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Abstract

In this note we consider two populations living on identical patches, connected
by unidirectional migration, and subject to strong Allee effect. We show that by
increasing the migration rate, there are more bifurcation sequences than previous
works showed. In particular, the number of steady states can change from 9 (small
migration) to 3 (large migration) at a single bifurcation point, or via a sequences of
bifurcations with the system having 9,7,5,3 or 9,7,9,3 steady states, depending on the
Allee threshold. This is in contrast with the case of bidirectional migration, where the
number of steady states always goes through the same bifurcation sequence of 9,5,3
steady states as we increase the migration rate, regardless of the value of the Allee
threshold.

Keywords: population dynamics, migration, bifurcation, steady states, Allee ef-
fect, cylindrical algebraic decomposition

1 Introduction

Allee effect is a key concept in population ecology [1], and refers to the situation where a
population has smaller growth rate at lower densities. In the case of strong Allee effect,
there is a critical value called the Allee threshold, such that the population is declining
whenever its density is below this threshold. The interplay of spatial dispersal and Allee
effect is of special interest, and was subject of recent works [3–5, 8].

Figure 1 (a) in [5] illustrates how the structure of steady states change in a continuous
time model of two connected populations living on identical patches with Allee effect.
Generally, steady states collide in saddle-node bifurcations and disappear as we increase
the migration rate between the patches, and the situation simplifies. However, it is not
the case in a discrete time version, where attractors may appear and disappear in the
presence of dispersal, as pointed out in [8]. In this note we show that steady states can
appear even in the continuous time model as the migration rate increases, if we allow only
one-way (unidirectional) migration between the patches. Here we completely describe the
possible bifurcation sequences in the unidirectional case, which is more diverse than the
bidirectional case. In particular, our results reveal that Figure 2 (a) in [5] is incomplete,
and there are other possible routes via bifurcation sequences from 9 steady states (small
migration) to 3 steady states (large migration). Our main tools are algebraic, and the
computational files can be accessed here [6].
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2 Two patch model

We consider a two patches population model with strong Allee effect and spatial dispersal
and different possible connectivity of the two patches. There exist three non-isomorphic
digraphs with two nodes; two disconnected nodes, a directed graph with a source and a
target, and finally a fully connected digraph. These three digraphs are shown in Figure 1.
Let Ni denote the population at patch no. i with carrying capacity 1, let b ∈ (0, 1) be
the Allee threshold, and a ≥ 0 be the spatial dispersal rate. Then the population of the
patches is modeled by the following system

Ṅ1 = N1(1−N1)(N1 − b)− δ1,2aN1 + δ2,1aN2, (1)

Ṅ2 = N2(1−N2)(N2 − b) + δ1,2aN1 − δ2,1aN2,

where δi,j is 1 if there is a directed edge from patch i to patch j, and 0 otherwise. This
is the same as [5, Equation Mα] for r = 2 and gi(Ni) = (1 − Ni)(Ni − b), and when the
connectivity graph is fully connected is the same as [7, Equation 2.1] for n = 2.

For a fixed choice of parameter values, a steady state or equilibrium of system (1) is
a non-negative solution to the system of equations made by letting Ṅi = 0 for i = 1, 2.
Therefore to study the number of steady states of our model, the following parametric
system of polynomial equations needs to be studied:

N1(1−N1)(N1 − b)− δ1,2aN1 + δ2,1aN2 = 0,
N2(1−N2)(N2 − b) + δ1,2aN1 − δ2,1aN2 = 0,
variables: N1 ≥ 0, N2 ≥ 0,
parameters: a ≥ 0, b ≥ 0.

(2)

We investigated this parametric system using RootFinding[Parametric] library in Maple
[2]. In contrast with the case n = 3 at [7], the case n = 2 is not heavy for a simple
computer to handle (computations performed on Windows 10, Intel(R) Core(TM) i7-
2670QM CPU @ 2.20GHz 2.20 GHz, x64-based processor, 6.00GB (RAM)). Thus without
using any numerical algorithm one can get an exact description of the boundaries of
different parameter regions where the system (2) has different number of non-negative
solutions.

It is clear that in the absence of the spatial dispersal between the two patches, the
system has 9 non-negative steady states for b ∈ (0, 1). In the sequel we concentrate on the
two other connectivity cases shown in Figure 1b and 1c.

N1 N2 N1 N2
N1 N2

(a) (b) (c)

Figure 1: There are only three non-isomorphic digraphs on two nodes. (a) Two isolated
nodes. (b) There is one directed edge from one of the two nodes to the other one. (c)
There are two directed edges between the two nodes.

3 Bidirectional (both ways) migration

Consider first the connectivity graph in Figure 1c. In this case δ1,2 = δ2,1 = 1. By Lemmas
2.1 and 2.2 from [7], it is enough to restrict the parameter space to 0 ≤ b ≤ 1

2 . Figure 2
shows the decomposition of the the parameter region [0, 12 ] × [0,∞) with respect to the
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number of steady states. Fix a value for b, say b?. A value a = a? is said critical for a
if the point (a?, b?) is on one of the boundaries between different regions. For any b 6= 0,
there exists two critical values for a. The sequences of the number of steady states for a
fixed value of b 6= 0 when increasing a (considering only open regions) are always the same
as listed below:

• 9, 5, 3.

When a = 0, there are 9 steady states, passing the first critical value of a, two pairs
of steady states collide and disappear in saddle node bifurcation events. Passing the
second critical value, two other steady states meet at the middle steady state and the two
disappear in a pitchfork bifurcation event. This has been shown in [5, Figure 1a] where
b = 0.3. Indeed in this case, the two connected populations has a simple behavior as was
initially guessed.

Figure 2: The parameter region 0 ≤ b ≤ 1
2 , a ≥ 0 of the 2 patches model (1) with

the connectivity graph as shown in Figure 1c is partitioned to sub-regions with invariant
number of steady states. The number of steady states is written on each open region.

4 Unidirectional (one-way) migration

Consider next the connectivity graph in Figure 1b. In this case δ1,2 = 1, but δ2,1 = 0.
Here only [7, Lemma 2.1] holds and not [7, Lemma 2.2]. Thus this time the parameter
region necessary to study is 0 ≤ b ≤ 1. In contrast with the previous case, the number of
critical values for a are not always the same for fixed values of b. We refer to the values of
b where the number of critical values for a changes as critical values for b. We found that
the critical values for b are 0, 1, and β1, and β2, where β2 = 1/2, and β1 is an algebraic
number, specifically the smallest positive real root of 59b4−16b3−214b2−16b+ 59. With
seven digits accuracy β1 ' 0.4961661.

The sequences of the number of steady states for a fixed value of b when increasing a
(considering only open regions) are listed below;

• 9, 7, 5, 3.

• 9, 7, 9, 3.

• 9, 3.

Figure 3a shows the decomposition of the parameter space with respect to the number of
steady states. The region where the increment in the number of steady states happens
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is enlarged at Figure 3b. See also Table 1 for the detailed description of the parameter
regions with different number of steady states. Figure 2a in [5] has shown the sequence of
steady states for b = 0.3 where the temporary increment in the number of steady states
does not happen.

Figure 4 shows the five possible sequences for b 6= 0, 1 (including the cases b = β1 and
b = 0.5) together with the stability of the steady states. Figure 5 is a schematic figure
simplifying the behavior of the system for these 5 cases. All bifurcation events here are
saddle-node except at two points. At b = 0.5, by increasing a to cross its first critical
value, a transcritical bifurcation event happens where two steady states meet and then
continue their paths. At b = β1, by increasing a to cross its second critical value, two
steady states that already had met and left the real plane return at exactly the location
where another pair of steady states are meeting to leave the real plane. Therefore at this
moment, there are four steady states at a single point.

(a) (b)

Figure 3: (a) The parameter region 0 ≤ b ≤ 1, a ≥ 0 of the 2 patches model (1) with
the connectivity graph as shown in Firgure 1b is partitioned to sub-regions with invariant
number of steady states. (b) When β1 < b < 0.5 the number of steady state temporary
increases when increasing a, this region is the tiny red colored part between the brown
and yellow regions.

b
a

number of steady states

{0} {0} (0,∞)
4 2

(0, β1)
[0, α1) {α1} (α1, α2) {α2} (α2, α3) {α3} (α3,∞)

9 8 7 6 5 4 3

{β1}
[0, α1) {α1} (α1, α2) {α2 = α3} (α3,∞)

9 8 7 5 3

(β1, β2)
[0, α1) {α1} (α1, α2) {α2} (α2, α3) {α3} (α3,∞)

9 8 7 8 9 6 3

{β2}
[0, α1) {α1 = α2} (α2, α3) {α3} (α3,∞)

9 8 9 6 3

(β2, 1)
[0, α1) {α1 = α2 = α3} (α3,∞)

9 6 3

{1} {0} (0,∞)
4 2

Table 1: The number of non-negative steady states of the the 2 patches model (1) with
the connectivity graph as shown in Firgure 1b for the parameters a ≥ 0, 0 ≤ b ≤ 1. The
first column shows the interval of b. Each row for the intervals of b has two sub-rows, the
first sub-row shows the interval of a and the second sub-row states the number of steady
states.
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5 Discussion

In [5] it was stated that for small enough dispersal rate, the n patches model has 3n steady
states and generally the situation simplifies when migration is larger, eventually leading
to only 3 steady states resembling a simple one larger patch consisting of all populations
together. It was expected to see a monotone decrease in the number of steady states by
increasing the dispersal rate until in [8] for the discrete version of this model, and in [7]
for n = 3 it was shown that the behaviour can be more complex than it might look at an
initial thought. The authors of this paper has completely classified all possible bifurcations
for the case n = 3 in [7] and have shown that a temporary increment in the number of
steady states can occur for specific choices of the Allee threshold, provided that all patches
are connected both ways. Here we proved that we can see an increment in the number
of steady states even for the case n = 2, if we allow only one-way migration. We confirm
that for bidirectional migration, there is only one bifurcation sequence resulting in 9,5,3
steady states as the migration rate increases. However, if the migration is only one-way,
there is a variety of bifurcation sequences that we fully classify in Table 1, Figure 4, and
Figure 5.
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Figure 4: Sequences of the steady states for fixed values of b, but varying values of a.
In the left side the steady state points are colored with respect to the value of a that
can be read from the color bar next to the plots. In the right side the steady states are
colored with respect to their stability. Stable steady states are colored by red, whereas
the unstable ones are colored by pink.
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(a) 0 < b < 0.4961661. (b) b ' 0.4961661.
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(c) 0.4961661 < b < 0.5. (d) b = 0.5.

S2

S3

S4

S5

S8

S9

α1

(e) 0.5 < b < 1.

Figure 5: Schematic plots showing when and which of the initial 9 steady states of the
2 patches model (1) with the connectivity graph Figure 1b collide and disappear. The
initial nine steady states for a = 0 are shown at Figure 4 which are S1 = (0, 0), S2 = (b, 0),
S3 = (1, 0), S4 = (1, b), S5 = (b, b), S6 = (0, b), S7 = (0, 1), S8 = (b, 1) and S6 = (1, 1).
In contrast with the initial guess that by increasing a, the steady states only meet and
disappear, as one can see in (c) two steady states that previously have met and went out
of the real plane, can meet again and return from the non-real complex plane back to the
real plane. The horizontal line shows the values of a which is 0 at the left and increases as
we move to the right. All bifurcation events are of the saddle-node type, except at a = α2

in part (b) and at a = α1 in part (d). In the first case, the two steady states S3 and S4
are coming back at the same location where S2 and S5 are meeting and then all four of
them leave the real plane. At the second case, a transcritical bifurcation occurs. S3 and
S4 meet and then continue their paths.
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