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ABSTRACT 
Motivation: Single-cell RNA sequencing (scRNA-seq) techniques pro-
vide high-resolution data on cellular heterogeneity in diverse tissues, and 
a critical step for the data analysis is cell type identification. Traditional 
methods usually cluster the cells and manually identify cell clusters 
through marker genes, which is time-consuming and subjective. With the 
launch of several large-scale single-cell projects, millions of sequenced 
cells have been annotated and it is promising to transfer labels from the 
annotated datasets to newly generated datasets. One powerful way for the 
transferring is to learn cell relations through the graph neural network 
(GNN), while vanilla GNN is difficult to process millions of cells due to 
the expensive costs of the message-passing procedure at each training 
epoch. 

Results: Here, we have developed a robust and scalable GNN-based 
method for accurate single cell classification (GraphCS), where the graph 
is constructed to connect similar cells within and between labelled and 
unlabelled scRNA-seq datasets for propagation of shared information. To 
overcome the slow information propagation of GNN at each training 
epoch, the diffused information is pre-calculated via the approximate Gen-
eralized PageRank algorithm, enabling sublinear complexity for a high 
speed and scalability on millions of cells. Compared with existing meth-
ods, GraphCS demonstrates better performance on simulated, cross-plat-
form, and cross-species scRNA-seq datasets. More importantly, our model 
can achieve superior performance on a large dataset with one million cells 
within 50 minutes. 

1. Introduction  
Single cell RNA-seq technologies promise to provide high-resolution in-
sights into the complex cellular ecosystem[1-3] by measuring gene ex-
pression in millions of single cells from multiple samples [4-8]. Several 
large-scale single-cell projects, e.g. the Human Cell Atlas, have been es-
tablished as a result of the decreasing costs in scRNA-seq technologies [9, 
10]. In scRNA-seq studies, an essential step is to identify the sequenced 
cells through the sequenced gene expression [11], which is usually ob-
tained through cell clustering and subsequently manually identifying cell 
clusters through marker genes[12]. This process is time-consuming and 
subjective.  

With the tremendous increase of well-annotated scRNA-seq datasets, it 
is feasible to transfer well-defined labels (cell types) of existing single-
cell datasets to newly generated single-cell datasets [13, 14]. However, the 
knowledge transferring is challenging due to various noises among 
scRNA-seq data (e.g., dropout) [15, 16]. In addition, batch effects exist 
between single-cell datasets because they are usually collected from dif-
ferent platforms[17, 18], tissues, or species[19, 20]. Early methods were 
developed to search for similar cells in the reference datasets with well-
defined labels. For example, scmap[21] measures the maximum similarity 
between well-annotated cells of reference data and unknown query data to 

annotate cell types. SingleR[22] measures the similarity by calculating the 
correlation between gene expression. CHETAH[23] identifies the un-
known cells using the high cumulative density of each cell type correlation 
distribution.  Obviously, these methods consider only pairwise similarity 
and have ignored the non-linear relations between annotated cells. For this 
reason, several methods train classifiers using the labeled datasets or ref-
erence atlas, and make predictions on query datasets. For example, scPred 
[24] trains a support vector machine by using the features obtained from 
singular value decomposition. SingleCellNet [25] applies an ensemble of 
boosted regression trees and a Random Forest classifier to annotate cells. 
Seurat[26] is a commonly used toolkit in single-cell studies, which applies 
a specialized method to transfer labels to unknown cell types.  Though 
valuable in different scenes, these methods still exhibit limited perfor-
mance, partially due to their ignoration of higher-order relations between 
cells.  

In fact, the high-order representation and topological relations could 
been  naturally learned by the graph neural network (GNN), and GNN 
have been proven with  improved performance in scRNA-seq data anal-
yses such as imputation and clustering [27-29]. ScGCN[30] is currently 
the only graph neural network method for annotating cells. The method is 
based on the GNN architecture proposed by Kipf and Welling [31], which 
relies on an expensive message-passing procedure to propagate infor-
mation and has to include the full-batch during training. Thus, the huge 
costs of computations and memory prevent its applications to large da-
tasets, especially with the arrival of datasets containing millions of cells 
[32, 33].   

To solve the scalability of GNN, many studies have been proposed.  For 
example, Chen et al. [34] proposed a scalable GNN model, which could 
be efficiently trained with mini-batches using GPU. One critical point is 
its approximation of  the diffused information through the bidirectional 
propagation by the Generalized PageRank algorithm [35], which  avoids 
iterative information diffusion in each training epoch. In addition, the use 
of mini-batch training reduces the requirement of large GPU memory from 
full-batch training. Thus, the method could be used on large graphs with 
billions of edges. 

Another issue for GNN is to accurately construct the cell graph among 
millions of cells. Traditional methods such as Cosine similarity, KNN, 
UMAP [36], and Annoy [37] (https://github.com/spotify/annoy) are 
widely used for constructing the cell graph by measuring the cell-to-cell 
similarity in single-cell RNA-seq data [38-40], but they do not take ac-
count of the batch effects between datasets. To consider the batch effects, 
several methods captures the cell relations through scGCN [30]  constructs 
the cell graph using CCA-MNN, a combination of canonical correlation 
analysis (CCA) [41] and the mutual nearest neighbour (MNN) [42].  
Conos [43] relies on multiple plausible inter-sample mappings to construct 
a graph connecting all measured cells. BBKNN [44] provides an ex-
tremely fast and scalable neighbourhood construction method across all 
batches. The runtimes of BBKNN scale linearly with the increase in num-
ber of cells through integrating the approximate neighbor detection tech-
nique in algorithm Annoy. 
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Fig. 1. The Schematic overview of GraphCS for cell type classification. GraphCS consists of graph construction, graph bidirectional propagation (GBP), 
and classification modules. The graph construction module constructs the cell graph according to gene expression similarity through the BBKNN algo-
rithm. Through the graph, the GBP module diffuses feature information among cells, which is then inputted into the classification module used to classify 
cells. 

Here, we present a scalable graph neural network learning model for 
cell annotations by constructing the graph via BBKNN, and pre-calculate 
the diffused features via the graph bidirectional propagation algorithm 
(GBP). Concretely, GBP propagates information among similar cells 
within and between labeled and unlabeled datasets, resulting in significant 
gains of speed and scalability of GNN while efficiently removing the batch 
effects. The integrated features from the GBP module are then inputted to 
a classification neural network to annotate cells for the query dataset. To 
better estimate the decision boundary between different cell types, we also 
use the virtual adversarial training (VAT) loss [45] to improve model gen-
erality. Our method was demonstrated to outperform other methods on 
both simulated datasets and real datasets across species and platforms. 
More importantly, the model can be extended to large-scale datasets in a 
reasonable time scale. 

2. Materials and Methods 
2.1 Datasets and Pre-processing 
Simulated datasets: We simulated different batches of scRNA-seq data 
through the R package "Splatter" [46].  Specifically, we used Splatter to 
generate paired batches as the reference and query dataset. Each simulated 
dataset was comprised of four cell groups with the same cell proportion 
by setting the parameter group.prob of value 0.25. We fixed the number 
of cells in the reference and query data respectively as 2000 and 1000 both 
with the number of genes as 10000. To simulate different magnitudes of 
batch effects in scRNA-seq data, we tested different batch.facScale values 
from {0.2, 0.4, 0.6, 0.8,1.0,1.2,1.4, 1.6}, where greater values of 
batch.facScale correspond to larger batch effects between the reference 
and query datasets. For other parameters, default values were applied un-
less otherwise specified. We generated five simulated datasets from dif-
ferent random seeds and reported the average results.  

Cross-species datasets: The cross-species datasets consisted of four 
paired cross-species pancreas datasets downloaded from the SingleCell-
Net GitHub page. Specifically, we used the mouse pancreas dataset gen-
erated by Baron et al[1] as the reference data and the human pancreas da-
tasets generated by Baron et al[1] and Segerstolpe et al[47]  as the query 

data, respectively. We also used the Baron mouse pancreas dataset to an-
notate a combination dataset containing five human pancreas datasets re-
spectively generated by Baron et al, Wang et al[48], Xin et al[49], Muraro 
et al[6], and Segerstolpe et al. Finally, we used the human pancreas dataset 
generated by Baron et al as the reference data and the mouse pancreas 
dataset also generated by Baron et al as the query data. The compatible 
genes between species were obtained through homologous genes convert 
interface  provided by SingleCellNet[25].  

Multiple reference datasets: To investigate the performance of our 
model on multiple reference datasets, we integrated the human pancreas 
datasets by Wang et al, Muraro et al, and Segerstolpe et al as the reference 
to annotate the Baron human pancreas dataset. Specifically, we removed 
the acinar and alpha cells from datasets by Segerstolpe et al and Wang et 
al, only reserving them in the Muraro et al dataset. We also removed the 
endothelial cells from Muraro et al, only reserving them in the Segerstolpe 
et al dataset. Thus, each reference dataset has its own unique cell type, 
while the query dataset Baron et al includes all these unique cell types: 
cell acinar, alpha, and endothelial.  

Cross-platform datasets: We used seven paired cross-platform datasets 
in this study. The first one is the Peripheral Blood Mononuclear Cells 
(PBMC) scRNA-seq data from the SeuratData package with dataset name 
“pbmcsca” [50], which is widely used for evaluating cell annotating meth-
ods. PBMC consisted of seven batches from seven different sequencing 
platforms: 10x Chromium (v2), 10x Chromium (v3), Seq-Well, Smart-
seq2, inDrop, Drop-seq, and CEL-Seq2. Two 10x Chromium datasets 
were combined as the reference data, and the rest five datasets were used 
as the query data. Thus, PBMC has five paired cross-platform datasets. 
Then, in order to evaluate the scalability of our method, we downloaded  
two large cross-platform datasets: the mouse retina and mouse brain da-
tasets from ref [51]. Specifically, the mouse retina dataset contained two 
batches that were generated based on the Drop-seq technology by two un-
associated laboratories [52, 53]. These two mouse retina datasets con-
tained 26,830 and 44,808 cells, and were used as the reference and query 
data, respectively. The mouse brain data contained two batches that were 
generated by the Drop-seq and SPLiT-seq protocols, respectively [39]. 
They were used as the reference and the query data that contained 691,600 
and 141,606 cells, respectively.   
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Preprocessing: All simulated datasets were normalized through the tran-
scripts per million (TPM) method [54]. For real datasets, we followed the 
standard procedure proposed in Seurat to normalize the gene expression 
matrix. Specifically, the “NormalizeData” function was run with the de-
fault parameter “LogNormalize” and the scaling factor of 10,000. Then, 
we selected the top 2000 highly variable genes based on the normalized 
matrix through the “FindVariableFeatures” function.  

2.2 The architecture of GraphCS 
This study proposed a robust and scalable graph neural network model to 
annotate cell types in a semi-supervised manner. As shown in Fig. 1, the 
GraphCS model consists of three modules:  graph construction, graph bi-
directional propagation (GBP), and classification modules. 

2.2.1 Graph construction module  
The cell graph G is constructed by linking cells with similar gene expres-
sions within and between the reference and query datasets. Here, we con-
struct the graph G by BBKNN with default parameters, which provides a 
fast and scalable neighbourhood construction method across all batches. 
Briefly, for each cell c, three most similar cells are selected with the lowest 
Euclidean distances from each of Nb batches (including the batch itself). 
The connected cell graph is then inputted into UMAP for recalculating 
connectivity scores, through which neighboured cells are trimmed so that 
each cell contains at most 30Nb neighbours (edges). 

2.2.2 GBP module  
To acquire high scalability, GNN is estimated through the Generalized 
PageRank algorithm, which is further approximated by the Graph Bidirec-
tional Propagation Algorithm. 

Generalized PageRank Algorithm 
To acquire high scalability of GNN, the feature propagation is pre-calcu-
lated through Generalized PageRank matrix as: 

𝑃𝑃 = �𝑤𝑤ℓ(𝐷𝐷𝛾𝛾−1𝐴𝐴𝐷𝐷−𝛾𝛾)ℓ
𝐿𝐿

ℓ=0

⋅ 𝑋𝑋 (1) 

where wℓ is the weight of the ℓ-th order convolution matrix, 𝐴𝐴 and 𝐷𝐷 are 
the adjacency matrix and diagonal degree matrix of graph 𝐺𝐺, respectively, 
𝑋𝑋 is the feature matrix, and 𝛾𝛾 is the convolution coefficient. This strategy 
has been proven to well estimate feature propagation [55], and we fol-
lowed the study to set 𝑤𝑤ℓ = α(1− α)ℓ for constant decay factor α ∈ (0,1). 

The Graph Bidirectional Propagation Algorithm 
To reduce the time complexity, the Generalized PageRank is further ap-
proximated with the graph bidirectional propagation that combines the 
Monte-Carlo Propagation and Reverse Push Propagation. Graph bidirec-
tional propagation has been proven to provide accurate unbiased estimator 
[34]. Concretely, we use the following formulate as an unbiased estimator 
for the Generalized PageRank matrix P defined in equation (1). 

𝑃𝑃�𝑛𝑛×𝑑𝑑 = �𝑤𝑤ℓ

𝐿𝐿

ℓ=0

𝐷𝐷𝛾𝛾 ⋅ �𝑄𝑄(ℓ) +�𝑆𝑆(ℓ−𝑡𝑡)
ℓ

𝑡𝑡=0

𝑅𝑅(𝑡𝑡)� (2) 

where 𝑛𝑛 is the total number of cells in the reference and the query data, 
and 𝑑𝑑 is the size of gene features. 𝑄𝑄 and 𝑅𝑅 are respectively the reserve 
matrix and the residue matrix originated from the Reverse Push Propaga-
tion algorithm, and 𝑆𝑆  records the fraction of random walks from the 
Monte-Carlo Propagation. The detailed information and proof of Equation 
(2) can be found in ref [34].  

2.2.3 Classification Module  

After obtaining the feature matrix  𝑃𝑃�𝑛𝑛×𝑑𝑑 from the GBP module, we apply 
a neural network classification with mini-batch training to make the cell 
type prediction. In addition, the virtual adversarial training is employed to 
improve the generality of our model.  

Neural Network Classification:  Our classification module contains a 
neural network feature extractor 𝐸𝐸 with multiple hidden layers and a label 
predictor F with a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 output layer. The input of classification mod-
ule includes reference gene expression matrix X𝑟𝑟 = [𝑆𝑆1𝑟𝑟,⋯𝑆𝑆𝑚𝑚𝑟𝑟

𝑟𝑟 ] ∈ P� 𝑚𝑚𝑟𝑟×𝑑𝑑 
with the corresponding labels Y𝑟𝑟 = {𝑦𝑦𝑖𝑖𝑟𝑟}𝑖𝑖=1

𝑚𝑚𝑟𝑟  and query gene expression 
matrix X𝑞𝑞 = [𝑆𝑆1

𝑞𝑞,⋯𝑆𝑆𝑚𝑚𝑞𝑞
𝑞𝑞 ] ∈ P� 𝑚𝑚𝑞𝑞×𝑑𝑑 . We optimize the classification mod-

ule using the following standard cross-entropy loss: 

L𝐶𝐶𝐶𝐶 = −
1
𝑆𝑆𝑟𝑟

� 𝑦𝑦𝑖𝑖,𝑟𝑟𝑇𝑇
𝑚𝑚𝑟𝑟

𝑖𝑖=1
𝐹𝐹�𝐸𝐸(𝑆𝑆𝑖𝑖𝑟𝑟)� (3) 

where y𝑖𝑖,𝑟𝑟 ∈ R𝐶𝐶𝐿𝐿×1 is one-hot encoded vector of y𝑖𝑖𝑟𝑟 and 𝐶𝐶𝐶𝐶 is the number 
of class.  

Virtual Adversarial Training: Virtual adversarial training (VAT) is ap-
plied to improve the generalization of the classification module by incor-
porating the information of data distribution from query data. VAT is a 
data augmentation technique without prior label information[56]. VAT 
tries to make predictions invariant to small perturbation by minimizing the 
distance between the input and a perturbed version of the input. Then the 
model is robust to small noises or perturbations in the inputs. We compute 
VAT’s loss function as the following: 

𝐶𝐶𝑉𝑉𝑉𝑉𝑇𝑇�𝑋𝑋𝑞𝑞 ,𝜃𝜃� = 𝐷𝐷𝐾𝐾𝐿𝐿�𝑝𝑝�𝑌𝑌𝑞𝑞�𝑋𝑋𝑞𝑞 ,𝜃𝜃�, 𝑝𝑝�𝑌𝑌𝑞𝑞�𝑋𝑋𝑞𝑞 + 𝑟𝑟𝑣𝑣𝑣𝑣𝑡𝑡,𝜃𝜃�� (4) 

𝑟𝑟 vat = arg max
𝛥𝛥𝛥𝛥;‖𝛥𝛥𝛥𝛥‖2≤𝜖𝜖

𝐷𝐷𝐾𝐾𝐿𝐿�𝑝𝑝�𝑌𝑌𝑞𝑞�𝑋𝑋𝑞𝑞 ,𝜃𝜃�,𝑝𝑝�𝑌𝑌𝑞𝑞�𝑋𝑋𝑞𝑞 + 𝛥𝛥𝑆𝑆�� (5) 

where 𝑟𝑟𝑣𝑣𝑣𝑣𝑡𝑡 optimizes the difference between the model output of the non-
perturbed input and the perturbed input,  𝜃𝜃 is parameter of the model,  𝛥𝛥𝑆𝑆 
is a Gaussian noise and 𝑌𝑌𝑞𝑞 is predicted by the label predictor F. The hyper-
parameter 𝜖𝜖 is the norm constraint for the adversarial direction, and we set 
𝜖𝜖 to 0.1 following the previous study [45]. The output distribution is pa-
rameterized as 𝑝𝑝(Y𝑞𝑞|X𝑞𝑞 ,𝜃𝜃) , and D𝐾𝐾𝐿𝐿 [∙,∙] is KullbackLeibler divergence.  

So, the total loss function of classification module as the following: 

𝐶𝐶𝑜𝑜𝑣𝑣𝑜𝑜𝑟𝑟𝑣𝑣𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜆𝜆𝐶𝐶𝑉𝑉𝑉𝑉𝑇𝑇 (6) 

where λ is the hyper-parameters to balance the contribution of virtual ad-
versarial training to the total loss function.  

2.3 Model interpretation by selecting key features 
In order to obtain important genes for each predicted cell type, we estimate 
gene importance based on the gradient of the correct category logit with 
respect to the input vector used the activation maximization method [57, 
58]. Specifically, given the trained neural network φ and a predicted cell 
type 𝑖𝑖,  activation maximization searches for key input genes 𝑆𝑆∗ by solv-
ing the following optimization problem: 

𝑆𝑆∗ = argmax
𝛥𝛥

(φ(𝑆𝑆) ⋅ 𝑒𝑒𝑖𝑖) (7) 

where 𝑒𝑒𝑖𝑖 is the 𝑖𝑖-th category’s natural basis vector. The formulation of (7) 
can be solved by backpropagation, where the gradient of φ(𝑆𝑆) with re-
spect to 𝑆𝑆 are computed to update the input 𝑆𝑆 iteratively. Specifically, we 
initialize the optimization with a zero vector and then run the optimization 
for 100 iterations with a learning rate of 1 as recommended in ref [59].  
Those inputs leading to the largest changes in comparison with the initial-
ization values are selected as the important genes. To evaluate the identi-
fied top-important genes, we conduct the GO analysis on the selected top 
genes with the largest changes using the R package clusterProfiler[60]. 
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2.4 Hyper-parameters setting 
The GraphCS was implemented in PyTorch and C++.  For GBP module, 
we set 𝛼𝛼=0.05 and 𝛾𝛾=0.5 for all datasets.  For classification module, we 
set the number of neural network layers and the learning rate as 2 and 
0.001, respectively. For the contribution of VAT loss, we set λ=0.1 for all 
datasets. We set the training batch size of classification module as 1024 
and 4096 when the total number of cells exceeds 10000 and 50000, re-
spectively; In other situations, the training batch size is set as 128. For 
cross-species datasets, the maximum of inter edges in the graph G (edges 
between reference and query data) for each cell is less than four. All results 
reported in this paper were conducted on Centos 7.0 with Intel® Core (TM) 
i7-8700K CPU @ 3.70 GHz and 256 GB memory, with the Nvidia Tesla 
P100 (16G). 

2.5 Benchmarking classification methods 
To evaluate the performance, we compared GraphCS with other tools 
including: Seurat V3, scmap, scPred, CHETAH, SingleR, SingleCellNet 
and scGCN. For Seurat V3, we applied both the PCA-based and CCA-
based version to evaluate whether the aligned data was benefit for classi-
fication. We used the default hyper-parameters recommended in the origin 
paper for the competing methods. 

 Evaluation metrics: We evaluated the classification performance for all 
methods using the accuracy, the proportion of correctly annotated cells. 
For each dataset, we considered the cell type annotations provided by the 
original dataset as the ground truth. 

a b 

  
c d 

 
 

Fig. 2.  The performance of GraphCS on simulated, cross-platform, and cross-species datasets: (a) the average and mean square error values of cell type 
prediction accuracy on 5 groups of simulated scRNA-seq data at different batch.facScale values; (b) the boxplots of cell type prediction accuracy of all 
methods based on the cross-platform datasets; (c) the accuracy matrix of each cell type identified by different methods on the mouse retina dataset; (d) 
the performance of GraphCS on four paired cross-species datasets. Baron_human-Baron_mouse represents the Baron human pancreas dataset as the 
reference to annotate the Baron mouse pancreas dataset. The rest results represent that the Baron mouse pancreas dataset as the reference to annotate 
respectively the Baron, Segerstolpe, and the combination human pancreas datasets (the combination contained five human pancreas datasets, including 
Baron et al, Wang et al, Xin et al, Muraro et al, and Segerstolpe et al).  Each bar represents the accuracy of each method. 
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3. Results 
3.1 Performance on simulated datasets 
To investigate the performance of GraphCS under different magnitudes of 
batch effects, we generated the simulated scRNA-seq data by setting dif-
ferent values of “batch.facScale” through the R package “Splatter”. As 
shown in Fig. 2a, the accuracies of all methods decreased with the increase 
of batch.facScale since higher batch.facScale represented larger batch ef-
fects, i.e., higher annotating difficulty. Overall, our method consistently 
achieved stable and the best performance with the accuracies only slightly 
changed from 1.0 to 0.98 when increasing batch.facScale from 0.2 to 1.6. 
By comparison, scGCN, the second-best method, had significant drop in 
accuracies when batch.facScale was greater than 1.0, and a sharp drop 
from 0.93 to 0.76 when increasing batch.facScale from 1.4 to 1.6. The 
accuracies of SingleR and scPred were larger than 0.9 when the value of 
batch.facScale was less than 0.4, but their accuracies significantly dropped 
afterwards and were only 0.6 and 0.4, respectively when 
batch.facScale=1.6.  SingleCellNet, CHETAH, and scmap, could achieve 
decent results at batch.facScale of 0.2 with accuracies of 0.87, 0.70, and 
0.68, respectively, but they performed badly at batch.facScale of 1.2 with 
accuracies below 0.5. For two Seurat methods, Seurat-PCA was more sen-
sitive from the batch.facScale value.  Seurat-PCA had higher accuracies 
than Seurat-CCA at batch.facScale of <0.6, but  lower accuracies at greater 
batch.facScale values. This is likely because Seurat-CCA overcorrected 
the batch effects at small batch.facScale values. By comparison, GraphCS 
always outperformed the competing methods in different magnitudes of 
batch effects. The superior performance showed that GraphCS could ef-
fectively reduce performance degradation brought by batch difference. 

 
3.2 Performance on real datasets 

We evaluated GraphCS on real datasets at two different levels: cross-plat-
form and cross-species. For the cross-platform datasets, we tested on 
seven paired cross-platform datasets.  As shown in Fig. 2b, the average 
accuracy of GraphCS (mean Acc=88%) was 4% higher than the second-
ranked method SingleCellNet (mean Acc=84%) and consistently outper-
formed other competing methods. Seurat-PCA, SingleR, and Seurat-CCA 
ranked the 3rd, 4-th, and 5-th in terms of the average accuracy, respec-
tively. In comparison to Seurat-PCA, Seurat-CCA did not benefit from 
aligning and integrating the datasets. CHETAH, scmap, and scGCN 
achieved similar average accuracy.  Though scGCN took a similar tech-
nique to ours, the average accuracy of scGCN was lower than GraphCS. 
It is likely because the scGCN constructed graphs containing fewer edges 
(averagely one to two times lower than ours) and didn’t fully utilized the 
advantages of graph neural network. ScPred achieved much lower perfor-
mance than other methods. To highlight the comparison regarding specific 
cell types, we used the heatmap to show the accuracy of each cell type 
annotated by different methods on the mouse retina dataset. As shown in 
Fig. 2c and Figure S1. SingleCellNet, SingleR, and scmap incorrectly as-
signed most of bipolar cells. Seurat-CCA, Seurat-PCA, and CHETAH in-
correctly assigned most of cones cells. In contrast, our method correctly 
discriminated most cell types. Additionally, we performed an experiment 
by using multiple reference datasets (Figure S2), and our model was 
shown to consistently outperform other methods.  

For the cross-species datasets. We evaluated all methods on four paired 
cross-species datasets. We didn’t include scPred since it raised exceptions 
on cross-species datasets. As shown in Fig. 2d, GraphCS achieved an av-
erage accuracy of 0.94, respectively 3% and 10% higher than those by the 
second-ranked method scGCN (0.91) and the third-ranked method scmap 
(0.84). The left methods are ordered as: SingleCellNet, Seurat-CCA, Sin-
gleR, Seruat-PCA, and CHETAH. Specifically, in the combination dataset 
with only seven T cell and 13 Schwann types, GraphCS could still anno-
tate them accurately (Figure S3a). As shown in the Sankey diagram
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Fig. 3. UMAP visualization of three paired cross-species datasets, based on the aggregated data by different methods. The Baron mouse pancreas dataset 
is the reference for all query datasets.  First row:  the Baron human pancreas dataset as the query data. Second row: the Segerstolpe human pancreas 
dataset as the query data. Third row:  we combined datasets Baron et al, Wang et al, Xin et al, Muraro et al, and Segerstolpe et al as the query data. 
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 Fig. 4. The average classification accuracies and the 
standard deviations of GraphCS on the cross-species da-
tasets by excluding VAT and GBP modules, and con-
structing the cell graph by different methods. 

Fig. 5. The Enrichment pathways using the top 10 marker genes for each predicted cell 
type on the 10x_Drop-seq dataset. 

 

 

Fig. 6. Comparison of different methods for the running time (left) and cell-type classification accuracy (right) on variably sized datasets.

(Figure S3b), the much smaller number of cells in the reference data than 
the query data suggests the capability of our model in small reference data. 

Finally, we visualized the cells in the aggregated reference-query data 
of cross-species in Fig. 3. We compared Seurat-CCA, scGCN, and 
GraphCS since they provided the aggregated data and took account of 
batch effects between datasets. Cells in the raw data were not separated 
well due to the substantial noise and batch effects. For example, in the 
dataset Baron (mouse)-Baron (human), beta cells were separated into two 
clusters, while alpha and delta cells gathered together.  While Seurat and 
scGCN could discriminate most of the cell populations on all cross-species 
datasets, they couldn’t explicitly distinguish a few cell types, such as beta 
and delta cells. By comparison, GraphCS could clearly separate most of 
the cell populations in all scenarios, indicating its ability to deal with 
strong batch effects between species. 

3.3 Ablation Experiments  
To investigate the contribution of each component in GraphCS, we per-
formed the ablation experiments on cross-species datasets. As shown in 
Fig. 4, the removal of the GBP module caused a dramatic drop of 18% in 
the average accuracy, indicating that GBP module efficiently removed the 
batch effects of inter-datasets by propagating information among similar 

cells in the graph. The removal of VAT module caused small but   signif-
icant drop (3.7%) in the average accuracy. In summary, the cooperation of 
the modules enabled a better annotating of the scRNA-seq data.  The trend 
was similar on the cross-platform datasets (Figure S4).  

We further evaluated the performance of GraphCS using seven different 
graph construction methods. As shown in Fig. 4, three methods with re-
moval of batch effects (CCA-MNN, Conos, and our method to use 
BBKNN) achieved higher accuracies than those without removal (Cosine, 
UMAP, Annoy, and KNN) on the cross-species datasets. BBKNN and 
Conos achieved similar but better performance than CCA-MNN. It should 
be noted BBKNN was one to two orders of magnitude faster than Conos 
and CCA-MNN. The trend was similar on the cross-platform datasets 
(Figure S5). 

3.4 Identifying cell-type important genes. 
To interpret our model, we selected 10 most important genes for each pre-
dicted cell type according to the activation maximization method, and 
used these genes to decide the most enriched GO terms of biological pro-
cesses through clusterProfiler. As seen in Fig. 5, when using the top 10 
genes selected on the cross-platform dataset (10x_Drop-seq), most cell 
types were significantly enriched on their relevant Go terms. For the B 
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cells, 8 out of top 10 genes (MS4A1, CD79A, BANK1, HLA-DQA1, BLK, 
CD79B, POU2AF1, and IGHM) were included as maker gene in the 
PanglaoDB database [61]. These genes were enriched in the Go term “B 
cell receptor signaling pathway”, consistent with the previous report that 
the B cell receptor  signaling is essential for B cell survival and develop-
ment although varied in different subpopulations and developmental 
stages [62]. We also listed top 10 genes for other predicted cell types in 
Table S1. These results suggested that the identified important genes were 
consistent with prior knowledge, demonstrating the reliability and inter-
pretability of our model. 

3.5 Running time evaluation 
To evaluate the runtimes of all methods and their scalability with the in-
crease in the number of cells, we sampled the mouse brain dataset in a 
stratified way (i.e., preserving population frequencies) to 6%, 12%, 36%, 
60%, 96%, and 120% of the original number of 833,206 cells and selected 
the top 2000 highly variable genes as the input features. As shown in Fig. 
6, dramatic differences of runtimes could be observed between these 
methods with increases in the number of cells. GraphCS was faster than 
all other methods except scmap. GraphCS showed a high scalability with 
about linear growth of runtimes with the number of cells: 1008s for 500K 
cells and 2669s for 1000K cells. This was 6 times faster than CHETAH, 
the next fastest method. Seurate-PCA was close to our method in speed 
for dataset with 50K cells, but the runtimes dramatically increased when 
the number of cells with 1000K, and turned 42 times slower than our 
method. Seurat-CCA was consistently slower than Seurat-PCA, and Sin-
gleCellNet was the slowest. While GraphCS was two times slower than 
scmap, GraphCS consistently achieved average accuracies of 20% higher 
than scmap.  Additionally, under the default parameters, scmap couldn't 
process the dataset with >800K cells. Since scGCN constructed the graph 
based on CCA-MNN that only supported small datasets, it can only run 
on the small dataset with 50K cells and was 10 times slower than GraphCS. 
The results demonstrated that our model could be extended to large-scale 
datasets in linear time complexity. 

4. Discussion 
With the tremendous increase of scRNA-seq datasets, it is feasible to 
transfer well-defined labels of existing single-cell datasets to newly gen-
erated single-cell datasets. In this study, we proposed a robust and scalable 
graph-based artificial intelligence model, which enables training the well-
labeled single-cell data to annotate new data through robust knowledge 
transferring. We have demonstrated that GraphCS achieves significant im-
provement compared to existing annotation methods in terms of perfor-
mance and efficiency using the simulated, cross-platform and cross-spe-
cies scRNA-seq datasets. Meanwhile, our model can be extended to large 
data in linear time complexity. 

While several commonly used cell annotation algorithms, such as Seu-
rat and SingleR, also possess knowledge transferring functionalities, our 
model achieved superior results in terms of both performance and effi-
ciency. From a technical perspective, our model provides three major ad-
vantages. First, GraphCS removes the batch effects between datasets by 
propagating shared information among neighboring cells. Second, the 
generality of our model is improved by virtual adversarial training loss by 
incorporating data distribution information from unlabeled data. Third, 
GraphCS precomputes the feature propagation of graph neural network in 
a localized fashion by the graph bidirectional propagation algorithm to 
achieve scalability.   

Although the superior results, GraphCS can be improved in several as-
pects. Firstly, our model ignores the relations between genes, which has 
been shown to improve the imputation of scRNA-seq data [27].  Secondly, 
the performance of our model is influenced by the constructed cell graph, 

and a high-quality graph can improve performance. Thus, the model may 
be useful for spatial transcriptomic data analysis [63, 64], where cells 
could be naturally connected through the provided spatial coordinates. 
Thirdly, our model highly relies on a high-quality reference dataset: we 
can’t correctly identify cell types missing in single reference dataset. This 
problem might be solved by integrating a large number of well-labeled 
reference datasets since the model was proven able to identify cells sim-
ultaneously from two or more reference datasets. 
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