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Abstract 18 

DNA methylation (DNAm) clocks are accurate molecular biomarkers of aging. However, the 19 
clock mechanisms remain unclear. Here, we used a pan-mammalian microarray to assay DNAm 20 
in liver from 339 predominantly female mice belonging to the BXD family. We computed 21 
epigenetic clocks and maximum lifespan predictor (predicted-maxLS), and examined 22 
associations with DNAm entropy, diet, weight, metabolic traits, and genetic variation. The 23 
epigenetic age acceleration (EAA) derived from the clocks, and predicted-maxLS were 24 
correlated with lifespan of the BXD strains. Quantitative trait locus (QTL) analyses uncovered 25 
significant QTLs on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, 26 
and on Chr19 that contains a cytochrome P450 cluster. Both loci harbor candidate genes 27 
associated with EAA in humans (STXBP4, NKX2-3, CUTC). Transcriptome and proteome analyses 28 
revealed enrichment in oxidation-reduction, metabolic, and mitotic genes. Our results highlight 29 
loci that are concordant in human and mouse, and demonstrate intimate links between 30 
metabolism, body weight, and epigenetic aging. 31 
 32 
 33 
Keywords: epigenetic clock, lifespan, aging, DNA methylation, QTL, weight, diet  34 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 3 

Introduction 35 

Epigenetic clocks are widely used molecular biomarkers of aging1. These biological clocks are 36 
based on the methylation status across an ensemble of “clock CpGs” that are collectively used 37 
to derive a DNA methylation (DNAm) based estimate of age (DNAmAge). This estimate tracks 38 
closely, but not perfectly, with an individual’s chronological age. How much the DNAmAge 39 
deviates from the known chronological age is a measure of the rate of biological aging. Denoted 40 
as epigenetic age acceleration (EAA), a more accelerated measure (positive EAA) suggests an 41 
older biological age. While DNAmAge predicts age, its age-adjusted counterpart, EAA, is 42 
associated with health, fitness, exposure to stressors, body mass index (BMI), and even life 43 
expectancy2-6. 44 

DNAm clocks were initially reported for humans7,8. Since then, the age estimator has been 45 
extended to model organisms9-11, and different variants of human clocks have also been 46 
developed. Some clocks are tissue specific, others are pan-tissue, and others perform well at 47 
predicting health and life expectancy5,8,12-14.  48 

A new microarray platform was recently developed to profile CpGs that have high conservation 49 
across mammalian clades. This pan-mammalian DNAm array (HorvathMammalMethylChip40) 50 
provides a common platform to measure DNAm, and has been used to build universal 51 
epigenetic clocks that can estimate age across a variety of tissues and mammalian species15,16. 52 
Another remarkable development with this array is the novel lifespan predictor that can 53 
estimate the maximum lifespan of over 190 mammals at high accuracy17.  54 

Here, we examine these novel clocks, lifespan predictor, and methylome entropy in a cohort of 55 
mice belonging to the BXD family that were maintained on either normal chow or high-fat diet 56 
(HFD)18,19. The BXDs are a well-established mouse genetic reference panel that were first 57 
created as a family of recombinant inbred (RI) strains by crossing two inbred progenitors: 58 
C57BL/6J (B6) and DBA/2J (D2). The family has been expanded to ~150 fully sequenced progeny 59 
strains20,21. Members of the BXD family vary greatly in their metabolic profiles, aging rates, and 60 
natural life expectancy18,19,22-24. The genetic variation, and the availability of accompanying 61 
deep -omic data make the BXDs a unique experimental population for dissecting the genetic 62 
modulators of epigenetic aging. Previously, we explored the aging methylome in a small 63 
number of BXD cases and found that HFD and higher body weight were associated with higher 64 
age-dependent changes in methylation25. In the present work, our goals were to (1) test the 65 
accuracy of the DNAm measures in predicting age, lifespan, and association with diet and 66 
metabolic characteristics, and (2) apply quantitative trait locus (QTL) mapping and gene 67 
expression analyses to uncover loci and genes that contribute to these DNAm biomarkers.  68 

Our results are consistent with a faster clock for cases on HFD, and with higher body weight. 69 
Both the DNAmAge and lifespan predictors were correlated with the genotype-dependent life 70 
expectancy of female BXDs. We report QTLs on chromosomes (Chrs) 11 and 19. A strong 71 
candidate gene in the chromosome (Chr) 11 interval (referred to as Eaaq11) is Stxbp4, a gene 72 
that has been consistently associated with EAA by human genome-wide association studies 73 
(GWAS)26-28. The Chr19 QTL (Eaaq19) also harbors strong contenders including Cyp26a1, Myof, 74 
Cutc, and Nkx2–3, and the conserved genes in humans have been associated with longevity and 75 
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EAA28-30. Eaaq19  may also have an effect on body weight change with age. We performed gene 76 
expression analyses to clarify the physiology associated with the DNAm traits, and this, perhaps 77 
unsurprisingly, highlighted metabolic networks as strong expression correlates of epigenetic 78 
aging. 79 

Results 80 

Description of samples 81 

The present study uses liver DNAm data from 339 predominantly female mice (18 males only)  82 
belonging to 45 isogenic members of the BXD family, including F1 hybrids, and both parental 83 
strains. Age ranged from 5.6 to 33.4 months. Mice were all weaned onto a normal chow 84 
(control diet; CD) and a balanced subset of cases were then randomly assigned to the HFD (see 85 
Roy et al for details 18). Tissues were collected at approximately six months intervals (see 86 
Williams et al. 19). Individual-level data of cases used in this study are in Data S1. 87 

Correlation with chronological age 88 

For biological age prediction, three different types of mouse DNAm clocks were computed, 89 
each as a pair: liver-specific, and pan-tissue (Table 1). These are: (1) a general DNAm clock 90 
(referred to simply as DNAmAge): clock trained without pre-selecting for any specific CpG 91 
subsets; (2) developmental clock (dev.DNAmAge): built from CpGs that change during 92 
development; and (3) interventional clock (int.DNAmAge): built from CpGs that change in 93 
response to aging related interventions such as caloric restriction, HFD, or dwarfing alleles9,11,25. 94 
These clocks were trained either in an independent mouse dataset that did not include the 95 
BXDs and were therefore unbiased to BXD characteristics (unbiased mouse clocks), or trained in 96 
a subset of the BXD CD mice and used to estimate age in the full BXD cohort (BXD-biased 97 

Table 1. Epigenetic predictors and correlation with chronological age and entropy 

Clock type Training 
set1 

DNAmAge 
name Tissue r with age 

(n=339) 
r with entropy 

(n=339) 
Standard unbiased DNAmAge pan 0.89 0.50 
Standard unbiased DNAmAge liver 0.92 0.51 
Developmental unbiased dev.DNAmAge pan 0.87 0.46 
Developmental unbiased dev.DNAmAge liver 0.91 0.45 
Interventional unbiased int.DNAmAge pan 0.85 0.38 
Interventional unbiased int.DNAmAge liver 0.86 0.49 
Standard BXD DNAmAge pan 0.93 0.55 
Standard BXD DNAmAge liver 0.97 0.54 
Developmental BXD dev.DNAmAge pan 0.95 0.51 
Developmental BXD dev.DNAmAge liver 0.96 0.51 
Interventional BXD int.DNAmAge pan 0.89 0.43 
Interventional BXD int.DNAmAge liver 0.94 0.53 
Universal unbiased univ.DNAmAge pan 0.92 0.59 

Lifespan unbiased Predicted-
maxLS pan -0.07 (ns) -0.13 (p=0.02) 

1 Unbiased denotes that the clocks were trained in a completely independent dataset. 
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clocks). In addition to the mouse clocks, we estimated DNAmAge using the universal 98 
mammalian clock (univ.DNAmAge)15. The clocks performed well in age estimation (Table 1; Fig 99 
1a). The EAA derived from these clocks showed wide individual variation (Fig 1b), but the EAA 100 
values are uncorrelated with chronological age. 101 

We used the universal maximum lifespan 102 
predictor17 to estimate the potential 103 
maximum lifespan (predicted-maxLS) of 104 
mice. Predicted-maxLS was uncorrelated 105 
with chronological age (Table 1), and this is 106 
expected since the chronological age 107 
represents the time when the biospecimens 108 
were collected; not the time of natural 109 
demise. Instead, the predicted-maxLS 110 
showed an overall inverse correlation with 111 
EAA from the different clocks, and this 112 
suggests higher age-acceleration for mice 113 
with lower predicted-maxLS (Data S2). 114 

Association with methylome entropy 115 

The methylome-wide entropy provides a 116 
measure of randomness and information 117 
loss, and this increased with chronological 118 
age (Fig 1c)7. As direct correlates of 119 
chronological age, all the DNAmAge were 120 
positively correlated with entropy (Table 1). 121 

We hypothesized that higher entropy levels 122 
will be associated with (a) higher EAA, and 123 
(b) lower predicted-maxLS. Indeed, the 124 
univ.EAA had a significant positive 125 
correlation with entropy that was significant 126 
regardless of diet (Fig 1d). However, the EAA 127 
from the unbiased mouse clocks showed 128 
only weak correlations with entropy (Data 129 
S2). Entropy had a modest negative 130 
correlation with predicted-maxLS primarily 131 
in the CD group (Fig 1e). Taken together, our 132 
results indicate that discordance in the 133 
methylome increases with age, and is higher 134 
with higher univ.EAA. Mice with shorter 135 
predicted-maxLS may also had slightly higher 136 
entropy.   137 

 138 

 
Fig 1. DNA methylation readouts and inter-
correlations 
(a) Correlation between predicted age 
(universal clock), and known chronological 
age. Mice on control diet depicted by green 
dots (CD; normal lab chow; n = 210); mice on 
high fat diet (HFD; n = 129) by red dots. (b) 
Violin plots of epigenetic age acceleration 
(EAA) derived from different DNAmAge 
clocks. (c) Shannon entropy, calculated from 
the full set of high quality CpGs, increases 
with age. (d) DNA methylation entropy has a 
direct correlation with EAA derived from the 
universal clock. (e) There is a slight inverse 
correlation between the entropy and DNA 
methylation based predicted maximum 
lifespan (predicted-maxLS). 
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How the epigenetic readouts relate to diet, body weight, and sex 139 

Diet. EAA from most of the clocks, including the universal clock, were significantly higher in the 140 
HFD (Table 2). Entropy was also significantly higher in the HFD group. The maxLS did not 141 
differentiate between diets (Table 2). 142 

Body weight. Body weight was first measured when mice were at an average age of 4.5 ± 2.7 143 
months. We refer to this initial weight as baseline body weight (BW0). For mice on HFD, this 144 

Table 2. Association with diet and weight, and heritability of the epigenetic readouts 

Type EAA Diet Mean (SD) Diet 
(p) 

r 
BW0 a 

p 
BW0 

r 
BWF a 

p 
BWF H2 Strain 

r b 

Unbiased 
DNAm 
clocks 

EAA, pan 
CD -0.05 ± 0.21 

<.0001 
0.19 0.006 0.29 <.0001 0.49 

0.54 HFD 0.07 ± 0.21 0.21 0.01 0.42 <.0001 0.50 

EAA, liver 
CD 0 ± 0.17 

ns 
0.09 ns 0.20 0.003 0.40 

0.73 HFD 0.03 ± 0.14 0.22 0.01 0.49 <.0001 0.52 

dev.EAA, 
pan 

CD -0.04 ± 0.23 
0.004 

0.09 ns 0.22 0.001 0.53 
0.76 HFD 0.03 ± 0.22 0.27 0.002 0.45 <.0001 0.61 

dev.EAA, 
liver 

CD 0 ± 0.2 
ns 

0.19 0.002 0.29 <.0001 0.46 
0.78 HFD 0 ± 0.16 0.29 0.0007 0.47 <.0001 0.60 

int.EAA, pan 
CD -0.05 ± 0.25 

0.0003 
0.03 ns 0.21 0.002 0.27 

0.66 HFD 0.06 ± 0.33 0.22 0.01 0.46 <.0001 0.45 
int.EAA, 
liver 

CD -0.04 ± 0.22 
<.0001 

0.05 ns 0.18 0.01 0.59 
0.80 HFD 0.11 ± 0.25 0.27 0.002 0.58 <.0001 0.54 

BXD 
biased 
DNAm 
clocks 

EAA.BXD, 
pan 

CD -0.06 ± 0.15 
<.0001 

0.08 ns 0.17 0.01 0.26 
0.22 HFD 0.09 ± 0.19 0.17 0.05 0.37 <.0001 0.42 

EAA.BXD, 
liver 

CD 0 ± 0.11 
0.01 

-0.04 ns 0.06 ns 0.18 
0.37 HFD 0.03 ± 0.11 0.18 0.04 0.41 <.0001 0.34 

dev.EAA.BX
D, pan 

CD -0.03 ± 0.13 
<.0001 

-0.08 ns 0 ns 0.25 
0.43 HFD 0.05 ± 0.16 0.13 ns 0.40 <.0001 0.49 

dev.EAA.BX
D, liver 

CD -0.01 ± 0.13 
0.002 

0.07 ns 0.11 ns 0.26 
0.45 HFD 0.03 ± 0.12 0.21 0.02 0.47 <.0001 0.40 

int.EAA.BXD, 
pan 

CD -0.05 ± 0.19 
<.0001 

0 ns 0.18 0.01 0.19 
0.72 HFD 0.07 ± 0.3 0.20 0.03 0.42 <.0001 0.41 

int.EAA.BXD, 
liver 

CD -0.03 ± 0.16 
<.0001 

-0.04 ns 0.06 ns 0.39 
0.78 

HFD 0.09 ± 0.16 0.23 0.01 0.60 <.0001 0.40 

Universal 
clock univ.EAA 

CD -0.08± 0.22 
<.0001 

0 ns 0.11 ns 0.37 
0.67 HFD 0.13 ± 0.27 0.35 <.0001 0.50 <.0001 0.43 

Entropy - 
CD 10.034 ± 

0.007 0.004 
-0.15 0.03 -0.34 <.0001 0.39 0.20 

(ns) HFD 10.036 ± 
0.007 -0.11 0.21 0 ns 0.23 

Pred-
maxLS - 

CD 4.14 ± 0.37 
ns 

0.03 ns 0.05 ns 0.66 
0.89 

HFD 4.15 ± 0.32 -0.06 ns -0.11 0.20 0.70 
a BW0 is body weight at about 4.5 months of age (n = 339; 210 CD and 129 HFD); BWF is final weight at tissue 
collection (1 HFD case missing data; n = 338; 210 CD and 128 HFD) 
b Pearson correlation between strain means for n = 29 BXD genotypes kept on CD and HFD 
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was usually before introduction to the diet, with the exception of 48 cases that were first 145 
weighed 1 or 3 days after HFD (Data S1).  In the CD group, only the unbiased EAA (pan-tissue) 146 
and dev.EAA (liver) showed significant positive correlations with BW0 (Table 2). In the HFD 147 
group, the positive correlation with BW0 was more robust and consistent across all the clocks, 148 
and this may have been due to the inclusion of the 48 cases that had been on HFD for 1 or 3 149 
days. Taking only these 48 cases, we found that higher weight even after 1 day of HFD had an 150 
age-accelerating effect (Data S2). This was particularly strong for the unbiased interventional 151 
clocks (r = 0.45, p = 0.001 for int.EAA, pan-tissue; r = 0.58, p < 0.0001 for int.EAA, liver), and for 152 
the universal clock (Fig 2a). Second weight was measured 7.4 ± 5.2 weeks after BW0 (mean age 153 
6.3 ± 2.8 months).  We refer to this as BW1 and we estimated the weight change as deltaBW = 154 
BW1 – BW0. DeltaBW was a positive correlate of EAA on both diets, albeit more pronounce in 155 
the HFD group (Fig 2b; Data S2). The final body weight (BWF) was measured at the time of 156 
tissue harvest, and EAA from all the unbiased clocks were significant correlates of BWF on both 157 
diets (Table 2).  158 

 
Fig 2. Correlates and modifiers of the epigenetic readouts 
(a) For 48 mice, initial body weight (BW0) was measured 1 or 3 days after high fat diet (HFD), and 
these showed significant correlation between BW0 and epigenetic age acceleration (EAA shown for 
the universal clock). (b) Weight was first measured at mean age of 4.5 ± 2.7 months, and then at 6.3 
± 2.8 months (BW1). Weight gains during this interval (deltaBW = BW1 – BW0) is a direct correlate 
of EAA derived from the interventional clock in both normal chow (control diet or CD; n = 210) and 
HFD mice (n = 128). (c) For the BXD genotypes with samples from both males and females, males 
have higher age acceleration and this sex effect is highly significant for the pan-tissue interventional 
clock (int.EAA). Bars represent mean ± standard error; 40 females (26 CD, 14 HFD) and 18 males (10 
CD, 8 HFD). Males had (d) lower predicted maximum-lifespan, and (e) lower average methylome 
entropy. (f–i) The residual plots display the direction of association between metabolic traits and 
DNAm readouts (n = 276 cases with metabolic data). After adjusting for chronological age, diet and 
body weight, serum cholesterol has inverse associations with (f) predicted maximum lifespan (p = 
0.002), and (g) methylome entropy (p = 9.1E-06). Serum glucose level has inverse associations with 
(h) epigenetic age acceleration derived from the universal clock (p = 0.005), and (i)  methylome 
entropy (p = 0.003). 
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Somewhat unexpected, entropy had an inverse correlation with body weight. This effect was 159 
primarily in the CD mice (Table 2). We found no association between predicted-maxLS and the 160 
body weight traits (Table 2). 161 

Sex effect. Four BXD genotypes (B6D2F1, D2B6F1, BXD102, B6) had cases from both males and 162 
females. We used these to test for sex effects. All the unbiased mouse clocks showed significant 163 
age acceleration in male mice, and this effect was particularly strong for the pan-tissue int.EAA 164 
(Fig 2c; Data S2). The predicted-maxLS was significantly lower in males (Fig 2d). Entropy on the 165 
other hand, was significantly higher in females (Fig 2e). 166 

Association with metabolic traits 167 

276 cases with DNAm data also had fasted serum glucose and total cholesterol18,19, and we 168 
examined whether these metabolic traits are associated with the DNAm readouts. We applied 169 
regression analysis with age, diet and final body weight as covariates, and this showed 170 
significant effects of cholesterol on predicted-maxLS (p = 0.002), and entropy (p = 9E-06) (Table 171 
S1). To visualize how cholesterol levels associate with these, we plotted the residual values 172 
after the respective predictor and outcome variables were adjusted for age, diet, and BWF. The 173 
residual plot shows an inverse association between cholesterol and predicted-maxLS (Fig 2f). 174 
For entropy, similar to how it related with weight, higher cholesterol predicted lower entropy. 175 
Cholesterol had no significant association with univ.EAA (Table S1). 176 

Glucose had an unexpected inverse association with the univ.EAA that predicts lower age 177 
acceleration with higher glucose (p = 0.005) (Fig 2h; Table S1). Lower glucose also predicted 178 
higher entropy (p = 0.003) (Fig 2i). Glucose was not associated with predicted-maxLS (Table S1).  179 

Association with strain longevity 180 

We next obtained longevity data from a parallel cohort of female BXD mice that were allowed 181 
to age on CD or HFD 18. We evaluated whether the DNAm readouts were informative of strain-182 
level lifespan. Since the strain lifespan was determined from female BXDs, we restricted this to 183 
only the female cases. For strains with natural death data from n ≥ 5, we computed the 184 
minimum (minLS), 25th quartile (25Q-LS), mean, median lifespan, 75th quartile (75Q-LS), and 185 
maximum lifespan (maxLS) (Data S1). Specifically, we postulated (a) an accelerated clock for 186 
strains with shorter lifespan (i.e., inverse correlation), (b) a direct correlation between 187 
predicted-maxLS and observed lifespan, and (c) higher entropy with shorter lifespan.  188 

Overall, the EAA measures showed the expected inverse correlation trend with the lifespan 189 
summaries, and this was highly significant for the universal clock (Table S2; Fig 3a,b). For the 190 
mouse clocks, this effect was significant for the liver int.EAA (Table S2). When separated by 191 
diet, these correlations became weaker, but the negative trend remained consistent. 192 

The DNAm entropy had an inverse correlation trend with strain lifespan (Table S2). This was 193 
nominally significant only for the strain maxLS when CD and HFD groups were combined (r = –194 
0.13, p = 0.02) but became non-significant when separated by diet. 195 

The predicted-maxLS showed a positive correlation trend with the lifespan summaries, and this 196 
was significant for the observed strain maxLS (Fig 3d). When separated by diet, the predicted-197 
maxLS remained a significant correlate of strain maxLS only in the CD group. 198 
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Genetic analysis of epigenetic age acceleration and predicted-maxLS 199 

The EAA traits had modest to high heritability, and averaged at 0.50 for the unbiased mouse 200 
clocks (Table 2). The predicted-maxLS had heritability of 0.66 on CD, and 0.70 on HFD. Another 201 
way to gauge level of genetic correlation is to compare between members of strains maintained 202 
on different diets. The EAA from the unbiased and universal clocks, and predicted-maxLS had 203 
high strain-level correlations between diets that indicates an effect of background genotype 204 
that is robust to dietary differences (Table 2). The genotype correlations were slightly lower for 205 
the BXD-biased clocks. 206 

To uncover genetic loci, we applied QTL mapping using mixed linear modeling that corrects for 207 
the BXD kinship structure31. First, we performed the QTL mapping for each of the unbiased 208 
mouse and universal clocks, with adjustment for diet and body weight. EAA from the two 209 
interventional clocks had the strongest QTLs (Data S3). The pan-tissue int.EAA had a significant 210 
QTL on Chr11 (90–99 Mb) with the highest linkage at ~93 Mb (p = 3.5E-06; equivalent to a LOD 211 
score of 4.7) (Fig 4a). Taking a genotype marker at the peak interval (BXD variant ID 212 
DA0014408.4 at Chr11, 92.750 Mb)20, we segregated the BXDs homozygous for either the D2 213 
(DD) or the B6 (BB) alleles. The DD genotype had a significantly more accelerated int.EAA (Fig 214 
4a inset). The liver int.EAA had the peak QTL on Chr19 (35–45 Mb) with the most significant 215 
linkage at markers between 38–42 Mb (p = 9E-07; LOD score of 5.2) (Fig 4b). We selected a 216 
marker at the peak interval (rs48062674 at Chr19, 38.650 Mb), and the BB genotype had 217 
significantly higher int.EAA compared to DD (Fig 4b inset). The QTL map for the univ.EAA did 218 
not reach genome-wide significance (Fig 4c). However, there were nominally significant peaks 219 
at the Chr19 (p = 0.0004), and Chr11 (p = 0.004) intervals. 220 

 
Fig 3. Predictors of strain longevity 
BXD genotypes with shorter life expectancy tended to have a more accelerated universal clock 
(univ.EAA). This inverse relation is depicted for the (a) 25th and (b) 75th quartile age at natural death 
for female BXDs kept on either normal chow (CD) or high fat diet (HFD). (c) Age acceleration from 
the liver interventional unbiased mouse clock (int.EAA) also showed a similar inverse correlation 
with strain longevity, but effect was significant only when both diets were included (here illustrated 
with median lifespan). (e) The predicted maximum lifespan had a significant direct correlation with 
the observed strain maximum lifespan. Analysis in n = 302 female BXDs; 191 CD and 111 HFD. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449634doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449634
http://creativecommons.org/licenses/by/4.0/


 10 

We next performed QTL mapping for DNAm entropy with adjustment for major covariates (diet, 221 

 
Fig 4. Genetic linkage analysis 
The Manhattan plots represent the location of genotyped markers (x-axis), and linkage –
log10p (y-axis). (a) The peak quantitative trait locus (QTL) for age acceleration from the pan-
tissue interventional clock (int.EAA) is on chromosome (Chr) 11 at ~93 Mb. The inset shows 
the mean (± standard error) trait values for BXDs the are homozygous for the C57BL/6J allele 
(BB; grey) versus BXDs homozygous for the DBA/2J allele (DD; black). (b) The liver-specific 
int.EAA has a peak QTL on Chr19 (~38 Mb). Trait means by genotype at this locus are shown 
in inset. (c) The linkage statistics are weaker for the EAA derived from the universal clock 
(univ.EAA). However, there are consistent nominally significant peaks on the Chr11 and 
Chr19 loci. (d) The DNA methylation based predicted maximum lifespan also maps to Chr19, 
but the peak markers are at ~47.5 Mb.  
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chronological age, and body weight). No locus reached genome-wide significance (DataS3). 222 
There were modest QTLs on Chrs11 and 19. However, the Chr11 region is slightly distal to the 223 
markers linked to the EAA traits (minimum p = 0.009 at Chr11, ~103.7 Mb). The Chr19 locus 224 
somewhat overlapped the QTL for EAA, but the peak marker (minimum p = 0.0009) is slightly 225 
distal at ~48 Mb (Data S3).  226 

The predicted-maxLS had a significant QTL on Chr19 (Fig 4d; Data S3) with the peak markers 227 
between 44–48 Mb (p = 2E-07; LOD score of 5.9). This overlaps the EAA QTL, but the peak 228 
markers are also distal (rs30567369 at 47.510 Mb). At this locus, mice with the BB genotype 229 
had significantly higher predicted-maxLS (Fig 4d inset).  230 

Consensus QTLs for epigenetic age acceleration  231 

To identify regulatory loci that are consistent across the different EAA measures, we applied a 232 
multi-trait analysis and derived the linkage meta-p-value for the unbiased mouse and universal 233 
EAA traits32. The peaks on Chrs 11 and 19 attained the highest consensus p-values (Fig S1a; 234 
Data S3). Additional consensus peaks (at –log10meta-p > 6) were observed on Chrs 1 (~152 Mb), 235 
and 3 (~54 Mb).  236 

We focus on the Chrs 11 and 19 QTLs and refer to these as EAA QTL on Chr 11 (Eaaq11), and 237 
EAA QTL on Chr 19 (Eaaq19). Eaaq11 extends from 90–99 Mb. For Eaaq19, we delineated a 238 
broader interval from 35–48 Mb that also encompasses the peak markers for the predicted-239 
maxLS, albeit these may be separate loci related to EAA (~39 Mb of Eaaq19), and predicted-240 
maxLS (~47 Mb of Eaaq19).  241 

We performed marker-specific linkage analyses for each of the unbiased mouse and universal 242 
clocks using a regression model that adjusted for diet. With the exception of the liver int.EAA, 243 
all the EAA traits had nominal to highly significant associations with the representative Eaaq11 244 
marker (DA0014408.4), and the DD genotype had higher age acceleration (Table 3). Mean plots 245 
by genotype and diet shows that this effect was primarily in the CD mice (Fig S1b). The effect of 246 
this locus appeared to be higher for the pan-tissue clocks compared to the corresponding liver-247 
specific clocks. This marker in Eaaq11 was not associated with either entropy or predicted-248 
maxLS. 249 

For proximal Eaaq19, the representative marker (rs48062674) was associated with all the EAA 250 
traits and the BB mice had higher age acceleration on both diets (Fig S1c). This marker was not 251 
associated with entropy, and had only a weak effect on predicted-maxLS (Table 3). When we 252 
performed the same analysis with the marker on distal Eaaq19 (rs30567369), the association 253 
with EAA became weaker, and the association with predicted-maxLS became much stronger  254 
(Table 3). This suggests that the proximal part of Eaaq19 is related to EAA while the distal part 255 
is related to predicted-maxLS. 256 

We also tested if these peak markers were associated with the recorded lifespan phenotype 257 
and we found no significant association with the observed lifespan of the BXDs. 258 

Association of EAA QTLs with body weight trajectory 259 
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Since body weight gains was an accelerator of the clocks, we examined whether the selected 260 
markers in Eaaq11 and Eaaq19 were also related to body weight change. We retrieved 261 
longitudinal weight data from a larger cohort of the aging BXD mice that were weighed at 262 

Table 3: Marker specific linkage analyses for epigenetic age acceleration, predicted 
maximum lifespan, and body weight trajectory 

Predictor Outcome Estimate Std Error t Ratio p 

Eaaq11 
DA0014408.4[DD] 
Chr11, 92.750 Mb 
(133 BB cases, 
and 173 DD cases) 

EAA, pan 0.096 0.023 4.184 3.8E-05 
EAA, liver 0.067 0.017 3.880 0.0001 
dev.EAA, pan 0.077 0.025 3.041 0.003 
dev.EAA, liver 0.037 0.020 1.878 0.06 
int.EAA, pan 0.153 0.029 5.278 2.5E-07 
int.EAA, liver -0.033 0.025 -1.284 0.20 
univ.EAA 0.101 0.025 4.057 6.3E-05 

Eaaq19 
rs48062674[DD] 
Chr19, 38.650 Mb 
(238 BB cases, 
and 67 DD cases) 

EAA, pan -0.083 0.028 -2.954 0.003 
EAA, liver -0.137 0.020 -6.972 2.0E-11 
dev.EAA, pan -0.206 0.029 -7.218 4.3E-12 
dev.EAA, liver -0.124 0.023 -5.461 9.9E-08 
int.EAA, pan -0.143 0.035 -4.028 7.1E-05 
int.EAA, liver -0.250 0.027 -9.238 4.6E-18 
univ.EAA -0.145 0.029 -4.932 1.3E-06 
Pred-maxLS -0.100 0.048 -2.086 0.04 

Distal Eaaq19 
rs30567369[DD] 
Chr19, 47.510 Mb 
(198 BB cases, 
and 106 DD cases) 

int.EAA, liver -0.079 0.026 -2.995 0.003 
univ.EAA -0.053 0.026 -2.012 0.05 

Pred-maxLS -0.383 0.036 -10.781 3.9E-23 

Mixed model for longitudinal change in body weight 
Predictor Outcome Estimate Std Error t Ratio p 
Eaaq11 
DA0014408.4[DD] 
Number of 
observations = 
6885; number of 
individuals = 2112 

Body weight 0.619 0.345 1.794 0.07 

Eaaq19 
rs48062674[DD] 
Number of 
observations =  
6132; number of 
individuals = 1852 

Body weight -1.847 0.374 -4.945 7.6E-07 

Distal Eaaq19 
rs30567369[DD] 
Number of 
observations = 
6059; number of 
individuals = 1802 

Body weight -1.619 0.363 -4.458 8.3-06 
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regular intervals. After excluding 263 
heterozygotes, we tested the effect of 264 
genotype. Concordant with the higher 265 
EAA for the DD genotype at Eaaq11 in the 266 
CD group, the DD genotype in the CD 267 
group also had slightly higher mean 268 
weight at older adulthood (12 and 18 269 
months; Fig 5a). However, this marker 270 
had no significant association with body 271 
weight when tested using a mixed effects 272 
model (p = 0.07; Table 3). In proximal 273 
Eaaq19, it was the BB genotype that 274 
exhibited consistently accelerated clock 275 
on both diets, and the BB genotype also 276 
had higher average body weight by 6 277 
months of age (Fig 5b), and this locus had 278 
a significant influence on the body weight 279 
trajectory (p = 7.6E-07; Table 3). The 280 
nearby marker on distal Eaaq19 also 281 
showed a similar pattern of association 282 
with body weight (Table 3). 283 

Candidate genes for epigenetic age 284 
acceleration 285 

There are several positional candidate genes in Eaaq11 and Eaaq19. To narrow the list, we 286 
applied two selection criteria: genes that (1) contain missense and/or stop variants, and/or (2) 287 
contain non-coding variants and regulated by a cis-acting expression QTL (eQTL). For the eQTL 288 
analysis, we utilized an existing liver transcriptome data from the same aging cohort19. We 289 
identified 24 positional candidates in Eaaq11 that includes Stxbp4, Erbb2 (Her-2 oncogenic 290 
gene), and Grb7 (growth factor receptor binding) (Data S4). Eaaq19 has 81 such candidates that 291 
includes a cluster of cytochrome P450 genes, and Chuk (inhibitor of NF-kB) in the proximal 292 
region, and Pcgf6 (epigenetic regulator) and Elovl3 (lipid metabolic gene) in the distal region 293 
(Data S4).  294 

For further prioritization, we converted the mouse QTL regions to the corresponding syntenic 295 
regions in the human genome, and retrieved GWAS annotations for these regions33. We 296 
specifically searched for the traits: epigenetic aging, longevity, age of 297 
menarche/menopause/puberty, Alzheimer’s disease, and age-related cognitive decline and 298 
dementia. This highlighted 5 genes in Eaaq11, and 3 genes in Eaaq19 (Table S4). We also 299 
identified a GWAS study that found associations between variants near Myof-Cyp26a1 and 300 
human longevity30, and a meta-GWAS that found gene-level associations between Nkx2–3 and 301 
Cutc, and epigenetic aging28 (Table S4). 302 

Gene expression correlates of EAA and predicted max-LS 303 

 
Fig 5. Body weight trajectory by diet and 
genotype 
Body weight was measured at regular age 
intervals (x-axis) from (a) 2112 BXD mice that 
were homozygous at the Leaaq11 marker 
(DA0014408.4; 842 BB, 1279 DD), and (b) 1852 
BXD mice that were homozygous at the 
proximal Leaaq19 marker (rs48062674; 1252 
BB, 600 DD). Mice were maintained on either 
control diet (CD) or high fat diet (HFD). The 
graphs show the segregation of body weight 
over time by diet and genotype. Mean ± 
standard error; heterozygotes were excluded.  
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Liver RNA-seq data was available for 153 of the BXD cases that had DNAm data (94 CD, and 59 304 
HFD)19. We used this set to perform transcriptome-wide correlation analysis for the univ.EAA. 305 
To gain insights into gene functions, we selected the top 2000 transcriptome correlates (|r| ≥ 306 
0.37, p ≤ 2.8E-06; Data S5) for functional enrichment analysis. These top correlates represented 307 
transcript variants from 1052 unique genes and included a few positional candidates (e.g., Ikzf3, 308 
Kif11, Cep55,  Cyp2c29, Cyp2c37). Only 62 transcripts from 36 unique genes were negatively 309 
correlated with univ.EAA, and this set was significantly enriched (Bonferroni correct p < 0.05) in 310 
oxidation-reduction, and metabolic pathways (Data S6; Fig 6a). These functional categories 311 
included the cytochrome genes, Cyp2c29 and Cyp2c37, located in Eaaq19. This set was also 312 
highly liver specific. The positive correlates were enriched in a variety of gene functions, and 313 

was not a liver-specific gene set (Data S6). Taking the top 10 GO categories, we can broadly 314 
discern two functional domains: immune and inflammatory response, and mitosis and cell cycle 315 
(Fig 6a). To verify that these associations are robust to the effect of diet, we repeated the 316 
correlation and enrichment analysis in the CD group only (n = 94). Again, taking the top 2000 317 
correlates (|r| ≤ 0.30; p ≤ 0.003), we found the same enrichment profile for the positive and 318 
negative correlates (Data S6).  319 

Next, we performed the correlational analysis using liver proteomic data that was available for 320 
164 of the BXDs. The proteome data quantifies over 32000 protein variants from only 3940 321 
unique genes19. We took the top 2000 protein correlates of univ.EAA (|r| ≥ 0.27, p ≤ 6.0E-04) 322 
(Data S7). This represented protein levels from 563 unique genes. 1139 protein variants (215 323 
genes) had negative correlations, and similar to the mRNA correlates, there was enrichment in 324 
oxidation-reduction and metabolic processes. This set was also enriched in liver genes, and 325 

 
Fig 6. Gene expression correlates of the universal clock 
(a) Graph displays the enriched gene ontologies (GO) for the top 2000 transcriptome 
correlates of  epigenetic age acceleration (univ.EAA). The y-axis shows the fold enrichment; 
positive values are for the positive correlates, and negative values are for the negative 
correlates of univ.EAA. The smaller set of negative mRNA correlates is enriched in oxidation-
reduction process. For positive mRNA correlates, the top 10 enriched GOs highlight immune 
response, cell cycle, and mitosis. (b) The top 10 negative proteome correlates of univ.EAA is 
also enriched in oxidation-reduction and related metabolic pathways, and these are 
populated by several cytochrome P450 genes. 
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included pathways related to lipid and steroid metabolism, epoxygenase p450 pathway, and 326 
xenobiotics  (Fig 6b; Data S8). These categories were populated by the cytochrome genes 327 
including candidates in Eaaq19 (e.g., Cyp2c29, Cyp2c37). The positive proteome correlates 328 
showed a different functional profile than the transcriptomic set. These were enriched in genes 329 
related to transport (includes apolipoprotein such as APOE), cell adhesion, protein translation, 330 
protein folding, and metabolic pathways related to glycolysis and gluconeogenesis (Data S8).  331 

We performed a similar transcriptome and proteome analysis for the predicted-maxLS. For 332 
mRNA, both the negative and positive correlates were enriched in metabolic pathways 333 
including glucose and lipid metabolism (Data S9, S10). Similarly, the positive and negative 334 
protein correlates of predicted-maxLS converged on oxidation-reduction processes (included 335 
cytochrome genes located in proximal Eaaq19) and metabolic pathways (Data S11, S12).  336 

Discussion 337 

The goal of this study was to examine the aging methylome, its correlates and modifiers, and 338 
potential genetic drivers. HFD had a strong age-accelerating effect that concurs with the 339 
association between EAA and obesity in humans25,34,35. Age-acceleration due to diet manifested 340 
within the first 1 to 3 days of transitioning from normal lab chow to HFD. Even among the CD 341 
mice, higher weight gain at a younger age was associated with an accelerated clock.  342 

Somewhat surprising was how entropy related to the metabolic traits. Epigenetic entropy 343 
increases with age, and is likely an indicator of the level of stochastic noise that increases with 344 
time7,36. In biological systems, entropy is kept at bay by the uptake of energy, and investment in 345 
maintenance and repair37. As HFD increased entropy (possibly due to higher cellular 346 
heterogeneity and adiposity of liver tissue), we expected entropy to be higher with higher body 347 
weight. But instead, entropy had an inverse correlation with weight, an effect that was 348 
primarily in the CD mice. Higher levels of serum glucose and total cholesterol were also 349 
associated with lower entropy. The reason for this is unclear, and we can only speculate that 350 
the enhanced energy consumption in mice that had higher metabolic substrates may have kept 351 
the methylome in a more ordered state. Despite this, mice with higher entropy also tended to 352 
have higher EAA. Entropy had a modest negative correlation with not only the DNAm based 353 
predicted-maxLS, but also with the known strain-level maxLS.  The predicted-maxLS on the 354 
other hand, showed no direct association with diet or body weight, but higher total cholesterol 355 
and EAA predicted shorter predicted-maxLS. 356 

For the BXDs, life expectancy is highly dependent on the background genotype18,22,24. Similarly, 357 
the universal and interventional clocks were more accelerated in mice belonging to strains with 358 
shorter lifespan, and the predicted-maxLS also concurred with the observed strain maxLS. We 359 
note that the predicted-maxLS overestimated the strain max-LS by 0.7 to 3 years (median error 360 
of +1.6 years). Nonetheless, the correlation between individual-level predicted-, and strain-level 361 
observed maxLS is remarkable considering that both the universal clock and max-LS predictor 362 
are pan-mammalian, and species- and tissue-agnostic17,38. Our results suggest that these 363 
universal epigenetic predictors of biological aging, and lifespan are informative of the subtle 364 
and normative lifespan variation in a family of inbred mice. The analysis between the epigenetic 365 
readouts and lifespan was also an indirect comparison. Unlike the comparison with body weight 366 
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and metabolic traits, which were traits measured from the same individual, the lifespan data 367 
are strain characteristics computed from a parallel cohort of mice that were allowed to survive 368 
till natural mortality. Nonetheless, this indirect comparison demonstrates that these epigenetic 369 
predictors capture genotype-dependent effects.  370 

We tested different versions of the mouse DNAmAge clocks, and these appeared to capture 371 
slightly different aspects of epigenetic aging. For instance, the interventional clocks were 372 
sensitive to diet and early weight change, but not related to BW0 in the CD mice. Instead, BW0 373 
had a significant accelerating effect on the liver specific developmental clock (dev.EAA).  374 

Our goal was to take these different clocks and identify regulatory loci that were the most 375 
stable and robust to the slight algorithmic differences in building the clocks. A notable 376 
candidate in Eaaq11 is Syntaxin binding protein 4 (Stxbp4, aka, Synip), located at 90.5 Mb. 377 
Stxbp4 is a high-priority candidate due to the concordant evidence from human genetic studies. 378 
The conserved gene in humans is a replicated GWAS hit for the intrinsic rate of epigenetic 379 
aging26-28. In the BXDs, Stxbp4 contains several non-coding variants, and a missense mutation 380 
(rs3668623), and the expression of Stxbp4 in liver is modulated by a cis-eQTL. Stxbp4 plays a 381 
key role in insulin signaling39, and has oncogenic activity and implicated in different cancers40,41. 382 
Furthermore, GWAS have also associated STXBP4 with age of menarche42,43. Eaaq11 383 
corresponds to the 17q12-21 region in humans, and the location of additional oncogenic genes, 384 
e.g., ERBB2/HER2, GRB7, and BRCA144. The mouse Brca1 gene is a little distal to the peak QTL 385 
region and is not considered a candidate here, although it does segregate for two missense 386 
variants in the BXDs. Erbb2 and Grb7 are in the QTL region, and Erbb2 contains a missense 387 
variant (rs29390172), and Grb7 is modulated by a cis-eQTL. Nr1d1 is another candidate in 388 
Eaaq11, and the co-activation of Erbb1, Grb7, and Nr1d1 has been linked to breast and other 389 
cancers45,46.  390 

Eaaq19 was consistently associated with EAA from all the clocks we evaluated, and also with 391 
body weight gains, irrespective of diet. The predicted-maxLS also maps to this region, and 392 
DNAm entropy may also have a weak association with markers at this interval. The EAA traits 393 
have peak markers in the proximal part of Eaaq19 (around the cytochrome cluster), and the 394 
predicted-maxLS peaks in the distal portion (over candidates like Elovl3, Pcgf3). Two candidates 395 
in Eaaq19 have been implicated in epigenetic aging in humans based on gene-level meta-396 
GWAS: NK homeobox 3 (Nkx2-3, a developmental gene), and CutC copper transporter (Cutc)28. 397 
Eaaq19 is also the location of the Cyp26a1-Myof genes, and the human syntenic region is 398 
associated with longevity, metabolic traits, and lipid profiles 30,47,48. Another noteworthy 399 
candidate in Eaaq19 is Chuk, a regulator of mTORC2, that has been associated with age at 400 
menopause42,49. Clearly, Eaaq19 presents a complex and intriguing QTL related to the different 401 
DNAm readouts, and potentially metabolic traits. Both Eaaq19 and Eaaq11 exemplify the major 402 
challenge that follows when a genetic mapping approach leads to gene- and variant-dense 403 
regions 50,51. Both loci have several biologically relevant genes, and identifying the causal gene 404 
(or genes) will require a more fine-scaled functional genomic dissection. 405 

The gene expression analyses highlighted metabolic pathways related to lipids, glucose, and 406 
proteins for both the univ.EAA and predicted-maxLS. Other enriched pathways were mitosis 407 
and cell division, and immune processes, but this was specific to the positive transcriptomic 408 
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correlates. The more compelling evidence is for the cytochrome P450 genes, which are both 409 
positional candidates, as well as expression correlates at the transcriptomic and proteomic 410 
levels. These genes have high expression in liver, and have major downstream impact on 411 
metabolism52-54. One caveat is that these CYP genes are part of a gene cluster in Eaaq19 that 412 
includes transcripts with cis-eQTLs (e.g., Cyp2c66, Cyp2c39, Cyp2c68), and the tight clustering of 413 
the genes, and proximity of trait QTL and eQTLs may result in tight co-expression due to linkage 414 
disequilibrium 55. Nonetheless, the cytochrome genes in Eaaq19 are strong candidate 415 
modulators of EAA that calls for further investigation. 416 

Aside from Eaaq11 and Eaaq19, loci with evidence of consensus QTLs were also detected on 417 
Chrs 1 and 3. We do not delve into these in the present work, but the Chr3 interval is near 418 
genes associated with human epigenetic aging (Ift80, Trim59, Kpna4)26,28. However, this QTL is 419 
dispersed across a large interval, and the peak markers do not exactly overlap these human EAA 420 
GWAS hits. While we have focused on Eaaq11 and Eaaq19, these other loci also present 421 
potentially important regions for EAA. 422 

In summary, we have identified two main QTLs—Eaaq11 and Eaaq19—that contribute to 423 
variation in two DNAm readouts: EAA, and predicted-maxLS. Eaaq11 contains several genes 424 
with oncogenic properties (e.g., Stxbp4, Erbb2), while Eaaq19 contains a dense cluster of 425 
metabolic genes (e.g., Elovl3, Chuk, the cytochrome genes). We demonstrate that metabolic 426 
profile and body weight are closely related to epigenetic aging. The convergence of evidence 427 
from genetic and gene expression analyses suggests that genes involved in metabolism and 428 
energy balance may modulate the age-dependent restructuring of the methylome, and this 429 
may in turn, have an impact on the epigenetic predictors of aging and lifespan.  430 

Materials and Methods 431 

Biospecimen collection and processing 432 

Samples for this study were selected from a larger colony of BXD mice that were housed in a 433 
specific pathogen-free (SPF) facility at the University of Tennessee Health Science Center 434 
(UTHSC). All animal procedures were in accordance with a protocol approved by the 435 
Institutional Animal Care and Use Committee (IACUC) at the UTHSC. Detailed description of 436 
housing conditions and diet can be found in 18,19. Mice were given ad libitum access to water, 437 
and either standard laboratory chow (Harlan Teklad; 2018, 18.6% protein, 6.2% fat, 75.2% 438 
carbohydrates), or high-fat chow (Harlan Teklad 06414; 18.4% protein, 60.3% fat, 21.3% 439 
carbohydrate). Animals were first weighed within the first few days of assignment to either 440 
diets, and this was mostly but not always prior to introduction to HFD. Following this, animals 441 
were weighed periodically, and a final time (BWF) when animals were humanely euthanized 442 
(anesthetized with avertin at 0.02 ml per g of weight, followed by perfusion with phosphate-443 
buffered saline) at specific ages for tissue collection. The present work utilizes the biobanked 444 
liver specimens that were pulverized and stored in -80 °C, and overlaps samples described in 19. 445 
DNA was extracted using the DNeasy Blood & Tissue Kit from Qiagen. Nucleic acid purity was 446 
inspected with a NanoDrop spectrophotometer, and quantified using a Qubit fluorometer 447 
dsDNA BR Assay. 448 

Methylation array, quality check, and entropy calculation 449 
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DNA samples from ~350 BXD mice were profiled on the Illumina HorvathHumanMethylChip40 450 
array. Details of this array are described here15.The array contains probes that target ~36K 451 
highly conserved CpGs in mammals. Over 33K probes map to homologous regions in the mouse 452 
genome, and data from these were normalized using the SeSame method 56. Unsupervised 453 
hierarchical clustering was performed to identify outliers and failed arrays, and these were 454 
excluded. We also performed strain verification as an additional quality check. While majority 455 
of the probes were free of DNA sequence variants, we found 45 probes that overlapped 456 
variants in the BXD family. We leveraged these as proxies for genotypes, and performed a 457 
principal component analysis. The top principal component (PC1 and PC2) segregated the 458 
samples by strain identity, and samples that did not cluster with the reported strains were 459 
removed. After excluding outliers, failed arrays, and samples that failed strain verification, the 460 
final liver DNAm data consisted of 339 samples.  461 

For entropy calculation, we used 27966 probes that have been validated for the mouse genome 462 
using calibration data generated from synthetic mouse DNA57. Shannon entropy was calculated 463 
for each sample using the R package, “entropy” (v1.2.1) with method = “ML”: maximum 464 
likelihood58. 465 

Clock estimation and maximum lifespan predictor 466 

The development of the universal pan-tissue epigenetic clocks of age, and the universal 467 
maximum lifespan predictor are described in Lu et al38, and Li et al.17, respectively. For the 468 
present work, we utilized the universal clock that predicts relative age, defined as individual age 469 
relative to the maximum lifespan of its species, followed by inverse transformation to estimate 470 
DNAmAge38. The mouse specific clock were built using subsets of CpGs, and these will be 471 
described in a companion paper.  Age acceleration (EAA) measures were defined as the 472 
residuals from regression of DNAm age on chronological age. By definition, EAA measures are 473 
independent of age.   474 

Statistics 475 

Statistical analyses between the epigenetic predictors and continuous variables (body weight, 476 
strain lifespan) were based on Pearson correlations, and t-test was used to evaluate the effect 477 
of categorical predictors (sex, diet).  478 

Two metabolic traits were downloaded from the bioinformatics platform GeneNetwork 2 (GN2) 479 
59: (1) fasted serum glucose, and (2) fasted serum total cholesterol (more information on how 480 
to retrieve these data directly from GN2 are provided in Data S13). Association with metabolic 481 
traits was examined using multivariable linear regression (the R equations are provided in Table 482 
S1). For visualization, residuals for both the predictor and outcome variables were extracted 483 
after regressing on age, diet, and BWF using the R code: residuals(lm( ~ age + diet + BWF)).  484 

Longevity data (defined as age at natural death) was also downloaded from GN2 (Data S13)18. 485 
Males were excluded and strain-by-diet lifespan summary statistics were derived. Only strain-486 
by-diet groups with 5 or more observations were included in the correlational analyses with the 487 
epigenetic predictors. 488 

Genetic analyses 489 
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The broad sense heritability within diet was estimated as the fraction of variability that was 490 
explained by background genotype20,60,61. For this, we applied a simple anova: aov(EAA ~ 491 
strain), and heritability was computed as H2 = SSqstrain/(SSqstrain + SSqresidual), where SSqstrain is the 492 
strain sum of squares, and SSqresidual is the residual sum of squares.  493 

All QTL mapping was done on the GN2 platform, and these traits can be accessed from this 494 
website59 (trait accession IDs provided in Data S13). In the GN2 home page, the present set of 495 
BXD mice belongs to the Group: BXD NIA Longevity Study, and GN2 provides a direct interface 496 
to the genotype data. All QTL mapping was done for genotypes with minor allele frequency ≥ 497 
0.05 using the genome-wide efficient mixed model association (GEMMA) algorithm31, which 498 
corrects for the BXD kinship matrix. For the EAA traits, diet, weight at 6 months, and final 499 
weight were fitted as cofactor. Chronological age had not correlation with EAA and this was not 500 
included as a cofactor (including age does not change the results). Genome-wide linkage 501 
statistics were downloaded for the full set of markers that were available from GN2 (3720 502 
markers as of early 2021). For the combined p-values, QTL mapping was done separately using 503 
GEMMA for each EAA derived from all the unbiased mouse and universal clocks. Fisher’s p-504 
value combination was then applied to get the meta-p-value32. We used this method to simply 505 
highlight loci that had consistent linkage across the different EAA measures. QTL mapping for 506 
entropy, major covariates—age, diet, BW1, and BWF—were included as co-factors. QTL 507 
mapping for predicted-maxLS was done without co-factors as age, weight, and diet were not 508 
significant covariates (including these do not change the results). 509 

For marker specific linkage, we selected SNPs located at the peak QTL regions (DA0014408, 510 
rs48062674, rs30567369), and grouped the BXDs by their genotypes (F1 hybrids and other 511 
heterozygotes were excluded from this), and marker specific linkage was tested using ANOVA. 512 
rs48062674 and rs30567369 are reference variants that is already catalogued in dbSNP62, and is 513 
used as a marker in the QTL mapping. DA0014408.4 is an updated variant at a recombinant 514 
region in the Chr11 interval and within the peak QTL interval20. Genotypes at these markers for 515 
individual BXD samples are in Data S1. 516 

For marker specific QTL analysis for EAA, we performed linear regression using the data in Data 517 
S1. Heterozygotes at the respective markers were excluded, and we applied the following 518 
regression model for each of the unbiased mouse and universal EAA separately: lm(EAA ~ 519 
genotype + diet). To test the effect on body weight change, body weight data measured at 520 
approximately 4 (baseline), 6, 12, 18, and 24 months were downloaded from GN2 (Data S13). 521 
Detailed description of these weight data are in Roy et al18. We then applied a mixed effects 522 
regression model using the lme4 R package63: lmer(weight ~ age + diet + genotype + (1|ID)), 523 
where ID is the identifier for individual mouse.  524 

Bioinformatic tools for candidate gene selection 525 

Sequence variation between B6 and D2 in the QTL intervals (Chr11:90–99 Mb, and Chr19:35–48 526 
Mb) were retrieved from the Wellcome Sanger Institute Mouse Genomes Project database 527 
(release 1505 for GRCm38/mm10)64-66. Positional candidates were required to contain at least 528 
one coding variant (missense and/or nonsense variants), or have non-coding variants with 529 
evidence of cis-regulation in liver tissue of the BXDs. Cis-eQTLs for the candidate genes were 530 
obtained from the liver RNA-seq data described in19. An interface to search and analyze this 531 
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transcriptome data is available from GN2, and is catalogued under Group: BXD NIA Longevity 532 
Study; Type: Liver mRNA; and Dataset: UTHSC BXD Liver RNA-seq (Oct 19) TMP Log2. This data 533 
was also used for the transcriptome-wide correlations analysis for univ.EAA in the 153 cases 534 
that had both DNAm and RNA-seq data. We considered the top 2000 highest correlated 535 
transcripts, and the list of transcripts were collapsed to a non-redundant list of gene symbols, 536 
and this was uploaded to the DAVID Bioinformatics Database (version 6.8) for GO enrichment 537 
analysis67,68.  Similarly, proteome correlational analysis was carried out using the data: Group: 538 
BXD NIA Longevity Study; Type: Liver Proteome; and Dataset: EPFL/ETHZ BXD Liver Proteome 539 
CD-HFD (Nov19) 19. 540 

For human GWAS annotations, we navigated to the corresponding syntenic regions on the 541 
human genome by using the coordinate conversion tool in the UCSC Genome Browser. The 542 
Chr11 90–95 Mb interval on the mouse reference genome (GRCm38/mm10) corresponds to 543 
human Chr17:50.14–55.75 Mb (GRCh38/hg38) (40.7% of bases; 100% span). The Chr11 95–99 544 
Mb interval in the mouse corresponds to human Chr17:47.49–50.14 Mb (29.3% of bases, 57.9% 545 
span), and Chr17:38.19–40.39 Mb (20.7% of bases, 44.1% span). Likewise, for the Chr19 QTL, 546 
the mm10 35–40 Mb corresponds to hg38 Chr10:89.80–95.06 Mb (32.2% of bases, 89.2% span), 547 
40–45 Mb corresponds to hg38 Chr10:95.23–100.98 Mb (46.6% of bases, 95.6% span), and 45–548 
48 Mb corresponds to hg38 Chr10:100.98–104.41 Mb (46.5% of bases, 100% span). We then 549 
downloaded the GWAS data for these regions from the NHGRI-EBI GWAS catalogue33, and 550 
retained the GWAS hits that were related to aging.  551 

Data availability 552 

The full microarray data will be released via NCBI’s Gene Expression Omnibus upon official 553 
publication. Genome annotations of the CpGs can be found on Github 554 
https://github.com/shorvath/MammalianMethylationConsortium. Individual level BXD data are  555 
available on www.genenetwork.org on FAIR+ compliant format; data identifiers, and way to 556 
retrieve data are described in Data S13.  557 
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