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Abstract 35 

CRISPR-Cas are adaptive immune systems that protect their hosts against viruses 36 

and other parasitic mobile genetic elements. Consequently, selection from viruses 37 

and other genetic parasites is often assumed to drive the acquisition and 38 

maintenance of these immune systems in nature, but this remains untested. Here, 39 

we analyse the abundance of CRISPR arrays in natural environments using 40 

metagenomic datasets from 332 terrestrial, aquatic and host-associated ecosystems. 41 

For each metagenome we quantified viral abundance and levels of viral community 42 

diversity to test whether these variables can explain variation in CRISPR-Cas 43 

abundance across ecosystems. We find a strong positive correlation between 44 

CRISPR-Cas abundance and viral abundance. In addition, when controlling for 45 

differences in viral abundance, we found that the CRISPR-Cas systems are more 46 

abundant when viral diversity is low. We also found differences in relative CRISPR-47 

Cas abundance among environments, with environmental classification explaining 48 

~24% of variation in CRISPR-Cas abundance. However, the correlations with viral 49 

abundance and diversity are broadly consistent across diverse natural environments. 50 

These results indicate that viral abundance and diversity are major ecological factors 51 

that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems. 52 

 53 

Significance statement 54 

Numerous studies demonstrate that CRISPR-Cas immune systems can provide 55 

defence against bacteriophage and archaeal viruses, yet little is known about the 56 

ecological conditions where CRISPR-Cas immunity is favoured. Moreover, our 57 

knowledge is largely confined to laboratory studies and it is unknown if viruses are a 58 

key selective driver of CRISPR-Cas in nature. Using metagenomic data from diverse 59 

environments we find that both viral abundance and the abundance of CRISPR-Cas 60 

immune systems correlate positively across most environments. Furthermore, 61 

CRISPR-Cas systems are more prevalent when viral diversity is low. These results 62 

extend previous theoretical work by demonstrating that viruses are a key driver of 63 

selection of CRISPR-Cas immune systems across many natural ecosystems.  64 

 65 

 66 
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Introduction 69 

CRISPR-Cas is a sophisticated immune system of bacteria and archaea that is 70 

widespread across diverse prokaryotic taxa [1]. Anecdotal evidence suggests that 71 

CRISPR-Cas systems are unevenly distributed across environments and species. 72 

For example, culturable bacteria seem to have higher frequencies of CRISPR-Cas 73 

than non-culturable lineages [2], and extremophiles tend to have higher CRISPR-74 

Cas content and longer CRISPR arrays than mesophiles [3, 4]. Given that CRISPR-75 

Cas, like most defence system genes, are frequently lost and gained, this strongly 76 

suggests that CRISPR-Cas is advantageous under particular environmental 77 

conditions [5]. However, environmental parameters that determine the benefits of 78 

CRISPR-Cas remain unclear. In vitro studies suggest that the density of phages is a 79 

key fitness determinant of CRISPR-Cas immune systems [6], as high phage density 80 

favours the evolution of surface-based resistance over CRISPR-Cas. However, 81 

whether phage density explains the distribution of CRISPR-Cas in natural 82 

environments remains unexplored. Moreover, theory and laboratory experiments 83 

suggest that environments with genetically diverse phage populations may favour 84 

organisms with generalist defences over those containing the specific CRISPR-Cas 85 

system [7]. 86 

 87 

While these questions have been explored using theory and controlled laboratory-88 

based experiments, they are rarely assessed using environmental samples [8–11]. 89 

The increasing availability of metagenomic data from a range of environments now 90 

provides an opportunity to test these hypotheses. Here, we quantify CRISPR array 91 

abundance and diversity across metagenomic samples that span a range of 92 

terrestrial, aquatic and host-associated ecosystems. We combine these data with 93 

measures of viral abundance and diversity to test to what extent these variables 94 

explain the distribution of CRISPR-Cas systems in natural environments. Across 95 

different types of environments, we consistently find a positive correlation between 96 

CRISPR-Cas abundance and viral abundance and a negative correlation with viral 97 

diversity. Taken together, these results imply that CRISPR-Cas is most beneficial in 98 

environments with high viral abundance but low diversity and that these are 99 

important drivers of the prevalence of CRISPR-Cas immune systems in the 100 

environment. 101 

 102 
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Results 103 

Variation in CRISPR-Cas abundance is partially explained by viral abundance 104 

While it is well-established that CRISPR-Cas immune systems can protect bacteria 105 

and archaea against viral infections under in vitro laboratory conditions, it remains 106 

unclear how important these genetic parasites are as a selective force for the 107 

maintenance of CRISPR-Cas systems in nature [12]. To assess the role of viruses 108 

as a selective force for CRISPR-Cas, we first compiled a dataset of 332 109 

metagenomes and quantified the abundance of CRISPR-Cas systems and viruses in 110 

each sample. We note that our analyses uses all contigs classified as viral, and while 111 

the vast majority of these are of bacteriophage origin, we refer to these simply as 112 

viral for consistency (benchmarking analyses of our classifier vs. existing tools is 113 

available in the SI). These metagenomes vary in both CRISPR-Cas and viral 114 

abundance and therefore, provided a suitable dataset to test the hypothesis that viral 115 

abundance drives selection for CRISPR-Cas (Fig. 1). We found a positive correlation 116 

between viral abundance and the abundance of CRISPR-Cas systems (GLM, F1,295 117 

= 77.78, p < 0.0001, Fig. 1), with viral abundance explaining around 20% of the 118 

observed variation in CRISPR-Cas abundance (R2 = 0.209). We obtained 119 

qualitatively the same result when we included archaeal abundance in our model, 120 

which typically carry more CRISPR-Cas immune systems than bacteria [1]. These 121 

results strongly suggest that viruses are a fundamental selective force for the 122 

maintenance of CRISPR-Cas across diverse environmental conditions. 123 

 124 
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 125 

Figure 1. CRISPR abundance positively correlates with viral abundance. 126 
Correlation between relative viral abundance and the read count (per million) of metagenomic reads 127 
that mapped to CRISPR array repeats across all samples. The dashed line represents the linear 128 
model fit and shaded area represents 95% confidence interval (p-value < 0.0001 and R2 = 0.21). 129 
 130 
Environmental conditions influence CRISPR-Cas abundance 131 

In addition to viruses being a selective force for CRISPR-Cas, ecological factors may 132 

determine when CRISPR-Cas is beneficial and therefore, CRISPR-Cas abundance 133 

may vary across different natural environments [13]. We therefore grouped samples 134 

into ecologically meaningful categories, using the Earth Microbiome Project’s sample 135 

ontology (EMPO). This framework is structured to capture two major environmental 136 

axes on which bacterial community composition orient, namely host-association and 137 

salinity [14]. Level 1 of the ontology classifies samples as host-associated or free 138 

living, level 2 classifies samples as saline or non-saline, or animal or plant-139 

associated and level 3 describes microbial environments that can be grouped into 140 

levels 1 and 2 hierarchically (Fig. 2A [14]). These EMPO classifications highlighted 141 

the varied CRISPR-Cas and viral abundance in these different environments (Fig. 2 142 

and Fig. S2). Using this EMPO classification, we observed substantial variation in 143 
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CRISPR-Cas abundance, both within and between environment types (Fig. 2). For 144 

example, host-associated communities had a greater prevalence of CRISPR-Cas 145 

than free-living environments (GLM, F1,330 = 7.01, p = 0.008), although this 146 

classification only explained around 2% of the variation in CRISPR-Cas abundance. 147 

In contrast, more fine scaled classification of environments (such as gut, saline 148 

sediment etc. as per EMPO level 3 classification, Fig. 2C), explained 24% of the 149 

variation in CRISPR-Cas abundance. Taken together, these results suggest that in 150 

addition to viruses as a key selective force for the maintenance of CRISPR-Cas, 151 

there are substantial differences in CRISPR-Cas abundance among natural 152 

environments. 153 

 154 

 155 
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 157 
Figure 2. CRISPR abundance varies by environment. Distributions of metagenomic read counts 158 
that mapped to CRISPR arrays (read count per million that mapped to a CRISPR array predicted by 159 
CRISPRDetect v.3 from assembled contigs) grouped by environmental classification. (A) Sample 160 
sizes and ontology is shown in panel A. Samples are grouped using the Earth Microbiome Project 161 
Ontology (EMPO) at level 1 (B), 2 (C) or 3 (D).  162 
 163 
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Microbial community composition explains some variation in CRISPR-Cas 164 

abundance 165 

Although we found effects of viral abundance and environmental classification on 166 

CRISPR-Cas abundance, it is plausible that these effects may be driven by 167 

differences in the microbial community composition as CRISPR-Cas prevalence can 168 

differ among taxa [1, 2]. We examined whether the variation in CRISPR-Cas 169 

abundance across these metagenomes might be affected microbial community 170 

composition. We found a weak but significant relationship between CRISPR-Cas 171 

abundance and class-level community composition (PERMANOVA, F1, 313 =  12.4, p 172 

< 0.001, R2 = 0.04, permutations = 9999, distance metric = Bray-Curtis). We next 173 

used clustering analyses to assess how well the EMPO framework levels grouped 174 

our samples based on community composition and extracted the taxa that best 175 

described differences among samples (Fig. S3A). In addition, we fitted CRISPR-Cas 176 

abundance to this ordination to identify ‘hotspots’ of samples enriched with CRISPR-177 

Cas (Fig. S3B). With this approach, we identified multiple groups of samples with 178 

high CRISPR-Cas abundance, supporting the notion that microbial phylogeny alone 179 

only explains a limited amount of variation in CRISPR-Cas abundance. Additional 180 

factors may contribute to the differences in CRISPR-Cas abundance across 181 

environment types. Furthermore, high rates of horizontal gene transfer (HGT) across 182 

taxa, coupled with frequent gain or loss of CRISPR-Cas, will likely reduce 183 

phylogenetic signal.  184 

 185 

As an additional test of the influence of phylogenetic effects on our results, we 186 

assessed the impact of including archaeal abundance in our analyses. Archaea have 187 

previously been shown to be enriched for CRISPR-Cas systems [1]; therefore, 188 

inclusion of archaeal abundance in our model should control for this effect. When we 189 

repeated our analysis of the correlation between CRISPR-Cas abundance and viral 190 

abundance, this time including the abundance of archaea in each sample as a 191 

covariate, we found no qualitative difference in result. Taken with the community 192 

composition analysis, these results suggests that the influence of phylogeny on our 193 

results is relatively small compared to the effect of viral abundance on the 194 

prevalence of CRISPR-Cas immune systems within a microbiome.  195 

 196 
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CRISPR-Cas and viral abundance correlate across diverse environments 198 

To explore to what extent the observed variation in CRISPR-Cas abundance within 199 

and between environment types is driven by variation in viral abundance, we 200 

grouped the samples by EMPO classification and quantified viral abundance for 201 

each environment type. Similarly, to the distributions of CRISPR-Cas abundance, we 202 

found substantial variation in viral abundance across environment types (Fig. S2). 203 

The higher-level classifications, EMPO level 1 and 2, explained 30% and 31% of the 204 

variation observed respectively, and the finer scale EMPO level 3 explained 34% of 205 

this variation in viral abundance (GLM, F1,285 = 13.14, p < 0.0001, R2 = 0.34, Fig. 206 

S2C). The relatively minor difference between classification levels suggests that the 207 

primary predictive power comes from EMPO level 1, with host-associated samples 208 

having a greater density of viruses than free-living samples. Overall, we found that 209 

the type of environment significantly predicts the abundance of viruses present, but 210 

that fine scale classification adds little predictive power relative to high-level 211 

classification.  212 

 213 

Although we found a significant correlation between viral abundance and CRISPR-214 

Cas abundance, it remained unclear whether this relationship was consistent across 215 

environments. We therefore assessed whether the strength of this relationship was 216 

constant among each of our EMPO classification levels, which we modelled as an 217 

interaction in a multiple regression analysis. Strikingly, we found significant 218 

interaction effects at all EMPO levels, suggesting that the nature of the relationship 219 

between viral abundance and CRISPR-Cas abundance is, at least partly, dependent 220 

on additional environmental conditions (Table 1, Fig. 3). This was further validated 221 

by post-hoc testing of the correlation between CRISPR-Cas abundance and viral 222 

abundance at each individual environment type (Table S3). In this case we found a 223 

consistent positive relationship at EMPO levels 1 and 2, but more varied results at 224 

level 3 (Fig. 3), suggesting additional ecological factors may be playing a role in 225 

some environments. For example, when taking all EMPO level 3 classifications with 226 

more than 10 observations per group, non-saline sediments show a strong positive 227 

correlation between CRISPR-Cas abundance and viral abundance (adjusted p-value 228 

< 0.001, Pearson correlation = 0.71, n = 15). In contrast, non-saline water 229 

environmental samples show no significant correlation between CRISPR-Cas 230 

abundance and viral abundance (adjusted p-value =  1, Pearson correlation = -0.18, 231 
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n = 34). All correlations can be found in Table S4. Taken together, these results 232 

indicate that viral abundance typically correlates positively with CRISPR-Cas 233 

abundance, but that the strength of this relationship is dependent on the particular 234 

environment. 235 

 236 
Table 1. Interaction effects between virus abundance and CRISPR across environments. Linear 237 
models used to test the relationship between CRISPR abundance (DR count) and viral abundance at 238 
each EMPO classification level.  239 

Resid. Df Resid. 
Dev 

df Devianc
e 

F-value P-value AIC R2 Model formula 

294 15.345 -1 -0.288 5.595 0.019 -32.758 0.224 glm(log10(DR_count) ~ 

log10(viral_abund) * 

EMPO_level1 

293 15.308 -2 -0.789 7.908 <0.001 -39.572 0.252 glm(log10(DR_count) ~ 
log10(viral_abund) * 

EMPO_level2 

284 12.074 -9 -1.086 3.02 0.002 -90.349 0.434 glm(log10(DR_count) ~ 

log10(viral_abund) * 

EMPO_level3 

 240 

 241 

 242 

 243 

 244 
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Figure 3.  CRISPR abundance positively correlates with viral abundance across environments. 245 
Correlations between relative viral abundance and the read count (per million) of metagenomic reads 246 
that mapped to CRISPR array repeats per environment type. Environments are categorised according 247 
to the Earth Microbiome Project Ontology at level 1 (A) or 2 (B). Samples grouped at EMPO level 3 248 
(C) are divided into significant correlations or non-significant correlations (NS). Dashed lines 249 
represent linear model fits and shaded areas represent 95% confidence intervals. (D) The number of 250 
samples collected in each country with the circle representing samples collected in the Pacific Ocean. 251 
 252 
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Virus diversity negatively correlates with CRISPR-Cas abundance 253 

Both theory and in vitro experiments predict that low viral genetic diversity is also an 254 

important determinant of the benefits of a CRISPR-Cas immunity [7–9, 11]. This 255 

theory suggests that excess viral sequence diversity prevents the acquisition of 256 

sufficient spacer diversity to protect against the many different viruses. To test this 257 

prediction, we quantified viral diversity for each environment type and examined if 258 

this correlated with CRISPR-Cas abundance. However, this analysis may be 259 

confounded by correlations between viral diversity and viral abundance. Indeed, in 260 

our dataset viral diversity was strongly correlated with viral abundance (GLM, F1,295 = 261 

208.6, p < 0.0001, R2 = 0.41, Fig. S4). We therefore normalized the viral diversity 262 

scores by viral abundance for each sample. We then tested the correlation between 263 

CRISPR-Cas abundance and normalized viral diversity. In agreement with theory, 264 

we found a negative correlation between CRISPR-Cas abundance and normalized 265 

viral diversity for all viral diversity metrics used (Fig. 4, Table 2). The metrics used 266 

spanned multiple levels, with richness, evenness and Shannon’s index describing 267 

inter-population diversity. By contrast, Nei’s diversity metric describes the intra-268 

population genetic variation. Together these results suggest that CRISPR-Cas is 269 

most effective when viral diversity is low, which supports that CRISPR-Cas immunity 270 

relies on sequence identity between spacer sequences and the viral protospacer 271 

sequence and array sizes are finite. 272 

 273 
Table 2. Associations between normalized viral diversity metrics and CRISPR abundance. 274 
Results from F-tests using linear models with Bonferroni adjusted p-values for the number of metrics 275 
tested (n = 4). 276 

metric F_value P_value Adjusted_p_value 

shannon 82.954 <0.001 <0.001 

richness 51.899 <0.001 <0.001 

evenness 82.091 <0.001 <0.001 

nei 65.859 <0.001 <0.001 

 277 

 278 

 279 
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 280 
Figure 4. CRISPR abundance negatively correlates with normalised viral diversity metrics. 281 
Correlations between viral diversity (normalized by viral load per sample) and CRISPR abundance 282 
(reads per million that map to CRISPR arrays). Panels represent Nei’s diversity index (A), Shannon’s 283 
index (B), contig richness (C), contig evenness (D). Panel A represents intra-contig viral diversity 284 
while panels B, C and D represent inter-contig viral diversity. 285 
 286 
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Discussion 299 

Despite recent studies suggesting that CRISPR-Cas abundance varies across 300 

natural environments, such as soil [15] and the human microbiome [16], the 301 

ecological factors that drive variation in CRISPR-Cas prevalence across natural 302 

microbial communities remained unclear [12]. Furthermore, the extent of this 303 

variation across a much wider range of environments remained unexplored. We 304 

addressed this gap by using metagenomic data to quantify CRISPR array 305 

abundance within each metagenome and linked these data to the associated viral 306 

community present. We identified two key factors that predict CRISPR-Cas 307 

abundance: viral abundance and viral diversity. These factors are likely of primary 308 

importance as the observed correlations are consistent across a broad range of 309 

environments. Taken together, our results show that high viral abundance and low 310 

diversity are major drivers of the selection and maintenance CRISPR-Cas systems in 311 

nature. 312 

 313 

There are likely factors in addition to viral abundance and diversity that contribute to 314 

CRISPR-Cas abundance in the environment because the correlations had relatively 315 

low R2 values (20% for abundance and 22% for normalized diversity). For example, 316 

many alternative phage defence systems have been described and, much like 317 

CRISPR-Cas, show scattered distributions even in closely related bacterial strains 318 

[17]. The interplay and redundancy between different phage defence systems is 319 

poorly characterised and may also contribute to CRISPR-Cas distributions in 320 

different environments. Understanding the environmental parameters that different 321 

defences will be crucial future research. For example, we see greater CRISPR-Cas 322 

abundance in host-associated samples over free-living samples, but it is unknown if 323 

alternative defence mechanisms are favoured in these free-living samples, or if there 324 

are fewer defences overall.   325 

 326 

Regarding CRISPR-Cas, multiple environmental parameters have been predicted to 327 

interact negatively with these systems. For example, aerobicity showed a negative 328 

association with CRISPR-Cas prevalence during a modelling analysis of bacterial 329 

traits [13], possibly due to an incompatibility between the requirement for non-330 

homologous end join repair (NHEJ) in aerobic respiration and type II CRISPR-Cas 331 

sytems [18]. More generally, intracellular defences may be favoured over surface 332 
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receptor modifications under certain environmental conditions, as these have been 333 

shown to be subject to trade-offs with both biotic and abiotic factors [19–21]. In 334 

addition, recent work has demonstrated that regulation of phage defences, including 335 

CRISPR-Cas, is mediated by environmental conditions [22]. We also cannot exclude 336 

the role of plasmids in our analyses, as a recent longitudinal study found plasmids 337 

were targeted by CRISPR-Cas systems at 5-times the rate of phages [23]. Overall, 338 

our results demonstrate that phage-mediated selection is a major driver of CRISPR-339 

Cas prevalence, but additional biotic and abiotic complexity likely shape the strength 340 

of this relationship. 341 

 342 

Previous theoretical models predicted that CRISPR-Cas will be less favourable in 343 

dense and diverse viral communities [8, 9]. Above a threshold of phage genetic 344 

diversity CRISPR-Cas becomes ineffective and is lost due an associated fitness cost 345 

and this threshold is reached more often in large viral populations [8]. While these 346 

predictions are intuitive, our results suggest that while low viral diversity does indeed 347 

favour CRISPR-Cas, low viral density does not. It is possible that viral abundance 348 

rarely reaches levels in nature that are sufficient to preclude an effective CRISPR-349 

Cas response, even if such densities are readily achievable in laboratory 350 

experiments [10, 12]. Future work may reveal the ecological differences between 351 

CRISPR-Cas types, as different types are likely to coevolve with viruses in 352 

fundamentally different ways [24].    353 

 354 

Genomic evidence demonstrate that CRISPR-Cas systems are frequently acquired 355 

and lost [25, 26] and empirical studies that show that they can be mobilized through 356 

HGT [27, 28]. Notably, in a previous longitudinal study, CRISPR-Cas abundance 357 

increased through time even in phyla decreasing in abundance under soil warming 358 

conditions [15], again suggesting high mobility and positive selection for CRISPR-359 

Cas immunity. Consistent with high rates of HGT of CRISPR-Cas, our results 360 

demonstrate that while phylogeny can influence the CRISPR-Cas repertoire, it is not 361 

the primary driver of selection in nature. 362 

 363 

In summary, by quantifying the role of the viral community in shaping CRISPR-Cas 364 

abundance in complex, diverse natural communities we found that high viral 365 

abundance, but low diversity, drives the selection and maintenance of CRISPR-Cas 366 
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across a range of environments. Future work that embraces both the abiotic and 367 

biotic complexity of natural systems is required to further understand the prevalence 368 

of CRISPR-Cas. 369 

 370 

Methods 371 

Computational pipeline 372 

An overview of the computational pipeline is provided in Figure S1. 373 

 374 

Collection of samples and assembly 375 

Paired-end metagenomic libraries (sequenced with Illumina platform) were 376 

downloaded from the NCBI SRA database (Table S1). Libraries were processed with 377 

BBMap suite of tools for error correction [12] and for each metagenomic library a 378 

representative FASTA file was created by combining both the merged and unmerged 379 

reads. A total of 332 libraries (each library containing at least 1 million reads with a 380 

minimum length of 100 nucleotides (nt) and insert size >=150) were selected to 381 

represent a wide range of biome diversity (table S1). Libraries were assembled using 382 

MegaHit (version 1.1.3) [13] with default parameters and contigs with minimum 383 

length 200nt were retained. Contigs were classified as archaea, bacteria or virus 384 

using a purpose-built classification tool: MIUMS (Microbial Identification Using 385 

Marker Sequence, https://github.com/ambarishbiswas/miums_v1.0). MIUMS is 386 

designed to classify contigs based on a reference database containing protein 387 

sequence fragments highly specific to bacteria, archaea, viruses. Full details of 388 

MIUMS reference database construction and prediction process are given in the 389 

supplementary information. Each metagenome was then subsampled to 1 million 390 

randomly selected reads with a minimum length of 100 nt. 391 

 392 

Generation of archaeal and bacterial abundance tables  393 

Subsampled reads were screened using metaxa2 [14] (GSU parameters: -g ssu -f f, 394 

LSU parameters: -g lsu -f f) to generate a table of bacterial and archaeal 395 

abundances. Both the LSU and SSU based methods were used. A reference 396 

sequence database was made from contigs classified as viral by MIUMS. 397 

Subsampled reads were then mapped to the assembled contigs using Magic-BLAST 398 

[15] (parameters: -no_unaligned -no_query_id_trim -perc_identity 95 -outfmt tabular). 399 

Reads with a minimum of 95% sequence identity and coverage were used. 400 
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CRISPR array identification 401 

Accurately identifying CRISPR arrays in metagenomic data is challenging for a 402 

number of reasons. Firstly, a large proportion of the direct repeats (DRs) identified 403 

from metagenomic contigs often show little sequence similarity to the CRISPR 404 

repeats found in published genomes and lack an isolated representative [2]. 405 

Secondly, CRISPR arrays found in metagenomic reads are generally short (i.e. < 3 406 

DRs) and often missing one or both flanking regions. To overcome these issues we 407 

combined information on existing, published genomes and their CRISPR arrays as 408 

well de novo extraction of putative CRISPR arrays from our assembled contigs (Fig. 409 

S1). A database of metagenomic CRISPR arrays was first constructed by processing 410 

all assembled contigs with CRISPRDetect version 3 (CRISPRDetect3, 411 

https://github.com/ambarishbiswas/CRISPRDetect_3.0). CRISPRDetect version 3 412 

was also modified to allow prediction of shorter CRISPRs (e.g. partial/broken 413 

CRISPRs with as little as 1.5 repeats). A higher CRISPR likelihood score cut-off of 414 

4.5 was used instead of the default score cut-off of 3 to reduce potential non-415 

CRISPR arrays. CRISPRDetect [16] uses several CRISPR elements (e.g. repeats, 416 

spacers, cas genes, AT composition of flanking regions etc.) from published 417 

genomes to identify and separate true CRISPRs from other genomic repeats. In this 418 

study, a modified version of the CRISPRDetect tool was used, which uses a 419 

reference repeat database created using the cluster representative DRs from the 420 

metagenomic contigs as well as DRs found in published genomes. Predicted 421 

CRISPR arrays were checked to ensure that the total array degeneracy (i.e. number 422 

of insertion, deletion, mutation or presence of Ns in the array) was less than the total 423 

number of DRs in the array,  which resulted in 51395 CRISPR arrays. Direct repeat 424 

sequences (23 to 60 nt) were extracted and clustered with cd-hit-est (parameters: -n 425 

3 -c 0.90 -aL 0.90 -aS 0.90) [17], which resulted in 33745 repeat clusters. A vast 426 

majority of these clusters (i.e. 22808) consisted of a single DR. This low level of 427 

redundancy was important to ensure the successful subsequent mapping of reads to 428 

DRs. 429 

 430 

Subsampled reads were then screened against this database using 431 

metaCRISPRDetect (https://github.com/ambarishbiswas/metaCRISPRDetect_1.0), 432 

which supports rapid identification of CRISPR arrays in short reads using user-433 

provided reference repeat database  as an extension of CRISPRDetect [16]. Arrays 434 
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with a likelihood score > 3 were added to the existing CRISPR reference database. 435 

Subsampled reads were then mapped to the reference database using blastn [18] 436 

[parameters: -task blastn-short with default parameters]. Abundance tables were 437 

generated for all spacers and direct repeat sequences by tallying the number of 438 

reads that mapped to a given DR with 100% sequence identity and coverage. 439 

 440 

Identifying potential false positive CRISPRs 441 

CRISPRs predicted from metagenomes are generally short, often incomplete and 442 

missing flanking regions which makes it hard to distinguish true CRISPRs from other 443 

genomic repeats. To measure how many of our identified arrays occurred in known 444 

prokaryotic genomes we compared the metagenomic CRISPR repeats against 445 

CRISPRs found in RefSeq and GenBank prokaryotic sequences (sequences 446 

published before September 9, 2019) using NCBI blast (parameters: -task blastn -447 

word_size 11 -dust no -culling_limit 1 -num_alignments 1) [19]. Metagenomic DRs 448 

with >=90% identity and >=90% sequence coverage against RefSeq or GenBank 449 

DRs were considered as a positive match. Out of the 7562 repeat clusters 1649 450 

were found in CRISPRs predicted from RefSeq or GenBank prokaryotic sequences. 451 

Similarly, the metagenomic repeats were screened against an in silico generated set 452 

of eukaryotic reads from 6 eukaryotic reference genomes (Table S2). Ten thousand 453 

250bp paired reads were generated from each reference genome using WGSIM 454 

(https://github.com/lh3/wgsim). Eukaryotic reads were subsampled to an equal depth 455 

to remove differences due to genome size. Out of the 7562 DR clusters a total of 168 456 

repeat clusters were found in the eukaryotic reads suggesting a high level of 457 

eukaryotic sequence contamination may increase the false positive rate of our 458 

analysis. We therefore removed samples where > 10% of reads were classified as of 459 

eukaryotic origin. 460 

 461 

Virome analysis 462 

To assess the diversity of viruses in the different environments, we analysed all 463 

MIUMS classified contigs from the 332 metagenomes. Across all datasets, we 464 

identified 2583 archaeal prophages, 375179 bacterial prophages, 1218279 465 

bacteriophages, and 174792 archaeal viruses. Per metagenome, the sub-sampled 466 

reads used for the CRISPR quantification analysis were mapped to the total set of all 467 

viral contigs with bwa mem [20]. To quantify the genetic diversity of the viral 468 
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community, we calculated the richness as the total number of detected viral contigs, 469 

plus the evenness and Shannon’s diversity index based on relative abundances 470 

calculated from the mean depth of coverage of all detected viral contigs. The intra-471 

population diversity (micro-diversity) was calculated as the mean heterozygosity of 472 

viruses in the community by averaging Nei’s per-nucleotide diversity index across all 473 

detected contigs [21].  474 

 475 

𝑁𝑒𝑖 =
1

𝐿 ∗ 𝑁((1 −	( 	𝑝!"
#

!$%

&

'$%

) 476 

 477 

where pj is the frequency of allele j at the position i of a contig of the length L, N is 478 

the number of viruses in a dataset. Single nucleotide variability was assessed with 479 

VarScan software [22]. 480 

 481 

Viral abundance was calculated by first collecting the average depth values for all 482 

viral contigs in each sample using the ‘jgi_summarize_bam_contig_depths’ script 483 

from the Metabat package [23]. These depth scores were then summed per sample 484 

to give an approximation of overall viral abundance relative to bacterial abundance.  485 

 486 

Statistical analysis 487 

For each sample, the number of reads that mapped to a direct repeat were counted 488 

to give a measure of CRISPR array abundance per sample. Earth Microbiome 489 

Project Ontology levels were assigned using the framework previously described 490 

[24](Fig 1D) based on the associated metadata from the NCBI short read archive 491 

(SRA). In the case of bioreactor samples, a literature search was conducted to 492 

identify the original material described in the associated study (see Table S1).  493 

 494 

General linear models (GLM) were constructed for each of the reported correlations. 495 

In each case log10 transformations were applied to conform to model assumptions. 496 

Checks of model residuals were performed to assess model fit. Significance was 497 

determined using F-tests between null models and those containing the variable or 498 

interaction of interest.  499 

 500 
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Microbial community assessment 501 

CRISPR is more common in archaea. Therefore, in order to minimise any 502 

phylogenetic effects deriving from high archaeal abundances in samples we 503 

estimated the number of archaeal reads in the subsampled reads using metaxa2 [14] 504 

and converted this to relative abundance per sample. We then included this value as 505 

a fixed effect in additional GLMs to check the influence of archaeal abundance on 506 

our results. For additional phylogenetic assessments, reads classified as non-507 

prokaryotic were removed and relative abundances were generated using the output 508 

from metaxa2 in order to assess effects of community composition. Permutational 509 

ANOVAs were performed on species abundance matrices using Bray-Curtis 510 

dissimilarity and CRISPR abundance as explanatory variable with 9999 511 

permutations, using the function ‘adonis’ from ‘vegan’ package [25]. Visualisation of 512 

clustering analyses, at the class level, was performed using non-metric 513 

multidimensional scaling (NMDS) with Bray-Curtis dissimilarity through the 514 

‘metaMDS’ function in ‘vegan’ [25]. Smooth surfaces were fit to these points via a 515 

generalized additive model (GAM), using either CRISPR abundance as the 516 

explanatory term, with the ‘ordisurf’ function in ‘vegan’[25]. 517 
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Supplementary Information 732 

Supplementary Figures 733 

 734 

 735 

Figure S1. Overview of computational pipeline. Overview of the computational 736 

pipeline used to generate CRISPR abundance tables, microbial and viral community 737 

abundance tables. In each stage, only the case (yes/no) where data is retained is 738 

presented. 739 

 740 
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 741 

Figure S2. Viral abundance varies by environment. Distributions of viral 742 

abundances (sum of viral contig coverage depth per sample) across EMPO level 1 743 

categories (A), level 2 categories (B) and level 3 categories (C). Points represent 744 

metagenomic samples. 745 
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 746 

 747 

 748 

 749 

Figure S3. Phylogenetic ordinations of sample community composition. 750 

Ordinations of sample community compositions at the Class level. Points represent 751 

individual metagenomic samples and are clustered using non-metric 752 

multidimensional scaling (NMDS) on Bray-Curtis dissimilarity scores. (A) Colors 753 

represent the sample classification at EMPO level 2 and arrows represent the top 10 754 

species loadings. (B) The same ordination of samples with CRISPR abundance used 755 

in a generalized additive model (GAM) to fit a surface predicting CRISPR 756 

abundance. 757 
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 760 

Figure S4. Viral abundance correlates with viral diversity. Correlation between 761 

the number of viral contigs per sample and viral abundance (sum of viral contig 762 

coverage depth per sample). Line represents linear model fit, shaded areas denote 763 

95% confidence intervals and R2 = 0.51. 764 
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Supplementary Tables 775 

 776 

Table S1. Biome and accession numbers of each metagenome sample 777 

table_S1_accesions_meta.csv 778 

 779 

Table S2. Eukaryotic genome list used for testing false positive rate. 780 

 781 

Species Genbank accession 

Triticum aestivum GCA_900519105.1 

Drosophila melanogaster GCA_000001215.4 

Arabidopsis thaliana GCA_000001735.1 

Physcomitrella patens GCA_000002425.2 

Caenorhabdtitis elegans GCA_000002985.3 

Heliconius melpomene GCA_000313835.1 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 
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Table S3. Post-hoc testing of correlations between CRISPR abundance and 800 

viral abundance at each environmental classification. Linear regression of 801 

CRISPR abundance with viral abundance for each environmental classification. P-802 

values were adjusted using Benjamini-Hochberg correction. NA results are shown for 803 

categories with < 3 observations.  804 

EMPO category Estimate Std. 
Error 

t-
value 

P-
value 

EMPO 
level 

adjusted-
p-value 

significance 

free_living 0.167 0.034 4.871 <0.001 1 <0.001 *** 

host_associated 0.305 0.047 6.489 <0.001 1 <0.001 *** 

animal 0.305 0.047 6.489 <0.001 2 <0.001 *** 

non_saline 0.392 0.068 5.803 <0.001 2 <0.001 *** 

saline 0.118 0.039 3.061 0.003 2 0.008 ** 

animal_secretion 2.66 NA NA NaN 3 NaN NA 

animal_surface 0 0.183 0.001 0.999 3 1  

distal_gut 0.328 0.04 8.124 <0.001 3 <0.001 *** 

hypersaline 1.142 0.565 2.022 0.292 3 0.414  

proximal_gut 3.086 NA NA NaN 3 NaN NA 

sediment_nonsaline -0.059 0.115 -

0.513 

0.619 3 0.81  

sediment_saline 0.241 0.127 1.891 0.155 3 0.264  

surface_nonsaline -0.534 0.162 -

3.302 

0.187 3 0.289  

surface_saline -0.338 0.102 -3.31 0.004 3 0.009 ** 

water_nonsaline -0.063 0.156 -

0.403 

0.695 3 0.844  

water_saline 0.114 0.038 2.97 0.004 3 0.01 ** 

 805 

 806 

 807 

 808 

 809 

 810 
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Table S4. Pearson correlations of CRISPR abundance and viral abundance at 811 

each environmental classification. 812 

 813 

environment EMPO 
level 

estimate p.value adjusted.p.value 

host 
associated 

1 0.318669937 1.62941E-05 0.000179235 

free living 1 0.225345517 0.007648844 0.084137289 

animal 2 0.318669937 1.62941E-05 0.000179235 

saline 2 0.279115129 0.00588914 0.064780536 

non saline 2 0.300602925 0.050152056 0.551672619 

distal gut 3 0.355793262 2.37403E-06 2.61143E-05 

sediment 
nonsaline 

3 0.705624736 0.003291221 0.036203435 

water saline 3 0.319818959 0.006956952 0.07652647 

surface 
saline 

3 -0.42738303 0.127443734 1 

water 
nonsaline 

3 -

0.180788442 

0.487439096 1 

animal 
surface 

3 0.032966836 0.907150313 1 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 
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Table S5. Precision and recall analysis of viral classification tools. 826 
Classifier Sequence 

source 

Total 

sequences 

Number 

classified 

Correct Incorrect False 

negatives 

Precision Recall 

MIUMS archaea 15000 10128 9362 766 5638 0.95 0.73 

MIUMS bacteria 15000 12782 12582 200 2418 0.99 0.86 

MIUMS viruses 5000 2592 2560 32 2440 0.99 0.67 
MIUMS eukaryotes 15000 13 0 13 15000 1 0.5 

DeepVirFinder archaea 15000 NA NA NA NA NA NA 

DeepVirFinder bacteria 15000 NA NA NA NA NA NA 

DeepVirFinder viruses 5000 6555 2092 4463 2908 0.53 0.63 
DeepVirFinder eukaryotes 15000 NA NA NA NA NA NA 

VirSorter2 archaea 15000 NA NA NA NA NA NA 

VirSorter2 bacteria 15000 NA NA NA NA NA NA 

VirSorter2 viruses 5000 3684 2367 1317 2633 0.79 0.66 
VirSorter2 eukaryotes 15000 NA NA NA NA NA NA 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449667doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Methods 848 

 849 

Microbial Identification Using Marker Sequence (MIUMS). 850 

MIUMS (version 1.0) utilizes a reference database of protein sequence fragments 851 

that are highly specific to their source organism. The process of constructing 852 

database is described below.   853 

 854 

1. Selection of reference sequences 855 

For the construction of a reference database of marker amino acid sequences, all 856 

amino acid sequences from 224 archaeal, 2810 bacterial and 3958 viral (4185) 857 

species (published before 1st of March 2017; Refseq release version 79; minimum 858 

sequence length of 5000 nucleotides) were selected as the source of the protein 859 

sequences for the marker sequence database. These resulted in 155585 archaeal, 860 

2219071 bacterial and 229026 viral amino acid sequences. In addition, a eukaryotic 861 

protein sequence database was constructed from 16179736 eukaryotic proteins. The 862 

taxonomic information of these protein sequences were collected from NCBI 863 

taxonomy files (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/).  864 

 865 

2. Construction of short protein sequence fragments 866 

The construction of a database of marker protein sequence fragments is a multi-step 867 

process, which includes i). removal of sequence domains and ii). removal of all 868 

potential inter (super)kingdom homologous sequence regions from the target protein 869 

sequences.  870 

  871 

The selected protein sequences from archaea, bacteria and viruses were screened 872 

with Pfam-A HMM profiles (version 30.0) [1] and hmmsearch (HMMER version 3.2.1 873 

with default parameters and --domtblout ) [2]. Using the reported domain regions in 874 

the sequences, the protein sequences were split into multiple sequence fragments 875 

excluding the domain regions.  876 

 877 

The sequence fragments were then concatenated into a single protein sequence 878 

database and performed an all-vs-all sequence similarity search using diamond 879 

(version v0.8.38.100; parameters: --evalue 0.001  --sensitive --no-self-hits ) [3]. By 880 

analysing the diamond output file, longer sequence fragments which contain shorter 881 
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sequence fragments were identified and further split into multiple sequence 882 

fragments followed by construction of a new sequence database. This process of 883 

identification of shorter sequence fragments continued in a cyclic manner till there 884 

were no new fragments identified. 885 

 886 

3. Removal of inter superkingdom specific protein fragments 887 

The sequence fragments were then separated into their associated superkingdom 888 

and screened against the other superkingdom specific primary protein sequences 889 

(including eukaryotic protein sequences) using diamond (parameters: --evalue 0.001 890 

--sensitive). Sequence fragments that were found to have inter (super)kingdom 891 

matches were identified and removed. This resulted in 610460 archaeal, 8312644 892 

bacterial and 677951 viral marker protein fragments. 893 

 894 

4. Assigning taxa specificity to the protein fragments 895 

The archaeal, bacterial, and viral protein fragments were then screened against their 896 

own superkingdom specific primary source proteins using diamond (parameters: --897 

evalue 0.001 --sensitive) and the taxa specificity of each protein fragment to each of 898 

the higher taxonomic levels (i.e. phylum, class, order, family, genus and species) 899 

was determined using lowest common ancestor (LCA) algorithm from all reported 900 

diamond matches.  901 

 902 

Taxonomic classification of metagenomic sequences 903 

The default MIUMS runs involve three steps; i) assembly of metagenomic reads, ii) 904 

prediction of protein sequence in the assembled contigs using metaGeneMark [4], iii) 905 

screening the protein sequences against the marker protein fragment database 906 

using diamond (parameters: --evalue 0.001  --sensitive). Contigs with 907 

metaGeneMark predicted proteins that contains multiple matches to the protein 908 

fragments above stringency cutoffs (e.g. overlapping length >=21aa and sequence 909 

identity >=40%) are assigned taxonomy based on the matched protein fragment’s 910 

taxa specificity and LCA algorithm. An output table is generated, which shows a list 911 

of classified contigs with associated taxonomy. 912 

The raw reads (unless a subsampling of the reads were done) were mapped to the 913 

entire assembled contigs using magicblast [5]. The magicblast output file is analysed 914 

to identify all reads mapping to the classified contigs with minimum 99% identity and 915 
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99% sequence coverage. An output table is generated that shows each of those 916 

reads and their associated taxonomy.   917 

 918 

Benchmarking of viral classification tools 919 

In order to assess the accuracy of MIUMS for extracting viral contigs, we compared 920 

against existing tools using a test dataset of known sequences. The reference 921 

database of marker protein fragments that MIUMS V1.0 uses was constructed from 922 

sequences published before 1st of March 2017. Since then the number of newly 923 

released viral sequences in the NCBI RefSeq database has nearly doubled (5343 924 

genomic DNA/RNA sequences published between 01-Mar-2017 and 01-June-2021; 925 

with minimum length 500 nucleotides). To assess the performance of MIUMS against 926 

these newly published sequences; we randomly added 5000 of these viral sequences 927 

in a test dataset, comprising closed, whole genomes and contig-level assemblies. The 928 

test dataset was also supplemented with 15000 archaea, 15000 bacteria and 15000 929 

eukaryotic sequences published during the same time period mentioned above (with 930 

minimum length cut-off of 500 nucleotides and maximum length of 25000 nucleotides). 931 

We also included eukaryotic sequences (randomly selected from animal, plant, fungi 932 

and protists sequences). This test dataset was analysed with MIUMS V1.0, VirSorter2 933 

(version 2.2.2) [6] and DeepVirFinder (version 1.0) [7] with default parameters. Table 934 

S5 shows the summary outputs from the 3 tools used and their respective precision 935 

and recall scores. 936 

 937 

DeepVirFinder reports a score between 0 to 1 for every input sequence, where a 938 

higher score (i.e. close to 1) is a strong indicator of a sequence being viral. Against a 939 

minimum score cutoff of 0.95, DeepVirFinder correctly predicted 2092 viruses and 940 

falsely predicted 4463 non-viral sequences (Archaea: 1500, Bacteria: 1058, 941 

Eukaryotes: 1905) as viruses. While reducing the minimum score-cutoff to 0.75 942 

increases the total number of correctly predicted viral sequences to 3167, it also 943 

drastically increases the amount of false predictions to 9944 (Archaea: 3572, Bacteria: 944 

2364, Eukaryotes: 4008). This trend continues with lower minimum score-cutoff to 945 

0.50 (Viruses: 3988, Archaea: 6626, Bacteria: 4417, Eukaryotes: 6678) and 0.25 946 

(Viruses: 4566, Archaea: 9765, Bacteria: 7054, Eukaryotes: 9594). 947 

 948 
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VirSorter2 generates scores between 0 to 1 (computed on both single and double 949 

stranded DNA) and reports potential viral sequences where the maximum of the two 950 

scores are >= 0.50. With a minimum score cutoff of 0.95, VirSorter2 correctly predicted 951 

2367 viral sequences with 1317 non-viral sequences (Archaea: 97, Bacteria: 1191, 952 

Eukaryotes: 29) falsely predicted as viruses. Reducing the minimum score cutoff to 953 

0.75 increases correctly the predicted viruses to 2798 but increases the falsely 954 

predicted non-viral sequences to 2018 (Archaea: 248, Bacteria: 1692, Eukaryotes: 955 

78). At the default score cutoff of 0.50, VirSorter2 correctly predicted 3103 viral 956 

sequences with 2427 non-viral sequences (Archaea: 382, Bacteria: 1905, Eukaryotes: 957 

140) falsely predicted to be viral. 958 

 959 

In comparison, based on the main taxonomy output table, MIUMS accurately predicted 960 

2557 viruses with a total of 32 non-viral sequences (Archaea: 0, Bacteria: 32, 961 

Eukaryotes: 0) falsely predicted to be viruses. The secondary taxonomy output table 962 

shows another 540 viral sequences correctly being predicted as potential viruses with 963 

124 non-viral sequences (Archaea: 3, Bacteria: 122, Eukaryote: 0) falsely reported as 964 

potential viral sequences. A total of only 13 eukaryotic sequences falsely predicted as 965 

archaea, bacteria or viruses (Archaea: 0, bacteria: 12, Viruses: 1).  966 

 967 
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