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Highlights 41 

• Large-cohort SEEG used for phase-synchronization connectomics 42 

• Connectomes of phase-synchronization possess distinct and stable modules  43 

• Modules in connectomes are highly similar within canonical frequency bands 44 

• Modules in connectomes comprise anatomically contiguous regions 45 

•  Modules in connectomes comprise functionally related regions 46 
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Abstract 74 

Modules in brain functional connectomes are essential to balancing segregation and integration of 75 

neuronal activity. Connectomes are the complete set of pairwise connections between brain regions. 76 

Non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) have been used 77 

to identify modules in connectomes of phase-synchronization. However, their resolution is 78 

suboptimal because of spurious phase-synchronization due to EEG volume conduction or MEG 79 

field spread. Here, we used invasive, intracerebral recordings from stereo-electroencephalography 80 

(SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To generate SEEG-81 

based group-level connectomes affected only minimally by volume conduction, we used 82 

submillimeter accurate localization of SEEG contacts and referenced electrode contacts in cortical 83 

grey matter to their closest contacts in white matter. Combining community detection methods with 84 

consensus clustering, we found that the connectomes of phase-synchronization were characterized 85 

by distinct and stable modules at multiple spatial scales, across frequencies from 3 to 320 Hz. These 86 

modules were highly similar within canonical frequency bands. Unlike the distributed brain systems 87 

identified with functional Magnetic Resonance Imaging (fMRI), modules up to the high-gamma 88 

frequency band comprised only anatomically contiguous regions. Notably, the identified modules 89 

comprised cortical regions involved in shared repertoires of sensorimotor and cognitive functions 90 

including memory, language and attention. These results suggest that the identified modules 91 

represent functionally specialised brain systems, which only partially overlap with the brain 92 

systems reported with fMRI. Hence, these modules might regulate the balance between functional 93 

segregation and functional integration through phase-synchronization. 94 

 95 
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1. Introduction 107 

Structural and functional connectomes obtained from Magnetic Resonance Imaging (MRI) possess 108 

a modular organization (Meunier et al. (2009), Power et al. (2011), Doucet et al. (2011)). 109 

Connectomes are the complete set of connections between brain regions. Modules are sets of 110 

strongly interconnected brain regions. Modules identified in resting-state fMRI comprise regions 111 

that have also been observed to be concurrently active during task processing and have been found 112 

to delineate functional systems for executive, attentional, sensory, and motor processing (Beckmann 113 

et al. (2005), Smith et al. (2009), Yeo et al. (2011), Cole et al. (2014)). The anatomical structure of 114 

resting-state modules in fMRI connectomes has been found to be reproducible and similarly 115 

observable with different approaches such as community detection (Valencia et al. (2009), Power et 116 

al. (2011)) and clustering (Benjaminsson et al. (2010), Yeo et al. (2011), Lee et al. (2012)). 117 

Moreover, the balance between segregated information processing in modules (Wig (2017)) and 118 

integrated information processing via inter-modular connections, is essential to brain functioning 119 

(Tononi et al. (1994), Tononi et al. (1998), Deco et al. (2015)).  120 

The relationship of fMRI functional connectivity to underlying electrophysiological connectivity is 121 

complex and not attributable to any single form of neuronal activity or coupling (Kucyi et al. (2018), 122 

Shafiei et al. (2022)). Electrophysiological measurements of macro-scale neuronal activity with 123 

Magneto- (MEG) and Electroencephalography (EEG) reveal band-limited neuronal oscillations in 124 

multiple frequencies, whose inter-regional coupling is observable as synchronization between 125 

oscillation phases and correlations between oscillation amplitude envelopes (Palva et al. (2005), Fell 126 

& Axmacher (2011), Brookes et al. (2011), Palva & Palva (2012), Engel et al. (2013)). Amplitude 127 

correlations reflect, e.g., co-modulation in neuronal excitability (Vanhatalo et al. (2004), Schroeder 128 

& Lakatos (2009), Engel et al. (2013)) while phase-synchronization implies spike-time relationships 129 

of neuronal activity and may regulate inter-regional neuronal communication (Fries (2015), Bastos 130 

et al. (2015)). Large-scale networks of phase-synchronization are proposed to support the 131 

coordination, regulation, and integration of neuronal processing in cognitive functions, both in 132 

frequencies up to 130 Hz (Varela (2001), Palva et al. (2005), Uhlhaas et al. (2010), Kitzbichler et al. 133 

(2011), Palva & Palva (2012)), and in frequencies higher than 130 Hz, i.e., high-frequency 134 

oscillations (HFO) (Vaz et al. (2019), Arnulfo et al. (2020)).  135 

In the light of such putative mechanistic roles for phase-synchronization in cognitive functions, a 136 

modular architecture and inter-modular coupling in connectomes of phase-synchronization during 137 

resting-state would establish a baseline to support corresponding demands for functional segregation 138 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2021.06.24.449415doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449415
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

and integration during cognitive operations (Smith et al. (2009), Spadone et al. (2015)). An MEG 139 

study investigated modules in connectomes of phase-synchronization and amplitude correlation using 140 

source-reconstructed resting-state data (Zhigalov et al. (2017)). Both connectomes of amplitude 141 

correlation and phase-synchronization comprised distinct modules in frontal regions, sensorimotor 142 

regions and occipital regions, particularly in the alpha (8–14 Hz) and beta (14–30 Hz) frequency 143 

bands. Another MEG study used source-reconstructed resting-state data to identify module-like 144 

structures in connectomes of inter-regional coherence (Vidaurre et al. (2018)), a connectivity measure 145 

influenced by phase-synchronization. The connectomes included module-like structures comprising 146 

frontal regions, sensorimotor regions and occipital regions across delta/theta (1–8 Hz), alpha (8–14 147 

Hz) and beta (14–30 Hz) frequencies. However, the accuracy of modules identified in MEG/EEG 148 

connectomes is compromised by the intrinsic resolution limitations of these methods, including 149 

artificial and spurious false positive observations with bivariate connectivity measures arising from 150 

source leakage (Palva & Palva (2012), Palva et. al (2018)) as well as false negatives due to linear-151 

mixing insensitive measures that ignore also true near-zero-lag phase-synchronization (Vinck et al. 152 

(2011), Brookes et al. (2012), Palva & Palva (2012)). On the other hand, low-resolution (< 35 parcels 153 

/hemisphere) cortical parcellations, which are needed when spurious connections are eliminated by 154 

multivariate leakage correction (Colclough et al. (2015)), may be too coarse to identify fine-grained 155 

cortical network structures such as modules. 156 

In this study, we pooled resting-state stereo-EEG (SEEG) recordings data from a large cohort (N = 157 

67) to accurately estimate connectomes of phase-synchronization. In contrast to the centimetre-scale, 158 

insight yielded by MEG, SEEG provides a millimetre range, meso-scale measurement of human 159 

cortical local field potentials (LFPs) (Parvizi & Kastner (2018), Zhigalov et al. (2015), Zhigalov et 160 

al. (2017)). We used submillimetre-accurate anatomical localization of SEEG electrode contacts to 161 

brain regions (Narizzano et al. (2017), Arnulfo et al. (2015b)) and referenced each gray-matter contact 162 

to its closest white-matter contact (Arnulfo et al. (2015a)), which yielded polarity-correct 163 

measurements of local cortical activity without the phase distortion potentially arising with 164 

conventional bipolar referencing. This enabled the estimation of a large proportion of connections in 165 

the connectome while adequately controlling for volume conduction so that also near zero-lag phase-166 

synchronization was measurable (Arnulfo et al. (2015a)). Finally, we combined community detection 167 

with consensus clustering (Williams et al. (2019)) to identify modules in connectomes of phase-168 

synchronization in a manner that is robust against unsampled connections. 169 

We found that connectomes of phase-synchronization exhibited modular organization at multiple 170 

spatial scales, throughout the studied range of frequencies from 3 to 320 Hz. These modules were 171 
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highly similar within canonical frequency bands and comprised anatomically contiguous regions up 172 

to the high-gamma frequency band (80-113 Hz). Finally, we used Neurosynth meta-analysis 173 

decoding (Yarkoni et al. (2011)) to reveal that the observed modules comprised cortical regions 174 

exhibiting shared cognitive functions, suggesting that these modules correspond to brain systems 175 

with specific functional roles. Hence, the modules identified might serve the regulation of balance 176 

between segregation and integration of neuronal activity through phase-synchronization.  177 
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2. Materials & Methods 178 

 2.1 Analysis pipeline to identify modules in connectomes of phase-synchronization 179 

We combined pre-surgical SEEG recordings from epileptic patients with state-of-the-art methods, to 180 

identify modules in connectomes of phase-synchronization. We recorded resting-state LFP data from 181 

each patient using a common reference in white matter, distant from the putative epileptogenic zone. 182 

We re-referenced the LFP activity of each grey-matter SEEG contact to its closest white-matter 183 

contact, which we have demonstrated to preserve undistorted phase reconstruction while minimising 184 

volume conduction (Arnulfo et al. (2015a)). We filtered the recorded LFP data using 18 narrow-band 185 

Finite Impulse Response (FIR) filters (Figure 1A) from 2.5 Hz up to 350 Hz with line-noise 186 

 

Figure 1. Modules in connectomes of phase-synchronization estimated by pooling data across 

subjects. A. Band-pass filtered data (center frequency=14 Hz) for example group of subjects. B. Subject-

level matrices of phase-synchronization between SEEG contacts, for example group of subjects. C. Group-

level matrix of phase-synchronization between brain regions. Matrix ordered to show left- (bottom left), 

right- (top right) and inter-hemispheric connections (top left and bottom right) respectively. Non-estimable 

connections are gray. D. Group-level matrix of phase-synchronization between right-hemispheric regions. 

E. Sorted group-level matrix of phase-synchronization between right-hemispheric regions, sorting based 

on results of community detection to identify modules. F. Colour-coded modules for lateral (top) and medial 

(bottom) views of right-hemispheric inflated cortical surface.  
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suppressed using band-stop filters at 50 Hz and harmonics.  Next, we estimated the strength of phase-187 

synchronization between every pair of SEEG contacts, for each frequency, using Phase Locking 188 

Value (Figure 1B). We assigned each SEEG contact to a brain region, by first identifying the position 189 

of each contact from a post-implant CT volume, and using co-registered pre-implant MRI scans to 190 

assign each contact to one of 148 regions in the Destrieux brain atlas (Destrieux et al. (2010)) with 191 

FreeSurfer (http://freesurfer.net/). We identified the position of each SEEG contact by using planned 192 

entry and termination points of SEEG shafts to initialize the shaft axis, and used constraints of inter-193 

contact distance and axis deviation to locate each SEEG contact along the shaft axis (Arnulfo et al. 194 

(2015b)). We then estimated group-level connectomes by averaging for each region-pair, the 195 

corresponding contact-contact PLVs across subjects (Figure 1C). We analyzed the left and right 196 

hemispheres separately (Figure 1D) and identified modules with Louvain community detection 197 

(Blondel et al. (2008)) combined with consensus clustering (Williams et al. (2019)) (Figure 1E). 198 

Finally, we visualised the identified modules on anatomical brain surfaces (Figure 1F).  199 

2.2 Data acquisition 200 

We recorded SEEG data from 67 participants affected by drug-resistant focal epilepsy and 201 

undergoing pre-surgical clinical assessment. For each participant, we inserted 17 ± 3 (mean ± SD) 202 

SEEG shafts into the brain, with anatomical positions varying by surgical requirements. Each shaft 203 

had between 8 and 15 platinum-iridium contacts, each contact being 2 mm long and 0.8 mm thick, 204 

with inter-contact distance of 1.5 mm (DIXI medical, Besancon, France). We acquired 10 minutes 205 

eyes-closed resting-state activity from each participant, via a 192-channel SEEG amplifier system 206 

(Nihon Kohden Neurofax-110) at a sampling frequency of 1 kHz. We obtained written informed 207 

consent from participants prior to recordings. We obtained ethics approval for the study from 208 

Niguarda “Ca’ Granda” Hospital, Milan, and we performed the study according to WMA Declaration 209 

of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. 210 

2.3 Pre-processing 211 

We performed re-referencing, filtering and artefact removal of the SEEG data, before estimating the 212 

connectome of phase-synchronization. We originally recorded data from all contacts with a 213 

monopolar referencing scheme. We subsequently re-referenced activity from each gray-matter 214 

contact to the nearest white matter contact as identified by GMPI (gray matter proximity index). We 215 

have previously demonstrated the utility of this referencing scheme in studying phase-216 

synchronization, since phase relationships between contacts are well preserved (Arnulfo et al. 217 

(2015a)). We only analysed activity from gray-matter contacts after re-referencing. We filtered 218 
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activity from each gray-matter contact using FIR filters (equiripples 1% of maximal band-pass 219 

ripples) into 18 frequency bands, with center frequencies (𝐹𝑐) ranging from 3 to 320 Hz (excluding 220 

50 Hz line-noise and harmonics). We used log-spaced center frequencies of 3 Hz, 4 Hz, 5 Hz, 7 Hz, 221 

10 Hz, 14 Hz, 20 Hz, 28 Hz, 40 Hz, 57 Hz, 80 Hz, 113 Hz, 135 Hz, 160 Hz, 190 Hz, 226 Hz, 269 Hz 222 

and 320 Hz. We used a relative bandwidth approach for filter banks such that pass band (𝑊𝑝) and 223 

stop band (𝑊𝑠) were defined 0.5 × 𝐹𝑐 and 2 × 𝐹𝑐, respectively for low and high-pass filters, producing 224 

log-increasing spectral window widths. The choice of log-spaced center frequencies followed the 225 

experimentally observed center frequencies of brain oscillations (Penttonen & Buzsáki (2003)). The 226 

log-increasing window widths afforded fine spectral resolution at lower frequencies, avoiding 227 

confounding instantaneous phases of multiple frequency components at lower frequencies (Lopes da 228 

Silva (2013)). Simultaneously, this choice also provided fine temporal resolution at higher 229 

frequencies, enabling accurately estimating the instantaneous phase of the known-to-be-short-lived 230 

oscillations at higher frequencies (Lundquist et al. (2018)). We applied the Hilbert transform to the 231 

FIR-filtered signal to return the analytic signal, from which angle we extracted the instantaneous 232 

phase. Before estimating phase-synchronization, we excluded select 500 ms windows containing 233 

Inter-Ictal Epileptic (IIE) events, to counteract any spurious phase-synchronization due to filtering 234 

artefacts around the epileptic spikes. We defined IIE as at least 10% of SEEG contacts narrow-band 235 

time series demonstrating abnormal, concurrent sharp peaks in more than half the 18 frequencies. To 236 

identify such periods, we searched for “spiky” periods in amplitude envelopes of each SEEG contact. 237 

We tagged a 500 ms window as “spiky” if any of its samples were 5 standard deviations higher than 238 

mean amplitude of the contact. 239 

2.4 Connectome estimation 240 

We pooled estimates of phase-synchronization between SEEG contacts to obtain the group-level 241 

inter-regional connectome of phase-synchronization. We measured phase-synchronization between 242 

SEEG contacts with Phase Locking Value (Lachaux et al. 1999): 243 

𝑃𝐿𝑉 =
1

𝑁
|∑ 𝑒𝑗(𝜃1(𝑛)−𝜃2(𝑛))

𝑁

𝑛=1

| 244 

where 𝜃1(𝑛) and 𝜃2(𝑛) are instantaneous phases from a pair of SEEG contacts at sample 𝑛, with 𝑁 245 

being the total number of samples. We estimated the group-level phase-synchronization between a 246 

pair of brain regions as the average PLV over all subjects, of all SEEG contact-pairs traversing that 247 

pair of brain regions. This procedure furnished accurate estimates of group-level phase-248 
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synchronization, since it computes a weighted average of phase-synchronization across subjects, 249 

wherein subjects contributing higher number of PLV values are assigned a higher weight in the group-250 

level estimate. The alternative procedure of first averaging all PLV values for a pair of brain regions 251 

for each subject separately, before averaging these subject-level PLV estimates, would assign equal 252 

weight to each subject in the group-level estimate despite some subjects contributing higher number 253 

of PLV values to the estimate. We estimated the connectome of phase-synchronization as the group-254 

level phase-synchronization between every pair of 148 regions in the Destrieux brain atlas for which 255 

we had at least one SEEG contact-pair. We then thresholded the connectome by retaining the 256 

estimated strengths of only the top 20 percentile of connections, setting all others to 0. We performed 257 

this thresholding as a means of emphasising the topological organisation of the connectome (Rubinov 258 

& Sporns (2010)). We also determined the robustness of our results to the specific choice of percentile 259 

threshold, by also identifying modules on connectomes thresholded by retaining the strengths of the 260 

top 10 and top 30 percentile of connections. 261 

Since we did not have complete recording coverage of the brain with SEEG, we had insufficient data 262 

to estimate phase-synchronization of all connections in the group-level connectome. Rather, we had 263 

sufficient coverage with SEEG, to estimate phase-synchronization of 47.2% of connections in the 264 

group-level connectome. Many of these connections were intra-hemispheric - we estimated phase-265 

synchronization of 68% of connections between just left-hemispheric regions, and of 80% of 266 

connections between just right-hemispheric regions. Hence, we separately identified modules in the 267 

connectome of just left-hemispheric regions and in the connectome of just right-hemispheric regions. 268 

We excluded selected contact-pairs from the connectome estimation due to potential artefacts, as per 269 

the below criteria. We excluded contact-pairs involving SEEG contacts marked by clinical experts as 270 

falling within the epileptogenic or seizure propagation regions. We performed this step after we 271 

removed 500 ms windows containing IIE, as described above (Section 2.3). Further, we excluded 272 

contact-pairs whose respective SEEG contacts were less than 20 mm apart and those with the same 273 

white-matter reference, both to reduce the effect of volume conduction. We have described these 274 

steps in further detail, in recent work using the same SEEG dataset (Arnulfo et al. (2020)). 275 

2.5 Analysing the connectome of phase-synchronization 276 

2.5.1 Identifying modules in connectomes of phase-synchronization 277 

We used Louvain community detection (Reichardt & Bornholdt (2006), Blondel et al. (2008), 278 

Ronhovde & Nussinov (2009), Sun et al. (2009)) combined with consensus clustering (Lancichinetti 279 
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& Fortunato (2012)) to identify modules in the connectome of phase-synchronization. Modules are 280 

sets of strongly interconnected nodes in a network. The Louvain community detection method 281 

iteratively identifies a partition of network nodes into modules, such that ‘modularity’ of the partition 282 

is maximised. The ‘modularity’ objective function that is maximised, quantifies the extent to which 283 

the network comprises non-overlapping modules compared to a null model of an equivalent network 284 

that would be expected by chance (Blondel et al. (2008)). We chose the Louvain method due to its 285 

superior performance in accurately identifying network modules compared to alternative community 286 

detection methods (Lancichinetti & Fortunato (2009)), and its superior performance, when combined 287 

with consensus clustering, in recovering modules in incomplete brain networks (Williams et al. 288 

(2019)). We used the implementation of the Louvain method in Brain Connectivity Toolbox (Rubinov 289 

& Sporns (2010)). We applied the Louvain method to left and right hemispheric regions separately, 290 

since the low number of inter-hemispheric connections might confound the identification of modules. 291 

To identify modules while accounting for missing values in the group-level connectome matrix, we 292 

first generated 5000 variants of the connectome wherein we replaced each missing value with a 293 

randomly sampled (with replacement) existing value from the group-level connectome. Replacing 294 

missing values with existing values from the group-level connectome generates complete 295 

connectomes with the same distribution of phase-synchronization strengths as the original incomplete 296 

connectome. We applied Louvain community detection to identify modules on each of these 5000 297 

complete matrices. We identified modules at a range of spatial scales by setting the γ input parameter 298 

of the Louvain method from 0.8 to 5, in intervals of 0.1. For each γ value, we combined the module 299 

assignments of the 5000 connectome variants to obtain a consensus module assignment. We 300 

performed this step by first generating matrix representations of each module assignment, with 301 

number of matrix rows and columns being the number of regions. We set each element in the matrix 302 

to 1 or 0 depending respectively on whether that pair of regions were in the same module or not. We 303 

then obtained a consensus matrix by averaging the 5000 matrix representations and obtained a 304 

consensus module assignment by applying the Louvain method to this consensus matrix. We have 305 

demonstrated this consensus clustering approach is superior to other approaches to identify modules 306 

in incomplete human brain networks (Williams et al. (2019)). We applied this procedure to identify 307 

modules at each frequency, for left and right hemispheres separately.  308 

2.5.2. Determining statistical significance of modular organization 309 

We determined statistical significance of modular organization by comparing modularity of 310 

connectomes against modularity of corresponding randomized connectomes. Modularity is high 311 

when the connectome is divided into internally dense modules. We compared modularity of the 312 
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original connectomes to their corresponding randomized connectomes, with the following steps 1.) 313 

We estimated modularity of the original connectome using Louvain community detection in 314 

combination with consensus clustering, for γ values (spatial scales) from 0.8 to 5 (see Section 2.5.1). 315 

Modularity is the objective maximised by the Louvain method. We used 100 variants of the original 316 

connectome for the consensus clustering step. 2.) We standardised the modularity values of the 317 

original connectomes by z-scoring the estimated modularity at each γ value against a null distribution 318 

of 100 modularity values generated by identifying modules on randomly permuted (without 319 

replacement) versions of the original connectome. We identified modules for each of these 320 

randomized connectomes with the same procedure as we used to identify modules on the original 321 

connectome. We estimated z-scored modularity for connectomes at each frequency, for left and right 322 

hemispheres separately. 3.) We determined the statistical significance of the estimated modularity 323 

values of the original connectome by converting the z-scores to p-values assuming a Gaussian 324 

distribution and used False Discovery Rate (FDR) thresholding (Benjamini & Hochberg (1995)) to 325 

correct for multiple comparisons across all combinations of γ and frequency. We considered FDR-326 

corrected p < 0.05 to indicate statistically significant modular organization of the original connectome 327 

at a given γ and frequency. We performed FDR thresholding separately for connectomes of each 328 

hemisphere. 329 

2.5.3 Determining statistical significance of percentage of stable regions  330 

We determined the statistical significance of percentage of stable regions using a permutation-based 331 

test to assess the stability of module assignment of each brain region, and a second permutation-based 332 

test to assess if the percentage of stable regions is higher than expected by chance. We performed the 333 

following steps 1.) We constructed 100 bootstrapped connectomes with the same procedure as for 334 

the original connectomes (Section 2.4), each from a cohort of 67 randomly resampled (with 335 

replacement) subjects from the original cohort. 2.) We considered the module assignment of a brain 336 

region to be stable if it was assigned to the same module in the original connectome, as it was assigned 337 

to across the 100 bootstrapped connectomes. Hence, we quantified the stability of module assignment 338 

of a region as the mean correspondence in its module affiliation in the original connectome, to module 339 

affiliations of the same region across the 100 bootstrapped connectomes. For a given brain region, 340 

we specified module affiliation as a vector of ‘1’ and ‘0’s, depending respectively on whether each 341 

other brain region was or was not assigned to the same module, and we estimated the correspondence 342 

between module affiliations by the proportion of common ‘1’s and ‘0’s. Highly stable assignment of 343 

modules for a given brain region, were reflected in mean correspondences in module affiliation close 344 

to 1, for that brain region. 3.) We counted the stability of module assignment of a brain region as 345 
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statistically significant if it exceeded the 95-percentile value of the null distribution of stability values 346 

for that brain region. We estimated the null distribution of stability values as the mean stability values 347 

when comparing module affiliation with the original connectome against 100 randomly permuted 348 

(without replacement) module affiliation vectors of each of the bootstrapped connectomes. Hence, 349 

we had 100 samples in the null distribution of stability values for each brain region, one for each 350 

bootstrapped connectome. 4.) We next estimated the percentage of brain regions for each combination 351 

of spatial scales or γ values (from 0.8 to 5) and frequencies, for left and right hemispheres separately. 352 

5.) Finally, we determined the statistical significance of the percentage of stable regions, by z-scoring 353 

it against the percentage of regions expected to be stable by chance across the 100 bootstrapped 354 

connectomes. We estimated these chance percentages for each bootstrapped connectome, as the 355 

percentage of brain regions whose null stability values exceeded the 95-percentile value of the null 356 

distribution of stability values for that bootstrapped connectome. We then converted the z-scores to 357 

p-values assuming a Gaussian distribution and used False Discovery Rate (FDR) thresholding to 358 

correct for multiple comparisons due to testing across every combination of γ and frequency. We 359 

considered FDR-corrected p < 0.05 to indicate statistically significant percentage of stable regions. 360 

2.5.4. Grouping frequencies by similarity of modules 361 

We used multi-slice community detection (Mucha et al. (2010)) to identify groups of frequencies 362 

with similar modules, simultaneously for both left and right hemispheres. First, we generated matrices 363 

of module similarity between each pair of frequencies, separately for left and right hemispheres. We 364 

estimated similarity between module assignments by first generating matrix representations of 365 

module assignments at each frequency. The number of rows and columns of these matrices were 366 

equal to the number of brain regions, each element being set to 1 or 0 depending respectively on 367 

whether the corresponding pair of brain regions were in the same module or not. We measured 368 

similarity between module assignments using partition similarity (Ben-Hur et al. (2002)): 369 

𝑃𝑆 =
〈𝑙1, 𝑙2〉

√〈𝑙1, 𝑙1〉〈𝑙2, 𝑙2〉
 370 

where 〈𝑙𝑚, 𝑙𝑛〉 = ∑ 𝐶𝑖,𝑗
(𝑚)

𝐶𝑖,𝑗
(𝑛)

𝑖,𝑗 , i.e., the dot product between matrix representations of the module 371 

assignments for frequencies 𝑚 and 𝑛. Note that this measure of partition similarity effectively extends 372 

the measure in Section 2.5.3, which compares the module assignments of single brain regions (in 373 

relation to a set of brain regions), to the case of comparing the module assignments of a set of brain 374 

regions. We obtained matrices of partition similarity for each γ value (spatial scale) from 0.8 to 5. 375 

We then estimated a weighted average of these matrices across the γ dimension, to yield a matrix 376 
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indicating similarity of modules between frequencies that was consistent across spatial scales. We 377 

assigned weights to the matrix at each γ value, as the number of frequencies with statistically 378 

significant modular organisation at that γ value. Note however, that we also compared the frequency 379 

groupings we obtained when applying these weights, to frequency groupings we obtained when 380 

applying equal (unit) weights to the module similarity matrices at all γ values. 381 

We entered the left and right hemispheric matrices of module similarity into a multi-slice community 382 

detection procedure (Mucha et al. (2010)), to identify groups of frequencies with similar modules for 383 

both hemispheres. Multi-slice community detection is a principled generalisation of modularity 384 

maximisation community detection methods, e.g., Louvain, to multiple slices. It does so by 385 

formulating the null model for community structure across multiple slices, in terms of the stability of 386 

communities under Laplacian dynamics (Mucha et al. (2010)). Multi-slice community detection has 387 

previously been applied to study dynamic reconfiguration of human brain networks in learning 388 

(Bassett et al. (2011)), and to relate modules in human brain networks identified for different 389 

cognitive tasks (Cole et al. (2014)). 390 

The method has two input parameters, γmultislice and ω. γmultislice represents the spatial scale (just as with 391 

γ for the Louvain method), while ω represents the dependence between communities across the 392 

different slices. In our context, γmultislice influences the number of identified groups of frequencies 393 

while ω controls the dependence between the identified groups of left and right hemispheres. To 394 

select values for these parameters, we first estimated modularity values for each combination of 395 

γmultislice = 1 – 1.5 (intervals of 0.05) and ω = 0.1 – 1 (intervals of 0.1). Then, we generated a null 396 

distribution of modularity values by applying the method to identically randomly resampled (without 397 

replacement) left and right hemispheric matrices of module similarity. We z-scored the original 398 

modularity values against the null distribution and converted them to p-values assuming a Gaussian 399 

distribution. Finally, we inspected frequency groups for selected combinations of γmultislice and ω with 400 

FDR-thresholded p < 0.05.  401 

2.5.5 Identifying modules across multiple frequencies or spatial scales 402 

We used a consensus clustering approach (Section 2.5.1) to identify a single set of modules across 403 

frequencies and spatial scales. To do this, we first generated matrix representations of modules at 404 

individual frequencies, at each γ value (spatial scale) from 0.8 to 5, for left and right hemispheres 405 

separately. Matrix representations have number of rows and columns equal to the number of brain 406 

regions, each element in the matrix is 1 or 0 depending respectively on whether the corresponding 407 

pair of regions are in the same module or not. We then averaged the matrix representations, first 408 
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across all frequencies and then across all spatial scales, for left and right hemispheres separately. 409 

Finally, we applied multi-slice community detection to the averaged matrices of left and right 410 

hemispheres, to identify eight modules representing sets of regions assigned to the same module 411 

across frequencies and spatial scales, for both left and right hemispheres. The rationale for identifying 412 

these consensus modules was to relate these modules to their putative fMRI counterparts, Resting 413 

State Networks (RSNs). Hence, we fixed γmultislice to 1.6 to return eight modules, while we set ω = 1 414 

to constrain the modules to be bilaterally symmetric – RSNs are typically reported as between seven 415 

and ten bilaterally symmetric modules (e.g., in Yeo et al. (2011)).  416 

2.6 Inferring whether regions in a module are functionally related. 417 

We combined Neurosynth meta-analyses decoding (Yarkoni et al. (2011)) with comparison to 418 

surrogate modules, to assign putative functional roles to each module. We used Neurosynth decoding 419 

to find terms related to perception, cognition and behaviour selectively associated to the centroid co-420 

ordinates of each brain region, based on a large database of fMRI studies. Then, we aggregated the 421 

terms associated with regions in each module and compared the occurrence frequencies of these terms 422 

to those of equally sized surrogate modules which were constrained to comprise anatomically 423 

proximal and bilaterally symmetric brain regions. Hence, we determined terms that were common to 424 

regions in a module, even after accounting for the anatomical proximity of its regions. We z-scored 425 

the occurrence frequency of each term in a module against corresponding frequencies of the surrogate 426 

modules. We converted these z-scores to p-values assuming a Gaussian distribution and FDR-427 

thresholded at p < 0.05, to reveal those terms selectively associated to each module. 428 

We inferred the putative functional role of each module by the set of terms it was selectively 429 

associated to. We also performed a post-hoc analysis to verify the functional specificity of each 430 

module. To do this, we generated an 8 × 8 ‘confusion matrix’ of percentages of selectively associated 431 

terms of each module distributed across the eight cognitive functions assigned to the modules. High 432 

values along the diagonal would reflect high functional specificity, i.e., that the terms of each module 433 

were largely confined to a single cognitive function. We compared these percentages against the 434 

percentages of all terms related to a module, not just those selectively associated to each module. We 435 

expected these sets of all terms of each module to be distributed across diverse cognitive functions. 436 

2.7 Assessing robustness of modules identified 437 

We assessed robustness of modules identified, to a range of potential confounds. First, we assessed 438 

the robustness of modules identified to the specific set of SEEG contact-pairs used to generate the 439 
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group-level connectomes of phase-synchronization. To do this, we identified and compared modules 440 

identified from split connectomes at γ = 2, each of the split connectomes being generated by 441 

combining different sets of SEEG contact-pairs. To generate a split connectome, we estimated 442 

strength of each connection from a randomly selected sample of half the SEEG contact-pairs used to 443 

estimate strength of each estimated connection in the original connectome. We estimated the same 444 

connection in the other split connectome with the other half of SEEG contact-pairs used to estimate 445 

strength of that connection in the original connectome. Next, we assessed the robustness of the 446 

modules to the community detection method used to identify the modules. To do this, we compared 447 

the original modules obtained with Louvain community detection at γ = 2, against modules obtained 448 

with Infomap community detection (Rosvall & Bergstrom (2008)). Network density influences the 449 

number of modules with Infomap - we set the network density to 10% since this value yielded 450 

interpretable modules in previous work (Williams et al. (2019)). Further, we assessed the robustness 451 

of our results when modules were identified on binarized rather than weighted connectomes, when 452 

modules were identified by retaining the top 10 and 30 percentile group-level connections rather than 453 

top 20 percentile, and when modules were identified on connectomes generated with a criterion of at 454 

least 5 and 10 SEEG contact-pairs required to estimate an inter-regional group-level connection, 455 

rather than at least 1. Finally, we investigated if identifying modules is confounded by amplitude of 456 

oscillations from individual nodes in a network. To do this, we compared modules of the 67 subject-457 

level networks of phase-synchronization before and after removing amplitude-related differences in 458 

functional connection strengths, at each of the 18 frequencies, at six spatial scales (γ = 1, 1.8, 2.6, 459 

3.4, 4.2 and 5). We removed amplitude-related differences by relating the strengths of each functional 460 

connection to average amplitude of corresponding node-pairs via linear regression, and recovering 461 

the residuals. We compared modules identified before and after removing amplitude-related 462 

differences, with the partition similarity measure (Section 2.5.4). 463 

We have made available MATLAB code to perform each stage of the analyses, via our GitHub 464 

repository (https://github.com/nitinwilliams/eeg_meg_analysis/tree/master/FC_modules). 465 

3. Results 466 

3.1 Whole-brain coverage achieved by broad spatial sampling of SEEG contacts  467 

We quantified the sampling of brain regions and inter-regional connections (Arnulfo et al. (2020)) by 468 

the percentage of brain regions and region-pairs in Destrieux brain atlas (Destrieux et al. (2010)) 469 

containing at least one gray-matter SEEG contact or an inter-regional SEEG-contact-pair across 470 
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subjects, respectively. The cohort sampled with at least one SEEG contact 97% of brain regions (143 471 

of 148) in the Destrieux atlas (Figure 2A). The SEEG contacts were sampled more densely on the 472 

right (N = 45 ± 38, mean ± standard deviation, range 0–123, contacts per subject) than the left (32 ± 473 

41, 0–128, contacts per subject) hemisphere. This yielded a coverage of 68% of left-hemispheric, 474 

80% of right-hemispheric connections and 20% of inter-hemispheric connections (Figure 1B). We 475 

 

Figure 2. Whole-brain coverage achieved by placement of SEEG contacts. A. Number of 

SEEG contacts across subjects, in each brain region, for left (dark blue) and right (dark red) 

hemispheres, from lateral (top) and medial (bottom) views. B.  Coverage of left-hemispheric 

(dark blue), right-hemispheric (dark red) and inter-hemispheric (gray) connections for a range 

of minimum number of SEEG contact-pairs across subjects. C. 7 Yeo systems from lateral 

(top) and medial (bottom) views. VIS = Visual, SM = Sensorimotor, DA = Dorsal Attention, 

VA = Ventral Attention, Lim = Limbic, FP = Fronto-parietal and Def = Default Mode. D. 

Number of SEEG contacts across subjects, in each of 7 Yeo systems, for left (dark blue) and 

right (dark red) hemispheres. 
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also estimated the numbers of SEEG contacts across subjects in each of the Yeo functional systems 476 

(Yeo et al. (2011), Figure 1C) and found them densely sampled, with > 100 contacts in each functional 477 

system (Figure 1D).  478 

Within each hemisphere, we further investigated the coverage of inter-regional connections with 479 

respect to distance, provided by the SEEG recordings. Coverage of inter-regional connections both 480 

between proximal and between distant brain regions would allow the community detection method 481 

to identify modules comprising both proximal and distant brain regions, while coverage of 482 

connections between only proximal brain regions would limit the community detection method to 483 

identifying modules comprising only proximal brain regions. We expected coverage of connections 484 

both between proximal and between distant brain regions due to the large cohort of subjects we used 485 

(N = 67), with recordings from 17 ± 3 (mean ± SD) SEEG shafts from each subject. To assess the 486 

coverage with respect to distance, we 1.) determined the percentage of connections sampled by at 487 

least one SEEG contact-pair, for four distance categories: very short (< 30 mm), short (30–60 mm), 488 

medium (60–90 mm) and long (> 90 mm), for both left and right hemispheres, and 2.) determined the 489 

percentage of connections sampled by at least one SEEG contact-pair between regions in every 490 

pairwise combination of the following functional subdivisions: frontal, parietal, temporal, occipital, 491 

limbic and insula. We found that our SEEG recordings sampled inter-regional connections at all 492 

distance categories, for both hemispheres (Supplementary material, Figure S1A). Short-distance 493 

connections were sampled most densely, with 87% for left hemisphere and 92% for right hemisphere, 494 

but we also sampled 25% of long-distance connections for left hemisphere and 47% of long-distance 495 

connections for right hemisphere. Crucially, we found the SEEG recordings allowed dense sampling 496 

of inter-regional connections between standard functional subdivisions, i.e. frontal, parietal, 497 

temporal, occipital, limbic and insular cortices (Supplementary material, Figure S1B): between 48% 498 

and 100% of connections between regions in pairs of functional subdivisions were sampled for left 499 

hemisphere, and between 55% and 100% of connections were sampled for right hemisphere. Hence, 500 

the SEEG recordings allowed sampling intra-hemispheric connections both between proximal and 501 

between distant brain regions, including between regions in different functional subdivisions. 502 

We identified modules on thresholded connectomes, wherein we retained the strengths of the top 20 503 

percentile strongest connections, setting all others to 0. To check the sampling statistics, we 504 

investigated the relationship between the percentage of supra-threshold connections and connection 505 

distance. We found that the percentage of supra-threshold connections was higher for short-distance 506 

than long-distance connections . However, we did find several connections between spatially distant 507 

brain regions, including between regions in different functional subdivisions, i.e. frontal, parietal, 508 
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temporal, occipital, limbic and insular cortices (Supplementary material, see Supplementary Text and 509 

Figure S2 for details).  510 

3.2 Connectomes of phase-synchronization are characterized by distinct and stable 511 

modules at multiple spatial scales 512 

We combined Louvain community detection with consensus clustering to identify modules in 513 

connectomes of phase-synchronization. The presence of distinct and stable modules would suggest 514 

that these modules operate as functional systems within the connectome. Hence, we determined the 515 

distinctness and stability of the identified modules. We performed this investigation at multiple 516 

spatial scales in order to avoid missing modules due to the resolution limit imposed by identifying 517 

modules at a single spatial scale (Sporns & Betzel (2016)). We used Louvain community detection 518 

with a range of the γ parameter from 0.8 to 5 to identify modules at multiple spatial scales. The 519 

numbers of modules varied from 1 to 18 across the range of spatial scales and filter center 520 

frequencies (Figure 3A). We used permutation-based methods to assess the distinctness and 521 

stability of the identified modules. To assess stability of the identified modules, we determined if 522 

the percentage of brain regions consistently assigned to the same module across bootstrapped 523 

versions (N = 100) of the original connectome, was more than would be expected by chance. To 524 

assess distinctness of the identified modules, we assessed if modularity of the original connectome 525 

was higher than modularity of randomized versions of the original connectome (N = 100). 526 

Modularity is high when the connectome divides into internally dense modules. We observed that 527 

across a wide range of spatial scales and frequencies, 12.2–100% cortical regions had stable module 528 

assignments, yielding statistically significant percentages of stable regions at multiple spatial scales 529 

(p < 0.05, FDR-corrected, permutation test) (Figure 3B). Further, the connectomes had statistically 530 

significantly distinct modular organization (p < 0.05, FDR-corrected, permutation test) at multiple 531 

spatial scales throughout the studied frequency range (Figure 3C). Connectomes in beta frequency 532 

band (14-20 Hz) exhibited the widest range of spatial scales for which modules were statistically 533 

significantly distinct. The distinctness and stability of the modules, across a range of spatial scales, 534 

suggests that modules of different sizes operate as functional systems within the connectome. 535 

We used bootstrapping (N = 100 connectomes resampled with replacement) to assess statistical 536 

significance of the percentage of brain regions with stable module assignments, and shuffling (N = 537 

100 shuffled connectomes) to assess statistical significance of modularity of the original 538 

connectomes. Since the outcome of permutation-based significance tests can be sensitive to the 539 

number of samples used, we evaluated the robustness of our results to the number of samples used to 540 
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assess statistical significance. To do this, we compared z-scores of the percentages of stable brain 541 

regions we obtained with the original 100 bootstrapped connectomes to the corresponding z-scores 542 

with 1000 bootstrapped connectomes. Similarly, we compared the z-scores of the modularity we 543 

obtained with the original 100 randomized connectomes to the corresponding z-scores with 1000 544 

randomized connectomes. In the original analysis, the z-scores were converted to p-values, from 545 

which we assessed statistical significance. We found that the z-scores of percentages of stable regions 546 

for 100 and 1000 bootstrapped connectomes were highly correlated (0.9 for left hemisphere and 0.96 547 

for right hemisphere). Similarly, the z-scores of modularity of the connectomes for 100 and 1000 548 

randomized connectomes were highly correlated (0.99 for both left and right hemispheres). These 549 

results demonstrate that the results of our permutation-based tests on statistical significance of the 550 

identified modules are robust to the number of samples used. 551 

For a given frequency, we illustrate modules on flattened projections of the cortical surface (Fischl 552 

et al. (1999)) (Figure 3D). We assigned colours to modules displayed on the flattened cortical surfaces 553 

using the following procedure: 1.) Collapsing the set of region x-y coordinates to a single hemisphere 554 

by first flipping all right-hemispheric coordinates about the y-axis and estimating the average of x-y 555 

coordinates of the left hemisphere and (flipped) right hemisphere, for each brain region. 2.) Centering 556 

the x-y coordinates by subtracting the mean x and y coordinates. 3.) For each brain region, estimating 557 

Euclidean distance from the (0,0) center, rescaled between 0.6 and 1, and estimating angle from the 558 

(0,0) center using the arctan function, rescaled between 0 and 1. 4.) Assigning the colour of each 559 

brain region by the Hue Saturation Luminance (HSV) scheme, setting hue as the rescaled angle, 560 

luminance as the rescaled distance, and saturation as 1. 5.) Assigning module colours using the HSV 561 

scheme, setting hue as the circular mean of angles of constituent regions, rescaled between 0 and 1, 562 

saturation as 1, and luminance as the mean of the rescaled distances from the region centers.  563 

At a representative frequency of 14 Hz, modules comprised superior-frontal, inferior-frontal, 564 

temporal, parietal and occipital regions at a coarse spatial scale (γ  = 1.8). The module of temporal 565 

regions split into modules of superior and inferior-temporal regions at finer spatial scales (γ = 2.6) 566 

(Figure 3E). 567 

 568 
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 569 

 

Figure 4. Modules in connectomes of phase-synchronization cluster into canonical frequency 

bands. Matrices of module similarity, between modules at every pair of frequencies, for left and right 

hemispheres. Statistically significant clustering common to both hemispheres, into three frequency 

bands (dashed red outline), i.e. 3–14 Hz, 20–113 Hz and 135–320 Hz and into six frequency bands 

(black outline), i.e. 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz, are shown. 

 

 

Figure 3. Connectomes of phase-synchronization reveal distinct and stable modules at multiple 

spatial scales.  A. Number of identified left and right hemisphere modules, for each combination of spatial 

scale and filter center frequency. B. Percentages of left and right hemisphere regions with stable module 

assignments, for each combination of spatial scale and filter center frequency. C. Modularity for left and 

right hemisphere, for each combination of spatial scale and filter center frequency. Values below statistical 

significance are gray.  D. Translation of colours for each brain region from an inflated to (top) flattened 

cortical surface (bottom). We performed the transformation from the inflated to flattened cortical surface 

using the tksurfer FreeSurfer command (Fischl et al. (1999)). E. Colour-coded modules for right 

hemisphere at 14 Hz on flattened cortical surface, at six spatial scales (γ = 1 to 5). We converted from 

HSV to RGB before plotting the modules. Regions with unstable module assignments are gray. Small 

black rectangles in panels A-C indicate γ values at which modules are visualised in panel E. 
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3.3 Modules in connectomes of phase-synchronization cluster into canonical frequency 570 

bands 571 

Neuronal activity from brain regions fall into distinct frequency bands, e.g. delta (1–4 Hz), theta (4–572 

8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–80 Hz), each with specific behavioural 573 

correlates (Buzsáki & Moset (2013), Zhou et al. (2021), Spitzer & Haegens (2017), Zielinski et al. 574 

(2019)). Statistical factor analysis on spectral values of EEG activity from brain regions yielded 575 

clusters of frequencies that largely corresponded to these canonical frequency bands (Lopes da Silva 576 

(2013)), but a data-driven clustering of modules at different frequencies has not been performed. We 577 

determined if the identified modules clustered into statistically distinct sets of frequencies. To do this, 578 

we first generated matrices of module similarity, between modules at every pair of frequencies, for 579 

left and right hemispheres separately. Then, we applied multi-slice community detection (Mucha et 580 

al. (2010)) to identify sets of frequencies for which modules were highly similar, for both left and 581 

right hemispheres (Figure 4). These module similarity matrices were weighted averages of matrices 582 

of module similarity at individual spatial scales, where the weights were specified by the number of 583 

frequencies for which the connectomes had statistically significant modular organisation at that 584 

spatial scale. We found multiple statistically significant (p < 0.05, FDR-corrected, permutation test, 585 

N = 100) groupings of between two and thirteen frequency bands. For further analysis, we used the 586 

 

Figure 4. Modules in connectomes of phase-synchronization cluster into canonical frequency 

bands. Matrices of module similarity, between modules at every pair of frequencies, for left and right 

hemispheres. Statistically significant clustering common to both hemispheres, into three frequency 

bands (dashed red outline), i.e. 3–14 Hz, 20–113 Hz and 135–320 Hz and into six frequency bands 

(black outline), i.e. 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz, are shown. 
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groupings into three frequency bands and six frequency bands, though we note that other equally 587 

valid groupings could be used. The statistically significant clustering into three frequency bands 588 

(γmultislice = 1.1, ω = 0.2–1) comprised sets of adjacent filter center frequencies, 3–14 Hz, 20–113 Hz 589 

and 135–320 Hz (Figure 4, dashed red line boxes). Similarly, the statistically significant clustering 590 

into six frequency bands (γmultislice = 1.25, ω = 0.2–1) comprised sets of adjacent filter center 591 

frequencies, 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz (Figure 4, solid 592 

black line boxes). Notably, we found an identical clustering into six frequency bands (Supplementary 593 

material, Figure S3, solid black line boxes) when we applied equal (unit) weights to the matrices of 594 

module similarity at all spatial scales, and the clustering into three frequency bands was also highly 595 

similar (3–10 Hz, 14–80 Hz, 113–320 Hz) (Supplementary material, Figure S3, dashed red line 596 

boxes). The clustering into six sets of frequencies yielded frequency bands that are close to canonical 597 

frequency bands observed in prior literature, i.e., delta (3–4 Hz), theta/alpha (5–10 Hz), beta (14–20 598 

Hz), low gamma (28–57 Hz), high gamma (80–113 Hz) and high-frequency oscillations (135–320 599 

Hz) respectively (Lopes da Silva (2013), Arnulfo et al. (2020)). Thus, the identified modules cluster 600 

into statistically distinct sets of frequencies, which map to canonical frequency bands. 601 

3.4 Modules in connectomes of phase-synchronization comprise anatomically 602 

contiguous regions 603 

Module-like structures identified in resting-state fMRI, such as the default mode, fronto-parietal, 604 

ventral- and dorsal-attention systems include anatomically non-contiguous regions (Beckmann et al. 605 

(2005), van den Heuvel & Pol (2010)). We investigated if modules in connectomes of phase-606 

synchronization similarly comprised anatomically non-contiguous regions for the statistically 607 

significant grouping into three and six frequency bands, at different spatial scales (Figure 5). For the 608 

grouping into three frequency bands (3–14 Hz, 20–113 Hz and 135–320 Hz), we in fact found the 609 

modules comprised anatomically contiguous regions for the 3–14 Hz and 20–113 Hz frequency 610 

bands, where the modules respectively comprised frontal, temporal, and parietal regions at a coarse 611 

spatial scale (γ = 1). For example, for the 3–14 Hz frequency band, both the left-hemispheric (green) 612 

and right-hemispheric (green) modules comprising frontal regions included fronto-marginal gyrus 613 

and sulcus, middle frontal gyrus and sulcus, orbital and triangular parts of the inferior frontal gyrus. 614 

Similarly, both the left-hemispheric (red) and right-hemispheric (red) modules comprising temporal 615 

regions included the temporal pole, inferior temporal gyrus, middle temporal gyrus, superior temporal 616 

sulcus and inferior temporal sulcus. Both the left-hemispheric (light blue) and right-hemispheric (dark 617 

blue) modules comprising parietal regions included superior parietal gyrus, paracentral gyrus and 618 

sulcus, postcentral gyrus and sulcus, and precuneus. At finer spatial scales (γ = 2–4), these modules 619 
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split into smaller sets of regions, but the brain regions within a module remained anatomically 620 

contiguous. For example, the 20–113 Hz frequency band at γ = 2 yielded a left-hemispheric module 621 

(brown) including superior temporal regions such as transverse temporal sulcus, anterior transverse 622 

temporal gyrus and planum temporale of the superior temporal gyrus, as well as a module (reddish 623 

pink) including inferior temporal regions such as the inferior temporal gyrus, inferior temporal sulcus 624 

and temporal pole. In contrast to modules for the 3–14 Hz and 20–113 Hz frequency bands however, 625 

the modules in the 135–320 Hz frequency band included anatomically non-contiguous regions, across 626 

the range of visualised spatial scales (γ = 2–4) (Figure 5) (Arnulfo et al. (2020)). For example, the 627 

135–320 Hz frequency band at γ = 1 yielded a right-hemispheric module (orange) traversing temporal 628 

regions such as superior and inferior temporal sulci, parietal regions such as postcentral gyrus and 629 

supramarginal gyrus, and occipital regions such as anterior occipital sulcus and middle occipital 630 

gyrus. Similar to the modules of the three frequency bands, modules of the six frequency bands (3–4 631 

Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz) comprised anatomically contiguous 632 

regions up to 113 Hz, but the modules in the 135–320 Hz frequency band included anatomically non-633 

contiguous regions (Supplementary material, Figures S4–5). Hence, unlike with resting-state fMRI, 634 

modules in connectomes of phase-synchronization up to high-gamma frequencies comprised 635 

anatomically contiguous regions. 636 
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 637 

3.5 Modules in connectomes of phase-synchronization comprise functionally related 638 

regions 639 

 

Figure 5. Modules in connectomes of phase-synchronization up to high-gamma frequencies 

comprise anatomically contiguous regions. Flattened cortical surface representations of modules in 

connectomes of phase-synchronization for 3–14 Hz, 20–113 Hz and 135–320 Hz, at four spatial scales 

(γ = 1 to 4). Black lines on each flattened surface show outlines of consensus modules, i.e. sets of regions 

assigned to the same module across frequencies and spatial scales.  
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Module-like structures in fMRI functional connectomes, typically recognized as resting-state 640 

networks or functional brain systems, comprise regions that are concurrently active in tasks relating 641 

to specific sensory, motor, or cognitive domains, such as visual, sensorimotor, attentional, and 642 

executive control processing (Smith et al. (2009), Power et al. (2011)). Hence, we investigated if 643 

modules in connectomes of phase-synchronization also comprised regions that are concurrently 644 

active in tasks relating to specific cognitive domains. For this purpose, we used eight consensus 645 

modules that represented sets of regions assigned to the same module across frequencies and spatial 646 

scales. In the absence of a priori knowledge on the number of consensus modules, we set the number 647 

as eight to fall within the range of seven to ten reported for their putative fMRI counterparts 648 

(Beckmann et al. (2005), Damoiseaux et al. (2006), Yeo et al. (2011), Power et al. (2011)). The eight 649 

consensus modules comprised anatomically contiguous regions and respectively included regions in 650 

the superior-frontal (bright green), inferior-frontal (pale green), insula (olive), superior-temporal 651 

(brown), inferior-temporal (dark pink), parietal (light blue), lateral-occipital (dark purple), and 652 

medial-occipital (light purple) cortical areas (Figure 6A). Module colours reflect anatomical location 653 

of their constituent regions (see Section 3.2). The consensus modules predominantly resembled 654 

modules at the lower frequencies (14–40 Hz) and intermediate spatial scales (γ = 1.5–2.5) 655 

(Supplementary material, Figure S6). 656 

We first used the Neurosynth meta-analyses-based decoding tool (Yarkoni et al. (2011)) to find terms 657 

related to perception, cognition and behaviour, selectively associated with each brain region in the 658 

Destrieux brain atlas, where we identified each region by its centroid coordinates. These terms were 659 

both sensitively and specifically associated to fMRI activation in the corresponding brain regions, 660 

according to a large database of fMRI studies. We then identified terms selectively associated with 661 

each module by finding terms that occurred more frequently (p < 0.05, FDR-corrected, permutation 662 

test, N = 74) across the regions in a module, compared to equally sized surrogate modules of 663 

anatomically contiguous regions. This effectively tested the hypotheses that regions comprising a 664 

module serve shared functional roles, even after accounting for their anatomical proximity. 665 

The terms for the superior-frontal module were related to attention and executive function while the 666 

inferior-frontal module was associated with affective processing and social cognition (Figure 6A). 667 

The parietal module related to sensorimotor, sensory and motor processing, while the medial-668 

occipital and lateral-occipital modules were associated with basic and advanced visual processing 669 

respectively. The superior temporal module was related to language and auditory processing, while 670 

the inferior temporal module was related to memory function. Finally, the terms for the insula module 671 

were associated with somatosensory processing. The results suggest that, similarly to modules in 672 
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resting-state fMRI, the modules in connectomes of phase-synchronization comprised regions with 673 

shared functional roles in task-related processing. The putative functional roles of these modules, 674 

inferred from their sets of terms, were in good agreement with overarching functions of their 675 

constituent regions (Gazzaniga et al. (2009)).  676 

Figure 6. Modules in connectomes of phase-synchronization comprise functionally related 

regions. A. Terms and putative functional roles specific to each of the eight consensus modules 

displayed in center. Sizes of words are proportional to their frequency of occurrence. sF=superior 

Frontal, iF=inferior Frontal, Ins=Insula, sT=superior Temporal, iT=inferior Temporal, lO=lateral 

Occipital, mO=medial Occipital, P=Parietal. B. Percentages of terms specific to each module 

(row) assigned to each of eight cognitive functions (left) and percentages of all terms related to 

each module (row) assigned to the same cognitive functions (right). 
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We sought to further corroborate the functional specificity of modules, i.e., that they are specialised 677 

to support particular domains of cognitive functions. To verify this, we determined the percentage of 678 

selectively associated terms for each module that could be categorised under every module’s assigned 679 

functional role. We compared this against the percentage of all terms for each module, i.e., before 680 

FDR-thresholding, that could be categorised under every module’s assigned cognitive function. 681 

Functional specificity of modules would be reflected by high percentages of selectively associated 682 

terms for each module being assigned to their assigned cognitive function, but the set of all terms for 683 

each module being distributed across diverse cognitive functions. As expected, we found high 684 

percentages of selectively associated terms for each module were categorised within the cognitive 685 

function assigned to them (Figure 6B, left), but the set of all terms for each module were distributed 686 

across diverse cognitive functions (Figure 6B, right). These results further verify the functional 687 

specificity of the identified modules. 688 

3.6 Robustness of results to potential confounds 689 

The modules identified might be influenced by a number of potential confounds, for e.g. the 690 

community detection method used to identify modules. Hence, we investigated the robustness of the 691 

identified modules to several potential confounds. These tests revealed that the modules identified 692 

were robust to 1.) the specific sets of SEEG contact-pairs used to generate the group-level 693 

connectomes, 2.) the community detection method used to identify modules, 3.) the filter banks used 694 

to isolate neuronal activity from different frequencies, 4.) the criterion for the minimum number of 695 

SEEG contact-pairs required to estimate a group-level inter-regional connections 5.) the percentile 696 

values used to set the connectome threshold, and 6.) regional amplitude differences. Please see 697 

Supplementary Text and Figures S7–14 in Supplementary material for further details. 698 

4. Discussion 699 

Modules in the fMRI connectome comprise distinct sets of connected regions for sensory, motor and 700 

cognitive processing (Valencia et al. (2009), Benjaminsson et al. (2010), Yeo at al. (2011), Power et 701 

al. (2011), Lee et al. (2012)). In this study, we investigated whether connectomes of phase-702 

synchronization among meso- and macroscale assemblies of neuronal oscillations exhibit a modular 703 

architecture. We used intracerebral SEEG data from 67 subjects to generate connectomes of phase-704 

synchronization (Arnulfo et al. (2020)) which are negligibly affected by volume conduction (Arnulfo 705 

et al. (2015a)). We found that connectomes of phase-synchronization exhibited distinct and stable 706 

modules at multiple spatial scales at all studied frequencies. Furthermore, data-driven clustering 707 

showed that the modules were anatomically similar within canonical frequency bands, i.e., delta (3–708 
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4 Hz), theta/alpha (5–10 Hz), beta (14–20 Hz), gamma (28–57 Hz), high-gamma (80–113 Hz) and 709 

high frequency (135–320 Hz) bands. In contrast to the modules identified in fMRI, we found that 710 

modules up to high-gamma frequency band (80–113 Hz) comprised only anatomically contiguous 711 

regions. Importantly, modules comprised brain regions with significantly shared functional roles in 712 

e.g., attentional and executive function, language and memory.  713 

SEEG recordings can be used to identify modules in connectomes of phase-synchronization 714 

Despite the millimeter scale anatomical specificity and high signal-to-noise ratio (SNR) offered by 715 

intra-cranial EEG methods like Electrocorticography and SEEG (Parvizi & Kastner (2018)), their 716 

sparse spatial coverage and artefacts due to epileptogenic activity have militated against their use to 717 

identify modules in connectomes of phase-synchronization. Our results demonstrate the viability of 718 

combining SEEG recordings with state-of-the-art methods to identify modules in connectomes of 719 

phase-synchronization. We counteracted sparse SEEG coverage by pooling data from 67 subjects and 720 

addressed epileptogenic artefacts by removing SEEG contacts and data segments potentially 721 

containing epileptic artefactual activity. Further, we used automated procedures to overcome the 722 

problem of assigning SEEG contacts to brain regions and used closest-white-matter referencing to 723 

minimise volume conduction, to accurately estimate connectomes of phase-synchronization. Finally, 724 

we combined consensus clustering with community detection to identify modules in the connectomes 725 

despite the presence of missing connections. A recent MEG study (Zhigalov et al. (2017)) used a 726 

similar procedure with a smaller cohort (N = 27) to estimate the connectome of phase-727 

synchronization, but did not identify modules in these due to the high proportion of missing 728 

connections. A recent Electrocorticography (ECoG) study (Kucyi et al. (2018)) measured amplitude 729 

correlations between a number of brain regions, but lacked the spatial coverage to estimate the 730 

connectome or modules in the connectome. Hence, our study is the first to our knowledge to harness 731 

the high SNR and fine anatomical specificity of intra-cranial EEG to study the modular organization 732 

of the connectome of phase-synchronization. 733 

It should be mentioned that the yet incomplete coverage offered by SEEG combined with connectome 734 

thresholding, might result in missing modules comprising sets of distant (> 90 mm) brain regions. 735 

This should be considered when weighing the strengths and limitations of our approach. However, 736 

we do reiterate that our investigation of the coverage offered by our method revealed that neither the 737 

positions of the SEEG shafts nor thresholding the connectome, precluded identifying modules 738 

comprising distant brain regions, including brain regions in different functional subdivisions, i.e. 739 

frontal, parietal, temporal, occipital, limbic and insular cortices. Rather, we found a number of supra-740 
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threshold connections between regions in different functional subdivisions. In fact, modules 741 

identified at a coarse spatial scale for the 135–320 Hz frequency group, comprised distant brain 742 

regions encompassing parietal, temporal and occipital cortices. 743 

Since SEEG measures LFPs, it is limited in its anatomical specificity, in for e.g., reconstructing the 744 

detailed microscopic arrangement of transmembrane currents (Einevoll et al. (2013)). However, 745 

SEEG’s anatomical specificity at the level of neuronal populations, together with our closest white-746 

matter referencing scheme, enable accurately estimating inter-regional phase-synchronization and 747 

identifying modules in connectomes of phase-synchronization. Compared to MEG, SEEG provides 748 

higher spatial resolution due to the minimal influence of volume conduction on estimates of phase-749 

synchronization (Arnulfo et al. (2015a)). Further, SEEG does not have different sensitivities to gyral 750 

and sulcal sources, and source orientations, but MEG does (Baillet (2017)). 751 

SEEG reveals novel modules in connectomes of phase-synchronization  752 

Some of the distinct modules we identified with SEEG have not previously been observed with either 753 

fMRI or MEG. The relationship between fMRI connectivity to electrophysiology is multi-factorial, 754 

including contributions from both amplitude correlations and phase-synchronization, in multiple 755 

frequency bands (Shafiei et al. (2022)). Hence, we do not expect a one-to-one correspondence 756 

between the modules we identified in SEEG connectomes of phase-synchronization, and the modules 757 

reported with fMRI. We identified modules comprising superior frontal regions, inferior frontal 758 

regions, superior temporal regions, inferior temporal regions, parietal regions, insula, lateral occipital 759 

regions and medial occipital regions. Modules comprising occipital regions and temporal regions 760 

have been identified in resting-state fMRI (Benjaminsson et al. (2010), Yeo et al. (2011), Power et 761 

al. (2011)). However, we identified separate modules of medial occipital and lateral occipital regions 762 

compared to a single module of occipital regions reported in fMRI, and separate modules of superior 763 

temporal and inferior temporal regions compared to a single module of temporal regions reported in 764 

fMRI. Further, we identified separate modules of superior frontal and inferior frontal regions, rather 765 

than the module of fronto-parietal regions reported in fMRI. Finally, we identified a module of 766 

parietal regions, and a module of regions in the insula, both of which have not been previously 767 

reported in fMRI. Each of these SEEG modules comprised anatomically contiguous regions in 768 

contrast to, for e.g., attentional or default-mode brain systems identified with fMRI, which include 769 

regions distributed across frontal, parietal, and temporal cortices (Benjaminsson et al. (2010), Yeo et 770 

al. (2011), Power et al. (2011)). The only partial overlap in modules we identified with SEEG to those 771 

reported in fMRI is in agreement with the weak correspondence between fMRI connectomes to 772 
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electrophysiological connectomes of phase-synchronization estimated from MEG data (Shafiei et al. 773 

(2022)). Correspondence between fMRI and electrophysiological connectomes was highest in 774 

sensory and motor cortices rather than associative cortex (Shafiei et al. (2022)), much the same as the 775 

modules we identified with SEEG comprising sensory or motor regions, e.g., the module of superior 776 

temporal regions (auditory), corresponding to the module of temporal regions in fMRI data 777 

(auditory), but there being no such correspondence for modules comprising associative brain regions.  778 

Previous MEG studies have identified module-like structures representing sets of brain regions whose 779 

oscillation amplitude envelopes in specific frequency bands are correlated (Brookes et al. (2011), de 780 

Pasquale et al. (2010)). Notably, these studies have demonstrated a strong correspondence to modules 781 

identified in fMRI, such as a module of fronto-parietal regions (fronto-parietal control), a module of 782 

occipital brain regions (visual) and a module comprising regions in the default mode brain system 783 

(Brookes et al. (2011)). Correlation between oscillation amplitude envelopes of brain regions is 784 

known to be physiologically distinct to synchronization between oscillation phases (Engel et al. 785 

(2013)), and to also exhibit different patterns of inter-regional connectivity (Siems & Siegel (2020)). 786 

Hence, we did not expect a strong correspondence between the modules we identified, and previously 787 

reported module-like structures of regions whose oscillation amplitude envelopes were correlated. 788 

We observed a partial correspondence for a single module - while a previous study (Brookes et al. 789 

(2011)) reported a module comprising occipital regions, we reported separated modules for medial 790 

occipital regions and lateral occipital regions. However, we also reported modules comprising 791 

superior frontal regions, inferior frontal regions, superior temporal regions, inferior temporal regions, 792 

parietal regions and regions in the insula, which have not been previously reported in MEG studies 793 

identifying sets of regions whose oscillation amplitude envelopes are correlated.  794 

Results from two MEG studies (Zhigalov et al. (2017), Vidaurre et al. (2018)) investigating module-795 

like structures in connectomes of phase-synchronization, corroborate our identification of modules 796 

comprising anatomically contiguous regions up to high-gamma frequencies. Zhigalov et al. (2017) 797 

reported distinct modules comprising occipital regions, sensorimotor regions and frontal regions. 798 

Another recent MEG study (Vidaurre et al. (2018)) used Hidden-Markov modelling to identify 799 

spatially localised “functional states”, including those comprising predominantly occipital regions, 800 

sensorimotor regions and frontal regions. The “functional states”, were characterised by short-lived 801 

patterns of inter-regional coherence and hence, constituted module-like structures. However, in 802 

contrast to these MEG studies, we identified separate modules of superior frontal regions and inferior 803 

frontal regions and separate modules of medial occipital regions and lateral occipital regions, and we 804 

identified a module of parietal regions including both sensorimotor and posterior parietal regions 805 
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while both the MEG studies reported modules of only sensorimotor regions. The low-resolution 806 

parcellations used with MEG to avoid field spread, might distort modules identified at finer spatial 807 

scales. We also identified modules comprising superior temporal regions, inferior temporal regions 808 

and regions in the insula, that have not been reported before. These might be observed due to the 809 

sensitivity of interaction measures, e.g., Phase Locking Value, to near-zero-lag phase-810 

synchronization when used with SEEG. MEG field spread or EEG volume conduction produce high 811 

amounts of spurious phase-synchronization when measures such as Phase Locking Value are applied 812 

to MEG or EEG data. In contrast, the fine anatomical specificity of SEEG allows using measures 813 

sensitive to near-zero-lag phase-synchronization, which then reveal novel sets of regions functionally 814 

interacting during resting-state. 815 

Evidence from animal electrophysiology (Leopold et al. (2003)) as well as human SEEG recordings 816 

(Arnulfo et al. (2015a)) reveal that strength of phase-synchronization decreases with increasing inter-817 

site distance, which is consistent with the presence of modules comprising anatomically contiguous 818 

regions. We also observed modules at frequencies higher than 113 Hz to comprise spatially distant 819 

regions. These results are consistent with evidence from intra-cranial EEG recordings (Arnulfo et al. 820 

(2020), Vaz et al. (2019), Khodagholy et al. (2017)), demonstrating long-distance phase-821 

synchronization at frequencies exceeding 100 Hz. Phase-synchronization from 113–320 Hz is 822 

proposed to reflect broadcasting and transmission of information through High Frequency 823 

Oscillations (HFOs), which are generated in deep cortical layers (Arnulfo et al. (2020)). 824 

Modules at multiple spatial scales consistent with hierarchical organization 825 

Our study is the first to report modular organization at multiple spatial scales in connectomes of 826 

phase-synchronization. The module of frontal regions identified at a coarse spatial scale splits into 827 

modules of superior frontal regions and inferior frontal regions at a finer spatial scale. Similarly, the 828 

module of temporal regions identified at a coarse spatial scale splits into modules of superior temporal 829 

regions and inferior temporal regions at a finer spatial scale. This recursive occurrence of sub-830 

modules within modules is consistent with hierarchical modular organization, and has been observed 831 

in resting-state fMRI (Meunier et al. (2009)) but not with electrophysiological methods. However, a 832 

stricter assessment of hierarchical modular organization requires simultaneously identifying modules 833 

at multiple spatial scales. Separately identifying modules at multiple spatial scales, as in the current 834 

study, make it difficult to rigorously assess hierarchical modular organization due to the very high 835 

number of possible permutations when matching modules across spatial scales. 836 

 837 
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Functional specificity of identified modules suggests their behavioural relevance 838 

We used information from an independent database of fMRI studies to infer the functional role of 839 

each module. Regions in different modules had shared involvement in cognitive functions of attention 840 

and executive function, affective processing and social cognition, somatosensory processing, 841 

language and auditory processing, memory function, visual processing, advanced visual processing 842 

and sensorimotor processing respectively. The demonstrated functional specificity of these modules 843 

suggests that they operate as distinct brain systems. In line with proposed frameworks on brain 844 

function (Tononi et al. (1994), Tononi et al. (1998), Balduzzi & Tononi (2008), Lord et al. (2017), 845 

Shine et al. (2018)) strong connections within modules might support segregated information 846 

processing (Chan et al. (2014)), while weak connections between modules might support integrated 847 

information processing (Deco et al. (2015), Westphal et al. (2017)).  848 

We speculate that the identified modules impose a functional architecture of the connectome during 849 

resting-state, which is reorganized to meet task-related demands for segregation and integration. 850 

Recent frameworks propose that cognitive function is implemented by integration between modules 851 

present in the baseline period (Cole et al. (2014), Wig (2017)). Some fMRI studies have found 852 

evidence to support this, in the form of associations between cognitive performance and task-related 853 

functional reorganization of the brain to facilitate interaction between modules operating at baseline 854 

(Spadone et al. (2015), Shine et al. (2016), Cohen & D’Esposito (2016)). While many MEG/EEG 855 

studies have found task-related phase-synchronization in for e.g., studies of attention (Lobier et al. 856 

(2018)), somatosensory processing (Hirvonen et al. (2018)) and working memory (Kitzbichler et al. 857 

(2011)), there are no studies investigating task-related phase-synchronization as reorganization of 858 

the functional architecture imposed by modules during resting-state. Future studies could describe 859 

task-related phase-synchronization with reference to the natural framework provided by the 860 

identified modules in connectomes of phase-synchronization during resting-state, and related 861 

frameworks rooted in electrophysiology have been recently proposed (Sadaghiani et al. (2022)). 862 

Since the modules we identified were in resting-state, we emphasise that they naturally 863 

accommodate studies on task-related modulations of phase-synchronization, including those in 864 

which the distance between interacting regions is inversely related to the frequency of interaction. 865 

For example, Womelsdorf et al. (2006) reported task-related gamma-band of phase-synchronization 866 

between macaque visual areas, Salazar et al. (2012) reported task-related long-distance beta-band 867 

synchronization between macaque frontal and parietal regions and Gross et al. (2004) reported task-868 

related long-distance beta-band synchronization between human frontal, parietal and temporal brain 869 
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regions. As per the framework imposed by the modules we identified, the task-related short-870 

distance gamma-band synchronization (Womelsdorf et al. (2006)) might reflected segregated 871 

information processing via intra-modular connections while the studies reporting task-related long-872 

distance beta-band synchronization (Salazar et al. (2012), Gross et al. (2004)) might reflect 873 

integrated information processing via inter-modular connections. However, the framework also 874 

accommodates divergences from the principle of distance between brain regions being inversely 875 

related to the frequency of interaction. For example, Buschman et al. (2012) reported task-related 876 

short-distance alpha-band and beta-band synchronization between electrodes in macaque 877 

dorsolateral prefrontal cortex, Michalareas et al. (2016) reported task-related short-distance 878 

alpha/beta-band synchronization between visual areas in human MEG, and Melloni et al. (2007) 879 

reported task-related long-distance gamma-band synchronization in human EEG. In these cases, the 880 

task-related short-distance alpha/beta-band synchronization (Buschman et al. (2012), Michalareas et 881 

al. (2016)) might reflect segregated information processing via intra-modular connections while the 882 

task-related long-distance gamma-band synchronization (Melloni et al. (2007)) might reflect 883 

integrated information processing via inter-modular connections. Thus, the modules provide a 884 

natural framework to interpret results of studies on task-related phase-synchronization. 885 

Directions for future work 886 

We propose two particularly promising directions to build on this work. While we studied the 887 

anatomical composition of each of the modules, we did not investigate the relationships between 888 

modules. Studying the balance between intra-modular and inter-modular connections of brain 889 

regions within each of the modules might provide clues to the role of the module within the whole-890 

brain system (Guimerà & Amaral (2005)). For example, some modules might serve as “processing 891 

systems” while others might play the role of “control systems” (Power et al. (2011)). Another 892 

promising direction is to consider other means by which functional segregation might be 893 

implemented, in addition to segregation made possible by the modular structure defined by the 894 

connection strengths (Dotson et al. (2014)). In particular, the phase-lags of the synchronization 895 

between every pair of regions could be studied to determine if for e.g., phase-lags between regions 896 

within a module are lower than phase-lags between regions in different modules, thus reinforcing 897 

the segregation of information processing imposed by the modular organisation. 898 

5. Conclusion 899 

In this study, we combined resting-state SEEG recordings with state-of-the-art methods to 900 

accurately identify modules in connectomes of phase-synchronization. We found the modules to 901 
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predominantly comprise anatomically contiguous regions, unlike modules identified in resting-state 902 

fMRI. Importantly, each of the modules comprised regions with shared involvement in specific 903 

cognitive functions. Hence, these modules might represent distinct brain systems with particular 904 

roles in perceptual, cognitive and motor processing. 905 
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