝑖, Smoker𝑖, CMV𝑖}

= 𝜇𝑝 + ∑ SNP𝑖
𝑝,𝑘𝛽SNP𝑝,𝑘

𝐾𝑝

𝑘=1

+ 𝐜𝒊
𝒕𝛃𝒄

𝒑
+ PC1𝑖𝛽PC1

𝑝 + PC2𝑖𝛽PC2
𝑝 + Age𝑖𝛽Age

𝑝

+ Woman𝑖𝛽Woman
𝑝 + Smoker𝑖𝛽Smoker

𝑝 CMV𝑖𝛽CMV
𝑝

+ ∑ SNP𝑖
𝑝,𝑘(Age𝑖𝜃Age

𝑝,𝑘 + Woman𝑖𝜃Woman
𝑝,𝑘 + Smoker𝑖𝜃Smoker

𝑝,𝑘

𝐾𝑝

𝑘=1

+ CMV𝑖𝜃CMV
𝑝,𝑘 ) 

(18) 

 922 

We investigated effects of CRP levels in a separate model that simply added a log-transformed 923 

CRP term to Eq. (18). Inference was done by Wald tests with heteroscedasticity-consistent standard 924 

errors estimated by the sandwich R package117. 925 

 926 

Estimation of proportions of explained 5mC variance 927 

According to our analyses, 5mC levels in the healthy population are mainly associated with local 928 

genetic variation, blood cell composition, age, sex, smoking, CMV infection and CRP levels. We 929 
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grouped these variables into four categories: genetic, cell composition, intrinsic (age and sex) and 930 

exposures (smoking, CMV infection and CRP levels). For the p:th CpG site and the 𝑖:th individual, 931 

we collected observations of the minor allele count for the most associated local SNP in 𝑥𝑖
𝑝,𝑔

, the 932 

proportions of the 15 cell-types, excluding neutrophils, in the vector 𝐱𝒊
𝒄, intrinsic factors (sex and 933 

natural spline expanded values of age) in the vector 𝐱𝒊
𝒊𝒏 and exposures (smoking status, CMV 934 

serostatus and log-transformed CRP levels) in the vector 𝐱𝒊
𝒆, with corresponding parameters 𝛽𝑔

𝑝
, 𝛃𝒄

𝒑
, 935 

𝛃𝒊𝒏
𝒑

 and 𝛃𝒆
𝒑
. We interpret here log-transformed CRP levels as a proxy measure of the exposure of 936 

chronic low-grade inflammation. For each CpG site, we define linear predictor terms by 937 

 938 

 𝑓𝑔
𝑝(𝑥𝑖

𝑝,𝑔
) = 𝑥𝑖

𝑝,𝑔
𝛽𝑔

𝑝, (19) 

 939 

 𝑓𝑐
𝑝(𝐱𝒊

𝒄) = (𝐱𝒊
𝒄)𝒕𝛃𝒄

𝒑
, (20) 

 940 

 𝑓𝑖𝑛
𝑝(𝐱𝒊

𝒊𝒏) = (𝐱𝒊
𝒊𝒏)

𝒕
𝛃𝒊𝒏

𝒑
, (21) 

 941 

 𝑓𝑒
𝑝(𝐱𝒊

𝒆) = (𝐱𝒊
𝒆)𝒕𝛃𝒆

𝒑
 (22) 

 942 

These functions vary in their degrees of freedom, so to get a fair comparison between them, we 943 

estimated group effect sizes as the out-of-sample proportion of variance explained by each group 944 

predictor. This estimation is done by indexing samples into two disjoint index groups 𝐼1 and 𝐼2, 945 

fitting the models on samples from 𝐼1, and evaluating the prediction accuracy on samples from 𝐼2. 946 

Let 𝑦𝑖
𝑝
 be 5mC levels for the p:th CpG site on the β value scale. Take cell composition as example. 947 

To compute the total effect of cell composition on 5mC levels at the CpG site, we first fit a model 948 

with individuals in 𝐼1, 949 

 950 

 𝑦𝑖
𝑝,𝑐 = 𝜇𝑝 + (𝐱𝒊

𝒄)𝒕𝛃𝒄
𝒑

,  𝑖 ∈ 𝐼1 (23) 

 951 

with parameters �̂�c
𝑝
 and 𝜇̂𝑝 estimated by least squares. We then define the total effect size to be the 952 

squared correlation between the observations and the out-of-sample predictions in individuals in 𝐼2, 953 

 954 

 (𝑅𝑐
Tot)2 = cor(𝑦𝑗 , 𝑦�̂�

𝑝,𝑐)
2

,  𝑗 ∈ 𝐼2. (24) 

 955 
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Total effects for the other predictor groups were defined analogously.  956 

For groups other than the cell composition group, we also computed a direct effect. For each 957 

group, it was computed as the added out-of-sample proportion of variance explained when adding 958 

the group predictor term to that of the cell composition group. Take the exposures group as an 959 

example, the direct effect was computed by  960 

 961 

 (𝑅𝑒
𝐷)2 = (𝑅𝑒+𝑐

Tot )2 − (𝑅𝑐
Tot)2, (25) 

 962 

where (𝑅𝑒+𝑐
Tot )2 is the total effect of the sum of the predictor terms for exposures and cell 963 

composition, 964 

 𝑓𝑐+𝑒 = 𝑓𝑐
𝑝(𝐱𝒊

𝒄) + 𝑓𝑒
𝑝(𝐱𝒊

𝒆). (26) 

 965 

To mitigate the impact of sampling on estimates of total and direct effects, we did four 966 

independent repeats of five-fold cross-validation and averaged effect sizes across all 20 samples. To 967 

have an unbiased estimation of the out-of-sample explained variance, we redid a local meQTL 968 

mapping on the training set in each iteration of the cross-validation scheme. The algorithm for 969 

drawing samples of the total effect is detailed in Algorithm (2).  970 

 971 

Algorithm (2): Cross-validation for estimating out-of-sample group total effect size 

Repeat 4 times: 

For 𝑘 =  1, … , 5  

Index a fifth of individuals as 𝐼𝑘, the others are indexed as 𝐼∖𝑘 

Select SNP for the predictor 𝑓𝑔
𝑝
 by performing a local meQTL mapping on individuals in 

𝐼∖𝑘 

For predictor 𝑓𝑛
𝑝 ∈ {𝑓𝑔

𝑝, 𝑓𝑐
𝑝, 𝑓𝑖𝑛

𝑝, 𝑓𝑒
𝑝} 

Estimate 𝜇̂𝑝, �̂�𝑛
𝑝
 with 𝐼1 = 𝐼∖𝑘 

Compute (𝑅𝑛
Tot)2 by Eq. (24) with 𝐼2 = 𝐼𝑘 

 

The scheme to sample the direct effects is analogous. Finally, we estimated an effect size for 972 

interactions between the local SNP and non-genetic factors for each CpG site. It was computed, 973 

similarly to Eq. (25), as the added out-of-sample proportion of variance explained by the regression 974 

function, 975 

 976 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2021.06.23.449602doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 𝑓Int
𝑝 (SNP𝑖

𝑝, Age𝑖, Woman𝑖, CMV𝑖 , ExSmoker𝑖 , Smoker𝑖, CRP𝑖)

= 𝜇𝑝 + SNP𝑖
𝑝

𝛽SNP
𝑝

+ Age𝑖𝛽Age
𝑝

+ Woman𝑖𝛽Woman
𝑝

+ CMV𝑖𝛽CMV
𝑝

+ ExSmoker𝑖𝛽ExSmoker
𝑝 + Smoker𝑖𝛽Smoker

𝑝 + log(CRP𝑖)𝛽CRP
𝑝

+ SNP𝑖
𝑝(Age𝑖𝜃Age

𝑝 + Woman𝑖𝜃Woman
𝑝 + CMV𝑖𝜃CMV

𝑝

+ ExSmoker𝑖𝜃ExSmoker
𝑝 + Smoker𝑖𝜃Smoker

𝑝 + log(CRP𝑖)𝜃CRP
𝑝 ) 

(27) 

 977 

compared to the same regression function without interaction terms, 978 

 979 

 fMain
𝑝 (SNP𝑖

𝑝, Age𝑖, Woman𝑖, CMV𝑖 , ExSmoker𝑖 , Smoker𝑖 , CRP𝑖)

= 𝜇𝑝 + SNP𝑖
𝑝𝛽SNP

𝑝 + Age𝑖𝛽Age
𝑝 + Woman𝑖𝛽Woman

𝑝 + CMV𝑖𝛽CMV
𝑝

+ ExSmoker𝑖𝛽ExSmoker
𝑝 + Smoker𝑖𝛽Smoker

𝑝 + log(CRP𝑖)𝛽CRP
𝑝 . 

(28) 

 980 

Biological annotations 981 

Information about the position, closest gene and CpG density of each CpG site was obtained from 982 

the Illumina EPIC array manifest v.1.0 B4. We retrieved the chromatin state of regions around each 983 

CpG site, using the 15 chromatin states inferred with ChromHMM for CD4+ naive T cells by the 984 

ROADMAP Epigenomics consortium15. We used peripheral blood mononuclear cells (PBMCs) as 985 

reference. The data was downloaded from the consortium webpage 986 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). The transcription factor bind-987 

ing site data used was public CHIP-seq data collected and processed for the 2020 release of the 988 

ReMap database118, including a total of 1,165 TFs. Binding sites include both direct and indirect 989 

binding. Enrichment analyses were performed by creating simple two-way tables for each target set 990 

and each annotation (i.e., chromatin states, CpG density, transcription factor binding site), and then 991 

performing Fisher’s exact test. Gene ontology enrichments were computed with the gometh func-992 

tion in the missMethyl R package119.  993 

We tested if a set of 𝑥 local or remote meQTL SNPs is enriched in disease- or trait-associated 994 

variants, by sampling at random, among all tested SNPs, 15,000 sets of 𝑥 SNPs with minor allele 995 

frequencies matched to those of meQTL SNPs. For each resampled set, we calculated the 996 

proportion of variants either known to be associated with a disease or trait, or in LD (set here to r2 > 997 

0.6) with a disease/trait-associated variant (P-value < 5×10−8; EBI-NHGRI Catalog of GWAS hits 998 

version e100 r2021-01-1). The enrichment P-value was estimated as the percentage of resamples for 999 
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which this proportion was larger than that observed in meQTL SNPs. LD was precomputed for all 1000 

5,699,237 SNPs with PLINK 1.9 (with arguments ‘–show-tags all–tag-kb 500–tag-r2 0.6’)120. 1001 

 1002 

Data availability 1003 

The Infinium MethylationEPIC raw and processed data generated in this study27 have been 1004 

deposited in the Institut Pasteur data repository, OWEY, which can be accessed via the following 1005 

link: https://dataset.owey.io/doi/10.48802/owey.f83a-1042. All association statistics obtained in this 1006 

study (i.e., the 141 EWAS and interaction models, local meQTL mapping) can be explored and 1007 

downloaded from the web browser http://mimeth.pasteur.fr/. The SNP array data can be accessed in 1008 

the European Genome-Phenome Archive (EGA) with the accession code EGAS00001002460. All 1009 

Milieu Intérieur datasets can be accessed by submitting a data access request to 1010 

milieuinterieurdac@pasteur.fr, the Milieu Intérieur data access committee, which grants data access 1011 

if the request is consistent with the informed consent provided by Milieu Intérieur participants. 1012 

Requests are reviewed every month by the committee.  1013 

 1014 

Code availability 1015 

All the code supporting the current study, including the CMV estimation model, has been uploaded 1016 

to GitHub121: https://github.com/JacobBergstedt/MIMETH.   1017 
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Figure legends 1391 

 1392 

 1393 

Fig. 1. Non-genetic effects on the blood DNA methylome according to different corrections for 1394 

cellular heterogeneity. a Study design. b Number of CpG sites associated with non-genetic factors, 1395 

according to different corrections for cellular heterogeneity. Columns indicate adjustments for 16 1396 

blood cell proportions measured by flow cytometry (“16 cells”), 12 blood cell proportions estimated 1397 
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by the EPIC IDOL-Ext deconvolution method29 (“IDOL-ext”), 6 blood cell proportions measured 1398 

by flow cytometry (“6 cells”), 6 cell proportions estimated by the IDOL deconvolution method32 1399 

(“IDOL”), 6 cell proportions estimated by Houseman et al.’s deconvolution method18 (“House-1400 

man”) and no adjustment for blood cell composition (“None”). c Age against the third Principal 1401 

Component (PC) of DNA methylation levels. Colors indicate donors whose proportion of naïve 1402 

CD8+ T cells in blood is below or above the cohort median. d Proportion of CD4+ memory T cells 1403 

against the first PC of DNA methylation levels. Colors indicate the CMV serostatus of donors. e Di-1404 

rect effects of age on 5mC levels, adjusting on 6 cell proportions estimated by IDOL, against direct 1405 

effects of age on 5mC levels, adjusting on 16 cell proportions measured by flow cytometry. f Direct 1406 

effects of CMV serostatus on 5mC levels, adjusting on 6 cell proportions estimated by IDOL, 1407 

against direct effects of CMV serostatus on 5mC levels, adjusting on 16 cell proportions measured 1408 

by flow cytometry. g Effects of CD4+ T cell differentiation on 5mC levels against direct effects of 1409 

CMV serostatus on 5mC levels, adjusting on 6 cell proportions estimated by IDOL. h Effects of 1410 

CD4+ T cell differentiation on 5mC levels against direct effects of CMV serostatus on 5mC levels, 1411 

adjusting on 16 cell proportions measured by flow cytometry. e-h Effect sizes are given in the M 1412 

value scale. Only associations significant either with the model adjusting for IDOL-estimated cell 1413 

proportions or the model adjusted for 16 measured cell proportions are shown (𝑃𝑎𝑑𝑗  < 0.05). e-f The 1414 

black line indicates the identity line. c-d, g-h The black line indicates the linear regression line. Sta-1415 

tistics were computed based on a sample size of n = 884 and for 644,517 CpG sites. 1416 
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 1418 

 1419 

Fig. 2. Effects of cytomegalovirus infection on the blood DNA methylome. a Total effects 1420 

against cell-composition-mediated effects of CMV infection on 5mC levels. b Effects of CD4+ T 1421 

cell differentiation on 5mC levels against cell-composition-mediated effects of CMV infection on 1422 

5mC levels. c Proportion of CD8+ TEMRA cells in CMV– and CMV+ donors (left panel). 5mC levels 1423 

at the DNMT3A locus against the proportion of CD8+ TEMRA cells (right panel). 5mC levels are 1424 

given in the β value scale. The black line indicates the linear regression line. d Genomic distribution 1425 

of direct effects of CMV infection at the LTBP3 locus. e Enrichment of CpG sites with a significant 1426 

direct, positive effect of CMV infection in binding sites for TFs. f Enrichment of CpG sites with a 1427 

significant direct, negative effect of CMV infection in binding sites for TFs. a, b Only CpG sites 1428 

with a significant cell-composition-mediated effect are shown. The black line indicates the identity 1429 

line. a, b, d Effect sizes are given in the M value scale. e, f The 15 most enriched TFs are shown, 1430 

out of 1,165 tested TFs. The point and error bars indicate the odds-ratio and 95% CI. CIs were esti-1431 

mated by the Fisher’s exact method. Statistics were computed based on a sample size of n = 884 1432 

and for 644,517 CpG sites. 1433 
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 1435 

 1436 

Fig. 3. Direct and cell-composition-mediated effects of aging on the blood DNA methylome. a 1437 

Direct effects against cell-composition-mediated effects of age on 5mC levels (50-year effect). Only 1438 

CpG sites with a significant direct or cell-composition-mediated effect are shown. Labels denote 1439 

genes with strong direct or cell-composition-mediated effects of age. b Enrichment in CpG sites 1440 

with significant direct effects of age, across 15 chromatin states. c Distributions of significant direct 1441 

effects of age, across 15 chromatin states. d Enrichment of CpG sites with a significant positive, di-1442 

rect effect of age in binding sites for TFs. e Increased variance of the proportion of CD4+ TEMRA 1443 

cells with age. f Increased variance of 5mC levels with age at the MAFA locus. 5mC levels are given 1444 
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in the β value scale. g Number of CpG sites with a significant increase or decrease in variance with 1445 

age. h Direct effects against dispersion effects of age on 5mC levels. i Enrichment of CpG sites with 1446 

significant cell-composition-mediated effects of age, across 12 chromatin states. j Distributions of 1447 

significant cell-composition-mediated effects of age, across 12 chromatin states. k Enrichment of 1448 

CpG sites with significant cell-composition-mediated, positive effects of age in binding sites for 1449 

TFs. a,c,h,j Effect sizes are given in the M value scale. c,j Numbers on the right indicate the num-1450 

ber of associated CpG sites and proportion of positive effects. b,d,i,k The point and error bars indi-1451 

cate the odds-ratio and 95% CI. CIs were estimated by the Fisher’s exact method. Statistics were 1452 

computed based on a sample size of n = 884 and for 644,517 CpG sites. d,k The 15 most enriched 1453 

TFs are shown, out of 1,165 tested TFs. b,c,i,j Chromatin states were defined in PBMCs15. Chroma-1454 

tin states were not shown when < 5 associated CpG sites were observed. TSS, Fl. and PC denote 1455 

transcription start site, flanking and Polycomb, respectively. Statistics were computed based on a 1456 

sample size of n = 884 and for 644,517 CpG sites. 1457 
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 1459 

 1460 

Fig. 4. Effects of genetics and gene × environment interactions on the blood DNA methylome. 1461 

a Enrichment in CpG sites associated with local meQTL variants, across 15 chromatin states. b En-1462 

richment in CpG sites associated with remote meQTL variants, across 15 chromatin states. c En-1463 

richment in remote meQTL variants, across 15 chromatin states. d P-value distributions for signifi-1464 

cant effects of genotype × age, genotype × sex, genotype × smoking, genotype × CMV serostatus, 1465 

genotype × CRP levels and genotype × cell-type interactions. The number of significant associa-1466 

tions is indicated on the right. Associations were tested by two-sided Wald tests with heteroscedas-1467 

ticity-consistent standard errors estimated by the sandwich R package117. Multiple testing was done 1468 

by the Bonferroni correction separately for each term. e Myeloid lineage-dependent effect of the 1469 

rs11055602 variant on 5mC levels at the CLEC4C locus. f Age-dependent effect of the rs2837990 1470 

variant on 5mC levels at the BACE2 locus. a-c The point and error bars indicate the odds-ratio and 1471 

95% CI. CIs were estimated by the Fisher’s exact method. Chromatin states were defined in 1472 
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PBMCs15. TSS, Fl. and PC denote transcription start site, flanking and Polycomb, respectively. e-f 1473 

5mC levels are given in the β value scale. Solid lines indicate linear regression lines. Statistics were 1474 

computed based on a sample size of n = 884 and for 644,517 CpG sites. 1475 

  1476 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2021.06.23.449602doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/


56 

 1477 

 1478 

 1479 

Fig. 5. Best predictors of the blood DNA methylome of adults. a Complementary cumulative dis-1480 

tribution function of the out-of-sample variance explained by the full model, blood cell composi-1481 

tion, genetic factors, intrinsic factors (i.e., age and sex) and environmental exposures (i.e., smoking, 1482 

CMV infection and CRP levels), for 644,517 CpG sites. b Complementary cumulative distribution 1483 

function of the out-of-sample variance explained by genetic factors, intrinsic factors, environmental 1484 

exposures and gene × environment (G × E) interactions, when conditioning on blood cell composi-1485 

tion, for 644,517 CpG sites. c Proportion of the explained out-of-sample variance of 5mC levels for 1486 

the 20,000 CpG sites with the variance most explained by blood cell composition, genetic factors, 1487 

intrinsic factors and environmental exposures, respectively. 1488 
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