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Summary 1 

 2 

Macromolecular complexes are dynamic entities whose function is often intertwined with 3 

their many structural configurations. Single particle cryo-electron microscopy (cryo-EM) 4 

offers a unique opportunity to characterize macromolecular structural heterogeneity by 5 

virtue of its ability to place distinct populations into different groups through 6 

computational classification. However, current workflows are limited, and there is a 7 

dearth of tools for surveying the heterogeneity landscape, quantitatively analyzing 8 

heterogeneous particle populations after classification, deciding how many unique 9 

classes are represented by the data, and accurately cross-comparing reconstructions. 10 

Here, we develop a workflow that contains discovery and analysis modules to 11 

quantitatively mine cryo-EM data for a set of structures with maximal diversity. This 12 

workflow was applied to a dataset of E. coli 50S ribosome assembly intermediates, 13 

which is characterized by significant structural heterogeneity. We identified new branch 14 

points in the assembly process and characterized the interactions of an assembly factor 15 

with immature intermediates. While the tools described here were developed for 16 

ribosome assembly, they should be broadly applicable to the analysis of other 17 

heterogeneous cryo-EM datasets.  18 

 19 
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Introduction 1 

 2 

Cryo-electron microscopy (cryo-EM) is a rapidly evolving, powerful technology for 3 

solving the structures of a wide variety of biological assemblies. The “resolution 4 

revolution” in cryo-EM (Kühlbrandt, 2014), caused in part by advances in direct electron 5 

detectors and improved data acquisition and analysis workflows, has led to high-6 

resolution structural insights into a wide variety of biological processes performed by 7 

macromolecular assemblies (Fernandez-Leiro and Scheres, 2016). There have been 8 

steady, but consistent improvements to achievable resolution, and the collective tools 9 

are now enabling structure determination at true atomic resolution (Bartesaghi et al., 10 

2015; Tan et al., 2018; Nakane et al., 2020; Yip et al., 2020; Zhang et al., 2020). There 11 

have also been numerous advances in workflows for analyzing structurally 12 

heterogeneous particle populations, and data processing software now routinely include 13 

strategies for handling distributions of structures that arise from compositional or 14 

conformational changes in the macromolecular species of interest (Elmlund and 15 

Elmlund, 2012; Gao et al., 2004; Klaholz, 2015; Liao, Hashem and Frank, 2015; Nakane 16 

et al., 2018; Scheres, 2016; Spahn and Penczek, 2009; Wang et al., 2013; White et al., 17 

2017; Zhong et al., 2021; Grant, Rohou and Grigorieff, 2018; Lyumkis et al., 2013; 18 

Punjani and Fleet, 2021b; Punjani and Fleet, 2021a). However, most current cryo-EM 19 

workflows still focus on achieving the maximum possible resolution, which requires 20 

selecting and averaging potentially heterogeneous subsets of the data in the interest of 21 

increasing the particle count for the homogeneous regions of a map. This strategy 22 

comes at the expense of either eliminating particle populations that do not conform to 23 

the predominant species or neglecting dynamic and labile regions of reconstructed 24 

maps, which are often of biological interest. 25 

 26 

Another challenge in cryo-EM heterogeneity analysis is that there is no way to define 27 

the number of distinct structures in a given dataset a priori. It is up to the researcher to 28 

employ a classification strategy and to heuristically determine the number of distinct 29 

classes. Furthermore, there is no set procedure to determine the threshold for 30 

examining map features and differences between maps. Thresholds are often set in a 31 

subjective manner in order to best display the features of interest in the maps, although 32 

an approach was recently described where a voxel-based false discovery rate could be 33 

determined to establish a noise threshold for contouring (Beckers, Jakobi and Sachse, 34 

2019). Thus, determining the final number of classes in a dataset and quantitatively 35 

comparing a set of maps in order to tell a concise biological story with statistical 36 

significance remains a challenge. 37 

 38 

The process of ribosome assembly provides a useful case study for mining and 39 

quantitatively assessing structural heterogeneity in cryo-EM data. The bacterial 70S 40 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


ribosome is a complex macromolecular machine composed of three ribosomal RNAs 1 

(rRNAs) and ~50 ribosomal proteins (r-proteins) that form a large 50S subunit and a 2 

small 30S subunit. Ribosome assembly occurs within several minutes in vivo, and the 3 

process includes transcription and translation of the rRNAs and r-proteins, folding of the 4 

rRNA and r-proteins, and docking of the r-proteins on the rRNA scaffold. rRNA folding 5 

events and proper r-protein binding are facilitated by ~100 ribosome assembly factors. 6 

Given the efficiency and speed of the assembly process, structural intermediates are 7 

difficult to isolate and purify. However, perturbations in ribosome assembly lead to the 8 

accumulation of numerous structural intermediates, which collectively inform molecular 9 

mechanisms of ribosome assembly (Shajani, Sykes and Williamson, 2011; Stokes et 10 

al., 2014; Sashital et al., 2014; Sykes et al., 2010; Jomaa et al., 2014; Li et al., 2013; Ni 11 

et al., 2016; Davis et al., 2016; Rabuck-Gibbons et al., 2020). The major parts of the 12 

ribosome that are often present or missing in assembly intermediates are the central 13 

protuberance (CP), the L7/12 and L1 stalks, and the base (Figure 1A).  14 

 15 

We previously developed a genetic approach by which the amount of a given r-protein, 16 

in our case bL17, could be titrated by the addition of the small molecule homoserine 17 

lactone (HSL) (Davis et al., 2016). Limiting the amount of bL17 induced a roadblock in 18 

ribosome assembly, causing intermediates to accumulate. In the first work using the 19 

bL17-lim strain (Davis et al., 2016), we identified thirteen distinct structures that fell into 20 

four main structural classes (Figure 1B). Here, we will continue to use the nomenclature 21 

for the main classes used by Davis and Tan, et al. These categories, ordered least to 22 

most mature, are the B class which is missing the base, CP, and both stalks, the C 23 

class in which the base is formed, but the central protuberance (CP) is either misdocked 24 

or altogether missing, the D class in which the base of the 50S ribosome is missing, and 25 

the E class, which contains both the base and the CP, but has variability in the 26 

presence or absence of the stalks. Some of the “missing” regions (primarily rRNA, but 27 

they may also include r-proteins) described above are not present in the reconstructed 28 

maps but are in fact present in the sample and within individual particle images, 29 

meaning that they contribute to “biological noise”. This becomes relevant for some of 30 

the decisions that need to be made in the data analysis workflow, as will be discussed 31 

below. In previous work, the four main initial classes belonging to the 50S assembly 32 

intermediates (B, C, D, E) were each further subdivided by an additional round of 33 

subclassification, resulting in thirteen distinct structures.  While several different 34 

subclassification schemes were attempted at that time using heuristics to determine the 35 

number of subclasses, no attempt was made to establish quantitative criteria by which 36 

the subclassification or coverage of relevant classes would be complete. While classes 37 

were identified belonging to the 30S and 70S (F class and A class in Davis et al., 2016), 38 

they are not explicitly described in our previous work or in the work described here. 39 

 40 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


As our goal is to define broad trends in ribosome assembly through various 1 

perturbations, it is important to quantitatively assess differences between intermediates 2 

that accumulate under various specific conditions and to organize them into a ribosome 3 

assembly landscape (Davis et al., 2016; Bernstein et al., 2004; Harnpicharnchai et al., 4 

2001; Jomaa et al., 2011; Loerke, Giesebrecht and Spahn, 2010; Nikolay et al., 2018; 5 

Razi, Guarné and Ortega, 2017; Uicker, Schaefer and Britton, 2006). To this end, we 6 

developed a data processing framework to analyze cryo-EM datasets methodically and 7 

quantitatively in order to assess the number of distinct structures, the significant 8 

differences among them, and to place these structures into a biological context. When 9 

we apply our complete workflow to a dataset of ribosome assembly intermediates from 10 

bL17-lim, we discover a total of forty-one different structures that are identifiable based 11 

on a defined set of cutoff parameters. These structures include several novel 12 

intermediates, such as the most immature assembly intermediate observed to date, and 13 

an independent pathway contingent on the binding of a ribosome assembly factor, as 14 

well as late-stage assembly intermediates. Together, these are organized into a revised 15 

assembly landscape for the 50S ribosomal subunit under bL17-lim conditions.   16 

 17 

Results and Discussion  18 

 19 

An overview of the heterogeneity processing workflow 20 

There are two main phases in the framework for systematic analysis of heterogeneous 21 

ensembles of macromolecular conformations (Figure 2).  The first phase is a discovery 22 

phase, which begins with iterative rounds of hierarchical classification and sub-23 

classification using a defined set of thresholding parameters. The goal of this first phase 24 

to uncover the broad spectrum of distinct classes in a cryo-EM dataset, starting with 25 

traditional pre-processing and data cleaning steps (e.g. motion correction, particle 26 

picking, CTF estimation, and initial 2D and 3D classification).  The initial data cleaning 27 

steps defined here are intended to be very lenient, such that the only particles removed 28 

from the dataset are clear artifacts or molecular species that are not of interest. For 29 

example, in the case of 50S ribosome assembly intermediate analysis, we remove 30 

particles that are obvious 30S or 70S ribosomes and proteasomes from the stack, but 31 

we do not remove any classes that could possibly be 50S assembly intermediates.  32 

After the cleaning steps, an iterative subclassification strategy is used to parse out 33 

molecular heterogeneity. After an initial round of classification, each class (class X) is 34 

subjected to a n=2 subclassification, resulting in two potential subclasses, X1 and X2.  35 

Both subclasses are processed and binarized, and then difference maps X1-X2 and X2-36 

X1 are calculated, to determine if there is more heterogeneity that can be mined from 37 

each class X. If the difference volumes don’t reach a chosen molecular weight or 38 

resolution threshold, then the subclassification is rejected, and further subclassification 39 
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is terminated. If neither of these two criteria are reached, the binary subclassification 1 

process is iteratively repeated until one of the convergence criteria are met.  2 

 3 

The second phase is an analysis phase, which is intended to quantitatively define and 4 

distinguish structural features between maps, and further, to establish the number of 5 

structural states using a given set of quantitative cutoffs. During this hierarchical 6 

difference analysis, the full matrix of difference maps is calculated, and the molecular 7 

weights of the difference maps are used as a metric to cluster the classes, which can be 8 

visualized as a particle dendrogram. A line can be drawn through the dendrogram at a 9 

chosen molecular weight threshold, which identifies similar maps that can be combined. 10 

Next, to qualitatively differentiate between classes, the resulting set of maps are 11 

compared to a catalog of coarse-grained structural features that are calculated from a 12 

reference structure, in this case the bacterial 50S ribosome.  It is convenient to use 13 

features such as rRNA helices and r-proteins, that may be present or absent in various 14 

classes. The presence of these coarse-grained reference features is quantitatively 15 

analyzed using hierarchical clustering to organize and visualize the patterns of variation 16 

among the final set of particle classes.  For our dataset of bacterial ribosome assembly 17 

intermediates, these features are used to place the observed classes into a putative 18 

assembly pathway, based on a principle of parsimonious folding and unfolding.    19 

 20 

A divisive resolution-limited subclassification approach facilitates identifying 21 

novel species  22 

A major challenge in the analysis of heterogeneous datasets is the accurate 23 

identification of a broad diversity of structural states.  To address this, we developed a 24 

classification strategy to mine an experimental cryo-EM dataset for distinct particle 25 

populations.  Classification and refinement of particle classes can be undertaken using 26 

a variety of software packages, and we have adopted the latest version of FrealignX, 27 

whose code base is also implemented within cisTEM (Grant, Rohou and Grigorieff, 28 

2018; Lyumkis et al., 2013). We note that most processing packages that are capable of 29 

classifying single-particle cryo-EM data can be employed for this purpose(Scheres, 30 

2016; Nakane et al., 2018; Zhong et al., 2021; Punjani and Fleet, 2021b; Punjani and 31 

Fleet, 2021a).  32 

 33 

In typical cryo-EM workflows, 3D classification is performed several times, with different 34 

choices for the total number of classes (n).  If n is too small, the resulting classes may 35 

have averaged properties leading to loss of structural diversity but potentially higher 36 

resolution in the homogeneous regions.  If n is too large, the data is subdivided into 37 

nearly identical classes, but each class is characterized by lower resolution, because 38 

the particle count contributing to the class decreases. For the characterization of 39 

intrinsically heterogeneous datasets such as those encountered during ribosome 40 
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assembly, the goal of 3D classification is to capture the full range of structural diversity, 1 

as opposed to a select few well-resolved classes.  Therefore, we developed an iterative 2 

subclassification strategy to systematically mine the data and identify distinct structural 3 

intermediates, including species that are rare and underpopulated.  4 

 5 

With the knowledge that our test dataset harbored at least thirteen intermediates (Davis 6 

et al., 2016), we started with n=10 in order to evaluate parameters for subclassification. 7 

The ten initial classes are shown in Figure 3A.  While we expected that we would find 8 

the previous B, C, D and E classes in the dataset, the B-class was not present, and 9 

rather, multiple classes that are subtle variations of the E-class were present. This 10 

exemplifies one of the pitfalls of classification that we term “hiding”, where subclasses 11 

can be mixed, only to emerge at subsequent stages of subclassification.  A survey of 12 

various classification parameters within FrealignX revealed that lowering the 13 

res_high_class parameter, which is the resolution of the data to be used for 14 

classification, ameliorated class hiding and had a strong effect on the classes that 15 

emerged. This parameter is typically set to just below the estimated resolution limit of 16 

the data. However, by setting res_high_class to 20Å, the gross class heterogeneity 17 

increased, and the expected B-class emerged (Figure 3B). The resolution threshold for 18 

classification is frequently defaulted and determined automatically during classification, 19 

but it may also be explicitly set by the user or limited to the resolution of the first Thon 20 

ring (Scheres, 2012; Scheres, 2016; Scheres et al., 2008). With the well-defined 21 

ribosome assembly case study, we show that a lower resolution threshold during 22 

classification helps to identify particle subsets that are substantially distinct from the 23 

predominant species. 24 

 25 

We also examined different iterative subclassification strategies, with various numbers 26 

of classes used for each stage of subclassification. In order to test the success of these 27 

strategies, we selected a final n of ~30, which was chosen because it provided a 28 

convenient number to evaluate a variety of subclassification schemes, and because it 29 

was close to twice the final number of classes found in the original bL17-lim dataset 30 

(Davis et al., 2016). The five classification schemes (Figure 3C) tested were: (1) a 31 

simple 1-round classification with n=30, (2) a 2-round hierarchical classification of 6 32 

initial classes, each subdivided into 5 (n1=6,n2=5; total n=30,), (3) a 3-round hierarchical 33 

subclassification of 2 initial classes each subdivided into 3, with a second subdivision 34 

into 5 (n1=2,n2=3,n3=5; total n=30), (4) a 3-round hierarchical  classification of 5 initial 35 

classes subdivided into 3, then subdivided into 2 n1=5,n2=3,n3=2; total n=30,), and (5) a 36 

5-round hierarchical binary subclassification strategy, where 2 initial classes were 37 

subdivided into 2 until n=32 was reached (n1=2,n2=2,n3=2,n4=2,n5=2; total n=32,).  38 

 39 
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With the sole exception of the simple single-round classification with n=30, all of these 1 

divisive schemes yielded new classes not previously identified (Supplemental Figure 1, 2 

indicated by *). Furthermore, the iterative divisive approaches produced the greatest 3 

range of structural diversity and avoided grouping together dissimilar classes. This 4 

observation is perhaps not unexpected, as it is well known that a divisive classification 5 

approach avoids local minima within the search space and is more robust than 6 

attempting to produce a final number of classes directly (Gray, 1984; Sorzano et al., 7 

2010). Qualitatively, a first round of classification where n1 is on the order of the number 8 

of major classes works well, followed by smaller subdivisions.  As an example, a three 9 

round subclassification scheme with [n1 = 5, n2 = 3, n3 = 2], for a total of 30 final classes, 10 

identified the greatest number of new structures, as shown in Supplemental Figure 1. 11 

For this reason, we proceeded with the n1 = 5, n2 = 3, n3 = 2 approach for our work, 12 

although we note that the optimal classification scheme will likely vary with the distinct 13 

heterogeneity spectrum for each unique dataset.  Given that the observed classes are 14 

relatively independent of the details of the subclassification, we turned our attention to 15 

the criteria for termination of subclassification. 16 

 17 

Defining an endpoint for subclassification 18 

The determination of when subclassification is complete is a key question in cryo-EM 19 

analysis. Many times, classification is considered finished if a specific region of interest 20 

can be resolved to a satisfactory resolution, depending on what question(s) the user 21 

wishes to address. However, this subjective approach may be insufficient for the 22 

purpose of uncovering hidden features and discovering new structural states, especially 23 

if there are multiple datasets to be compared. To guide the analysis of our bL17-lim 24 

dataset, and to establish a protocol that can be used to analyze other data with 25 

statistical significance, our goal was to establish metrics by which we could confidently 26 

terminate the subclassification. We adopted a simple metric to determine the endpoint 27 

of subclassification.  For any given class at any stage of subclassification, a test 28 

subclassification is performed with n=2.  If the two resulting subclasses differ by less 29 

than a chosen noise threshold, or by less than a chosen molecular weight threshold, 30 

then subclassification is complete, and the subdivision is rejected.  Conversely, if the 31 

thresholds are exceeded, the subclassification is retained, and the two resulting classes 32 

are iteratively subjected to additional subclassification until the termination thresholds 33 

are met (Figure 2).   34 

 35 

There are at least two types of noise that need to be considered in the difference 36 

analysis that are used to conclude subclassification.  First, there is the intrinsic noise 37 

floor in the map that arises from averaging noisy image data during the reconstruction 38 

process.  Second, there is biological noise, which can be broadly attributed to 39 

conformational and compositional heterogeneity, resulting in density above the intrinsic 40 
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noise floor that cannot be interpreted in terms of a structure or slight shifts of well-1 

defined elements that may or may not be significant (Supplemental Figure 2).  For 2 

example, in the case of ribosome assembly, there are portions of rRNA that are present 3 

in the sample, but do not resolve to a reasonable structure (Davis et al., 2016). To 4 

characterize a diverse set of classes, the goal is to identify significant differences that 5 

exceed chosen thresholds for these noise components. 6 

 7 

A three-step process was developed to remedy the above challenges, based on the 8 

estimation of the real space noise in a given map. First, a low-pass filter is used to 9 

reduce high-frequency information in the map (low-pass filter threshold, Table 1) 10 

Clearly, this is inadvisable if high resolution is the goal for the experiment, but for 11 

heterogeneity analysis, resolution is secondary to differentiating between broader 12 

conformational and compositional differences. Second, it is important that the soft 13 

spherical mask typically applied during classification is removed, and the standard 14 

deviation of the unmasked map (σmap) is calculated using standard cryo-EM analysis 15 

programs. While the signal from the macromolecular object is included in this 16 

calculation, that contribution to the standard deviation is negligible if the box size is 17 

sufficiently large, so that voxels containing true signal represents 1-2% of the total map 18 

volume.  Effectively, σmap provides a crude estimate of the intrinsic map noise. There 19 

are several other ways to calculate a noise threshold, most recently the program 20 

developed by Beckers et al. (Beckers, Jakobi and Sachse, 2019) which uses a false 21 

discovery rate (FDR) to determine the threshold used for visualization and analysis, or 22 

one can use the noise sampled from the periphery of the map. The values of 3σmap are 23 

highly correlated to the contour levels based on FDR as shown in Figure S3 but the 24 

3σmap threshold generally exceeds the FDR threshold, and is thus more conservative.  25 

Due to the prevalence of unresolved features in the ribosome data, we have used 3σmap 26 

as a convenient threshold to eliminate noise.  Third, each map is then binarized using a 27 

3σmap threshold such that intensities greater than 3σmap were set to 1, and intensities 28 

less than 3σmap were set to 0 (binarization threshold, Table 1). Other thresholds could 29 

be devised and implemented, as long as they are applied consistently across classes. 30 

These thresholded, binarized maps are used for the remainder of the analysis. Using 31 

these maps is advantageous because the “noise” from flexible regions is removed from 32 

the map, and there is a clear boundary of which parts of a structure are analyzed. 33 

Further, binarization facilitates coarse-grained analysis and eliminates the need for 34 

scaling. 35 

 36 

To define the endpoint to classification, the above filtering and binarization steps are 37 

applied after a test n=2 subclassification of a given class X into class X1 and X2. If 38 

either class X1 or class X2 do not have a resolvable map, as defined by the resolution 39 

limit (r-limit, Table 1), then the classification process is terminated.  If the differences 40 
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between class X1 and class X2 are less than the volume limit (v-limit, Table 1), the 1 

subclassification is terminated. However, if the differences between class X1 and X2 are 2 

greater than the v-limit, then the subclassification is retained, and classes X1 and X2 3 

are in turn further subdivided into 2 classes. This process then repeats on all classes 4 

until either the r-limit or the v-limit are reached.  This set of limits provides a consistent 5 

and quantitative basis for iterative subclassification.  6 

 7 

Segmented difference analysis between map identifies the exact number of 8 

structural states  9 

Having discovered the structural variants in the data, we then asked how the different 10 

maps compare to one another and where/what are the major differences. To address 11 

this question, we developed a strategy to quantitatively assess similarities between the 12 

classes.  While the classification approach in the discovery phase is designed to 13 

terminate once the structural features were no longer distinguishable using the r-limit or 14 

v-limit, this procedure does not guarantee that individual structures within the collective 15 

set of reconstructions are all distinct from one another. More specifically, a situation can 16 

arise where two similar classes emerge (from hiding) in different branches of the 17 

subclassification tree.   18 

 19 

In the first step, difference maps are calculated between all of the binarized, thresholded 20 

maps. Such difference maps are useful to identify regions of density that are distinct 21 

between classes, and in our case, provide both qualitative and quantitative insight into 22 

structural relationships between distinct assembly intermediates. Two specific examples 23 

for distinct “D-classes” are shown in Figure 4A-B. The first two columns display two 24 

distinct maps arising from some point during classification. The raw difference maps are 25 

shown in the third column (map1-map2, red; map2-map1, blue). The approximate 26 

molecular weight of these differences is also indicated. These difference maps are then 27 

segmented to remove “dust” that may arise from minor conformational or compositional 28 

variations between maps. This dust cannot be interpreted in biological terms at the 29 

target resolution but may add up to a significant molecular weight (Table 1 30 

segmentation threshold, Figure 4). Such difference maps can be computed for all 31 

pairwise combinations of reconstructions arising from the classification procedure.  32 

 33 

The pairwise difference maps are useful for both qualitative and quantitative 34 

downstream analyses. To parse through structural differences, define an accurate final 35 

number of unique structural variants in the data, and combine particles contributing to 36 

similar maps, we employed a simple hierarchical clustering approach based on the 37 

positive/negative molecular weight differences between structures. Based on the 38 

clustering, it is possible to pare down the maps and combine particles from similar 39 

reconstructions, even if they arise from different starting points in the classification 40 
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(Figure 5A). At this stage, two classes can be combined if the molecular weight 1 

differences between the two classes are less than a given threshold. Since the 2 

branchpoints of the dendrogram provide a measure of molecular weight differences 3 

between maps, they can serve as a guide for analyzing the similarity between classes 4 

overall based on the nodes of the dendrogram (Figure 5B). In the example in Figure 5B, 5 

the dendrogram reveals that the leftmost structure is distinct from the other two and 6 

needs to be treated independently, whereas the latter two can be combined into a single 7 

class. Thus, although there are 42 distinct structures in Figure 5A, after hierarchical 8 

clustering analysis and the subsequent merging of similar maps, there are 41 distinct 9 

structures that will go forward in the analysis pathway. Collectively, these procedures 10 

enable us to identify the exact number of structural states within the data, given the 11 

limitations associated with identifying novel classes in the discovery phase and 12 

according to the established criteria in the analysis phase, defined above.    13 

 14 

Defining relationships between distinct structures 15 

An important step in analyzing differences between classes discovered within the above 16 

procedures for heterogenous cryo-EM data analysis is to define where differences 17 

between two maps are located. If a model (e.g. an atomic model or a cryo-EM structure) 18 

exists as a reference, and if the reconstructed maps differ primarily by compositional 19 

variation, then it is straightforward to use the model for interpreting the collective set of 20 

maps (Davis et al., 2016) in an “occupancy analysis.” In the case of bacterial ribosome 21 

assembly, we have a well-defined reference model (Figure 6A). This reference structure 22 

is broken into its individual r-RNA and r-protein parts, yielding theoretical cryo-EM 23 

densities for each component (Figure 6B). Such individual densities can then be directly 24 

compared to densities arising from experimental cryo-EM classification. It is important 25 

that the reference densities are generated at (approximately) the same resolution as the 26 

experimental densities arising from hierarchical clustering and difference analyses. The 27 

theoretical maps are then binarized, which enables comparing the theoretical maps to 28 

the binarized experimental maps arising from subclassification.  Each binarized class 29 

(Figure 6C) is then compared to each theoretical feature map by counting overlapping 30 

voxels and normalizing to the theoretical volume, to define the fractional occupancy of 31 

the selected feature in the map that can be completely present (Figure 6D), partially 32 

present due to partial flexibility or a misdocked figure (Figure 6E), or completely missing 33 

(Figure 6F). The complete set of fractional occupancies are given as an n by m matrix of 34 

values between 0 and 1, where n describes the set of classes and m defines the 35 

number of features.  36 

 37 

The resulting fractional occupancies can be visualized as a heat map and subjected to 38 

hierarchical clustering to organize the classes and features (Figure 6G). Clustering 39 

along the feature (x-axis) groups elements (in this case, r-proteins and rRNAs), and 40 
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clustering along the map (y-axis) groups the maps according to their occupancy. As 1 

expected, the B, C, D, and E, maps cluster well together. The occupancy matrix 2 

facilitates the visualization of large blocks of structural features that co-vary across the 3 

particle classes, providing cooperative folding blocks (Figure 6H) (Davis et al., 2016). 4 

This procedure enables a quantitative comparison of distinct sets of maps that differ by 5 

compositional variants.  We note that this procedure is not currently compatible with 6 

conformational variability or density that is not represented in the reference.  However, if 7 

there are multiple reference models that differ by discrete conformational changes, the 8 

current protocol can be extended to competitively compare occupancies against 9 

different reference models.  10 

 11 

Ordering structures in a ribosome assembly pathway 12 

In the final step that is relevant to defining an assembly process, we developed a 13 

module that uses molecular weight differences to place ribosome assembly 14 

intermediates into a pathway. In this analysis, a “folding” matrix is calculated from the 15 

molecular weight difference that would need to be added to a given map to create a 16 

second map, and the “unfolding” matrix is calculated from the molecular weight that 17 

would need to be subtracted from one map to create a second.  Each element of the 18 

folding/unfolding matrix can be considered as the driving force/barrier for a structural 19 

transition between two classes.  By postulating that folding proceeds by incremental 20 

assembly, with minimal unfolding, a parsimonious transition graph can be constructed 21 

with allowed passages between classes based on simple criteria – there is a molecular 22 

weight cutoff unfolding transitions, and there is a limit set to the number of transitions 23 

emanating from each class.  Large unfolding events are unlikely, given the large 24 

number of states that are close in molecular weight, but small unfolding events must be 25 

permitted to allow for structural rearrangements required to transition between classes.  26 

Finally, it is likely that structural transitions proceed from a finite manifold of close 27 

intermediates.   The folding and unfolding matrices can be used to construct a directed 28 

graph of allowed transitions using these criteria, as shown in Figure 7.  29 

 30 

Analysis of bL17-lim data using the quantitative heterogeneity mining protocol 31 

Our quantitative mining protocol was developed using data collected from newly purified 32 

assembly intermediates from the previously characterized bL17-limitation strain (Davis 33 

et al., 2016). We collected new cryo-EM data (Supplementary Table 1 and subjected it 34 

to our workflow. In the discovery phase, we employed an updated high-resolution limit 35 

for refinement (res_high_class=20Å) and an initial n5>n3>n2 hierarchical classification 36 

scheme, followed by additional rounds of binary subdivision. All maps were binarized 37 

according to the 3σmap threshold determined individually for each map. To determine if 38 

subclassification was complete, we selected a v-limit of 1.5 kDa. The rationale for this 39 

choice is that 1.5 kDa represents the size of the smallest RNA helix present in the 40 
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bacterial ribosome and therefore corresponds to the smallest feature that we would like 1 

to capture in the data. For our purposes, smaller features can be assumed to be either 2 

biological and/or experimental noise. After iterative subclassification, the total number of 3 

classes is 42. The similarity between all of the maps was then analyzed by the 4 

hierarchical clustering analysis as described above, and at this stage, pairs of classes 5 

were combined with a 10 kDa difference threshold (Figure 5A, dotted red line). This 6 

cutoff was chosen because it is close to the average molecular weight of all proteins 7 

and rRNA features, and we wished to reduce the complexity of our data. We found one 8 

pair of structures that were similar to one another according to our established criteria 9 

for biological significance, and the particles belonging to these classes were accordingly 10 

combined (Figure 5A). Thus, using this protocol, a total of forty-one ribosome assembly 11 

intermediates were identified using quantitative metrics and similarity analysis, with 12 

minimal heuristic intervention.  13 

 14 

The classes were then subjected to an occupancy analysis to view the sets of 15 

cooperative folding blocks across the different classes. For the bL17-lim dataset here, 16 

the maps are compared to the reference crystal structure (PDB 4ybb) (Figure 6A). The 17 

reference 4ybb structure is filtered to 10Å and segmented into volumes corresponding 18 

to individual r-proteins and rRNA helices, resulting in 139 theoretical map segments 19 

(Figure 6B). The fractional analysis revealed five major structural blocks (Figure 6G,H) 20 

The largest, block I (red) is composed of structural elements that are largely present in 21 

all of the classes. These elements are found on the back of the ribosome and represent 22 

the structural core that can form without bL17. Block II (green) represents the central 23 

protuberance, which is fully formed in the D and E classes but is either missing or 24 

misdocked in the B and C classes. Block III (yellow) maps to the base of the ribosome 25 

and the L1 stalk. These features are mostly present in the C and E classes but are 26 

missing in the B and D classes. These two blocks represent parallel pathways in 27 

assembly (Davis et al., 2016), as it is unlikely that the base of the ribosome would be 28 

unfolded or disordered in order to form the central protuberance, and vice versa. Block 29 

IV (blue) represents density that is specific to the base of the L7/12 stalk and is mostly 30 

present in the D and some of the E classes. Finally, block V (purple) represents density 31 

that is mostly missing in all maps, and is composed of h68, bL9, the L7/12 stalk, and the 32 

top of the L1 stalk. These represent features that are among the last of the ribosome to 33 

fold (like h68) or are flexible elements (the stalks). bL9 is a special case, as the 34 

conformation in the crystal structure is an artifact due to crystallization; in cryo-EM 35 

structures, bL9 wraps around to the interface between the 30S and 50S subunits and is 36 

often flexible. These central blocks are very similar to the ones that we discovered 37 

previously (Davis et al., 2016), but this updated occupancy matrix will allow us to 38 

compare the blocks that arise from other depletion or deletion strains in order to explore 39 

the cooperative block-like behavior or ribosome assembly in future work. 40 
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 1 

The ordering module was used to calculate an initial pathway in the absence of bL17-2 

lim, which was modified by hand, as elements like the misdocked central protuberance 3 

and non-native structural elements can have large effects on molecular weight 4 

differences but may arise earlier in the order of assembly. We found the same initial 5 

super classes as previously reported (B, C, D and E classes). While the classes we 6 

found were similar to the initial bL17 data (Supplemental Figure 4), the new classes 7 

enabled refinement of our bL17-lim ribosome assembly pathway. First, we found a 8 

YjgA-dependent pathway through the assembly process (Figure 7, classes denoted by 9 

*). YjgA was only bound if the central protuberance and the L1 stalks were present. We 10 

also discovered three potential parallel processes in the C class where the earliest 11 

event could either be the completion of the L1 stalk, the partial docking of the central 12 

protuberance, or the formation of the base of the L7/12 stalk. We did not previously 13 

observe the formation of the base of the L7/12 structure in the assembly pathway for 14 

any class.  We also found an immature B class (Figure 7, structure 1) and an immature 15 

D class where the base was missing, but the L7/12 stalk was absent or present (Figure 16 

7, structures 2 and 3), which were not present in the original set of 13 structures (Davis 17 

et al., 2016). In particular, the immature B class represents the least mature pre-50S 18 

intermediate identified to date. We also identified several structures that seem to be 19 

transition points between the two classes (Figure 7, structures 6 and 7), and we observe 20 

formation of density at the base of the structures, which is lacking in other D classes 21 

and is present in other E classes. These new discoveries inform a better understanding 22 

of ribosome assembly in the context of bL17 limitation, and the data analysis process 23 

will allow us to quantitatively assess cryo-EM data from other limitation strains and 24 

ribosome assembly defects. 25 

 26 

Conclusions 27 

 28 

Heterogeneity analysis in cryo-EM provides exciting opportunities to discover new 29 

biology, but current workflows suffer from numerous challenges.  The work here 30 

addresses three challenges that researchers face in the analysis of cryo-EM data, as 31 

exemplified using a case study of ribosome assembly intermediates: establishing a 32 

divisive approach to classification with well-defined endpoints to discover novel stats, a 33 

comprehensive difference analysis between distinct structures, and the application of 34 

well-defined criteria (thresholds) for limiting classification. The application of specific 35 

thresholds and limits (Table 1) has been critical to the success of analyzing ribosome 36 

assembly intermediate data. The implementation of this workflow has allowed us to 37 

identify an additional 28 ribosome assembly intermediates (counting the 41 assembly 38 

intermediates after merging similar classes), which include an independent pathway for 39 

the assembly factor YjgA and the earliest intermediate discovered to date in the 40 
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ribosome assembly process. The discovery and analysis modules of this workflow 1 

provide a powerful analysis for quantitatively interrogating heterogeneous cryo-EM data 2 

for complex biological processes. 3 
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 38 

Materials and Methods 39 

 40 

Cell Growth and Isolation of Ribosomal Particles 41 

Cells were grown and ribosomal particles were isolated as in (Davis et al., 2016). 42 

Briefly, strain JD321 was grown in M9 media (48mM Na2HPO4, 22mM KH2PO4, 43 

8.5mM NaCl, 10mM MgCl2, 10mM MgSO4, 5.6mM glucose, 50mM Na3*EDTA, 25mM 44 

CaCl2, 50mM FeCl3, 0.5mM ZnSO4, 0.5mM CuSO4, 0.5mM MnSO4, 0.5mM CoCl2, 45 
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0.04mM d-biotin, 0.02mM folic acid, 0.08mM vitamin B1, 0.11mM calcium pantothenate, 1 

0.4nM vitamin B12, 0.2mM nicotinamide, 0.07mM riboflavin, and 7.6mM 2 

(14NH4)2SO4]) with tetracycline (10 mg/mL), chloramphenicol (35 mg/mL),and limiting 3 

conditions HSL (0.1 nM) and harvested at OD=0.5. Cells were lysed in Buffer A (20mM 4 

Tris-HCl, 100mM NH4Cl, 10mM MgCl2, 0.5mM EDTA, 6mM b-mercaptoethanol; pH 5 

7.5) by a mini bead beater, and the clarified lysate was fractionated on a 10-40% w/v 6 

sucrose gradient (50mM Tris-HCl, 100mM NH4Cl, 10mM MgCl2, 0.5mM EDTA, 6mM b-7 

mercaptoethanol; pH 7.5).  8 

 9 

Electron Microscopy Data Collection 10 

Fractions containing the ribosomal intermediates were spin-concentrated with a 100 11 

kDa MW filter (Amicon) and buffer exchanged into Buffer A. 3 μl of this sample was 12 

added to a plasma cleaned (Gatan, Solarus) 1.2mm hole, 1.3mm spacing holey gold 13 

grids (Russo and Passmore, 2014). Grids were manually frozen in liquid ethane, and 14 

single particle data was collected using Leginon on a Titan Krios microscope (FEI) with 15 

a K2 summit direct detector (Gatan) in super-resolution mode (pixel size of 0.66Å at 16 

22,500 magnification). A dose rate of ~5.8e-/pix/sec was collected across 50 frames 17 

with a fluence of 33-35e-/Å2 at a tilt of -20° to compensate for preferred orientation (Tan 18 

et al., 2017b).  19 

 20 

FrealignX Classifications 21 

After conversion from Relion to FrealignX parameters, global refinements were 22 

performed in FrealignX, and all occupancies were randomized across the parameter 23 

files. A final value of 20Å was selected for res_high_class, and after every 10 cycles of 24 

classification/refinement, all classes were aligned to a C class scaffold using custom 25 

scripts for a 3D alignment with Chimera (Pettersen et al., 2004) while running FrealignX. 26 

For each classification step, 50 refinement/classification cycles were performed. After 27 

initial classification, each class was selected in a parameter file for subsequent rounds 28 

of classification using the merge_classes.exe in cisTEM (Grant, Rohou and Grigorieff, 29 

2018) and custom scripts. The occupancies were randomized across the parameter 30 

files, and the same cycle of 50 cycles of refinement/classification interspersed with 3D 31 

alignment with Chimera every 10 cycles. FSC curves and Euler plots were generated by 32 

FrealignX and cisTEM (Grant, Rohou and Grigorieff, 2018), and 3DFSC plots were 33 

calculated by the 3DFSC server (Tan et al., 2017a). The SCF was calculated according 34 

to the process in (Baldwin and Lyumkis, 2021; Baldwin and Lyumkis, 2020). The 35 

3DFSCs and all maps shown were visualized in Chimera (Pettersen et al., 2004), and 36 

the details for each map are indicated in Table S1. 37 

 38 

Calculation of σ values 39 
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For analysis, each map was first filtered to 10Å. To calculate σ which was used as a 1 

measure of noise, each map was unmasked by expanding the outer_radius in FrealignX 2 

so that the spherical particle mask would be larger than the box size. The Fourier 3 

folding of signal along the edges of the box was negligible. Relion 2.1 was used to 4 

calculate the σ value using the relion_image_handler command. Relion 2.1 was then 5 

used to create binarized maps using the relion_image_handler command, and the 6 

binarization threshold was set to 3σ.  7 

 8 

Hierarchical clustering analysis 9 

Thresholded, binarized maps were given as input to a custom Mathematica script 10 

(Wolfram Research, 2020). The Mathematica script calculated the segmented 11 

difference maps between all maps and calculated the molecular weights of the 12 

differences maps (in kilodaltons) using Equation 1(Ludtke, 2016): 13 

�� � ������� � ���	
���	
� � 
/1000 

Density ρ is 0.81 daltons/Å3.  The MW difference matrix was clustered using the 14 

Euclidean distance metric and Ward’s linkage and displayed in a dendrogram. Similar 15 

maps were  averaged together after hierarchical clustering analysis using EMAN2 16 

((Ludtke, 2016).   17 

 18 

Occupancy Analysis 19 

The thresholded and binarized maps were given as input, and the reference map from 20 

the E. coli 50S subunit crystal structure (PDB ID 4YBB) was segmented into 139 21 

elements comprised of individual ribosomal proteins and rRNA helices according to the 22 

23S secondary structure. Theoretical densities for each r-protein and rRNA helix were 23 

calculated for each element at 10Å using the pdb2mrc command from EMAN. Prior to 24 

binarization, voxels that had overlapping theoretical density from two structural 25 

elements, were assigned to the smaller of the two theoretical volumes so that each pair 26 

of volumes is nonoverlapping.  Each voxel density was binarized to either 0 or 1 using a 27 

threshold of 0.016, which is the threshold that gave the approximately correct molecular 28 

weight for individual r-proteins and rRNAs helices. The relative volumes in the binarized 29 

experimental and reference maps were calculated, which gave a fractional occupancy 30 

between 0 and 1 for each element. The occupancy values were clustered across the 31 

rows (classes) and columns (rRNA/protein elements) using an unsupervised 32 

hierarchical clustering using the Euclidean distance metric and Ward’s linkage method, 33 

as implemented in Mathematica.  34 

 35 

Parsimonious folding/unfolding matrices.  A pathway diagram was constructed by using 36 

the n x n molecular weight difference matrices, Mf and Mu, from a set of n structures.  37 

Each difference map (Mi-Mj) has negative elements corresponding to folding that occurs 38 

in the transition from class i to class j, and positive elements that correspond to 39 
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unfolding that occurs in the transition from class i to class j.  The volume changes for 1 

folding and unfolding form the elements of Mf or Mu , noting that Mu =  Mf
T . The 2 

matrices Mf and Mu are used to construct a directed graph G, comprised of the set of 3 

vertices vi, and a set of directed edges, eij,  representing the allowed transitions 4 

between classes, The set of edges is initialized as the set of eij where Mu,i,j > Mf,i,j, such 5 

that only net folding transitions are allowed.  The set of edges is pruned using two 6 

global parameters: θunf as a maximum threshold for unfolding, and nbranch, as a limit on 7 

the number of transitions emanating from a single class. The unfolding threshold limits 8 

unreasonable structural rearrangements, while the branching threshold limits transitions 9 

to a small set of the closest transitions. Edges are eliminated if the unfolding exceeds 10 

the threshold such that Mu,i,j > θunf, unless elimination of the edge results in a 11 

disconnected graph G.  Next, for each vertex vi, the set of remaining edges eik 12 

emanating from vi, are sorted into the order based on the Mf,i,k, retaining at most the 13 

nbranch edges, again, unless deleteing the edge would result in a disconnected graph G.  14 

The resulting transition graph G should have one or more source vertices (classes) that 15 

are the earliest classes in the assembly pathway, and one or more sink vertices that are 16 

the most mature classes in the pathway.  Tuning of the parameters θunf and nbranch, 17 

adjusts the connectivity and degree of branching of the resulting graph.  The graph 18 

vertices are annotated with thumbnails of the map, followed by manual layout  of the 19 

graph into a sensible order in Adobe Illustrator.    The values of θunf and nbranch used to 20 

generate the graph in Figure 7 were 390 kDa and 3, respectively.   21 

 22 

Data Deposition and Software Availability 23 

Mathematica scripts and example parameter files, where needed, will be available upon 24 

request. All maps are deposited at EMPIAR as noted in the Key Resources Table. 25 

 26 

Figure Titles and Legends 27 

 28 

Figure 1. Description of the bacterial large ribosomal subunit and prior assembly 29 

intermediates identified by cryo-EM. (A) PDB ID 4YBB labeled with prominent features 30 

identifiable on the large ribosomal subunit, including the central protuberance (CP), 31 

base, L1 stalk, and L7/12 stalks. These terms are used throughout the paper. (B) 32 

Primary classes identified within the original bL17-lim dataset (Davis et al., 2016). From 33 

left to right: B class (red), C class (yellow), D class (green), and the E class (blue). 34 

 35 

Figure 2. Workflow for cryo-EM heterogeneity analysis. 36 

 37 

Figure 3. A divisive resolution-limited subclassification approach facilitates identifying 38 

rare structural variants. (A) FrealignX classification with res_high_class parameter set to 39 

Nyquist (5.24Å). (B) FrealignX classification with the res_high_class parameter set to 40 
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20Å. Using a lower resolution cutoff leads to the identification of a broader range of 1 

classes. (C) Results of the five different classification schemes. The colors (A,B) 2 

correspond to the classes found in (C). 3 

 4 

Figure 4. Segmented difference analysis helps to define molecular weight differences 5 

between map pairs.  (A) Example where two maps would have been considered 6 

different before segmentation, but are not different after segmentation. (B) Example 7 

where two maps are different both before and after segmentation. Numbers indicate 8 

positive (Map1-Map2) and negative (Map2-Map1) molecular weight differences.  9 

 10 

Figure 5. Hierarchical clustering is used to combine similar maps under a given 11 

threshold. (A) Hierarchical clustering analysis of the maps that result after the terminal 12 

subclassification (total n=42). The red dashed line indicates the 10kDa MWCO used to 13 

combine similar maps at this step, and the red stars indicate maps that are combined 14 

after this analysis. After combining similar maps, the final number of classes is thus 41. 15 

(B) Close-up example of two combined maps in (A). The leftmost structure is distinct 16 

from the other two by ~135 kDa and needs to be treated independently, whereas the 17 

two rightmost structures can be combined into a single class.  18 

 19 

Figure 6. Results of occupancy analysis on the full dataset mapped onto the ribosomal 20 

scaffold (A) Reference crystal structure 4ybb. (B) Binarized maps of the individual 21 

proteins and rRNA helices created by segmenting the crystal structure into 139 22 

individual helices and proteins, and calculating theoretical 10A maps in Chimera. (C) An 23 

example of a binarized experimental map arising from sub-classification. The pixels 24 

from the binarized experimental map that are located in the theoretical binarized map 25 

are counted and normalized to an occupancy value of 0-1. (D) Example of an E class 26 

(blue) where the occupancy of an rRNA helix (h82, salmon) is fully occupied, with the 27 

corresponding occupancy block underneath. (E) Partial occupancy example of h82 28 

(salmon) with a C class (yellow). (F)  Example where rRNA (h82, salmon) is missing in 29 

the experimental data (B class, red). G. Occupancy analysis plot, where the individual 30 

proteins and helices are shown on the x-axis, the experimental maps are on the y-axis, 31 

and the normalized occupancy values are shown from white (0) to dark blue (1). 32 

Hierarchical clustering of both structure elements and experimental maps was 33 

performed on the occupancy matrix using a squared Euclidean distance metric and 34 

Ward’s linkage. (H) Occupancy analysis blocks mapped back to the reference structure 35 

4YBB, and the numbering system is the same as in (G). 36 

 37 

Figure 7. Revised ribosome assembly map from bL17-lim. (Assembly pathway drawn by 38 

analyzing the folding and unfolding molecular weight matrices and revised by hand). 39 

 40 
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 1 

Supplemental Information Titles and Legends 2 

Supplemental Figure 1. Results of the five tested classification schemes grouped by 3 

class. The structures are colored by classification scheme. Unique classes are shown 4 

by an asterisk (*), and classes that are similar are underscored by red brackets. 5 

Clustering of (A) the B classes, (B) the C classes, (C) the D classes, and (D) the E 6 

classes resulting from the tested classification schemes. Any 70S or “junk” classes that 7 

result from the subclassifications are omitted for clarity. 8 

 9 

Supplemental Figure 2. Example of ambiguous density and features for B class 10 

particles. From left to right: (B class filtered to 5Å and shown at 3σmap, 2σmap, and 11 

1.5σmap. In particular, at the 2σmap threshold, noise above background is visible proximal 12 

to the main particle that is likely due to disordered rRNA (black arrows). 13 

 14 

Supplemental Figure 3. Comparison of the the 3σmap threshold that is used in our 15 

current analysis versus the confidence map FDR threshold (Beckers, 2019).  The black 16 

line represents y=x, and the red and black dots represesent thresholds at 1% and 17 

0.01% FDR, respectively. The measures are highly correlated, and the 3σmap threshold 18 

is generally more conservative than either FDR threshold.  19 

 20 

Supplemental Figure 4. Hierarchical clustering analysis of the original bL17-lim data 21 

(orange) together with the structures solved by the new data processing workflow 22 

(blue). The red dotted line indicates the 10.0 kDa cutoff applied to determine similarity 23 

between classes. The original classes typically have counterparts within the new data 24 

(red underlined structures), but the new workflow is able to identify many more 25 

structural intermediates. 26 

 27 

  28 

 29 

 30 

 31 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449614


Threshold/limit Description Value used in this paper
limits r-limit The minimum resolution necessary for a map 10Å

v-limit volume limit: molecular weight difference limit for terminal 
subdivision

1.5 kDa

Thresholds
low pass filter threshold used to normalize resolution between maps and to focus on lower-

resolution differences between maps
10Å

binarization threshold threshold at which maps are binarized; pixel values below this limit 
are set to 0, values above this limit are set to 1

3𝛔map 

segmentation threshold defines the volume of dust to be removed from difference maps 1.5 kDa
difference threshold defines the lower limit for acceptable differences between maps 10 kDa
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