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Abstract Using deep neural networks (DNNs) as models to explore the biological brain is10

controversial, which is mainly due to the impenetrability of DNNs. Inspired by neural style11

transfer, we circumvented this problem by using deep features that were given a clear12

meaning—the representation of the semantic content of an image. Using encoding models and13

the representational similarity analysis, we quantitatively showed that the deep features which14

represented the semantic content of an image mainly modulated the activity of voxels in the15

early visual areas (V1, V2, and V3) and these features were essentially depictive but also16

propositional. This result is in line with the core viewpoint of the grounded cognition to some17

extent, which suggested that the representation of information in our brain is essentially18

depictive and can implement symbolic functions naturally.19

20

Introduction21

Deep neural networks (DNNs) for image recognition provided an important tool for understand-22

ing the nature of visual object recognition (Cichy and Kaiser, 2019; Glaser et al., 2019; Kriegesko-23

rte, 2015; Lindsay, 2020; Richards et al., 2019). This is not only because DNNs are currently the24

only models known to achieve near human-level performance in object recognition, but also be-25

cause they have the properties such as the hierarchical organization and the parallel distributed26

processing which are similar to the visual ventral stream—key circuits that underlie visual object27

recognition (DiCarlo and Cox, 2007; DiCarlo et al., 2012). Using DNNs as computational models,28

researchers found that DNNs could predict brain activity of visual processing across multiple hier-29

archical levels at unprecedented accuracy for both macaque (Cadena et al., 2019; Khaligh-Razavi30

and Kriegeskorte, 2014; Yamins et al., 2014; Yamins and DiCarlo, 2016) and human (Eickenberg31

et al., 2017; Guclu and van Gerven, 2015; Naselaris et al., 2015; Seeliger et al., 2018) wherein later32

layers in DNNs better predict higher areas of the visual ventral stream. The predictive power of33

DNNs made “mind-reading” possible (Horikawa and Kamitani, 2017; Shen et al., 2019;Wen et al.,34

2017) and promoted the integration of neuroscience and artificial intelligence (Barrett et al., 2018;35

Hassabis et al., 2017).36

Besides the predictive power, an idealmodel should also possess the explanatory power, which37

means that we should know how the model works (Kay, 2018). This is not the case of DNNs. DNNs38

are essentially black boxes and we can not understand how the input data were transformed into39

model output (Rudin, 2019). This is mainly due to the end-to-end learning and the huge number40

of parameters in DNNs (the complex architectures of DNNs). For example, AlexNet has about 6041

million self-learned parameters (Krizhevsky et al., 2017) and VGG16 has 138million self-learned pa-42
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rameters (Simonyan and Zisserman, 2014). Even thoughwe know the exact value of all parameters43

for each input, we still can not understand what do these parameters really mean. So using DNNs44

as models to explore the biological brain is something like replacing a black box with another, the45

lack of explanatory made it controversial (Cichy and Kaiser, 2019). To open the black box and look46

inside, researchers developed methods such as network dissection (Zhou et al., 2019) and visual-47

ization (Mahendran and Vedaldi, 2015; Nguyen et al., 2019; Olah et al., 2017; Yosinski et al., 2015;48

Zeiler and Fergus, 2014), and experimented with network architecture (Kar et al., 2019), learning49

algorithm (Han et al., 2019; Zhuang et al., 2021), and input statistics (Geirhos et al., 2018). But none50

of them can directly explain the meaning of the parameters (deep features) learned by DNNs.51

However, an interesting application of DNNs may give us a hint about the meanings of some52

deep features. Neural style transfer (NST) is a computer vision technique that allows us to render53

the semantic content of an image in the style of another (Jing et al., 2020; Gatys et al., 2016, 2017).54

Using NST, for example, we can blend a photo with van Gogh’s “Sunflowers” to get a new image55

which preserve the content of the photo but looks like if it was painted by van Gogh. According56

to the seminal work of Gatys et al. (2016), the implementation of the original NST algorithm was57

based on aDNNoptimized for object recognition—VGG19. This process took two images, a content58

image and a style image. First, two images were fed into the pre-trained VGG19 model to extract59

feature maps, respectively. Second, the feature maps of the conv4_2 layer of the content image60

were selected as the semantic content representation. Third, the featuremaps of the conv1_1 layer,61

conv2_1 layer, conv3_1 layer, conv4_1 layer, and conv5_1 layer of the style image were selected to62

compute the Grammatrix as the style representation. Last, through jointlyminimizing the distance63

of the feature representations of a white noise image from the content representation and the64

style representation (feature inversion using the same VGG19model), a new image was generated65

which simultaneously match the content of the content image and the style of the style image.66

The key to NST lies in the ability to extract representation from an image which explicitly separate67

image content from style (Gatys et al., 2016).68

In this study, we focused on the feature maps of the conv4_2 layer of the VGG19, which were69

selected as the representation of the semantic content of an image in the original NST algorithm.70

Although there was no clear explanation about why choose the layer conv4_2 as the semantic con-71

tent representation of an image, NST was indeed effective and led to many successful applications72

(e.g., Prisma). So it gave us an opportunity to explore the question of how does the brain repre-73

sent the semantic content of an image. We used voxel-wise encoding models (Kriegeskorte and74

Douglas, 2019; Naselaris et al., 2011; van Gerven, 2017) to answer this question, which could test75

hypotheses about how information is represented in our brain. The results showed that, the deep76

features, which represented the semantic content of an image, mainly modulated the activity of77

voxels in the early visual areas (V1, V2, and V3). These semantics-related features mainly modu-78

lated the voxels in the early visual areas rather than those in the higher visual areas naturally led79

us to another question—what these features really are. For this question, we constructed encod-80

ing models based on Gabor features which also modulated the activity of voxels in the early visual81

areas (Kay et al., 2008) to compare it with encoding models using the deep features and used82

representational similarity analysis (RSA, Kriegeskorte, 2008; Kriegeskorte and Kievit, 2013; Nili83

et al., 2014) to explore the representational similarity between the representation of the semantic84

content of an image and other representations such as the representation of semantics and the85

representation of Gabor features. We found that these features were essentially depictive but also86

propositional. It is in line with the core viewpoint of the grounded cognition (Barsalou, 2008, 2010,87

2020) to some extent, which suggested that the representation of information in our brain was88

essentially depictive and could implement symbolic functions naturally.89

Results90

The fMRI data we used was from Horikawa and Kamitani (2017), which contained a training set91

(subject viewed 1200 natural images), a testing set (subject viewed 50 natural images), and an im-92
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Figure 1. The Experimental Workfolw: encoding models and representational similarity analysis.

agery set (subject imagined objects according to 50 nouns) for each of 5 subjects. In addition, 793

ROIs (V1, V2, V3, V4, LOC, FFA, and PPA) were identified for each subject (The fMRI data only con-94

tained these ROIs). To explore how does the brain represent the semantic content of an image, we95

extracted deep features which represented the semantic content of images from the conv4_2 layer96

of a pre-trained VGG19 and constructed lasso-regularized linearmodels to predict voxel repsonses97

from these features using the training sets for each voxel in each subject. Once models were fit-98

ted, we used the testing sets and the imagery sets to evaluate models with Pearson’s correlation99

coefficient (r) for each voxel and decoding performance (identifying stimuli from measured brain100

activity) for all survived voxels. After that we analysed survived models to find the relationship101

between features and voxels. Because the models showed that these deep features mainly mod-102

ulated the activity of voxels in the early visual areas, we then compared it with encoding models103

using Gabor features—the low-level visual features which have been proved to tune simple cells104

in primary visual cortex (Hubel and Wiesel, 1962) and modulate the activity of voxels in the early105

visual areas (Kay et al., 2008). To further explore what the representation of the semantic content106

of an image really is, we constructed three types of representational distance matrixs (RDMs)—the107

RDMs from VGG19 (the conv5_4 layer and the fc2 layer), the RDMs from brain activity (7 ROIs for108

each subject), and the RDMs directly from stimuli (Gabor features, silhouette, and semantics)—to109

compare them with the RDM of the conv4_2 layer using the testing sets and the imagery sets (see110

Figure 1 and Methods and Materials).111

The deep features which represented the semantic content of an image mainly112

modulated the activity of voxels in the early visual areas.113

Because only 4 models survived in the imagery sets (2 for S2, 1 for S3, and 1 for S5), the following114

analysis mainly focused on the testing sets. The number of survived models (voxels) in the testing115

sets was 201 of 4466 for S1, 356 of 4404 for S2, 789 of 4643 for S3, 701 of 4133 for S4, and 369116

of 4370 for S5. The distribution of survived models in ROIs was different between 5 Subjects (Fig-117
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Figure 2. The result of encoding models based on the deep features for S1. (A) The number of survived voxelsfor each ROI. (B) The prediction accuracy for each ROI (the median of Pearson’s correlation coefficients of allsurvived voxels in each ROI). (C) The distribution of survived voxels in different ROI for each features. Thefeatures were ranked according to the number of voxels its related. (D) The decoding performance for S1(identifying stimuli from measured brain activity using the testing set). (E) The distribution of receptive fieldsfor survived voxels on the feature map. The value of each location equaled the sum of prediction accuracy (r)for all survived voxels located in that location.
Figure 2–Figure supplement 1. The result of encoding models based on the deep features for S2.
Figure 2–Figure supplement 2. The result of encoding models based on the deep features for S3.
Figure 2–Figure supplement 3. The result of encoding models based on the deep features for S4.
Figure 2–Figure supplement 4. The result of encoding models based on the deep features for S5.
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Table 1. Top-5 features (Index)
Feature Order Subject1 Subject2 Subject3 Subject4 Subject5

1 383 250 250 383 383
2 60 60 383 60 250
3 289 383 60 250 60
4 250 289 355 448 482
5 355 198 289 355 289

ure 2.A for S1, Figure 2-Figure supplement for other subjects). There were only 4 ROIs left in S1: V1118

(115), V2 (104), V3 (36), and V4 (5). The number of ROIs left in S5 was 6: V1 (223), V2 (185), V3 (53),119

V4 (14), LOC (1), and PPA (7). All the 7 ROIs left in S2, S3, and S4. For S2, V1 remained 210 voxels;120

V2 remained 164 voxels; V3 remained 54 voxels; V4 remained 4 voxels; LOC remained 11 voxels;121

FFA remained 4 voxels; PPA remained 1 voxels. For S3, V1 remained 334 voxels; V2 remained 356122

voxels; V3 remained 180 voxels; V4 remained 58 voxels; LOC remained 48 voxels; FFA remained123

43 voxels; PPA remained 20 voxels. For S4, V1 remained 328 voxels; V2 remained 308 voxels; V3124

remained 177 voxels; V4 remained 28 voxels; LOC remained 20 voxels; FFA remained 37 voxels;125

PPA remained 17 voxels (Because some voxels simultaneously belonged to two different ROIs, the126

sum of the number of all the voxels in different ROIs may be larger than the total number of the127

survived voxels for each subject).128

Another measurement for prediction accuracy in different ROIs is the median of Pearson’s cor-129

relation coefficients of all survived voxels in each ROI (Figure 2.B for S1, Figure 2-Figure supplement130

for other subjects). The prediction accuracies of the V1, V2, V3, and V4 were 0.60, 0.58, 0.55, and131

0.55 for S1; The prediction accuracies of the V1, V2, V3, V4, LOC, FFA, and PPA were 0.64, 0.58, 0.57,132

0.52, 0.54, 0.52, and 0.50 for S2; The prediction accuracies of the V1, V2, V3, V4, LOC, FFA, and133

PPA were 0.68, 0.65, 0.63, 0.58, 0.57, 0.58, and 0.57 for S3; The prediction accuracies of the V1, V2,134

V3, V4, LOC, FFA, and PPA were 0.69, 0.65, 0.61, 0.57, 0.55, 0.56, and 0.54 for S4; The prediction135

accuracies of the V1, V2, V3, V4, LOC, and PPA were 0.63, 0.60, 0.58, 0.54, 0.50, and 0.56 for S5.136

Because of individual differences in brain structure and function, the pattern of prediction accu-137

racy across ROIs was different among subjects. But we still observed some clear common trends:138

the features of the conv4_2 layer of the VGG19, which were selected as the semantic content rep-139

resentation of an image in the NST algorithm, mainly modulated the activity of voxels in the early140

visual areas (V1, V2, and V3). First, most of the survived voxels located in the early visual areas for141

each subject, and the number of survived voxels in other ROIs (V4, LOC, FFA, and PPA) are rela-142

tively few or just zero; Second, the prediction accuracy for early visual areas were slightly higher143

than other ROIs.144

The survived models could be used to decode stimuli from the measured brain activity—image145

identification using the testing sets. The identification accuracies of 5 subjects (Figure 2.D) were146

92% (46/50), 90% (45/50), 100%, 100%, and 92% (46/50). After checked all the identification errors,147

we founded that there were some common mistakes among different subjects. All the 4 images148

(No.17, No.19, No.41, and No.44) that were incorrectly identified by the encoding models of S5149

were also incorrectly identified in S2, and three of them (No.19, No.41 and No.44) were incorrectly150

identified in S1 too. The encoding models of S1made the samemistake as themodels of S2, which151

identified the No.41 image as the No.42 image. And the encoding models of S2 made the same152

mistake as the models of S5, which identified the No.44 image as the No.26 image and the No.17153

image as the No.22 image (For copyright reasons, we can not show the actual images).154

Because Lasso regresssion enables feature selection, the survived models also described the155

relationship between features (X) and voxel responses (y) through regression coefficients. From156

the perspective of voxels, we calculated the number of features each ROI related (median) and157

found no common trend among subjects. From the perspective of features, we calculated the158
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Figure 3. The comparison of identification performance for 5 subjects.

number of voxels each feature related and analyzed the location distribution of these voxels in159

different ROIs. After ranked features according to the number of voxels its related, we found that160

the deep features were mainly related to the voxels in the early visual areas (Figure 2.C for S1, Fig-161

ure 2-Figure supplement for other subjects). And we calculated Pearson’s correlation coefficients162

of ranked feature index between each subject pair to examine if there were similar patterns among163

subjects. The result showed that there was no significant correlation. But if only considered the164

top-5 features, we found that most of the features were same among subjects (Table 1).165

The features (X) of each survived model corresponded to a spatial location on the feature map166

(we only used the features from one spatial location of the feature map as X, see Methods and167

Materials), which could be seen as the center of population receptive field of the related voxel168

(y). So we could visualize the distribution of receptive fields of survived voxels for each subject169

(Figure 2.E for S1, Figure 2-Figure supplement for other subjects). The result showed that survived170

voxels distributed widely on the feature map and there was a slight trend that some of voxels171

clustered near the center of the feature map.172

The deep features may contained more information about stimuli than Gabor fea-173

tures.174

We also constructed encoding models based on Gabor features and compared it with encoding175

models using the deep features. Like the encodingmodels using the deep features, few voxels sur-176

vived in the imagery sets when encoding models used gabor features (1 for S2 and 1 for S4). So we177

only compared two different types of encoding models using the test sets. From the perspective178

of individual voxel, there weremore voxels survived in the early visual areas with encodingmodels179

based on Gabor features for all subjects(Figure 2.A for S1, Figure 2-Figure supplement for other180

subjects). And the prediction accuracy of the early visual areas (the median of Pearson’s correla-181

tion coefficients of all survived voxels in each ROI) was also higher for all subjects when encoding182

models used Gabor features (Figure 2.B for S1, Figure 2-Figure supplement for other subjects). It183

implied that, relative to the deep features, Gabor features were preferentially represented by the184

early visual areas. From the perspective of activity pattern of voxels (decoding performance), how-185

ever, the identification performances were better for all subjects when encoding models used the186

deep features (Figure 3).187

The better identification performance of encoding models using the deep features could be188

due to the survived voxels in the higher visual areas, so we excluded survived voxels not in the189

early visual areas for both models and compared identification performance again. The results190

showed that, for all subjects, there were more survived voxels when encoding models used Gabor191

features (Figure 4.B and Figure 4.C for S1, Figure 4-Figure supplement for other subjects) but the192

identification performances were still better when encoding models used the deep features (Fig-193
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ure 3). Then we chosed voxels simultaneously survived in the early visual areas for both models194

and found that the identification performances were better when encoding models used the deep195

features for all subjects (Figure 3). Further analyses on these voxels, we observed a common trend196

among all subjects—the prediction accuracies of shared voxels showed a positive correlation be-197

tween two types of models and most of voxels were better predicted when encoding models used198

Gabor features (Figure 4.A for S1, Figure 4-Figure supplement for other subjects). Finally, we only199

chosed voxels which were better predicted by encoding models using Gabor features from shared200

voxels to compare the identification performance between two types of models. The result did201

not change—the identification performances were better when encoding models used the deep202

features for all subjects (Figure 3), which may suggest that there was additional information in the203

deep features.204

The representation of the semantic content of an image did related to the seman-205

tics of the image and also preserved visual details of the image to some extent.206

In accordance with the analysis using encoding models, the RSA was also based on individuals207

(Figure 5 for S1, Figure 5-Figure supplement for other subjects). The RDMs from the pre-trained208

VGG19 were significantly correlated with the RDM of the layer conv4_2. For all subjects, the RDM209

of the layer conv5_4 (the last convolutional layer) showed the strongest correlation (rs = 0.49) and210

the RDM of the layer fc2 (the last fully connected layer before SoftMax layer) was in the second211

echelon among all candidate RDMs (rs = 0.31). This was a reasonable result given that all three212

RDMs derived from the same model (VGG19) and the layer conv5_4 was more similar to the layer213

conv4_2 than the layer fc2.214

The RDMs from the stimuli were significantly correlated with the RDM of the layer conv4_2, too.215

For all subjects, the RDM of Gabor features (rs = 0.34) and the RDM of semantics (rs = 0.29) were216

both in the position of the second echelon. It implied that the representation of the layer conv4_2217

did relate to the semantics of stimuli and also preserved visual details of stimuli to some extent.218

The RDM of silhouette was in the position of the lowest echelon for all subjects (rs = 0.10). Because219
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the silhouette of an object provided a limited description of the specific shape of the object, the220

representation of the layer conv4_2 also related to the specific shape of stimuli.221

The situation of the RDMs from brain activity was more complex. For each subject, all 7 RDMs222

from the testing sets were significantly correlated with the RDM of the layer conv4_2. Although223

there were some individual differences about the relative position of these RDMs, the RDMs from224

the early visual areas which were in the second or third echelon roughly showed stronger correla-225

tion than those from the higher visual areas. In contrast, there were few RDMs from the imagery226

sets significantly related to the RDM of the layer conv4_2 (V3 for S1, PPA for S2, PPA for S3, V3, V4,227

LOC, and FFA for S5). And all of these RDMs were in the position of the lowest echelon. This result228

was in line with the result of encoding models to some extent.229

Discussion230

The impenetrability of DNNs reduced the explanatory power of studies which used DNNs as com-231

putational models to explore the biological brain. Inspired by NST, we circumvented this problem232

by using deep features that were given clear meaning—the representation of the semantic con-233

tent of an image. Using encoding models, we quantitatively showed that the deep features which234

represented the semantic content of an image mainly modulated the activity of voxels in the early235

visual areas. It was a surprise that the semantics-related features mainly modulated the voxels236

in the early visual areas rather than those in the higher visual areas. Then we compared encod-237

ing models using the deep features with encoding models using Gabor features which have been238

proved to modulate the activity of voxels in the early visual areas (Kay et al., 2008) and found that239

the deep features may contained more information about stimuli than Gabor features. These re-240

sults naturally led us to another question: what the representation of the semantic content of an241

image really is? The result of RSA showed that, the representation of the semantic content of an242

image did related to the semantics of the image and also preserved visual details of the image to243

some extent. It implied that the representation of the semantic content of an image might be a244

hybrid form—both in propositional format and depictive format.245

How could the format of a representation be both propositional and depictive? The question246

of how the information is represented in our brain had been discussed for many years, which247

was known as the imagery debate (Pearson and Kosslyn, 2015). At the heart of the debate was248

whether all information is represented in a symbolic, propositional format. Convergent evidence249

from empirical studies of mental imagery suggested that information can be represented in a250

pictorial, depictive format (Pearson, 2019). The existence of the depictve format of information251

ended the imagery debate but also raised new questions: how many formats can the brain use252

and what is the relationship between these formats and the propositional format? With the devel-253

opment of theories of grounded cognition, the dominant position of the propositional format in254

cognition is being challenged. From the perspective of grounded cognition, there were no amodal255

symbols in our brain that were independent of the modal representation and all cognitive phe-256

nomena were ultimately grounded in modal simulations, bodily states, and situated action, which257

was supported by many researches on perception, memory, language, thought, social cognition,258

and development (Barsalou, 2008, 2010, 2020). This view emphasized the key role of the depic-259

tive, modality-specific representation in cognition and denied the independent existence of the260

symbolic, propositional representation, which was clearly articulated by Comenius from several261

hundred years ago—“things are essential, words only accidental; things are the body, words but262

the garment; things are the kernel, words the shell and husk. Both should be presented to the intel-263

lect at the same time, but particularly the things, since they are as much objects of understanding264

as is language” (Paivio, 2007).265

From this view, the representation of information in our brain is essentially depictive and can266

implement symbolic functions naturally. This is in line with our result to some extent. On the267

one hand, the representation of the semantic content of an image (the feature maps of the layer268
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conv4_2) was essentially depictive. This was because the feature maps extracted from the convo-269

lutional layer of the VGG19 naturally preserved the topology of the original image. Besides, The270

reuslt of RSA also showed that it preserved visual details of the image. On the other hand, this rep-271

resentation did reflect the semantics of the image in some degree. To the best of our knowledge,272

it is the first time that the existence of such representation in our brain is quantitatively proved, at273

least in the early visual areas.274

Unlike the previous study (Naselaris et al., 2015), we did not observe that encoding models275

which were trained using the perceptual data could successfully predict voxel responses from the276

imagery data. This could be due to different experimental tasks. In the study of Naselaris et al.277

(2015), subjects were asked to imagine particular artworks, such as “Betty” by Gerhard Richter and278

“Horse Bath” by Odd Nerrdum. In the study of Horikawa and Kamitani (2017), which provided data279

for this paper, subjects were asked to imagine as many object images as possible from concrete280

nouns, such as leopard and swan. The difference between two tasks was whether the imagery had281

a particular content. For example, when you were asked to draw your cat or dog, what you drew282

must be a particular cat or dog; but when you were asked to draw a cat or dog, you could draw283

any cat or dog, even Hello Kitty or Snoopy. Because of the individualization and arbitrariness of284

the imagery in our study, it seems reasonable that our result was not consistent with the previous285

study and could not address the issue of the relationship between perception and imagery.286

In addition to the obvious individual divergences in encoding mechanisms, our result showed287

that there were some common mechanisms among subjects (common mistakes in image iden-288

tification and similarity of the top 5 features). In contrast to the symbolic, propositional repre-289

sentations, the depictive, modality-specific representations of information were grounded in the290

modalities, the body, and the environment. So they were highly personal and changed from time291

to time. This was a key difference between the grounded cognition and traditional cognitive the-292

ories and could be used to explain individual divergences in cognition. Meanwhile, we did share293

a common physical and environmental basis, which was also reflected in cognitive process and294

made communication possible. This may explain the existence of the common mechanisms.295

In our study, we quantitatively showed that the deep features which represented the semantic296

content of an image mainly modulated the activity of voxels in the early visual areas and these297

features were essentially depictive but also propositional. This result implied that some depictive298

representation of an object in our brain can naturally reflect semantics of the object to some ex-299

tent and this phenomena can be found in the early visual areas, which provided empirical evidence300

to the core viewpoint of the ground cognition. In fact, there was another theory also addressing301

the relationship between the propositional representation and the depictive representation of in-302

formation in our brain—the dual coding theory (Clark and Paivio, 1991), which emphasized the303

beneficial effects of the depictive representation of information on cognition (concreteness) and304

suggested that the two types of representations are independent from each other in our brain305

(Paivio believed that there were two distinct subsystems in our brain specialized for dealing with306

different types of representations). Both theories admitted the association between the two types307

of representations but disagreed with each other about the relationship between the two types of308

representations. From our result, we tend to support the monistic view of the two types of rep-309

resentations. But we also noticed that our result only involved the early visual areas which were310

in the early stages of the visual ventral stream. So How does the depictive representation of an311

object change along the visual ventral stream tomake object recognition possible—whether the in-312

dependent propositional representation will eventually appear—is not clear. This question needs313

further studies.314
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Methods and Materials315

Data316

We used the fmri data that was originally published inHorikawa and Kamitani (2017), which can be317

downloaded from https://github.com/KamitaniLab/GenericObjectDecoding. The data was obtained318

from two fMRI experiments for each of 5 subjects: an image presentation experiment and an im-319

agery experiment. There were two sessions in the image presentation experiment—the training320

session and the testing session. In the training session, subjects viewed 1200 images from 150321

categories (8 images from each category) as each image presented once. In the testing session,322

subjects viewed 50 images from 50 categories (one image from each category) as each image pre-323

sented 35 times. In the imagery experiment, subjects were asked to imagine about 50 nouns from324

50 categories (one noun from each category) as each noun presented 10 times. The categories325

used in the imagery experiment were the same as those in the testing session, which were not326

used in the training session. All the images (1250 natural images with the resolution of 512×512×3)327

and the corresponding categories (200) were collected from ImageNet (Deng et al., 2009). In addi-328

tion, there were standard retinotopic mapping experiment and functional localizer experiment to329

identify lower visual areas (V1, V2, V3, and V4) and higher visual areas (LOC, FFA and PPA) for each330

participant. The details of the experimental design, MRI acquisition protocol, and preprocessing of331

the fMRI data could be found in Horikawa and Kamitani (2017).332

Before further analysis, we averaged the repeated trials in the testing session and the imagery333

experiment. First, we standardized the fMRI data from the training session. The mean and stan-334

dard deviation of the training set were then used to standardize the testing sets (from the test-335

ing session) and the imagery sets (from the imagery experiment). After that, we performed trial-336

averaging for the testing sets and the imagery sets to improve the signal-noise ratio. Because of337

trial-averaging, there were statistical difference between the training set and the other two. So we338

rescaled the averaged data by a factor of√n where n is the number of trials averaged (Shen et al.,339

2019).340

Encoding Models Based On Deep Features341

To probe how does the brain represent the semantic content of an image, we used voxel-wise342

encoding models. Such models were constructed separately for each voxel in each individual, so343

our analysis was also individual-based. There were two steps to construct voxel-wise encoding344

models (Naselaris et al., 2011): the first stepwas a nonlinear transformation from a stimulus space345

to a feature space; the second step was a linear transformation from the feature space to a voxel346

space.347

As the first step, we got deep features which represented the semantic content of an image. We348

employed the pre-trained VGG19model based on the open sourcemachine learning framework of349

PyTorch (Paszke et al., 2019) to extract the feature maps of the conv4_2 layer as the image content350

representation. After image preprocessing (such as image scaling and cropping, more details can351

be found from https://pytorch.org/hub/pytorch_vision_vgg/), images from the training data session352

and the testing data session were fed into the VGG19 model and the feature maps of the conv4_2353

layer were extracted, respectively. As a result, the size of the training feature maps was [1200, 512,354

28, 28] ([the number of images, the number of kernels, the height of feature map, the width of355

feature map]), and the size of the testing feature maps was [50, 512, 28, 28].356

As the second step, we constructed linear regressionmodels to predict the brain activity evoked357

by an image from the features which represented the semantic content of the same image. For358

each voxel, the model can be expressed by359

y = X� + � (1)
Where y is a measured voxel response and X is features which elicited the response of the voxel.360

Just as each neuron has its own receptive field, each voxel has its own population receptive field361

(Dumoulin andWandell, 2008). It means that a voxel only responds to the features in its population362
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receptive field. So there was no need to put all the features into themodel (The number of features363

for each image is 401408, It will pose a problem known as the curse of dimensionality if we put all364

the features into the model). And the features we extracted from the VGG19 model were naturally365

organized into feature maps that preserved the topology of stimuli. For example, the size of the366

featuremaps for each image was 512×28×28. It could be seen as 784 (28×28) spatial locations with367

512 features at each spatial location. The spatial arrangement of 784 locations (28 × 28) preserved368

the topology of the original image (512 × 512). According to the model of the population receptive369

field, receptive fields are center-surround organized and features at the center of a receptive field370

make the largest contribution to the activity measured in the voxel (St-Yves and Naselaris, 2018).371

So we only used 512 features at one of the 784 locations asX for each voxel (To simplify themodel372

and reduce computation time, we ignored the surround of receptive fields and assumed that each373

location is a candidate for the center of a receptive field). To find the best center for each voxel,374

we constructed separate linear regression models for each location/voxel combination.375

We used the training data to fit models. For each model, X was the features from one of the376

784 locations represented by a 1200 × 512matrix (1200 images), y was a measured voxel response377

represented by a 1200 × 1 matrix. It was reasonable to assume that a voxel only responded to a378

fraction of the X. So we estimated regression coefficients of each model using lasso regression:379

�̂ = argmin
�

1
2
‖y −X�‖22 + � ‖�‖1 (2)

where lambda is a complexity parameter that controls the amount of regularization. To accelerate380

model fitting, we used the function “lasso_gpu” from a MATLAB package developed by Mohr and381

Ruge (2020), which can be efficiently implemented in parallel on aGPU. The optimal value of lambda382

was selected from a lambda sequence with 10 lambdas: 2−2, 2−3, 2−4, ⋯, 2−11 (the first lambda was383

set using the function “calculate_lambda_start” from the same MATLAB package and the lambda384

range was set to guarantee that the last lambda is not chosen as the best one). We chose the best385

lambda and the best location for each voxel using five-fold cross-validation with the coefficient of386

determination (R2).387

Model Evaluation388

Once fitted, encoding models were evaluated using the testing sets and the imagery sets, respec-389

tively. For each voxel, we defined the model’s prediction accuracy as the Pearson’s correlation390

coefficient (r) between the measured voxel response and the response predicted by the model.391

The significance of the correlation was assessed by a permutation test with 10000 permutations392

(Bonferroni correction for the number of voxels, and p < 0.05). For each ROI, we used the number393

of survived voxels within the ROI and the meidan r as measurements for prediction accuracy.394

Another measurement for prediction accuracy was decoding performance—identifying stimuli395

frommeasured brain activity (Kay et al., 2008). First, we used survived models to predict the voxel396

activity pattern from the test feature maps for each of the 50 stimuli. Second, we calculated the397

Pearson’s correlation coefficient between the predicted voxel activity pattern and the measured398

voxel activity pattern for each stimulus/stimulus combination. The stimulus whose predicted voxel399

activity pattern wasmost correlated with themeasured voxel activity pattern of itself was regarded400

as correct decoding. We defined the identification accuracy as the percentage of stimuli that are401

correctly identified from the testing data or the imagery data.402

Model Analysis403

After model evaluation, we explored the relationship between features and voxels through regres-404

sion coefficients of survived models. Because of the lasso regression, some of regression coeffi-405

cients in each model were set to zero automatically. The nonzero coefficients indicated that which406

features were related to the activity of a voxel and how are they related. For each subject, we de-407

scribed the relationship between features and voxels from two complementary perspective—the408
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perspective of features and the perspective of voxels. From the perspective of features, we used409

the number of voxels each feature related and the location distribution of these voxels in differ-410

ent ROIs to analyse the property of different features. From the perspective of voxels, we used411

the number of features each voxel related and the location of the voxel to analyse the property of412

different ROIs.413

Furthermore, the survived models also provided information about the population receptive414

fields of voxels. For each model, the X was selected from one of the 784 locations (28 × 28). The415

location of the X could be seen as the center of the population receptive field of the correspond-416

ing voxel on the feature maps. We used heatmap to visualize and explore the distribution of the417

receptive fields of survived voxels for each subject.418

Encoding Models Based On Gabor Features419

To compare with encoding models using the deep features, we also constructed encoding models420

based on Gabor features. We got gabor features of stimuli according to the method of Li et al.421

(2018): Firstly, a Gabor Wavelet Pyramid (GWP, Gaziv, 2021) model was used to get original Gabor422

features from stimuli (six spatial frequencies: 1, 2, 4, 8, 16, and 32 cycles/FOV; eight orientations: 0◦,423

22.5◦, 45◦, . . . , and 157.5◦; and two phases: 0◦ and 90◦; The FOV covered full of a image and all images424

were downsampled to 128 × 128 pixels); Secondly, the absolute values of the projections of each425

quadrature wavelet pair were averaged to get the contrast energies; Thirdly, the contrast energies426

were normalized to linearize the relationship between contrast energies and voxel responses (each427

contrast energy was divided by the sum of the contrast energy and the median of all contrast428

energies in the training set which were at the same position and the same orientation); Fourthly,429

the normalized contrast energies at the same position (eight orientations) were averaged to reduce430

the dimension of features; Lastly, the average luminance of stimuli were also added into Gabor431

features. As a result, each stimulus had 1366 features. After that we used the same method as432

described above to construct linear regression models from Gabor features to voxel responses.433

Representational Similarity Analysis434

To probe the representation property of the layer conv4_2, we used RSA, which characterized the435

representational geometry of a set of stimuli in a brain region or computational model by repre-436

sentational distance matrix (RDM) and compared RDMs to explore the representational similarity437

between different brain regions or brain regions and computation models. Three types of RDMs438

(the candidate RDMs) were constructed to compare with the RDM of the layer conv4_2 (the refer-439

ence RDM).440

The first type were RDMs derived from the pre-trained VGG19. There were two RDMs—the441

RDM of the layer conv5_4 and the RDM of the layer fc2. As the RDM of the layer conv4_2, the442

two candidate RDMs were constructed using the corresponding feature maps extracted from the443

VGG19 by the 50 images from the testing set. We selected the correlation distance (1 minus the444

linear correlation between each pair of feature maps) as the measurement of representational445

dissimilarity to construct each RDM.446

The second type were RDMs derived from brain activity. We used the measured brain activity447

from the testing sets and the imagery sets to constructed RDMs, respectively. Because the cate-448

gories of the stimuli (nouns) in the imagery data were the same as the categories of the stimuli449

(images) in the test data, the RDMs from the imagery data could be treated as RDMs using the450

same set of stimuli—the 50 images from the test data. There were 14 RDMs for each subject, 7451

RDMs from the test data for each ROI and 7 RDMs from the imagery data for each ROI (V1, V2, V3,452

V4, LOC, FFA, and PPA).453

The third type were RDMs derived from stimuli (50 images from the testing set) directly. There454

were three RDMs—the RDM of Gabor features, the RDM of silhoutee, and the RDM of semantics.455

The RDM of Gabor features was constructed using the Gabor features of images extracted from456

the GWP model. To construct the RDM of silhoutte, we converted images to silhouettes (binary457
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images in which each figure pixel is 0 and each background pixel is 1) and calculated the correlation458

distance between each pair of silhouettes. To construct the RDM of semantics, we calculated the459

semantic distance between each pair of images. We used the function “path_similarity" from the460

Natural Language Toolkit library (Bird et al., 2009) to calculate how similar two categories of images461

are (semantic similarity), which based on the WordNet (Miller, 1995). The score returned from the462

function was in range 0 to 1, so we converted the semantic similarity to the semantic distance by463

subtracting the score from 1.464

In total 19 candidate RDMs were constructed to compare with the reference RDM for each465

subject and the Spearman’s rank correlation coefficient was selected to measure the similarity be-466

tween each candidate RDM and the reference RDM. After that, we performed statistical inference467

to answer two questions—whether a candidate RDM and the reference RDM were significantly468

correlated (by permutation test with 10000 permutations) and whether the correlation between469

a candidate RDM and the reference RDM was significantly different from the correlation between470

another candidate RDMand the reference RDM (by bootstrap test with 1000 replications). For each471

test, FDR was applied for multiple comparison correction (Benjamini and Hochberg, 1995). All cal-472

culations were done using MATLAB 2020a and Python 3.7 on a Linux (Ubuntu 18.04 LTS) desktop473

with a Geforce GTX 1660 Ti graphics card (6 Gb of VRAM).474
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Figure 2–Figure supplement 1. The result of encoding models based on the deep features for S2.
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The distribution of survived voxels in different ROI for each features - S3
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Figure 2–Figure supplement 2. The result of encoding models based on the deep features for S3.
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The distribution of survived voxels in different ROI for each features - S4
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Figure 2–Figure supplement 3. The result of encoding models based on the deep features for S4.
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Figure 2–Figure supplement 4. The result of encoding models based on the deep features for S5.
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Figure 4–Figure supplement 1. The comparison of two types of encoding models for S2.
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Figure 4–Figure supplement 2. The comparison of two types of encoding models for S3.
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Figure 4–Figure supplement 3. The comparison of two types of encoding models for S4.
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Figure 5–Figure supplement 1. The result of RSA for S2.
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Figure 5–Figure supplement 2. The result of RSA for S3.
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Figure 5–Figure supplement 3. The result of RSA for S4.
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Figure 5–Figure supplement 4. The result of RSA for S5.
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