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Abstract 24 

Bayes Factors can be used to provide quantifiable evidence for contrasting hypotheses and 25 

have thus become increasingly popular in cognitive science. However, Bayes Factors are 26 

rarely used to statistically assess the results of neuroimaging experiments. Here, we provide 27 

an empirically-driven guide on implementing Bayes Factors for time-series neural decoding 28 

results. Using real and simulated Magnetoencephalography (MEG) data, we examine how 29 

parameters such as the shape of the prior and data size affect Bayes Factors. Additionally, 30 

we discuss benefits Bayes Factors bring to analysing multivariate pattern analysis data and 31 

show how using Bayes Factors can be used instead or in addition to traditional frequentist 32 

approaches. 33 

  34 
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1. Introduction 35 

The goal of multivariate decoding in cognitive neuroscience is to infer whether information is 36 

represented in the brain (Hebart & Baker, 2018). To draw meaningful conclusions in this 37 

information-based framework, we need to statistically assess whether the conditions of 38 

interest evoke different data patterns. In the context of time-resolved neuroimaging data, 39 

activation patterns are extracted across MEG or EEG sensors and classification accuracies 40 

are used to estimate information at every timepoint (see Figure 1 for an example). Currently, 41 

null hypothesis statistical testing (NHST) and p-values are the de-facto method of choice for 42 

statistically assessing classification accuracies, but recent studies have started using Bayes 43 

Factors (Grootswagers et al., 2021; e.g., Grootswagers, Robinson, & Carlson, 2019b; 44 

Grootswagers, Robinson, Shatek, et al., 2019; Kaiser et al., 2018; Karimi-Rouzbahani et al., 45 

2021; Mai et al., 2019; Proklova et al., 2019; Robinson et al., 2019, 2021). Under the null 46 

hypothesis, the mean equals chance decoding and under the alternative hypothesis the mean 47 

is larger than chance decoding. The direct comparison of the predictions of two hypotheses is 48 

one of the strengths of the Bayesian framework of hypothesis testing (Jeffreys, 1939, 1935). 49 

Bayes Factors describe the probability of one hypothesis over the other given the observed 50 

data. In the multivariate pattern analysis (MVPA) context, this means we use Bayes Factors 51 

to test the probability of above-chance classification versus at-chance classification given the 52 

decoding results across participants at each timepoint. The goal of the current paper is to 53 

present and discuss Bayes Factors from a practical standpoint in the context of time-series 54 

decoding, while referring the reader to published work focusing on the theoretical and technical 55 

background of Bayes Factors. 56 

 57 

The Bayesian approach brings several advantages over the traditional NHST framework 58 

(Dienes, 2011, 2014, 2016b; Keysers et al., 2020; Morey et al., 2016; Wagenmakers et al., 59 

2018). In addition to allowing us to contrast evidence for above-chance versus at-chance 60 

decoding directly, Bayes Factors are a measure of strength of evidence for one hypothesis 61 

versus another. That means, we can directly assess how much evidence we have for different 62 

analyses. For example, if we were interested in testing whether viewing different colours 63 

evokes different neural responses, we could examine differences in the neural signal evoked 64 

by seeing red, green, and yellow objects. Using Bayes Factors, we could then directly compare 65 

whether red versus green can be decoded as well as red versus yellow. Larger Bayes Factors 66 

reflect more evidence which makes the interpretation of statistical results across analyses 67 

more intuitive. Another advantage is that Bayes Factors can be calculated iteratively while 68 

more data are being collected and that testing can be stopped when there is a sufficient 69 
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amount of evidence (Keysers et al., 2020; Wagenmakers et al., 2018). Such stopping-rules 70 

could be accompanied by a pre-specified acquisition plan and potentially an (informal) 71 

preregistration via portals such as the Open Science Framework (Foster & Deardorff, 2017). 72 

Using the data to determine when enough evidence has been collected is particularly relevant 73 

for neuroimaging experiments, as it might significantly reduce research costs and reduce the 74 

risk of having underpowered studies. Thus, using a Bayesian approach to statistically assess 75 

time-series classification results can be beneficial both from a theoretical as well as an 76 

economic standpoint and might ease the ability to interpret and communicate scientific 77 

findings. 78 

 79 

While Bayes Factors provide an alternative to the more traditional NHST framework, 80 

incorporating Bayes Factors into existing time-series decoding pipelines may seem daunting. 81 

Introductory papers often focus on mathematical aspects, and on relatively straightforward 82 

behavioural experiments (e.g., Ly et al., 2016; Morey et al., 2016; Rouder et al., 2009). We 83 

present an example based on a previously published time-series decoding study (Teichmann 84 

et al., 2019) and will present results from simulations to show the influence of certain 85 

parameters on Bayes Factors. We make use of the established Bayes Factor R package 86 

(Morey et al., 2015) to calculate the Bayes Factors but provide sample codes along with this 87 

paper showing how to access the Bayes Factor R package via Matlab and Python 88 

(https://github.com/LinaTeichmann1/BFF_repo). We also show how the Bayes Factors in our 89 

example compare to p-values. Based on empirical evidence, we will give recommendations 90 

for Bayesian analysis applied to M/EEG classification results. The aim of this paper is to 91 

provide a broad introduction to Bayes Factors from a viewpoint of time-series neuroimaging 92 

decoding. We aim to do so without going into the technical or mathematical detail, and instead 93 

provide pointers to relevant literature on the specifics. 94 

 95 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.06.23.449663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449663


 

4 

 96 
Figure 1. Overview of MVPA for time-series neural data. (A) Example MEG sensors / EEG 97 
channels. (B) Simulated time-series neuroimaging data for a few sensors/channels. Vertical 98 
lines show stimulus onsets with example stimuli plotted below. Data is first epoched from -100 99 
to 800 ms relative to stimulus onset, resulting in multiple time-series chunks associated with 100 
seeing a red or a green shape. (C) Using the epoched data, we can extract the sensor/channel 101 
activation pattern across the different sensors/channels (only 2 displayed for simplicity) for 102 
every trial at every timepoint. Then a classifier (black line) is trained to differentiate between 103 
the activation patterns evoked by red and green trials. The shape of the stimuli is not relevant 104 
in this context. (D) Example of a 4-fold cross validation where the classifier is trained on three 105 
quarters of the data and tested on the left-out quarter. This process is repeated at every 106 
timepoint. (E) We can calculate how often the classifier accurately predicts the colour of the 107 
stimulus at each timepoint by averaging across all testing folds. Theoretical chance level is 108 
50% as there are two conditions in the simulated data (red and green). During the period 109 
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before stimulus onset, we expect decoding to be at chance, and thus the baseline period can 110 
serve as a sanity check. 111 

 112 

2. Methods & Results 113 

2.1 Example dataset & inferences based of Bayes Factors 114 

The aim of the current paper is to show how to use Bayes Factors when assessing time-series 115 

neuroimaging classification results and test what effect different analysis parameters have on 116 

the results. We have used a practical example of previously published MEG data (Teichmann 117 

et al., 2019), which we re-analysed using Bayes Factors. In the original experiment, eighteen 118 

participants viewed coloured shapes and grayscale objects in separate blocks while the neural 119 

signal was recorded using MEG. Here, we only considered the coloured shape trials (“real 120 

colour blocks'', 1600 trials in total). Identical shapes were coloured in red or green and were 121 

shown for 100 ms followed by an inter-stimulus-interval of 800-1100 ms. The data was 122 

epoched from -100 ms to 800 ms (200 Hz resolution) relative to stimulus onset and a linear 123 

classifier was used to differentiate between the neural responses evoked by red and green 124 

shapes. A 5-fold cross-validation was used with the classifier being trained on 80% of the data 125 

and tested on the remaining 20%. This classification analysis resulted in decoding accuracies 126 

over time for each participant. In the original study, permutation tests and cluster-corrected p-127 

values were used to assess decoding accuracies as implemented in CoSMoMVPA (Oosterhof 128 

et al., 2016). Here, we calculated Bayes Factors instead and examined how parameter 129 

changes affected the results.  130 

 131 

When running statistical tests on classification results, we are interested in whether decoding 132 

accuracy is above-chance at each timepoint. To test this using a frequentist approach, we can 133 

use permutation tests to establish whether there is enough evidence to reject H₀ which states 134 

that decoding is equal to chance. If there is enough evidence, we can reject H₀ and conclude 135 

that decoding is different from chance. Given that below-chance decoding accuracies are not 136 

meaningful, we usually are interested only in above-chance decoding (directional hypothesis). 137 

In contrast to the frequentist approach, Bayes Factors quantify how much the plausibility of 138 

two hypotheses changes, given the data (see e.g., Ly et al., 2016). Here, we ran a Bayesian 139 

t-test of Bayes Factor R package (Morey et al., 2015) at each timepoint, testing whether the 140 

data is more consistent with Hₐ (decoding is larger than chance) over H₀ (decoding is equal to 141 

chance). The resulting Bayes Factors center around 1 with numbers smaller than 1 142 

representing evidence for H₀ and numbers larger than 1 representing evidence for Hₐ. In 143 

contrast to p-values, Bayes Factors are directly interpretable and comparable (cf. Keysers et 144 
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al., 2020; Morey et al., 2016; Wagenmakers et al., 2016). That is, a Bayes Factor of 10 means 145 

the data is 10 times more likely to be observed under Hₐ as opposed to H₀. Similarly, a Bayes 146 

Factor of 1/10 means the data is 10 times more likely to be observed under H₀ as opposed to 147 

Hₐ . Thus, in the context of time-series decoding, Bayes Factors allow us to directly assess 148 

whether and how much evidence there is at a given timepoint for the alternative over the null 149 

hypothesis and vice versa (Figure 2C). 150 

 151 

 152 
Figure 2. Decoding results of our practical example dataset with statistical 153 
assessments. (A) Colour decoding over time (black line). The dashed line shows theoretical 154 
chance decoding (50%). The grey shaded area represents the standard error across 155 
participants. (B) Effect size over time with the cluster-corrected p-values at each timepoint 156 
printed below in grey. (C) Bayes Factors over time for this dataset on a logarithmic scale. Blue, 157 
upwards pointing stems indicate evidence for above-chance decoding and red, downwards 158 
pointing stems show evidence for at-chance decoding at every timepoint. We used a hybrid 159 
one-sided model comparing evidence for above-chance decoding versus a point-nil at 𝛿 = 0 160 
(no effect). For the alternative hypothesis, we used a half-Cauchy prior with medium width (r 161 
= 0.707) covering an interval from 𝛿 = 0.5 to 𝛿 = ∞. The half-Cauchy prior assumes that small 162 
effect sizes are more likely than large ones, but the addition of the interval deems very small 163 
effects 𝛿 < 0.5 as irrelevant. During the baseline period (i.e., before stimulus onset), the Bayes 164 
Factors strongly support the null hypothesis, confirming the sanity check expectation.  165 
 166 

2.2 Adjusting the prior range to account observed chance decoding 167 

Bayes Factors represent the plausibility that the data emerged from one hypothesis compared 168 

to another. In the example dataset, the two hypotheses are that decoding is at chance (i.e., 169 

H₀, no colour information present) or that decoding is above chance (i.e., Hₐ, colour 170 

information present). To deal with the fact that observed chance decoding can be different 171 

than the theoretical chance level, we can adjust the prior range of the alternative hypothesis 172 
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to allow for small effects under the null hypothesis (Rouder et al., 2009). The prior range (called 173 

“null interval” in the R package) is defined in standardized effect sizes and consists of a lower 174 

and upper bound. To incorporate the differences between observed and theoretical chance 175 

level, we can define a range of relevant effect sizes for the alternative hypothesis, for example, 176 

from 𝛿 = 0.5 to 𝛿 = ∞. To determine which values are reasonable as the lower bound of this 177 

interval, we changed the prior range systematically and examined the effect on the resulting 178 

Bayes Factors (Figure 3). We found that smaller lower bounds at 𝛿 = 0 and 𝛿 = 0.2 resulted in 179 

weaker evidence supporting the null hypothesis than ranges starting at 𝛿 = 0.5 and 𝛿 = 0.8. 180 

The range did not have a large effect on timepoints with strong evidence for Hₐ. The effect of 181 

changing the prior range is larger for the null hypothesis than the alternative as chance 182 

decoding is not exactly 50% but distributed around chance. Changing the lower bound of the 183 

prior range means that the effects that are just larger than 𝛿 = 0 can support the null 184 

hypothesis. Thus, the results here demonstrate that we can compensate for the differences 185 

between theoretical and observed chance by adjusting the prior range and effectively 186 

considering small effect sizes as evidence for the null hypothesis rather than the alternative. 187 

 188 

 189 
Figure 3. The effect of changing the prior range (null interval) on Bayes Factors in our 190 
example data. Intervals starting at larger effect sizes led to more timepoints showing 191 
conclusive evidence for H₀. This is due to the fact that theoretical and observed chance levels 192 
are not the same. The panels on the right show the prior distributions with the different null 193 
intervals.  194 
 195 

To further examine what a reasonable lower bound of the prior range is, we looked at effect 196 

sizes observed during the baseline window (before stimulus onset) in a selection of our 197 

previous studies (Grootswagers et al., 2021; Grootswagers, Robinson, & Carlson, 2019a; 198 

Moerel, Grootswagers, et al., 2021; Moerel, Rich, et al., 2021; Teichmann et al., 2018, 2020). 199 

Using the baseline window allows us to quantify the difference between theoretical and 200 

observed chance, as we do not expect any meaningful effects before stimulus onset (e.g., 201 

stimulus colour is not decodable before the stimulus is presented). Thus, the baseline period 202 
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can effectively tell us which effect sizes can be expected by chance. Using this method, we 203 

estimated maximum effect sizes for different analyses in each paper (see different bars in 204 

Figure 4). Across our selection of prior studies, we found an average maximum effect size of 205 

𝛿 = 0.39 before stimulus onset and an average maximum effect size of 𝛿 = 1.91 after stimulus 206 

onset (Figure 4). This survey shows that effect sizes as large as 𝛿 = 0.5 can be observed when 207 

no meaningful information is in the signal. Thus, this supports the conclusions from the 208 

example dataset showing that prior ranges with a lower bound of 𝛿 = 0.5 may be a sensible 209 

choice when using Bayes Factors to examine time-series M/EEG decoding results. 210 

  211 

 212 
Figure 4. Estimated maximum effect sizes during baseline and after stimulus onset for 213 
prior decoding studies that used visual stimuli. Using already published data, we 214 
calculated the maximum effect sizes during the baseline (light blue) and post-stimulus (dark 215 
blue) to estimate typical peak effect sizes in visual decoding studies. Each bar represents a 216 
unique analysis within the paper. The estimations show that a reasonable range for Hₐ would 217 
start at 𝛿 = 0.5 or above, as during baseline decoding accuracies corresponding to 218 
standardized effect sizes as high as 𝛿 = 0.5 were observed. 219 
  220 
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2.3 Changing the prior width to capture different effect sizes 221 

Another feature that can be changed in the Bayesian t-test is the width of the half-Cauchy 222 

distribution (referred to as r-value in the Bayes Factor Package). Small r-values create a 223 

narrower, sharply peaking distribution, whereas larger values make the distribution wider with 224 

a prolonged peak. Standard prior widths incorporated in the Bayes Factor R package are 225 

medium (r = 0.707), wide (r = 1), and ultrawide (r = 1.414). Keeping the prior range consistent 226 

([0.5, Inf]) while using the three prior widths implemented into the R Bayes Factor Package 227 

(medium = 0.707; wide = 1; ultrawide = 1.414). We found that changing the width of the 228 

Cauchy prior did not have a pronounced effect on the Bayes Factors (Figure 5). In our specific 229 

example, this is probably the case because the effect sizes quickly rose to 𝛿 > 2 (Figure 2b) 230 

which means that the subtle differences between the different prior widths do not have a 231 

substantial effect on the likelihood of the data arising from Hₐ over H₀. Thus, using the default 232 

prior width (r = 0.707) for the decoding context seems like a reasonable choice. 233 

 234 

 235 
Figure 5. Bayes Factors over time for the example data set when the prior width is 236 
changed. The width of the prior had no pronounced effect on the Bayes Factors we calculated. 237 
The panels on the right show the prior distributions with the different widths.  238 
 239 

2.4 The effect of data size on statistical inferences 240 

In a lot of cases, there are financial and time limits on how many participants can be tested 241 

and for how long. To obtain an estimate of how much data is needed to draw conclusions and 242 

avoid ending up with underpowered studies, we used the example dataset and reduced the 243 

data size for analysis. As classification analyses are usually run at the subject level but 244 

statistical assessment is run at the group level, we tested how changing data size both by trial 245 

numbers and participant numbers influences Bayes Factors in the time-series decoding 246 

context (Figure 6). In the original example dataset, the classifier was trained on 1408 trials 247 

and tested on 352 trials (5-fold cross-validation). There were five different shapes in the red 248 

and the green condition (160 repetitions for each coloured shape) and the cross-validation 249 
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schema was based on leaving all trials of one shape out for testing. Statistical inferences were 250 

drawn on the group level which contained data from 18 participants. To examine the effect of 251 

data size (and effectively noise level) on the Bayes Factor calculations, we re-ran the analysis 252 

reducing the data size first by retaining the first 1200 (75%), 800 (50%), 400 (25%), or 160 253 

(10%) trials participants completed. We cross-validated in the same way as in the original 254 

paper, with the only difference being how many trials of each shape were included. In addition, 255 

we subsampled from the whole group, retaining data from the first 6, 12, or all 18 participants 256 

and re-ran the statistical analysis. We then compared the results from the reduced-size colour 257 

datasets using Bayes Factors and cluster-corrected p-values1. 258 

 259 

Overall, our analyses highlight that we need to have a large enough number of trials and a 260 

large enough number of participants to draw firm conclusions about our time-resolved 261 

decoding results. Testing more participants resulted in stronger evidence for Hₐ and H₀, with 262 

fewer timepoints in the inconclusive range (Bayes Factors) and more significant above-chance 263 

decoding timepoints (p-values). Similarly, running the classification with more trials, led to 264 

more timepoints with large Bayes Factors supporting Hₐ and more above-chance decoding 265 

timepoints. However, one of the key advantages of using Bayes Factors instead of p-values 266 

is that we can potentially obtain a good idea of how many trials are needed even if we run a 267 

pilot experiment with a limited number of participants. A reasonable strategy would be to 268 

overpower the subject-level data (i.e., number of trials) for the pilot sample and then sub-269 

sample to explore how many trials are needed. In our example, we can see that the amount 270 

of evidence for Hₐ at peak decoding is not sufficient when we only use 160 trials (10% of the 271 

original sample), regardless of the number of subjects. Increasing the trials to 400 or 800 (25% 272 

or 50% of the original sample) leads to similar conclusions as using all 1600 trials. As Bayesian 273 

statistics allow for sequential sampling, we could collect data from more participants until a 274 

criterion is reached. For example, if we had pre-defined a stopping criterion as 80% of the 275 

timepoints being in the conclusive range (Bayes Factors larger than 6 or smaller than 1/6), we 276 

would have been able to stop collecting data after 9 participants completed 1600 trials or after 277 

18 participants completed 400 (Figure 6c). Overall, the data suggest that insufficient data at 278 

the subject-level ultimately leads to inconclusive evidence, highlighting that a large number of 279 

trials is just as, if not more important, than large numbers of participants.  280 

 281 

 282 

 
1 In comparison to the original paper, we did not use trial label permutations. Instead, we performed 
sign-flip permutations (which reduces the computational time) as implemented in CoSMoMVPA to 
generate the null distribution. 
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 283 
Figure 6. Results of the colour MEG decoding study, using a limited number of trials 284 

and participant data to simulate a piloting scenario. (A) The first three plots show Bayes 285 

Factors over time along with cluster-corrected p-values. The colour in all plots reflects the 286 

number of trials used to train and test the classifier. (B) Compares Bayes Factors at peak 287 

decoding (125ms) for the different data sizes. (C) Compares how many participants would 288 

have needed to be tested given the different number of trials with an example pre-defined 289 

stopping point. For example, with 1600 trials and >9 participants, 80% of the Bayes factors (at 290 

different time points) exceeded 6 or 1/6. With fewer trials, more participants are needed to 291 

reach this example stopping point. 292 

  293 
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The example dataset provides insight into the effect of parameters such as data size and prior 294 

shape on Bayes Factors. However, it is possible that different studies find different effect sizes. 295 

We simulated larger datasets with fixed effect sizes between 𝛿 = 0 and 𝛿 = 1 to examine the 296 

interaction of sample size with different prior ranges for different effect sizes (Figure 7). We 297 

simulated 1000 datasets with specific effect sizes for each sample size and calculated the 298 

Bayes Factors. We then calculated the median Bayes Factor for each sample- and effect size 299 

combination to show how prior range choices interact with the possibility of finding evidence 300 

for effects of different sizes. Specifically, we compared a prior range of 0.5 to infinity (Figure 301 

7A) to a prior range of zero to infinity (Figure 7B).  302 

 303 

When specifying the prior range to 0.5 to infinity (Figure 7A), our results show that small 304 

sample sizes are sufficient to draw solid conclusions when the effect sizes are near the 305 

extremes. For example, the simulations showed that there is substantial evidence for H₀ from 306 

a small sample size if the true effect is very small. In contrast, if the effect size fell in between 307 

the specified ranges for the prior of Hₐ and H₀ (i.e., between 0 and 0.5), we found that small 308 

sample sizes tended to result in inconclusive Bayes Factors neither supporting Hₐ or H₀. 309 

However, if the sample size increased, the confidence that these effects were “real” also 310 

increased and therefore resulted in stronger confidence supporting one of the hypotheses. 311 

Importantly, however, large sample sizes did not automatically lead to an interpretable Bayes 312 

Factor if the effect was truly in between the specified prior ranges of Hₐ and H₀, indicating that 313 

sample size had no effect on Bayes Factors in this case. 314 

 315 

Consistent with our results for the example data, the simulations also showed that changing 316 

the range of the prior has a strong effect on finding substantial evidence for H₀. If the prior 317 

range for the alternative is specified to start at zero (Figure 7B), it was almost impossible to 318 

find any evidence for H₀, even if the effect size was truly zero. Thus, the simulations show that 319 

defining the prior range with a gap between effects expected under H₀ and Hₐ is critical and 320 

that more data leads to larger Bayes Factors, but only if there is a true underlying effect.  321 

 322 

 323 

 324 
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 325 
 326 

Figure 7. Simulated data varying effect sizes and numbers of participants highlight the 327 

rationale for using an interval. We performed 1000 simulations to demonstrate how the 328 

Bayes Factors behave with different sample sizes given different effect sizes. A shows Bayes 329 

Factors obtained by using a half-Cauchy prior with an interval [0.5 Inf]. B shows Bayes Factors 330 

obtained by using a half-Cauchy prior without an interval. The first and third rows show the 331 

median Bayes Factors of 1000 simulations as a function of the number of participants. The 332 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.06.23.449663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449663


 

14 

second and fourth rows show the distribution of the Bayes Factors from 1000 simulations 333 

using 30 participants (left panels) and 100 participants (right panels). The distributions of the 334 

Bayes Factors highlight the rationale for using an interval, as without an interval it is nearly 335 

impossible to find substantial evidence for the null hypothesis even when the effect size equals 336 

zero. 337 

 338 

 339 

 340 

Discussion 341 

Bayes Factors have seen a recent increase in popularity in cognitive science, as they can be 342 

used to provide quantifiable evidence for contrasting hypotheses. However, their uptake has 343 

to date been slow for neuroimaging experiments. To facilitate their adoption, we have provided 344 

an empirically-driven guide on implementing Bayes Factors for time-series neuroimaging 345 

decoding, using both real and simulated data. We showed that using Bayes Factors and 346 

cluster-corrected p-values lead to similar results when statistically assessing time-series 347 

neuroimaging decoding results. However, the key advantages of using Bayes Factors are the 348 

ability to compare evidence for Hₐ with evidence for H₀ and having results that are quantifiable 349 

(e.g., Dienes, 2014; Wagenmakers et al., 2016). Our results show that for time-series 350 

decoding data, half-Cauchy priors with default width and an interval ranging from effect sizes 351 

of 0.5 to infinity provide sensible results. We also show that even a small number of 352 

participants can yield informative Bayes Factors, which can be useful for making decisions on 353 

experimental design parameters (e.g., number of trials) during piloting stages of a study. 354 

 355 

Our results showed that the overall conclusions derived from Bayes Factors and p-values 356 

were quite similar, highlighting that theoretical considerations should be the deciding factor 357 

when choosing a statistical approach to analyse neural time-series data. In the decoding 358 

context, p-values afford a dichotomous decision of whether there is enough evidence to reject 359 

the hypothesis that decoding is at chance at a given timepoint. Rejecting the null hypothesis 360 

is decoupled from any prior beliefs or theories (Dienes, 2011) and is linked to an accepted 361 

overall error rate such as 𝛂 = 0.05. P-values allow us to test for the presence of an effect at a 362 

given timepoint using widely accepted thresholds for evidence. While Bayes Factors can in 363 

principle also be thresholded to draw dichotomous conclusions, one of the added benefits of 364 

Bayes Factors over p-values is the ability to quantify the evidence. Another useful benefit of 365 

using Bayes Factors to analyse time-series decoding data is that Bayes Factors allow us to 366 
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accrue evidence for above-chance as well as at-chance decoding. For time-series analyses 367 

in particular, this is a useful feature as the time period prior to stimulus onset can be considered 368 

as a control period where we would expect evidence for the null hypothesis. Testing both 369 

hypotheses simultaneously can also be a beneficial feature when the research question 370 

involves hypotheses predicting certain time-periods without any information in the neural 371 

signal (e.g., “X happens before Y” versus “Y happens before X”). Thus, depending on the 372 

research question it may be clear which statistical approach suits the time-series decoding 373 

analysis best. Otherwise, as overall conclusions do not differ, Bayes Factors and p-values can 374 

be used in a complementary way to provide quantifiable evidence for and against the tested 375 

hypotheses as well as definitive decisions (see also Lakens et al., 2020; van Dongen et al., 376 

2019; Wagenmakers et al., 2018). 377 

 378 

Through our results, we provide an empirical, straightforward guide to help implement Bayes 379 

Factors and demonstrate the extent of practical benefits when using Bayes Factors for time-380 

series neural decoding. Using a data-driven approach, we showed which analysis parameters 381 

are most suitable for statistical assessment of time-series decoding data with Bayes Factors. 382 

While the Bayes Factors in our example MEG decoding dataset were robust against changes 383 

in the predefined width of the prior, defining the prior range so that there is a gap between Hₐ 384 

and H₀ was critical for finding evidence for the H₀. This strong effect of the prior range on the 385 

resulting Bayes Factors is particularly relevant in the decoding context, as classification 386 

accuracies under the null are not symmetrically distributed around chance (cf. Allefeld et al., 387 

2016). Thus, a gap between H₀ and the lower bound of Hₐ ensures that small above-chance 388 

classification accuracies are not treated as evidence for Hₐ. Furthermore, we systematically 389 

varied dataset size and showed that using Bayes Factors for time-series decoding data is 390 

particularly beneficial when there is limited, noisy data such as in a piloting scenario, as 391 

quantifiable evidence for one hypothesis over another gives a stronger sense of whether it is 392 

worth pursuing the research question with the piloted design, or make changes (e.g., modify 393 

trial numbers or add/remove conditions). Finally, Bayes Factors can be calculated sequentially 394 

while evidence accumulation is monitored to stop once a criterion is reached (Dienes, 2011; 395 

Rouder, 2014), which can save resources and avoid underpowered studies (Wagenmakers et 396 

al., 2018). One possibility is to define a stopping criterion in terms of a percentage of timepoints 397 

where evidence is in the conclusive range of Bayes Factors (e.g., 80% of Bayes Factors are 398 

above 6 or below 1/6). As longer baselines can artificially increase the percentage of 399 

conclusive timepoints, only timepoints after stimulus onset should be considered or the 400 

duration of the baseline period should be pre-defined. As researchers generally do not have 401 

unlimited resources, it is possible to also pre-register an upper limit for the sample size (e.g., 402 

maximum 50 participants).  403 
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 404 

An open question is to what extent our parameter choices generalize to different paradigms, 405 

analysis approaches, and modalities. The Bayes Factor parameters used here were optimized 406 

for time-series decoding. It is in principle possible to use Bayes Factors in a similar way to 407 

analyse other time-series data such as event related potentials, oscillations or regressions, 408 

however, the Bayes Factor parameters might have to be adjusted. Similarly, the analysis 409 

pipeline discussed here could be extended to other neural decoding modalities such as fMRI 410 

(see e.g., Moerel, Rich, et al., 2021). Pilot data or analyses of previous data can be used to 411 

examine how parameters have to be modified in order to get sensible results.  412 

 413 

A final consideration is the multiple comparisons problem arising from statistically testing many 414 

time points. When using Bayes Factors, as long as the evidence for each hypothesis is 415 

interpreted at face value (and not thresholded for ‘significance’), we do not need to control for 416 

multiple comparisons (Dienes, 2011, 2016a; Świątkowski & Carrier, 2020). That is because 417 

once we have established a prior and collected the data, we examine how much we have to 418 

adjust our prior beliefs given the data and compare the adjustment required for both 419 

hypotheses. This idea is not related to overall error rates and thus does not change if we 420 

sample data sequentially or run multiple tests (Dienes, 2016a). If a research question strongly 421 

depends on a dichotomous decision on multiple tests, then we advise to report corrected p-422 

values (for which correction methods are well established) alongside the Bayes Factors. 423 

 424 

In conclusion, we have provided an empirically-driven guide on how to use and interpret Bayes 425 

Factors for time-series neuroimaging decoding data. We show that Bayes Factors bring 426 

several advantages to interpreting time-series decoding results such as quantifiable evidence 427 

and an ability to compare evidence for above-chance with evidence for at-chance decoding. 428 

We hope this guide, and the accompanying example code 429 

(https://github.com/LinaTeichmann1/BFF_repo) can serve as a starting point to incorporate 430 

Bayesian statistics to existing analysis pipelines. 431 

  432 
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