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ABSTRACT

Background An increasing number of studies now produce multiple omics measurements that require
using sophisticated computational methods for analysis. While each omics data can be examined
separately, jointly integrating multiple omics data allows for a deeper understanding and insights to be
gained from the study. In particular data integration can be performed horizontally, where biological
entities from multiple omics measurements are mapped to common reactions and pathways. However,
data integration remains a challenge due to the complexity of the data and the difficulty in interpreting
analysis results.
Results Here we present GraphOmics, a user-friendly platform to explore, integrate multiple omics
datasets and support hypothesis generations. Users can upload transcriptomics, proteomics and
metabolomics data to GraphOmics. Relevant entities are connected based on their biochemical
relationships, and mapped to reactions and pathways from Reactome. From the Data Browser in
GraphOmics, mapped entities and pathways can be ranked, sorted and filtered according to their
statistical significance (p-values) and fold changes. Context-sensitive panels provide information
on the currently selected entities, while interactive heatmaps and clustering functionalities are also
available. As a case study, we demonstrated how GraphOmics was used to interactively explore
multi-omics data and support hypothesis generations using two complex datasets from existing
Zebrafish regeneration and Covid-19 human studies.
Conclusions GraphOmics is fully open-sourced and freely accessible from https://graphomics.
glasgowcompbio.org/. It can be used to integrate multiple omics data horizontally by mapping
entities across omics to reactions and pathways. Our demonstration showed that using interactive
explorations from GraphOmics, interesting insights and biological hypotheses could be rapidly
revealed.

Keywords omics integration · data exploration · visualisation · pathway analysis · reactome

Background

The availability of high-throughput technologies means many studies are increasingly producing large-scale untargeted
measurements of different biological entities, such as transcripts, proteins and metabolites. Combining the diverse
set of omics data produced from different measurement platforms is often required as the initial step of an integrated
analysis. Data integration has been shown to reveal stronger findings compared to analysing a single dataset alone, with
wide-ranging successes from studying the human microbiome to identifying cancer biomarkers Misra et al. [2019],
Lloyd-Price et al. [2019], Vasaikar et al. [2018].

Omics integration approaches can be divided into two types: vertically where integration is performed by using multiple
omics data from the same biological sample; and horizontally where the integration is performed by mapping shared
or related entities from different biological samples Jendoubi [2021]. One popular approach to vertical integration
is through matrix factorisation. This includes methods such as Canonical Correlation Analysis (CCA) that finds
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canonical variables maximally correlated to each other from the different omics data, as well as data fusion via
tri-matrix factorisation Žitnik and Zupan [2014] that considers the relations and constraints across and within omics,
and decomposes the data into low-rank matrices that reveal hidden associations. Another example is Multi-Omics
Factor Analysis (MOFA) Argelaguet et al. [2018] that provides a Bayesian model and a robust inference scheme to
factorise omics data into latent factors explaining the main variations in the data.

During vertical integration, often it is required for different omics measurements from the same sample to be matched.
However in some instances, existing data cannot be matched in this manner, since not all omics types were measured or
due to other limitations in the study. Horizontal integration offers an alternative scheme, where integration is performed
by mapping shared or related entities from one omic dataset to another without requiring for samples to be aligned.
Instead biological pathways could serve as the shared context onto which entities are mapped.

In recent years, Web-based tools to perform horizontal integration using pathways have been gaining popularity.
For example MetaboAnalyst Pang et al. [2021], considered one of the most popular online tools in metabolomics
at the time of writing, provides a functionality to map genes and metabolites to metabolic pathways and performs
pathway enrichment analysis. Another example is 3Omics Kuo et al. [2013] which accepts human-only transcriptomics,
proteomics and metabolomics datasets and perform pathways mapping as well as other analyses such as correlation and
gene ontology (GO) analyses. Finally PaintOmics3 Hernández-de Diego et al. [2018] performs a complete integration
of multiple data types to KEGG pathways, allowing for the enrichment and clustering analyses of pathways, as well as
network visualisation.

Despite this abundance of tools, data integration remains a challenge due to the complexity of the data, and the difficulty
in relating analysis results to biological interpretations. A common approach employed by many tools is to present
analysis outcome as a complex network graph Pang et al. [2021], Kuo et al. [2013], Hernández-de Diego et al. [2018],
Cottret et al. [2010]. Networks are visually appealing as unstructured results can be easily rendered as a graph having
nodes and edges. Nodes represent different biological entities, while the relationships between nodes can be flexibly
represented by edges that capture different interactions between the nodes. However the complexity of a typical
multi-omics study means networks can quickly grow to a large size, having numerous nodes and edges. When biologists
are presented with a ‘hairball’ network, deciphering biological meaning and generating hypothesis from such outputs
can be challenging Schulz and Hurter [2013]. A similar challenge is also faced in interpreting analysis results presented
as long and static (non-interactive) tables.

Here we introduce GraphOmics, a Web application that accepts measurements of transcripts, proteins and metabolites
and perform data integration horizontally using Reactome Croft et al. [2014] as the graph knowledge base. GraphOmics
provides an interactive platform that integrates data to Reactome pathways emphasising interactivity and biological
contexts. This avoids the presentation of the integrated omics data as a large network graph or as numerous static tables.
Instead each biological entity is mapped onto Reactome reactions and pathways using biochemical knowledge, and
presented in the context of their relationships to other related entities. Interactive explorations of linked entities form
the centrepiece of GraphOmics, where selecting an entity will display other entities related to it. Further analyses such
as gene ontology enrichment and pathway analysis spanning multiple -omics data can be performed. Finally biological
conclusions can be annotated in GraphOmics and the results shared to others.

Implementation

Figure 1 provides a diagram of overall GraphOmics functionalities. An initial data loading step is performed to get
measurements of entities into GraphOmics. As part of data loading, the Reactome database is used for mapping
of the biological entities (transcripts, proteins and metabolites) in the uploaded data onto reactions and pathways
from Reactome. Once data loading is completed, users can perform various global analyses, including differential
analysis, pathway activity enrichment, principal component analysis (PCA), clustering and uni-variate statistical tests
for differential analysis. To assist in data interpretation, mapped results are shown in multiple interactive tables that are
linked to each other. Selecting an entry in one table will filter entries in other related tables. Groups of related entities
can also be created and analysed within GraphOmics.

Overall system design

GraphOmics is a Web-based system developed using open-source technologies. The client (browser) side is built upon
HTML & Javascript, while charting functionalities are provided through libraries such as D3 and Plotly. The server side
runs on Django 2 Web framework and the Python 3 programming language. Common statistical methods such as t-tests
and PCA are implemented using the numpy and scipy libraries in Python, while differential analyses using DeSEQ2
[Love et al., 2014] and limma [Smyth, 2005] are provided through R. An SQLite database is used to store relational
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Figure 1: Overall GraphOmics functionalities. Horizontal integration is performed in GraphOmics by mapping
transcripts, proteins and metabolites to Reactome’s reactions and pathways. From the platform, global analyses can be
performed and data interpreted in in an interactive manner.

data. A local copy of Reactome knowledge base [Croft et al., 2014] is downloaded and accessed from the Django Web
application through a Neo4j graph database.

Data loading and mapping

To begin analysis, users upload their transcripts, proteins or metabolites data to GraphOmics. Uploaded data are
provided as matrices in a Comma-separated Value (CSV) format, where rows in the matrix are the entity IDs, columns
are the samples, and entries are the measurements. Additionally users can also include the results for any statistical test
that has been performed outside GraphOmics, in form of fold-changes and statistical significance (p-values) of entities.

To facilitate mapping, GraphOmics requires each row in the CSV file to be labelled with the appropriate ID for that
entity type. For transcripts, the Ensembl ID of the gene that produces the transcript should be used. For protein data,
the UniProt ID of the protein is required. Finally for compound data, the KEGG or ChEBI IDs of the compounds are
accepted. Additionally users also provide the sample names and a design matrix specifying the assignment of samples
to experimental conditions (refer to Supplementary S1 for details on the input format).

Horizontal integration of the uploaded data is performed through an automated mapping procedure written in Cypher
(the graph query language used in Neo4j). This retrieves the connections between transcripts, proteins, metabolites
to reactions and pathways of the given species in Reactome, constructing a network graph of entities, reactions and
pathways involved in the dataset. Entities in this network graph are connected to one another: transcripts are linked to
the proteins they encode, proteins and compounds are linked to the reactions they are involved in, and reactions are
linked to the pathways that contain them. Once the initial mapping is completed, the results are stored in the SQLite
database and presented to users in the Linked Data Browser.
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Multi-Omics Data Interpretation

Linked Data Browser

The Data Browser is the primary interface in GraphOmics that facilitates linked exploration of the integrated data.
Instead of presenting an often-massive network graph, the main components of the Data Browser are five interactive
tables: one for each supported omics type (transcripts, proteins and metabolites) as well as for reactions and pathways
(Figure 2).

Users interact with the Data Browser by navigating through the tables. Clicking an entity in the Data Browser selects it,
and multiple entities can be selected in this manner. Selections from one table will filter entries in other tables, such
that only connected items are shown according to the links between entities. As more entities are added to the current
selection, the number of entities displayed across tables are reduced to meet the filtering criteria.

In this manner, users can explore the data starting from a global view where all entities are shown, and successively
narrowing down to more specific entities that are related to the selected items. This ‘drill-down’ interactivity in the
Data Browser could help reveal the relationships among biological entities of interest and their reactions and pathways
across omics.

Contextual Information Panel

Selected entries in the Data Browser are also associated to contextual information under each table (Figure 3). This
includes plots of the measurements of that entity across conditions as well as links to external databases (Figure 3A,B).
For transcripts, the Harmonizone Web service [Rouillard et al., 2016] is used to retrieve additional description for
the gene, as well as links to Ensembl and GeneCard. For proteins, the name, catalytic activity, pathways, gene
ontology terms, and links to Uniprot and Swiss-Model of the currently selected proteins are displayed. For compounds,
information on the KEGG and CheBI IDs, formula and SMILES string, as well as links to their respective databases,
and also compound structures are retrieved. For reactions and pathways, a desriptive summary is displayed by querying
Reactome (Figure 3C). Additionally an interactive pathway viewer utilising the Reactome Pathway Diagram Viewer
(DiagramJS) is also available (Figure 3D). Measured values of transcripts, proteins and metabolites can be overlaid on
top of the interactive pathway diagrams.

Ranking and Filtering

All interactive tables in the Data Browser allow entities to be ranked and sorted according to their fold changes and
p-values. This can be used to explore the most significantly changing entities across omics that are differentially
expressed (DE). In conjunction with linked interactions, the interface allows users to easily navigate through the top DE
entities from one omics and inspect if they are linked to DE entities from other omics. Entities are also connected to
pathways, which can be subjected to enrichment analysis within GraphOmics. In this manner, users can easily rank DE
entities and determine which enriched pathways they are connected to. Additionally the Query Builder in GraphOmics
allows for complex queries to be defined on the data (Figure 4). From the Query Builder, a query can be defined using
comparison operators to filter entities by their p-values and fold changes. Queries spanning multiple omics data can
also be defined by concatenating (performing a logical AND operation) of each constituent single-omics query.

Creating and Analysing Groups

GraphOmics allows for any set of entities that have been selected by users to be saved as a selection group. These
groups can later be loaded for future use. A group of related entities (for instance the top DE entities, or members
of a cluster or some pathways of interest) can be defined, saved and loaded for future analysis. Selection groups can
be easily visualised and plotted. For transcriptomics data, gene ontology analysis can be performed using the Python
package GOATools [Klopfenstein et al., 2018] to discover enriched GO terms associated with a group. Additionally
interactive heatmaps and clustering analysis using Clustergrammer can also be performed on any group. Finally users
can annotate groups on the GraphOmics platform for reporting purposes.

Global Analysis of Multi-Omics Data

Differential Expression Analysis

A common task in omics data analysis is to find entities that are differentially expressed (DE) across different
experimental conditions. If users have performed their own DE analysis, the statistical significance (p-values) of entities
could be uploaded as part of data loading process. Otherwise from the Inference page in GraphOmics, users can execute
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Figure 2: Data Browser in GraphOmics. The Data Browser in GraphOmics facilitates linked explorations of multi-
omics data. Transcripts are linked to the proteins they synthesise. Proteins and metabolites are linked by reactions they
are involved in. Reactions in turn are linked to Pathways that contain them. Entries in all tables can be selected by
clicking on them. Selections are used to filter entries in other linked tables. Multiple tables can be selected in turn
to define a flexible filtering criteria. For example, selecting the three pathways (Selection 1) will filter for reactions,
proteins, metabolites and transcripts that are connected to the selected 3 pathways. If the user subsequently select two
metabolites (Selection 2) from the filtered results, the results are further filtered to include only transcripts, proteins
and reactions connected to the two selected metabolites under the 3 initially selected pathways. Each table can also be
searched, sorted and filtered according to their fold changes and p-values. Blue circles next to the entity name indicate
measured entities.

standard uni-variate t-tests (with Benjamini–Hochberg procedure for controlling the false discovery rate). Additionally,
widely-used methods such as DeSEQ2 and limma can also be run as an option. The resulting statistical significance
from performing DE analysis are shown in the interactive tables of the Data Browser, alongside the entity names and
measured values.

Interactive Clustering and Heatmap

Heatmap visualisation is performed using Clustergrammer [Fernandez et al., 2017], a Web component that integrates
interactive heatmap and hierarchical clustering to visualise high-dimensional biological data. Clustergrammer provides
many interactive features to explore a hierarchically clustered heatmap, including navigational features such as zooming
and panning, as well as filtering features to search and select entities.

The interactivity of Clustergrammer makes it suitable for integration with GraphOmics as it works in concert with
the Data Browser. Each omics type (transcripts, proteins and metabolites) in the Data Browser is associated to a
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(A)

(B)

(C)
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Figure 3: The Info Panel in GraphOmics. The info panel provides additional contextual information for selected
entries in the Data Browser. (A) An example info panel entry for the transcript identified by the gene Aldh1a2, as well
as (B) its measurements if available. Entities and pathways can be annotated by clicking on the Annotate button in the
Info Panel. (C) An example info panel entry for the Tyrosine catabolism pathway. Clicking the Show Pathway button
displays (D) an interactive pathway diagram via DiagramJS, with either Reactome ORA results or expression data
mapped onto it.

Figure 4: The Query Builder in GraphOmics. The Query Builder is used to filter entities of data tables by specifying
rules that will be concatenated using a logical AND operator. In this example, a query is constructed to filter for
transcripts and proteins that are both statistically significant (p-values less than 0.05) and having transcript fold changes
at least 0.5 both ways.
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Clustergrammer component (Figure 5). Clustergrammer was modified such that selecting entities in the Data Browser
also performs the same selection in the corresponding Clustegrammer component, and vice versa.

Transcripts 
(Clustergrammer)

Selection

Transcripts (cropped)

Proteins (cropped)

Metabolites (cropped)

Filters

Filters

Selects

Transcripts (Data 
Browser)

Filters

Pathways

Proteins

Reactions

Metabolites

Other tables in the 
Data Browser

(A) (B)

(C)

(D)

(E)(F)

Figure 5: Clustergrammer Integration in GraphOmics. (A) Clustergrammer displays a hierarhically-clustered
interactive heatmap, where clusters can be selected at any level of the dendogram. For example, here we show an
example Clustergrammer component for the transcripts Zebrafish data. (B) Selecting a cluster in the Clustergrammer
will display a cropped view of that data. For example, here we show an example cropped Clustergrammer showing only
transcripts in the currently selected cluster. (C, D) Entities in related Clustergrammers are also filtered according to
their relationships to the selected entities. (E) Entities in the selected cluster are also selected in the corresponding Data
Browser table. (F) This in turn will filter other related tables in the Data Browser. The selection process can also be
performed in reverse such that selecting entities in the Data Browser also filters the linked Clustergrammers (going
backward from E to A in the diagram).

Clustergrammer integration means users can generate a heatmap and perform cluster analysis for any selections in
the Data Browser. For instance, this includes the ability to display the heatmap of entities in a pathway (or in several
pathways), or to discover the clusters of proteins and metabolites linked to top DE transcripts. The interaction also goes
the other way, such that selecting a cluster in Clustergrammer also selects its member entities in the Data Browser. This
allows users to examine the DE members of a cluster and their connections to reactions and pathways.

Principal Component Analysis

PCA can be used to assess the global similarity of samples across different conditions. In GraphOmics, PCA analysis
is created from the Inference page by selection the omics type and as the number of components to use. The results
from PCA analysis include plots of the projected samples for the first two principal components, as well as a scree
plot showing the percentage of variance explained by the different components. The latter plot can be examined to
determine how many components to retain for analysis.
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Pathway Activity Analysis

Enrichment of a pathway often suggest relevant biochemical activities happening in that pathway. In GraphOmics,
pathway activity analysis can be performed by considering a single omics dataset separately, or from multiple omics
datasets at once. To prioritise changing pathways in single omics data, we developed a Python library named
PALS [McLuskey et al., 2021] that presents a unified wrapper to the following algorithms: Over-representation
Analysis (ORA); Gene Set Enrichment Analysis (GSEA) [Subramanian et al., 2005]; and Pathway Level Analysis of
Gene Expression (PLAGE) [Tomfohr et al., 2005]. Originally developed for metabolomics, PALS was extended in
GraphOmics to be able to deal with transcripts and proteins data too.

The three pathway ranking methods in PALS represents a diverse approach to enrichment analysis. ORA is widely used
to assess the probability of over-representation of DE entities in a pathway using the Hypergeometric test. GSEA is
considered a ‘second-generation’ method that takes into account the correlation between sets of entities to assess DE
pathways. Finally PLAGE is a method based on singular value decomposition found to be best performing in [Tarca
et al., 2013] returning the highest detection of changing pathways.

From the Inference page, users can choose to run any of these methods on the GraphOmics server. For any of the
pathway ranking method, the p-values of significantly changing pathways are collected and displayed with pathway
names in the Data Browser. This lets pathways to be ranked, sorted and filtered in the same manner as entities.

Multi-Omics Pathway Activity Analysis

GraphOmics offers a way to perform pathway analysis separately on each omics, and integrate the results at the end.
The separate pathway analysis results run on different omics datasets can be combined with an AND operator in the
Query Builder. For instance from the Query Builder, users can easily filter pathways that are significantly changing
based on the transcripts AND proteins AND metabolites measurements.

For a different approach that considers multiple omics data together during analysis, users can run the Reactome
Analysis Service, which offers a high-performance multi-omics over-representation analysis using the Reactome server
[Fabregat et al., 2017]. The IDs of DE entities (across multiple omics) are selected according to a user-defined threshold
on the p-values, which defaults to ≤ 0.05. The collected IDs of DE entities is sent to Reactome Analysis Service, which
performs pathway analysis through ORA on the Reactome server. Analysis token is returned, and the results of DE
pathways and their p-values are retrieved in GraphOmics and displayed on the Data Browser for sorting and filtering.

Results

Comparison to Other Multi-Omics Systems

Table 1: A comparison of GraphOmics to other Web-based multi-omics systems.
Tool Database Omics Types Analysis Types Results Presentation

GraphOmics Reactome
- Transcripts
- Proteins
- Metabolites

- Pathway enrichment: ORA, GSEA,
PLAGE, Reactome Analysis Service
- GO enrichment

- Interactive tables
- Interactive pathway diagrams
- Interactive heatmaps
- Interactive clustering

MetaboAnalyst KEGG - Genes
- Metabolites - Pathway enrichment: ORA, Topology - Static tables

- Static pathway diagrams

3Omics KEGG
(human only)

- Transcripts
- Proteins
- Metabolites

- Correlation analysis
- Coexpression profiles
- Phenotype analysis
- Pathway enrichment (ORA)
- GO enrichment

- Static tables
- Static pathway diagrams
- Static heatmaps

PaintOmics3 KEGG

- Transcripts
- Proteins
- Metabolites
- DNase-seq
- miRNA-seq

- Pathway enrichment (ORA)
- Clustering of pathways

- Interactive tables
- Interactive pathway diagrams
- Interactive heatmaps

A comparison of GraphOmics to several other popular Web-based multi-omics systems, namely MetaboAnalyst [Pang
et al., 2021], 3Omics [Kuo et al., 2013] and PaintOmics3 [Hernández-de Diego et al., 2018], is provided in Table 1.
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All systems evaluated provide a functionality to map a list of identifiers and associated measurements to pathways.
GraphOmics relies on the Reactome database, while the others use KEGG. 3Omics is limited to the analysis of human
data only, while the other systems evaluated, including GraphOmics, can handle many species. All systems provide a
way to rank and prioritise relevant pathways using either single or multiple omics datasets. ORA appears to be the
most common method for ranking pathways, although MetaboAnalyst provides an option that considers the topology of
pathways during analysis. Additionally 3Omics provide many functionalities not directly related to pathways, such as
correlation analysis, that could be useful in revealing interesting biological entities.

Both MetaboAnalyst and 3Omics generate analysis results as static tables and graphs. The large amount of non-
interactive results produced by MetaboAnalyst and 3Omics could potentially be difficult for users to navigate.
PaintOmics3 could be considered closest to GraphOmics in interactive functionalities. Analysis results are pre-
sented in PaintOmics3 as a sorted interactive table or as a network graph of pathways, with nodes representing
significant pathways and edges drawn based on their linked biological processes. ‘Painting’ a pathway reveals additional
information for that pathway, including the pathway diagram and an interactive heatmap showing measured values.
PaintOmics3 also offers a novel analysis where pathways with similar trends can be clustered. Clustering results are
overlaid on the network graph to reveals groups of pathways with similar changes.

GraphOmics differs in several key aspects when compared to PaintOmics3: our interface allows data explorations to
begin from any entity of interests (for instance starting from the top DE transcripts), while in PaintOmics3 explorations
are centered around DE pathways as the starting point. The linked views in GraphOmics reveal the explicit individual
connections between all connected entities for easy inspections, while in PaintOmics3 these connections are summarised
as edges between pathways in the network graph. From the Information Panel, GraphOmics displays more contextual
information for each selected entity than PaintOmics3. Integration with Clustergrammer also means any clusters of
entities can be identified and visualised as heatmaps, and their connections to others displayed in the Data Browser.
This is a capability not present in PaintOmics3.

Zebrafish Case Study

Using a public Zebrafish dataset [Rabinowitz et al., 2017], we demonstrated how biological insights could be gained
through data integration and interactive explorations in GraphOmics. The aim of the original study was to uncover
relevant biomarkers that regulate patterned regeneration in Zebrafish fins. This process is regulated by positional
memory allowing cells to be regenerated at their previous locations before injury.

Data Loading and Pre-processing

The processed transcripts, proteins and metabolites data from the original study was retrieved. For each omics type,
a measurement CSV was created where rows corresponded to the entities and columns were the samples. Each row
was identified by a unique identifier column, with ENSEMBL gene ID, UniProt ID and KEGG ID used for identifying
transcripts, proteins and metabolites respectively. Positional memory is established by molecules that exist in a gradient
along the uninjured appendages, so the measured samples were divided into three experimental conditions according
the proximity in the fins where the sample was obtained: proximal, middle and distal (with proximal the closest to the
torso and distal the furthest). Following the original study, we focused on the comparison of distal-vs-proximal where
the largest differences could be seen.

CSV files for the multi-omics Zebrafish data was uploaded to GraphOmics. Automated mapping was performed by
GraphOmics, resulting in 8690 transcripts linked to 8010 proteins and 462 compounds across 6995 reactions and 1272
Reactome pathways. The original processed transcriptomics data already contained DeSEQ2 analysis results comparing
distal to proximal which were retained during upload and used as the DE results for the transcripts. This demonstrates
how additional analysis from an external workflow could be easily incorporated into GraphOmics.

Differential expression analysis is often used to highlight significantly changing entities that could be of biological
interests. From the original study, DE results were already available for the transcripts and so they were used. For the
protein and metabolite data, we employed limma to perform the DE analyses of proteins and metabolites. PLAGE
was used to perform DE analysis of pathways using each omics data separately as the input, resulting in different sets
of p-values for each pathway depending on the source data used. This was all performed from the Inference tab in
GraphOmics. All results from DE analysis in form of p-values and fold-changes (if available) are displayed in the Data
Browser alongside the entities.
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Interactive Omics Exploration of the Zebrafish Data

Here we showed how GraphOmics easily characterised the set of DE transcripts linked to DE proteins. This could be
used to identify the important transcripts and proteins that are involved in establishing positional memory of zebrafish.
The following query was formulated from the Query Builder: filter for transcripts and proteins with a threshold of
0.05 on the p-values, and having at least ±0.5 on the log fold changes of the transcripts (Figure 4). The results were a
selection of 87 transcripts and their corresponding proteins, as well as 21 compounds involved in reactions catalysed by
those proteins. Note that the automatic mapping approach in GraphOmics revealed 11 out of the 32 DE transcripts
linked to DE proteins in the original study in [Rabinowitz et al., 2017]. Among the DE transcripts found in agreement
with the original study were the gene aldh1a2 which catalyses the synthesis of retinoic acid, as well as muc5.2 found to
be retained in both uninjured and early stages of injuries. Both genes were hypothesised in the original study to be
involved in establishing positional memory in zebrafish.

To characterise important biological processes of the DE transcripts, a selection group consisting of the 87 transcripts
was created and subjected to gene ontology analysis using Goatools. Notably the GO term oxidation-reduction process
(GO:0055114) was found to be significantly-enriched in the top-4 GO results for biological processes (p-value ≤ 0.05).
Oxidation–reduction reactions are crucial for cell-growth and signalling and could play an important role in cellular
regeneration [Balaban et al., 2005]. Among the genes that contributed to this GO term were aldh1a2, as well as the
genes pah and hgd found in our results to be significantly changing in both the transcripts and protein levels. The
differential expressions of pah and hgd at the protein level are consistent with existing literatures [Saxena et al., 2012],
but from linked explorations, we observed that both pah and hgd were also DE at the transcript level. The results here
could be investigated to gain further insights into the regulation mechanism of those genes.

Inspecting the linked Clustergrammer heatmaps of the DE transcripts and proteins (Supplementary Figure S2), clear
block structures could be observed across the distally-enriched and proximally-enriched entities. These are the transcripts
and proteins that could potentially contribute to patterned regeneration in zebrafish tissues. The clustering structure
in the linked compounds are less clear, suggesting that the relationship between transcript and protein expression to
metabolism during regeneration is a complex process. For more details, refer to Supplementary Figure S2

Analysing Enriched Metabolic Pathways in Zebrafish

The original study [Rabinowitz et al., 2017] did not perform any pathway analysis. Using GraphOmics we investigated
which metabolites and pathways contribute to positional memory and possibly regeneration. The Query Builder was
used to filter for DE metabolites (as determined by limma) that are also linked to highly active pathways (as determined
by PLAGE). A threshold of ≤ 0.05 was used on the p-values of both DE metabolites and pathways. This resulted in 45
DE metabolites spread across 57 DE pathways, listed in Supplementary Table S3. Among the significant pathways of
interests are Alanine metabolism which makes sense as both alanine and glutamate were DE in the data. Consistent with
the original study, Arginine is observed to be producing the largest DE amongst the significant compounds, alongside
other compounds like glutamine and leucine. This is explained in the original study that as how they promote wound
healing and encouraging cellular growth [Rabinowitz et al., 2017].

To obtain descriptive terms that characterise the overall biological processes of these metabolic pathways, we performed
GO analysis on the 236 DE transcripts (p-values ≤ 0.01 and log fold changes at least ±0.5) that are linked to these
DE compounds and pathways. The first two most significant biological process GO terms include G protein-coupled
receptor signaling pathway (GO:0007186) and signal transduction (GO:0007165), showing that the activity level
of signalling pathways are high. The findings here support the hypothesis in the original study on the influence of
signalling pathways towards positional memory.

Covid-19 Case Study

Understanding the Covid-19 disease on the molecular level through omics technologies could potentially offer new
insights leading to the nature of the SARS-CoV-2 virus and the development of new treatments. Here we demonstrated
how GraphOmics could be used to analyse and interactively explore the integrated results from a dual-omics (proteomics
and metabolomics) study on the sera of Covid-19 patients [Shen et al., 2020].

Data Loading and Pre-processing

The original study aimed to characterise the proteome and metabolome of a cohort of 28 severe Covid-19 patients in
comparison to a cohort of 28 healthy patients. Processed proteins and metabolites data from the original study was
retrieved. The protein data was provided in a format acceptable to GraphOmics (with rows identified by their UniProt
ID) and could be readily uploaded. For metabolite data, each compound was identified by its chemical name in the
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original data. An automated script (available from our repository) was created to map from compound names to KEGG
ID using the Bioservices library [Cokelaer et al., 2013]. Of the 905 names present in the original data, 220 could be
matched based on matching by exact chemical names alone. This represented the majority of amino acids discussed in
the original study, although it left out many lipid, steroid hormones and other chemicals that could not be easily mapped
to KEGG and Reactome based on matching by exact chemical names alone.

Similar to the previously analysed Zebrafish data, DE analysis were performed on the Covid19 protein and metabolite
data using limma, while PLAGE was used to analyse pathway activity levels on both omics types.

Interactive Omics Exploration of the Covid19 Data

Once the initial data integration has been performed in GraphOmics, users could interactively explore the data to reveal
biologically relevant hypotheses. Firstly to discover significantly changing entities, the Query Builder was used to filter
for DE proteins (defined in the original study as having p-values ≤ 0.05 and log fold changes at least ±0.25), linked to
pathways that are also significantly changing (p-values ≤ 0.05) based on the protein data were selected. This resulted in
139 proteins connected to 86 pathways, detailed in Supplementary Table S4.

Among the significant pathways in the results, two were related to the activation of the complement system, including
Terminal pathway of complement (R-HSA-166665) and Alternative complement activation (R-HSA-173736). Note
that while pathway analysis in the original study was performed using a completely different proprietary software
[IPA, Krämer et al., 2014], our results are in agreement with how complement system was activated in the severe
case in response to pathogens. Additionally the original study thoroughly discussed the high activity level of the
Platelet degranulation (R-HSA-114608) pathway. This was also found to be significant in our results, and it could be
explained by how platelets produced in the lung were activated in response to lung injury in the severe patients. All
these significant pathways and their connections to DE entities can be browsed through GraphOmics.

We further illustrated how GraphOmics could identify other significant entities that are linked to those groups of DE
proteins discovered above. Keeping the same filtering criteria, we selected the Platelet degranulation pathway from the
Data Browser. This selected the DE proteins linked to that pathway and all their related entities. From the corresponding
Clustergrammer view, two clusters of proteins that are either up-regulated or down-regulated in the severe-vs-healthy
comparison could be observed (Supplementary Figure S5). The protein P02776 (for gene Platelet Factor 4, or PF4)
was a member of the down-regulated cluster. The presence of PF4 in the down-regulated cluster was interesting
because changes to PF4 was noted in the original study to be a prognosis marker in severe acute respiratory syndrome
[Poon et al., 2012]. Its down-regulation in the severe group could support this hypothesis. Cropping this cluster in
Clustergrammer resulted in a selection of the 17 member proteins and their connections to compounds, reactions and
pathways in the Data Browser. This could be inspected to reveal additional relationships between entities. For example,
the original study highlighted how serotonin level decreases with increasing severity of the disease as serotonin was
transported to platelet for storage. The connection of serotonin to Platelet degranulation and to members of this cluster,
and the down-regulation of serotonin could be interactively seen and explored from the Data Browser.

Finally we investigated the metabolomics data by filtering from the Query Builder for DE metabolites linked to DE
pathways (p-values ≤ 0.05 for both). This resulted in 45 significant metabolites linked to 93 significant pathways.
Examining the resulting metabolites, two clusters, one showing an up-regulation trend in the severe cohort, and one with
down-regulation trend could be observed from Clustergrammer (Supplementary Figure S6). The first cluster contained
kynurerine and NAD+. Its up-regulation was explained in the original study by the activation of kyunerine pathways in
severe patients due to macrophage responses. The second down-regulated cluster contained many amino acids such as
histidine, arginine, proline, and many others. Its down-regulation had been hypothesised in the original study to be due
to damage to the liver from the disease.

Discussion and Conclusions

In this work, we introduced GraphOmics, a Web application that could be used to explore and integrate biological data
from the transcriptome, proteome and metabolome domains. Integration is achieved horizontally by mapping relevant
biological entities to reactions and pathways from Reactome. Once mapping has been established, GraphOmics allows
users to interrogate the data and interactively explore the connections between entities in the context of Reactome
pathways.

To guide this exploration process, GraphOmics allows users to run several common global analyses, including differential
expression and pathway activity analysis that prioritise DE entities in the data based on how they change across different
experimental conditions. More interestingly, the connections between DE entities could also be explored and queried
interactively within GraphOmics. The close integration between the Data Browser and interactive clustering and
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heatmaps in Clustergrammer means different views on the same data are synchronised to one another. This allows
for integrated analysis where for instance, clustering results can be easily examined in the context of pathway activity
levels.

Based on Reactome, GraphOmics supports as many species as Reactome offers. This is an advantage compared to
other tools such as 3omics that supports human data only. Other tools like MetaboAnalyst and PaintOmics3 supports
many species too, but they lack the easy inter-connectivity of results and close integration between multiple views in
GraphOmics. As Reactome continues to grow, the knowledge base of GraphOmics also expands. Upgrading Reactome
is as easy as pointing the GraphOmics server to an updated instance of the database.

As shown by the case studies on two complex multi-omics Zebrafish and Covid19 datasets, GraphOmics could be
used to rapidly reveal interesting biological insights and potentially suggest relevant hypothesis. The first case study
highlighted how users could use GraphOmics to find differentially expressed transcripts, proteins and metabolites
involved in the caudal fin regeneration of zebrafish in agreement with the original study. Using the Covid19 data, we
also demonstrated how users could use GraphOmics to reveal DE entities and pathways that were significantly changing
in light of the disease. Here the results from GraphOmics were found consistent with findings in the original study. It is
worth emphasising that throughout this entire process, omics data investigation and exploration in GraphOmics were
performed interactively through the Web interface and did not require users to write manual R scripts for data analysis,
as what were done in the original studies.

A weakness of GraphOmics is the requirement for entities to be identified and mapped to their IDs before they can
be processed. While this requirement is more standard for transcript and protein data, it could be a challenge in
metabolomics where a single compound could be associated to many chemical names and under different ID schemes.
Additionally the uncertainty of peak annotations means a vast majority of metabolites in an untargeted study are not
identified or could only be identified with a low level of confidence [Dunn et al., 2013, da Silva et al., 2015]. This
is a weakness of nearly all tools that map metabolomics data to pathways. After the initial upload step, tools like
MetaboAnalyst and PaintOmics3 display a screen for users to manually inspect, validate metabolite identities and delete
duplicate annotations if they were present. This is a functionality that could be added to GraphOmics. Additionally,
methods like Mummichog [Li et al., 2013] and PUMA [Hosseini et al., 2020] that combine metabolite annotation
and pathway activity prediction steps together to increase confidence in the results could also be incorporated into
GraphOmics.

Finally the integration approach in GraphOmics is currently restricted to only known entities and connections in
Reactome. In the late integration approach adopted by GraphOmics, it is possible to miss the correlated entities that
could have been discovered in an early integration scheme. To find the connections between unknown entities not
present in the knowledge-base, methods such as correlation analysis, Bayesian analysis (e.g. MOFA [Argelaguet et al.,
2018]), and other forms of latent factor analysis including clusterings of multi-omics data [Kirk et al., 2012, Lock and
Dunson, 2013] could be employed. In the future we plan to extend GraphOmics to support factor-based analyses. This
paves the way towards a platform that integrates data both horizontally (sharing common features) as well as vertically
(sharing common samples) and presents the results in a truly integrated manner.
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