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Abstract19

Recent advancements in single-cell immune profiling that enable the measurement of the transcrip-20

tome and T-cell receptor (TCR) sequences simultaneously have emerged as a promising approach to21

study immune responses at cellular resolution. Yet, combining these different types of information22

from multiple datasets into a joint representation is complicated by the unique characteristics of23

each modality and the technical effects between datasets. Here, we present mvTCR, a multimodal24

generative model to learn a unified representation across modalities and datasets for joint analysis25

of single-cell immune profiling data. We show that mvTCR allows the construction of large-scale26

and multimodal T-cell atlases by distilling modality-specific properties into a shared view, enabling27

unique and improved data analysis. Specifically, we demonstrated mvTCR’s potential by revealing28

and separating SARS-CoV-2-specific T-cell clusters from bystanders that would have been missed in29

individual unimodal data analysis. Finally, mvTCR can enable automated analysis of new datasets30

when combined with transfer-learning approaches.31

Overall, mvTCR provides a principled solution for standard analysis tasks such as multimodal inte-32

gration, clustering, specificity analysis, and batch correction for single-cell immune profiling data.33

Introduction34

T cells are one of the critical components of the adaptive immune system. Their primary function is35

the detection of pathogens and control of the immune reactions through antigen recognition by their36

highly-diverse T-cell receptor (TCR). While recognizing antigens and immune signaling are well-37

researched individually, the interplay between T-cell function through the TCR and its phenotype38

remains largely unexplored. Recent findings have shown that T cells sharing the same TCR, so39

called clonotypes, express similar transcriptional phenotypes and distribute non-randomly across40

gene expression-based clusters [1, 2]. These findings indicate that antigen recognition through TCRs41

imprints specific transcriptional cell states shared across clonotypes making it necessary to jointly42

analyse TCR and transcriptomic information.43
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Paired measurements of TCR and transcriptome can be realized with modern single-cell multiomic44

sequencing techniques [3, 4], enabling the study of cell state and function, simultaneously [5–7].45

However, as of now, both modalities are usually analyzed separately on the transcriptomic- and46

the TCR-level, potentially missing crucial interdependencies between the two modalities. Recent47

endeavors sought to integrate transcriptomics and TCR information. For example, Schattgen et al.48

used clonotype neighbor graph analysis (CoNGA) to detect correlations between TCR sequences and49

transcriptome [8]. T cell clones were identified that shared similar TCRs and gene expression profiles.50

Zhang et al. developed a Bayesian model called TCR functional landscape estimation supervised51

with scRNA-Seq analysis (tessa) to correlate both modalities and cluster T cell clones by their52

specificity [9]. While these methods incorporate both modalities for clustering, they do not provide53

an integrated representation for other downstream analyses, do not offer principled approaches to54

integrate multiple datasets, and scale only to small-size datasets hindering large-scale studies.55

Furthermore, they resort to a clonotype-level approach, fusing cells with similar TCRs. However,56

cells from the same clonotype can have other characteristics on the transcriptomic level [10, 11]. This57

phenotypic differentiation of cells belonging to a clonotype during development or upon immune58

modulation is lost when reducing their cells to common gene expression profiles.59

Here, we introduce mvTCR - a multi-view deep learning model for integrating TCR and transcrip-60

tome. mvTCR provides a cell-level embedding incorporating both modalities, seamlessly integrates61

into standard single-cell analysis workflow, and scales well to atlas-level analysis. We applied mvTCR62

to five T cell datasets to show that the shared representation offers a holistic view for immunolo-63

gical research. At the same time, we demonstrate that mvTCR preserves cell state and phenotype64

information better than other integration approaches. Furthermore, we demonstrated the method’s65

capability to reveal separate clusters of disease-specific and bystander T cells, which were unidenti-66

fiable in unimodal analysis on a recent SARS-CoV-2 single-cell dataset [7].67

Results68

Joint integration of TCR and gene expression through multiview variational69

autoencoders70

mvTCR is a deep neural network, which follows the structure of a Variational Autoencoder (VAE)71

(Fig. 1a, Methods mvTCR). As input, the model receives the gene expression data xi
RNA and the72

amino acid sequence of the TCR’s Complementary Determining Region 3 (CDR3) from the α-chain73

xi
TRA and β-chain xi

TRB for each cell i. Following [13, 14], we employed a multi-layer perceptron74

to embed xi
RNA to a lower-dimensional representation hi

RNA. Due to its broad applicability on se-75

quence data, we employed a transformer network to derive a representation of the TCR sequence76

hi
TCR. After encoding both modalities individually, a mixture module M was used to fuse both77

modalities into q(zijoint|hi
RNA,h

i
TCR) to derive a shared representation for each cell which can be78

used for various downstream analyses. We implemented three approaches to combine multiple mo-79

dalities for M : Concatenation, Product-of-Experts (PoE) [15], and Mixture-of-Experts (MoE) [16].80

The concatenation model simply combines both latent embedding hi
RNA and hi

TCR followed by an81

additional encoding network estimating the distribution of zijoint. PoE and MoE first estimate sepa-82

rate marginal posterior distributions q(ziRNA|hi
RNA) and q(ziTCR|hi

TCR), which were then fused via83

multiplication or addition to form the joint posterior distribution, respectively. As unimodal baseli-84

nes, a TCR and a transcriptome model directly estimated the latent distribution from the hi
RNA or85

hi
TCR were additionally implemented. To train the VAE, similar decoding networks reconstructing86

x̃i
RNA, x̃i

TRA, and x̃i
TRB were used.87
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Figure 1 | mvTCR jointly embeds TCR and transcriptome. a, Overview of the mvTCR architec-
ture and the different mixture models. b, UMAP visualizations [12] of the 10x Genomics dataset (donor 2)
comparing the embeddings of the multimodal (MoE) and unimodal (RNA, TCR) models colored by epitope
specificity, ten largest clonotypes, and a cytotoxicity score as an example of cell state. c-e Comparison bet-
ween the unimodal and all versions of the multimodal embeddings (Concatenation, PoE, MoE). Statistical
significance to the corresponding unimodal embedding is calculated via one-sided, paired t-test (p-values:
*<0.05, **<0.01, ***<0.001). The boxplot represents the quartiles and median line, while the whiskers ex-
tend to the full value range excluding outliers. c, Capturing of specificity by atlas-query prediction (weighted
F1-Score) and clustering (Normalized Mutual Information) on the 10x dataset (donor 2). d, Avidity predic-
tion measured by mean squared logarithmic error and R² value on 10x dataset (donor 2). e, Conservation
of modality-specific properties on the Fischer dataset by clustering (NMI, normalized by performance of un-
derlying modality), i.e., cell type defined on transcriptomic level and reactivity towards a SARS-CoV-2 mix
defined on a clonotype level. f, Comparison between MoE embedding trained only on gene expression and
CDR3β and tessa [9] on the tasks defined in c and e.

mvTCR incorporates knowledge from transcriptome and TCR88

When analyzing T-cell repertoires, the antigen specificity of each cell is critical to provide the context89

for its cell state. The specificity of a T cell towards their cognate epitope is inherently determined90

by their individual TCR sequence with similar TCR recognizing similar epitopes. Additionally, cells91

with shared specificity express similar phenotypic characteristics. Therefore, we investigated to what92

extend a joint T cell embedding will benefit the preservation and prediction of antigen specificity.93

To this end, we used a dataset from 10x Genomics with binding annotations si of 44 epitopes for94

four donors (Methods Datasets). 68.2% of the T cells of donor 3 were specific to the CMV epi-95

tope KLGGALQAK and 26.0% did not express binding to any of the tested epitopes. 80.9% of96

donor 4 cells were considered non-binders. Hence, these donors were excluded during benchmarking97

due to the low amount of diverse annotation. For the remaining dataset, we separately evaluated98

mvTCR on T cells with specificity towards the eight most common epitopes for donor 1 with 9,63999

cells (Supplementary Fig. 1) and donor 2 with 27,171 cells (Fig. 1b, Supplementary Fig. 2a). To100

observe the benefit of a multimodal embedding, the repertoire of both donors was embedded with101

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2021.06.24.449733doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449733
http://creativecommons.org/licenses/by/4.0/


uni- and multimodal versions of mvTCR. The unimodal embedding trained solely on xTCR (Fig. 1b102

col.: TCR) was dominated by large clonotypes, which form separated clusters of distinct specifici-103

ties. However, the embeddings of different clones did not follow a clear transcriptional pattern. The104

transcriptomic model trained on xRNA (Fig. 1b col.: RNA) led to a more continuous representation,105

which formed several antigen-specific clusters. However, various subpopulations such as T cells bin-106

ding to GLCTLVAML remained hidden. The multimodal models (Fig. 1b col.: MoE, Supplementary107

Fig. 2 row: Concatenation, PoE) revealed these clusters by conserving clonotype and cell state (e.g.,108

Cytotoxicity Score, Methods Datasets), simultaneously (Fig. 1b).109

Antigen specificity is better captured in multimodal models110

We then quantitatively evaluated mvTCR’s capability to capture antigen specificity on five random111

splits of the 10x dataset (Fig. 1c, Supplementary Fig. 3a, Supplementary Data 1, Methods Bench-112

marks). To this end, we first trained the models on a subset of all cells to build a reference atlas.113

Following, we simulated the annotation of novel T cells to their cognate epitope by mapping holdout114

cells into the reference atlas and predicting the cell’s antigen specificity via a k-Nearest-Neighbor115

(kNN) model. Note, that mvTCR was trained only on clonotypes which were not contained in the116

holdout set, to ensure unbiased performance estimation. All multimodal models outperformed the117

transcriptomic model (F1-Score, donor 1: 0.67, donor 2: 0.78) by 0.025 (Concatenation) to 0.07118

(PoE) F1 points on donor 2 (Fig. 1c, first column) and 0.05 (Concatenation) to 0.15 (MoE) F1119

points on donor 1 (Supplementary Fig. 3a, first column). Even though the TCR model visually sho-120

wed a highly fractured embedding, it performed similar to the joint embeddings (F1-Score, donor 1:121

0.735, donor 2: 0.835). Evidently, small sets of clones expressing the same specificity were grouped122

together locally in the TCR embedding, while global coherence was missing. From the multimodal123

models, PoE and MoE surpassed Concatenation for both donors.124

Next, we evaluated the quality of the Leiden clusters [17] calculated on the different embedded spaces125

with regards to antigen specificity by Normalized Mutual Information (NMI) (Fig. 1c, Supplementary126

Fig. 3a, Supplementary Data 1). Here, most of the multimodal models statistically outperformed127

both TCR- and transcriptome-embedding across both donors (NMI, one-sided, paired t-test, p-128

values<0.05 for five out of six models compared to RNA models and four out of six compared to129

TCR models), while MoE surpassed all other models with a NMI of 0.58 for donor 1 and 0.40 for130

donor 2. Interestingly, the RNA based model showed significantly higher clustering scores than the131

TCR model for donor 2 (Fig. 1c, NMI, one-sided, paired t-test, p-value=0.007), even though it had132

significantly lower scores for kNN prediction (F1-Score, one-sided, paired t-test, p-value=0.029). This133

is in line with our previous observation, that the TCR embedding was highly fractured, while the134

RNA model formed a more continuous embedding space. Overall, the multimodal models captured135

the advantages of both modalities. They locally preserved antigen specificity, while globally grouping136

larger specificity clusters based on their similar transcriptomic profile.137

In a next step, we investigated how informative the latent embedding was not only with regards138

to antigen specificity, but also to binding strength. To this end, we trained an additional neural139

network, that received the embedding as input to predict the counts of detected pMHC multimers140

as an approximate measure of avidity ai (Methods Avidity Prediction, Supplementary Data 1). For141

donor 2, the multimodal embedding proved to be beneficial (Fig. 1d). Similar to the previous kNN142

classification, Concatenation (Mean Squared Logarithmic Error (MSLE): 0.930, Coefficient of deter-143

mination (R2): 0.179) was the weakest of the three multimodal versions, while PoE (MSLE: 0.811,144

R2: 0.209) and MoE (MSLE: 0.756, R2: 0.244) outperformed both unimodal embeddings (Methods145

Benchmarks). However, the prediction failed for donor 1 on all models (Supplementary Fig. 3b, all146

R2<0). The prediction was heavily biased towards the epitopes IVTDFSVIK and AVFDRKSDAK147

depending on whether the training or test set contained large clonotypes, which showed 81.7% and148

75.4% of all bindings for these epitopes, respectively. Summarizing, we overall demonstrated that149

multimodal embeddings were more informative of antigen specificity than models trained on either150
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the TCR or the transcriptome alone.151

The joint representation preserves cellular heterogeneity152

Besides functional aspects, multimodal embeddings further need to conserve modality-specific cha-153

racteristics such as cell type and clonotype. To test this, we trained mvTCR on five different sub-154

samples of the dataset described in Fischer et al. [6] (Supplementary Data 1). This dataset contained155

6,713 T cells of two SARS-CoV-2 infected patients with annotated T cell subtypes defined on the156

transcriptome (Methods Datasets). Additional, clonotypes were identified via reverse phenotyping,157

which were able to recognize a mix of disease-specific peptides. Ideally, the shared embedding should158

conserve these modality-specific annotations to a large degree during clustering. Therefore, we re-159

ported the NMI of the models normalized to the score obtained by the respective modality, on which160

the annotation was defined (Fig. 1e). This provided us with an estimate of how well modality-specific161

characteristics were retained. All multimodal models clustered the cell types better than the TCR-162

model (72.1%) reaching up to 85.7% (MoE) of the transcriptome model’s score. For clustering based163

on reactivity, all multimodal models significantly outperformed the transcriptome version (NMI,164

paired, one-sided t-test, p-values<0.05 for Concatenation and PoE, p-value=0.0004 for MoE), whi-165

le the MoE-version achieved on average almost identical performance (99.1%) as the TCR-model.166

Hence, we concluded, that both TCR- and gene expression-specific characteristics are represented to167

a high degree in the shared embedding of mvTCR. Based on its high performance in most settings168

mvTCR’s MoE module was used for all following analyses.169

Finally, we compared mvTCR against the weighted embedding derived by tessa for predicting spe-170

cificity and conserving modality-specific annotation (Fig. 1f, Supplementary Fig. 3c) (Methods171

Benchmarks). tessa maximizes the correlation of the transcriptome and the TCR by deriving a172

position-wise weighting of the TCR features, which was uniform for all sequences in a dataset. tessa173

used the CDR3β sequence as the only input for representing the TCR. Therefore, we retrained mvT-174

CR without the TCRα sequence to avoid an unfair advantage due to additional information. Except175

for clustering on donor 2, mvTCR showed better conservation of specificity on the 10x dataset.176

While we observed a large increase of 11.3% for kNN-prediction for donor 2, mvTCR only slightly177

surpassed the embedding derived from tessa by 2.45% for donor 1. On the Fischer dataset, mvTCR178

clustered significantly better for cell type (NMI, one-sided, paired t-test, p<1e-4) and reactivity179

(NMI, one-sided, paired t-test, p=0.026) with an increase in NMI of 25.4% and 8.1%, respectively.180

We attribute the gain in performance to mvTCR’s ability to integrate transcriptome information on181

a cell-level, while such information influences tessa’s embedding only on a dataset-level through its182

weighting factors. The conservation of characteristics captured in the gene expression makes mvTCR183

particularly suited for paired analysis of T cell repertoire data on transcriptomic- and TCR-level.184

mvTCR distinguishes activated from bystander T cells after SARS-CoV-2 infection185

We used mvTCR to reanalyze Stephenson et al.’s dataset, which comprised more than 780,000 pe-186

ripheral blood mononuclear cells (PBMCs) from 130 patients collected at three sites to study the187

coordinated immune response against SARS-CoV-2 infection [7]. From a total of 254,104 annotated188

T cells, 103,761 cells of 94 patients remained after filtering for complete TCRs (Methods Datasets).189

For each patient, the disease severity at the date of collection was provided as asymptomatic, mild190

(on ward, no oxygen required), moderate (on ward, oxygen required), severe (on intensive care unit191

(ICU), noninvasive ventilation), and critical (on ICU, intubation and ventilation). The study further192

contained a negative control group with cells from healthy donors, patients with other lung diseases,193

and donors with previously administered intravenous injections of lipopolysaccharide (LPS) to mi-194

mic inflammatory response. After training mvTCR on all T cells, we embedded the dataset into the195

shared representation (Fig. 2a). Separated groups of CD8+ effector T cells formed that expressed a196

high interferon (IFN) response score [18], which were captured by a fine-grained Leiden clustering197
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Figure 2 | Joint embedding reveals hidden clusters in SARS-CoV-2 study. a, UMAP visualation
of the joint embedding colored by annotation of cell type and status at day of hospital admission. b Effector
CD8+ T cells form separating clusters. c UMAP colored by IFN response score, which is elevated in patients
with symptomatic SARS-CoV-2 infection. d, Distribution of the IFN response score across the effector clusters
with statistical significance (one-sided, unpaired t-test, *<0.05, **<0.01, ***<0.001). e, Patient status of cells
from clusters with highly enriched IFN score. f, Specificity assignment of TCRs within the enriched clusters
by query to the IEDB and predicted MHC restriction. g, Distribution of time after disease onset for the
significant clusters. h, Selected differentially expressed genes between antigen-specific and bystander clusters.

in mvTCR’s representation (Fig. 2b,c). We observed that these Leiden clusters of cells with similar198

TCR and gene expression could not be identified in the transcriptomic space alone (Supplementary199

Fig. 4) demonstrating mvTCR synergistic embedding. After selecting clusters with highly signifi-200

cantly enriched IFN response scores (one-sided, unpaired t-test, p<0.001, Fig. 2d, Supplementary201

Data 2), we observed that all 15 resulting clusters contained almost exclusively (>99.5%) cells from202

donors with symptomatic SARS-CoV-2 infection withholding cells from asymptomatic infection or203

healthy, and negative control groups (Fig. 2e). Overall, the selected clusters consisted of cells from204

samples collected on average after 8.1± 4.0 days of symptom onset indicating an ongoing primary T205

cell response [19, 20]. Contrary, the cells of the remaining clusters originated from samples collected206

at a later date after symptom onset (11.8 ± 8.9 days). Generally, these clusters consisted of one or207

several expanded clonotypes with similar TCRs - 10 out of 15 clusters had significant lower inter-208

clonotype pairwise distance measured via TCRdist [21] (one-sided, unpaired t-test, p-values<0.05,209

Supplementary Data 2) - and similar phenotype - all clusters showed significant higher inter-cell cor-210

relation compared to remaining CD8+ effector cells (one-sided t-test, p-values<0.05, Supplementary211

Data 2). Since we observed similar phenotypes and functionality, we assumed that cells of a cluster212

were activated in the same fashion. While several clusters might be SARS-CoV-2 reactive, others213

might express a bystander response. Bystander T cells are activated by immune signaling without214

recognition of their cognate antigen [22] and were reported to play a crucial role in the different215
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severity degrees of COVID-19 patients [23]. To assess T cell specificity, the TCRs were queried to216

Immune Epitope Database (IEDB) [24], which revealed 2,200 cells with possible cognate epitope217

matches (Methods Datasets). To reduce the number of false positives, we filtered out epitopes that218

were not predicted to bind to the corresponding donors’ HLA-types (Supplementary Data 3) via219

MHCFlurry 2.0 [25] reducing the number of matches to 1,554 (Fig. 2f, Supplementary Data 4). Ba-220

sed on this query, we identified six SARS-CoV-2-specific and three bystander clusters. On average,221

the cells from SARS-CoV-2-specific clusters originated from earlier time points after symptom onset222

(7.7 days) compared to the bystander clusters (9.7 days) and the remaining clusters (11.7 days)223

again indicating an antigen-specific T-cell response (Fig. 2g).224

Differential analysis between antigen-specific and bystander clusters (Fig. 2h, Supplementary Data 5)225

revealed several upregulated genes related to Natural Killer (NK) cells in the bystander clusters such226

as KLRD1, NCR3, and genes of the NK2G receptor group (KLRK1 and KLRC4 ), which recognize227

stress-induced self-proteins [22]. Additionally, multiple granzymes (GZMB, GZMM, and GZMK )228

were upregulated indicating cytotoxic activity. This was coherent with previous studies on bystander229

activation in various diseases [22, 26], which linked elevated levels of KLRK1 (NKG2D) and NCR3230

(NKp30 ) to an Interleukin 15 (IL-15 ) induced T-cell response in absence of TCR stimulation.231

Following IL-15 exposure, CD8+ T cells adapt a NK-like phenotype and are able to kill targets in232

an innate-like fashion among others via cytotoxic granzymes. The antigen-specific clusters indicated233

downregulated CD8 expression (CD8A, CD8B) as previously reported for an active response of234

virus-specific CD8+ T cells eight days after infection [27]. Further, IL7R was expressed in 30.8%235

of the antigen-specific cells. While IL7R is downregulated in most CD8+ effector cells, it can be236

indicative of memory precursor effector cells (MPECs) which survive after viral clearing to form a237

long lasting immune memory [28]. Finally, several genes related to mitochondrial respiratory chain238

and oxidative phosphorylation (OXPHOS) (MTCO1, MTCO2, MTCO3, MTCYB) were observed239

in the antigen-specific cells. Even though there is a shift towards aerobic glycolysis after CD8+
240

activation, a parallel increase in OXPHOS level further contributes to the ATP production [29, 30],241

while both levels are further increased by a´peptide-MHC-induced activation [31].242

In summary, mvTRC identified clusters showed compelling concordance of their activation pattern243

by TCR specificity, time after symptom onset, and differently expressed genes. These results de-244

monstrate that mvTCR is able to identify striking clusters in T cell repertoires that would have245

been missed in unimodal analysis, and can, therefore, be applied to immunological relevant studies246

to uncover the interplay between T cell functionality and phenotype.247

Atlas level analysis is enabled through scArches-integration248

Smaller-scale studies are now commonly integrated into large-scale atlases for knowledge transfer249

during annotation or analysis. Therefore, it is crucial for methods to scale to atlas-level datasets to250

leverage them as reference. To this extend, we applied mvTCR on a collection of 12 tumor-infiltrating251

lymphocyte (TIL) studies from different sources [32–43]. After filtering (Methods Datasets), the252

accumulated dataset contained a total of 722,461 T cells from 6 tissue sources covering 11 cancer253

types. During training of mvTCR, we excluded two studies to simulate query datasets [39, 40], while254

a reference was built from the remaining studies. To remove batch effects within the reference studies255

and query-atlas mapping, we extended mvTCR with architectural surgery (scArches) [14] (Methods256

Conditioning).257

We trained mvTCR with and without scArches on the TIL dataset to evaluate the integration258

quality. Without scArches, the cells were embedded into fragmented clusters. While each cluster259

was mostly pure in regard to the same cancer type and origin (Supplementary Fig. 5), cells from260

the same biological labels separated into multiple clusters. In contrast, mvTCR with architectural261

surgery formed more contiguous clusters, while still preserving purity of cancer type and origin (Fig.262

3a).263
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The quality of data integration from different sources can be broken down into two dimensions:264

The correction of batch effects and the conservation of biological signals. These dimensions are in-265

terrelated as correction of batch effects often leads to removal of biological variation. To quantify266

batch correction effects, we use the Graph Connectivity (GC) score and Average Silhouette Width267

Batch (ASW Batch), while for estimating biological signal conservation we used Normalized Mutual268

Information (NMI), Adjusted Random Index (ARI), and Average Silhouette Width (ASW) on the269

cancer origin, origin of cells, and subtype of T cells (Methods Benchmarks). Using mvTCR with270

architectural surgery improved the averaged integration scores from 0.39 to 0.50 (Fig. 3b). This271

improvement was reflected in almost all individual metrics. The GC score improved drastically with272

architectural surgery, indicating better connectivity of subgraphs from cells with the same label. Fur-273

thermore, Leiden clusters had higher NMI values with cell annotations. Only the Average Silhouette274

Width dropped marginally, indicating a minor decrease in cluster compactness and distinctiveness275

for biological labels and less overlap between batches. Next, we assessed the quality of query-atlas276

mapping to annotate cells from held-out studies by a kNN-classifier predicting cancer type, tissue277

source, and cell type (Fig. 3c). Due to the reduction of technical noise, architectural surgery impro-278

ved the predictions for cancer and tissue source, while being almost on par for cell type annotations.279

Therefore, we conclude, that mvTCR can efficiently remove batch effects between query and atlas280

sets, while preserving the biological signal between studies.281

To compare the scalability of mvTCR with other established methods integrating gene expression282

and TCR information, we assessed the execution time of mvTCR, CoNGA [8], and tessa [9] on283

subsampled dataset sizes (Methods Benchmarks). For all dataset sizes, mvTCR was significantly284

faster than CoNGA and tessa (Fig. 3d). In comparison to CoNGA, mvTCR was up to 135 times285

faster (N=100,000 cells - mvTCR: 545 s, CoNGA: 73,516 s), while tessa needed up to 2,353-fold more286

time (N=30,000 cells - mvTCR: 166 s, tessa: 389,578 s). Besides runtime, the memory requirements287

for CoNGA and tessa were also higher due to pairwise comparisons. On the specified machine used288

for runtime benchmarking, both CoNGA and tessa exceeded the memory available (256 GB) for289

dataset sizes of 30,000 and 100,000 cells, respectively, demonstrating mvTCR’s great scalability to290

atlas-scale dataset integration.291

Discussion292

As more and more paired single-cell TCR- and RNA-seq datasets are being collected, scalable me-293

thods are needed to leverage both modalities for joint analyses. Here, we presented mvTCR - a294

multiview Variational Autoencoder - to enable large-scale integration of paired TCR and transcrip-295

tome data for single-cell studies of T cell repertoires. We showed that mvTCR can preserve both cell296

state and function by incorporating both modalities into its shared representation while capturing297

more information than unimodal representations as demonstrated in antigen and avidity prediction,298

reference mapping, and clustering. Furthermore, we demonstrated mvTCR’s scalalability to atlas-299

level datasets for T cell reference construction. Especially when combined with scArches, mvTCR300

is capable of correctly mapping new multimodal studies into reference atlases enabling systematic301

extensions of references and automated analysis of query datasets.302

mvTCR has robust performance on multimodal T-cell datasets. Yet, it is limited to paired data,303

where gene expression is available in combination with α- and β-CDR3 of the TCR. A natural304

extension would be to incorporate other modalities such as chromatin accessibility and surface protein305

abundance as recently proposed by non-TCR-aware single-cell multimodal integration methods [45–306

47]. Adding a supervised component to the model to predict epitope specificity could further guide307

the network’s training and improve the multimodal representation. Additionally, interpretability308

methods could be applied to detect TCR and transcriptome characteristics indicative of the cell’s309

functional role. Furthermore, pre-trained TCR language models [48, 49] in combination with VDJ-310

gene usage encoding could be used to improve the TCR representation [50, 51]. Lastly, mvTCR can311

be extended to joint B-cell receptor data, though the modeling of somatic hypermutations needs to312
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Figure 3 | mvTCR enables query to atlas reference mapping. a, UMAP visualizations of the joint
embedding colored by cancer tissue, tissue type, and query vs. reference for mvTCR with scArches. b, Com-
parison of data integration metrics [44] between mvTCR with and without architectural surgery (scArches).
c, kNN prediction using the multimodal embedding as features to classify biological labels on the query
dataset. d, Runtime in dependence to different dataset sizes, compared against tessa [9] and CoNGA [8].

be carefully considered to accurately represent B-cell lineages. As a technical limitation, adjusting313

the contribution of each modality requires repeated training of mvTCR, ideally by an additional314

hyperparameter search. Even though an automated selection of network parameters could partially315

prevent retraining, the desired contribution of each modality is dependent on the study-specific316

analysis objective.317

In conclusion, we presented mvTCR as a model for analysing T cell repertoires in the context of318

infectious disease, tumors, and therapies. We envision that the integration of TCR and transcriptome319

via mvTCR will uncover hidden interdependencies between the two modalities and identify functional320

related T-cell sub-clusters, that would remain hidden in separate analysis of the T-cell response,321

thereby contributing to our understanding of T-cell modulation in healthy and disease.322

Code availability323

The software code including tutorials is available at https://github.com/SchubertLab/mvTCR. The324

code to reproduce the results of this manuscript can be accessed under https://github.com/Schub325

ertLab/mvTCR_reproducibility. All trained models used for this manuscript can be downloaded326

from Zenodo via https://doi.org/10.5281/zenodo.7215447.327

Data availability328

All datasets used in this paper are publicly available. The 10x dataset (https://www.10xgenomics.329

com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profili330

ng, Section Application Note - A New Way of Exploring Immunity, accessed March, 7th, 2021), and331

the SARS-CoV-2 dataset (https://www.covid19cellatlas.org/index.patient.html, Section332

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2021.06.24.449733doi: bioRxiv preprint 

https://github.com/SchubertLab/mvTCR
https://github.com/SchubertLab/mvTCR_reproducibility
https://github.com/SchubertLab/mvTCR_reproducibility
https://github.com/SchubertLab/mvTCR_reproducibility
https://doi.org/10.5281/zenodo.7215447
https://www.10xgenomics.com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profiling
https://www.10xgenomics.com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profiling
https://www.10xgenomics.com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profiling
https://www.10xgenomics.com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profiling
https://www.10xgenomics.com/resources/datasets?query=&menu[products.name]=Single%20Cell%20Immune%20Profiling
https://www.covid19cellatlas.org/index.patient.html
https://doi.org/10.1101/2021.06.24.449733
http://creativecommons.org/licenses/by/4.0/


COVID-19 PBMC Ncl-Cambridge-UCL, accessed February, 2nd, 2022) were downloaded from the333

linked repositories as described in their original publication. The Fischer dataset can be accessed via334

NCBI GEO under the accession number GSE171037. The samples contained in Borchdering dataset335

stem from a collection of studies. A processed version of this data was downloaded as described in336

https://github.com/ncborcherding/utility/tree/dev from TIL (accessed December, 20th,337

2021).338
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Methods354

mvTCR355

mvTCR was trained on paired single-cell TCR sequences and RNA-seq datasets. A dataset D =356

{(xi
TRA,x

i
TRB,x

i
RNA)}Ni=1 consists of xi

TRA and xi
TRB representing the α- and β-chain of the TCR357

and xi
RNA indicating the expression for each cell i. xi

TRA ∈ Zseq and xi
TRB ∈ Zseq contain the amino358

acid sequence of the highly variable CDR3. Both sequences are tokenized and zero-padded to the359

maximal sequence length seq present in D. In the following, xi
TRA and xi

TRB are summarized as360

xi
TCR when both chains are considered. xi

RNA ∈ Rgenes comprises the 5,000 most highly variable361

gene, whose read counts were normalized and log1p-transformed.362

mvTCR encodes the TCR sequences xi
TRA and xi

TRB via the two encoder ETRA and ETRB, respec-
tively, to obtain the lower-dimensional representations:

hi
TRA = ETRA(x

i
TRA) and (1)

hi
TRB = ETRB(x

i
TRB) (2)

of size h/2. Both representations are then concatenated to form the TCR embedding hi
TCR. Similarly,363

xi
RNA is transformed via the encoder ERNA to the embedding:364

hi
RNA = ERNA(x

i
RNA) (3)

of size h. Next, both embeddings are combined via different versions of the mixture model M leading365

to the shared latent distribution:366

q(zijoint|hi
RNA,h

i
TCR,M) (4)

of size h. All downstream analysis and benchmark tests were performed on zijoint. The networks
DRNA, DTRA, and DTRB decode the embeddings to the reconstructions:

x̃i
RNA = DRNA(z

i
joint), (5)

x̃i
TRA = DTRA(z

i
joint), and (6)

x̃i
TRB = DTRB(z

i
joint). (7)

Network Structure367

mvTCR consists of several networks, specifically, the encoders and decoders for TCR and transcrip-368

tome, and different variants of the mixture module for fusing both modalities.369

RNA networks: Following [13, 14], ERNA uses the architecture of a multi-layer perceptron. Each370

layer was build by a block containing a fully connected layer, followed by batch-normalization371

[52], leaky ReLU activation, and a dropout layer [53]. Via a linear layer, the output was372

transformed to h. DRNA similarly consisted of these blocks with a final layer with linear373

activation function obtaining the original input size of 5,000 genes.374

TCR networks: Based on its performance on sequence data in Natural Language Processing, we375

employed the transformer architecture [54] for extracting features from xi
TRA and xi

TRB via the376

encoders ETRA and ETRB. The output of each encoder was transformed, separately, via a fully377

connected layer with linear activation function to h/2. While ETRA and ETRB followed the378

same architecture, they did not share their weights, to allow each network to focus on unique379

features of their respective input. The shared representation zijoint was up-sampled via a fully380

connected linear layer, before yet again transformer blocks were used for the decoding networks381

DTRA and DTRB. Finally, a linear layer with softmax activation function reconstructed the382

amino acid sequence.383
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For fusing the two modalities, three different versions of the mixture models M were implemented.384

Additional, models trained on either the transcriptome or the TCR modality were used as a unimodal385

baseline model.386

Concatenation: hi
RNA and hi

TCR are concatenated to a representation of size h ∗ 2, which is387

passed to an additional shared encoding network Ejoint. This network consists of the same388

blocks described above and estimates the mean µ and standard deviation σ of the normal389

distribution q(zijoint|hi
RNA,h

i
TCR) from which zjoint is sampled via the reparameterization390

trick [55]. Note, that µ is used for all downstream analysis throughout this paper.391

Product of Experts (PoE): Contrary to the concatenation model, PoE uses additional encoder392

networks E1 and E2 to obtain mean (µ1 and µ2) and standard deviations (σ1 and σ2) for each393

modality, individually, resulting in the latent distributions q(ziRNA|xi
RNA) and q(ziTCR|xi

TCR).394

zijoint is sampled via the reparameterization trick from the product of these distributions. µ395

and σ can be calculated from its closed form solution396

q(zijoint|ziRNA, z
i
TCR) = p(z)

∏
m

q(zim|xi
m) ∀ m ∈ [TCR, RNA], (8)

where p(Z) is an univariant Gaussian prior with zero-mean [15]. To motivate the linkage of397

knowledge between both modalities, the reconstruction was calculated from the shared as well398

as the modality-specific latent distribution by the same decoder.399

Mixture of Experts (MoE): As the PoE, MoE calculates individual latent distribution, which are400

then both used to reconstruct each modality. This forces the encoder networks to have similar401

predictions for TCR and transcriptomic input [16]. For downstream analysis, the average of402

both distributions403

q(zijoint|ziRNA, z
i
TCR) =

1

2

∑
m

q(zim|xi
m) ∀ m ∈ [TCR, RNA], (9)

is used. If not stated otherwise, this mixture module was used throughout this paper.404

Unimodal models: An encoding network of fully connected blocks described above estimated the405

mean µ and standard deviation σ of the normal distribution q(ziRNA|hi
RNA) or q(ziTCR|hi

TCR)406

from hi
RNA or hi

TCR, respectively. The reconstruction was calculated from the sampled ziRNA407

or ziTCR.408

Conditioning409

To integrate query datasets into a trained reference atlas model, we followed a similar approach as410

Lotfollahi et al. [14]. First, the model is trained on the samples from the atlas datasets to build a411

reference model. Since the reference atlas may consist of multiple different studies, batch effects can412

occur between those. To counter batch effects, mvTCR is conditioned towards the studies. Since the413

MoE mixture module is used in our experiments for query to reference atlas mapping, we describe414

the procedure for this version of the mixture model only. Let cj,atlas be a trainable embedding of415

dimensionality Dc for each atlas study j representing the difference between studies. For each cell i416

the corresponding conditional embedding is concatenated to the hidden representations hi
RNA and417

hi
TCR before calculating the individual latent distributions. Similarly, the same embedding cj,atlas418

is concatenated towards the individual latent representations ziRNA and ziTCR before passing them419

into the corresponding decoders. After the training converged for the reference dataset, the query420

is integrated using architectural surgery [14]. All parameters of the reference model are frozen and421

embeddings cj,query for the new query studies are randomly initialized. Only these embeddings422

cj,query are trained on the new query datasets. This procedure reduces the number of parameters to423

be trained by multiple orders of magnitudes while preventing catastrophic forgetting.424
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Training425

The models are trained on the weighted sum of reconstruction losses encouraging the conservation426

of the input data and regularization losses, which shaped the properties of the latent distribution.427

Ltotal = LRNA(x
i
RNA, x̃

i
RNA) + λ1LTCR(x

i
TCR, x̃

i
TCR) + λ2LKLD, (10)

where428

LRNA =
1

N

N∑
i

(xi
RNA − x̃i

RNA)
2 (11)

is the mean squared error, and429

LTCR = − 1

N ∗K ∗ P

N∑
i

P∑
p

K∑
k

xi,p,k
TCR log x̃i,p,k

TCR (12)

the Cross Entropy loss over the sequence encodings for each cell i over each amino acid label k per430

position P in the TCR. The Kullback-Leibler divergence loss431

LKLD = KL[q(z|xRNA,xTCR))|p(z)] with p(z) = N (0, 1) (13)

constrains the latent distribution to resemble a univariant, zero-mean Normal distribution and is432

applied to all latent distributions of the respective mixture model. The loss is minimized by the433

ADAM optimizer with the learning rate as a hyperparameter [56]. The datasets is split into different434

subsets before training the model. The loss function Ltotal is reduced by optimizing all subnetworks435

of the model jointly on the training data until the validation loss stops decreasing for 5 epochs or a436

maximum of 200 epochs is reached. Since datasets often contained highly expanded clonotypes, the437

TCR encoder and decoder focuses on over-represented sequences. Therefore, we oversample cells with438

low-frequency TCRs in the training set of the joint and TCR models by sampling with a probability439

440

pct =
wct∑

j∈CT wj
with wct = log(

nct

10
+ 1)−1 (14)

for each clonotype ct from the set of all clonotypes CT .441

For benchmarks (Fig. 1c-f, Supplementary Fig. 3), an additional test set of 20% was used to evaluate442

the performance on unobserved data. Training, validation, and test sets were constructed randomly443

on a clonotype-level, i.e., cells with the same TCR input sequence were exclusively contained in a444

single subset.445

For evaluating atlas-level integration (Fig. 3a-c), two studies [39, 40] containing cells from lung446

cancer patients were held out of the accumulated dataset and 20% of the remaining data was used447

as validation set.448

To compare the running times with other multimodal methods (Fig. 3d), mvTCR was trained on449

random subsets. Again 20% of data was used as validation set to measure the time for evaluation450

calculations. Since the model converged after 20 epochs on the full dataset, this number was held451

constant over all subsets, i.e., no early stopping was performed.452

Hyperparameter Optimization453

To select the best model structure, we perform optimization of all hyperparameter of the architecture454

via Optuna [57]. Depending on the information available, different performance metrics are optimized455
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to obtain the best model over different training runs. When cell-level epitope specificity information456

is available (10x dataset), the models are evaluated by their ability to capture specificity in the457

embedding. Specifically, the weighted F1-Score for predicting epitope specificity via a kNN classifier458

(k=5) is evaluated between training (atlas) and validation (query) set. For the remaining datasets,459

the models are optimized on how well they preserve cell type and clonotype measured by consistency460

of their label in the embedding within the validation set. Here, the weighted F1-Score is calculated461

for predicting both annotations by its nearest neighbor. Finally, the models are optimized towards462

maximizing a weighted sum of clonotype and cell type preservation, which further enables us to463

determine the dataset-specific degree to which the shared embedding is influenced by each modality.464

Models on all datasets were optimized for 48 GPU-hours, except on the TIL dataset, where the465

training time was increased to 96 GPU-hours due to the dataset size. All results, were obtained from466

the best performing model on these performance metrics.467

Avidity Prediction468

A prediction head is fitted to predict the pMHC tetramer read counts ai of the most abundant eight469

epitopes in the 10x dataset. This additional neural network consists of the fully connected blocks470

with an exponential activation layer. Using the mean squared logarithmic error471

LMSLE(a
i, ãi) =

1

N

N∑
i=0

(log(ai + 1)− log(ãi))2 (15)

between the ground truth and the predicted avidity ãi the models are trained with ADAM optimizer472

and early stopping (patience of 10). The hyperparameters are optimized by Optuna on 100 training473

runs.474

Benchmarks475

We compare the different multi- and unimodal models of mvTCR and tessa with the following476

metrics:477

F1-Score: the performance for predicting cell-level labels with a k-nearest neighbour classifier is478

evaluated by the harmonic mean between precision and recall. To aggregate performance over479

all labels L, the F1-Score480

F1 = 2 ∗
∑
l∈L

nl

N
∗ precision ∗ recall
precision+ recall

(16)

is weighted by the class support. This metric is applied for predicting antigen specificity on481

the 10x dataset and for cell type, tissue source, and tissue on the TIL dataset.482

Normalized Mutual Information (NMI): The NMI is used to compare the overlap between483

clusters C in the shared embedding and cell labels L via484

NMI (L,C) =
2 ∗ I(L,C)

H(L) +H(C)
, (17)

which normalizes the mutual information I(L,C) by the entropies H(L) and H(C). To derive485

clusters in the latent space, Leiden clustering is applied for different resolution factors (0.01,486

0.1, 1.0) and the maximal NMI value between labels and annotation is reported. The NMI487

is reported for evaluating clustering of antigen specificity in the 10x dataset, cell type, and488

reactive clonotypes in the Fischer dataset. On the TIL dataset the cancer type, tissue source,489

and the cell type is used as labels. The best performing resolution out of (0.01, 0.03, 0.1, 0.3,490

1.0, 3.0) is used for each label individually.491
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Mean Squared Logarithmic Error (MSLE): Following Fischer et al. [58], the MSLE as des-492

cribed in Eq. 15 is used to evaluate the prediction of avidity counts in the 10x dataset.493

R2-Score: The Coefficient of determination (R2-Score) between log1p-transformed network output494

and avidity counts is used as an additional metric for evaluating predicting binding strength495

on the 10x dataset.496

Graph Connectivity Score: The graph connectivity score quantifies how well cells of the same497

biological label l ∈ L are connected in the kNN graph on the embedding space. Following498

Luecken et al. [59], this metric is calculated as499

GC =
1

|L|
∑
l∈L

|LCC(subgraphl)|
|l|

, (18)

where LCC(subgraphl) indicates all cells within the largest connected component of type l,500

|l| the number of cells from type l and |L| the number of labels. The average over all labels501

are taken and the metric ranges from 0 to 1. A score of 1 indicates that all cell of type c are502

connected within one kNN graph.503

Adjusted Random Index: The ARI compares the overlap of predicted clusters and biological504

labels. It assesses both correct overlaps and simultaneously counting correct disagreements.505

Similar to the NMI score, we use Leiden clustering with the following resolutions (0.01, 0.03,506

0.1, 0.3, 1.0, 3.0) and retain the resolution with the best ARI on the labels - cancer type, tissue507

source, and the cell type.508

Average Silhouette Width: This score measures the average distance in embedding space of509

one cell to all other cells, while distinguishing between cells of the same and different types.510

Following Luecken et al. [59] the score is normalized to range between 0 and 1, where 1511

indicates that cells are well clustered within each type and separated from clusters of other512

types. Biological signals should be conserved after integration, hence, a score of 1 is desired.513

Again, on the TIL dataset the cancer type, tissue source, and the cell type is used as labels. On514

the other hand, for batch effect correction, individual studies should be as indistinguishable515

as the biological variation allows. Therefore, Luecken et al. modified the calculation, so that 1516

represents a perfect overlap of batches [59]. In the experiment, each data source is treated as517

a unique batch.518

Benchmarking tests are performed under the following settings:519

10x dataset: Optuna optimized the hyperparameters for predicting kNN-prediction of antigen520

specificity. The model is retrained and evaluated on dataset splits on five different seeds during521

the benchmark tests (Fig. 1c, Supplementary Fig. 3a) to enable statistical testing. The avidity522

prediction (Fig. 1d, Supplementary Fig. 3b) is conducted on the same training, validation, and523

testing splits as indicated above.524

Fischer dataset: as for the 10x dataset, the models are trained five times on different dataset splits525

(Fig. 1e). The hyperparameter are adapted via Optuna to preserve cell type and clonotype at526

a ratio of one-to-one.527

Comparison to tessa : We evaluate the performance of mvTCR against tessa as a baseline model528

(Fig. 1f, Supplementary Fig. 3c). However, tessa takes the CDR3β sequence as sole input529

of the TCR. Therefore, we retrain mvTCR without the CDR3α sequence for the 10x and530

Fischer dataset to avoid the advantage of additional information. Here, we directly use hi
TRB531

as hi
TCR instead of concatenating it with hi

TRA. In this setting, we consider clonotypes as cells532

with identical CDR3β sequence to avoid the same TCR information in the different subsets533

of the data. The remaining training follows the description above. After applying the tessa534

algorithm, kNN predictions are evaluated on the resulting weighted TCR embedding. The535

cluster annotation provided by tessa is evaluated using the NMI-based metrics.536
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Query to reference mapping: Since the MoE model worked best, we compared this variant with537

and without architectural surgery [14] on the TIL dataset. Both are optimized using Optuna538

to determine the best hyperparameter sets to preserve cell type and clonotype with a ratio of539

10 to 1.540

Runtime vs dataset size: In this experiment, we compare the runtime of mvTCR with two541

concurrent methods integrating gene expression and TCR information - tessa [9] and CoNGA542

[8] on a computer with 2x Intel Xeon Gold 6226R (in total 32 Cores), 256 GB RAM, and543

1 Nvidia Tesla V100. The same subsets of the full TIL dataset are used for all experiments.544

We first determined the number of training epochs needed for mvTCR to converge on the545

full dataset and keep this number (20 epochs) constant over all subsets and no early stopping546

was performed. The runtime corresponds to the training time for 20 epochs without counting547

the preprocessing and inference time. Similarly for tessa and CoNGA, we also excluded the548

preprocessing time. The time for tessa is counted from running the BriseisEncoder and tessa549

clustering. CoNGA is run as provided in their example script and the runtime as defined by550

the original authors is logged.551

Datasets552

10x dataset: The dataset for all four donors was downloaded from 10x Genomics under the section553

Application Note - A New Way of Exploring Immunity. Following [44], we performed quality554

control using Scanpy [60], which can shortly be described as following: to remove lysed and555

dying cells, we filtered cells exceeding a fraction of 20% mitochondrial reads. Additionally, we556

only considered cells within the span of 1,000-10,000 reads counts with a minimum of 500 genes557

per cell. Genes reported for less then 10 cells were removed from the dataset. Doublets were558

filtered using Scrublet at a threshold of 0.05 [61]. The gene expression data was normalized to559

10,000 reads per cell, followed by log1p-transformation and the reduction to the 5,000 most560

highly variable genes. Additionally, the specificity annotation suggested in the publication note561

was added. All cells not expressing a full TCR consisting of one α- and β-chain were remo-562

ved from the datasets since mvTCR requires paired information. To ensure correct matching563

between TCR and specificity in our benchmark data, we further removed all cells expressing564

multiple TCRs. A clonotype ID was assigned grouping cells with identical α- and β-chain. For565

better quantification during the benchmark studies, this dataset was reduced to T cells with566

reported binding to the most abundant eight antigens excluding non-binders. The cytotoxicity567

score (Fig. 1b, Supplementary Fig. 1 and 2), was calculated by the mean of the normalized568

marker genes described in [18].569

Fischer dataset: The filtered, normalized, and log1p-transformed dataset of Fischer et al. [6] was570

downloaded from NCBI GEO. Cells with missing α- or β-chain were removed from the dataset.571

Clonotypes were assigned for the remaining cells. Finally, we selected the 5,000 most variable572

genes for training mvTCR.573

SARS-CoV-2 dataset: We obtained the SARS-CoV-2 dataset from the Covid19 Cell Atlas under574

the section COVID-19 PBMC Ncl-Cambridge-UCL and manually joined transcriptomic data575

with TCR information. Quality control, normalization, and log1p-transformation was already576

performed in the original publication. We reduced the dataset to the 5,000 most variable genes,577

filtered for incomplete TCRs, and assigned the clonotype. The models were selected to equally578

preserve cell and clonotype. The database query of TCRs to the IEDB (Fig. 2d) was performed579

via Scirpy version 0.10.1 [62] using the Levenshtein distance with threshold 1. For predicting580

HLA binding affinity to the resulting epitopes, we used MHCFlurry 2.0 with a threshold of581

500 nM [25]. The IFN response score was calculated as the mean of the normalized marker582

genes described in Szabo et al. [18]. CD8+ effector T cell clusters with elevated IFN response583

were assigned as antigen-specific, if more than 5% of the cluster’s cells and more than 50% of584

the epitope matches of the cluster stemmed from SARS-CoV-2 variants. Similarly, bystander585

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2021.06.24.449733doi: bioRxiv preprint 

https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5Bfacets%5D%5B0%5D=chemistryVersionAndThroughput&configure%5Bfacets%5D%5B1%5D=pipeline.version&configure%5BhitsPerPage%5D=500&menu%5Bproducts.name%5D=Single%20Cell%20Immune%20Profiling
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171037
https://www.covid19cellatlas.org/index.patient.html
https://doi.org/10.1101/2021.06.24.449733
http://creativecommons.org/licenses/by/4.0/


clusters were defined as exceeding these thresholds with non-Covid related epitopes. Differential586

gene expression was calculated between antigen-specific and bystander clusters via a t-test with587

Benjamini-Hochberg correction using scanpy. Only genes with an adjusted p-value smaller 5%588

and a log-fold change greater 0.25 were reported.589

Tumor-Infiltrating Lymphocyte dataset: The Tumor-Infiltrating Lymphocyte (TIL) dataset590

consisted of a collection of studies, which were downloaded as described under https://gi591

thub.com/ncborcherding/utility/tree/dev. Transcriptome and TCRs were manually592

merged and cells without complete TCR were filtered. Additional, annotated doublets and593

genes present in less than 100 cells were removed. The data was normalized to 10,000 counts per594

cell, log1p-transformed, reduced to 5,000 most variable genes, and annotated with clonotype.595

After filtering, the dataset contained 722,461 T cells.596
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Supplementary Figures732

Supplementary Figure 1 | Embeddings for 10x Genomics donor 1. UMAP visualisations of the
embeddings from different uni- and multimodal models colored by epitope specificity, ten largest clonotypes,
and a cytotoxicity score as an example of cell state.
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Supplementary Figure 2 | Embeddings for 10x Genomics donor 2. UMAP visualisations of the
embeddings from different uni- and multi-modal models colored by epitope specificity, ten largest clonotypes,
and a cytotoxicity score as an example of cell state.
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Supplementary Figure 3 | Quantitative evaluation for 10x Genomics donor 1. Statistical signifi-
cance to the corresponding uni-modal embedding is calculated via one-sided, paired t-test (p-values: *<0.5,
**<0.01, ***<0.001). The boxplot represents the quartiles and median line, while the whiskers extend to the
full value range excluding outliers. a, Comparison of uni- and multi-modal models for capturing of specificity
by atlas-query prediction (weighted F1-Score) and clustering (Normalized Mutual Information). b, Compa-
rison of uni- and multi-modal models for avidity prediction measured by mean squared logarithmic error and
R2 value. c, Comparison between MoE embedding trained only on gene expression and CDR3β and tessa on
the tasks defined in b.

Supplementary Figure 4 | Embeddings of the RNA-model on the SARS-CoV-2 dataset. UMAP
visualation colored by cell type (a), patient status (b), clusters of CD8+ T cells defined on the MoE-embedding
(c), and IFN response score (d).
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Supplementary Figure 5 | Embedding of the TIL dataset without scArches. UMAP visualizations
of the joint embedding colored by cancer tissue, tissue type, and query vs. reference set.
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Supplementary Data 1 | Benchmarking results. Quantitative evaluation and statistical ana-733

lysis of the models’ performance on the 10x dataset (both donors) and the Fischer dataset between734

the unimodal and multimodal models, and tessa.735

Supplementary Data 2 | Cluster selection on the SARS-CoV-2 dataset. Statistical analysis736

of the IFN response score across clusters and similarity of transcriptome and TCRs of CD8+ T737

effector cells within selected clusters.738

Supplementary Data 3 | HLA annotation for the SARS-CoV-2 dataset. Information about739

HLA type for each donor in the SARS-CoV-2 dataset.740

Supplementary Data 4 | IEDB-based Epitope Query for selected clusters of the SARS-741

CoV-2 dataset. Pairs of TCRs and epitopes from selected clusters of the SARS-CoV-2 dataset742

derived from a database query to the IEDB.743

Supplementary Data 5 | DEG analysis of CD8+ T effector cells in the SARS-CoV-2744

dataset. Log-fold change, p-values, and adjusted p-values of the genes comparing disease-specific745

and bystander clusters in the SARS-CoV-2 dataset.746
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