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Abstract

The count table, a numeric matrix of genes × cells, is the basic input data structure in the
analysis of single-cell RNA-seq data. A common preprocessing step is to adjust the counts for
variable sampling efficiency and to transform them so that the variance is similar across the
dynamic range. These steps are intended to make subsequent application of generic statistical
methods more palatable. Here, we describe four transformation approaches based on the delta
method, model residuals, inferred latent expression state, and factor analysis. We compare
their strengths and weaknesses and find that the latter three have appealing theoretical
properties. However, in benchmarks using simulated and real-world data, it turns out that
a rather simple approach, namely, the logarithm with a pseudo-count followed by principal
component analysis, performs as well or better than the more sophisticated alternatives.
Software: The R package transformGamPoi implementing the delta method- and residuals-
based variance-stabilizing transformations is available via Bioconductor. We provide an interac-
tive website to explore the benchmark results at shiny-portal.embl.de/shinyapps/app/08 single-
cell transformation benchmark.
Contact: constantin.ahlmann@embl.de

Single-cell RNA sequencing count tables are het-
eroskedastic. In particular, counts for highly ex-
pressed genes vary more than for lowly expressed
genes. Accordingly, a change in a gene’s counts
from 0 to 100 between different cells is more rel-
evant than, say, a change from 1,000 to 1,100.
Analyzing heteroskedastic data is challenging
because standard statistical methods typically
perform best for data with uniform variance.
One approach to handle such heteroskedas-

ticity is to explicitly model the sampling distri-
butions. For data derived from unique molec-
ular identifiers (UMIs), a theoretically and em-
pirically well-supported model is the Gamma-
Poisson distribution1 (Grün et al., 2014; Svens-
son, 2020; Kharchenko, 2021), but parameter in-
ference can be fiddly and computationally expen-
sive (Townes, 2019; Ahlmann-Eltze and Huber,
2020). An alternative choice is to use variance-
stabilizing transformations as a preprocessing
step and subsequently use the many existing
statistical methods that implicitly or explicitly
assume uniform variance for best performance

1also referred to as the Negative Binomial distribution

(Amezquita et al., 2020; Kharchenko, 2021).

Variance-stabilizing transformations based on
the delta method (Dorfman, 1938) promise an
easy fix for heteroskedasticity if the variance
predominantly depends on the mean. Instead
of working with the raw counts Y , we apply
a non-linear function g(Y ) designed to make
the variances (and possibly, higher moments)
more similar across the dynamic range of the
data (Bartlett, 1947). The Gamma-Poisson
distribution with mean µ and overdispersion
α implies a quadratic mean-variance relation
Var[Y ] = µ + αµ2. Here, the Poisson distribu-
tion is the special case with α = 0, and α can be
considered a measure of additional variation on
top of the Poisson. Given such a mean-variance
relation, applying the delta method produces the
variance-stabilizing transformation

g(y) =
1√
α
acosh (2αy + 1) . (1)

See Appendix B.1 for the derivation. Practition-
ers often use a more familiar functional form, the
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shifted logarithm

g(y) = log (y + y0) . (2)

This approximates Eq. (1), in particular if the
pseudo-count is y0 = 1/(4α) (Appendix B.2).

An additional requirement is posed by experi-
mental variations in sampling efficiency and dif-
ferent cell sizes (Lun et al., 2016), which manifest
themselves in varying total numbers of UMIs per
cell. Commonly, a so-called size factor s is deter-
mined for each cell, and the counts are divided
by it before applying the variance-stabilizing
transformation: e.g., log(y/s+ y0) (Love et al.,
2014; Amezquita et al., 2020; Borella et al., 2022).
There is a variety of approaches to estimate size
factors from the data. Conventionally, they are
scaled to be close to 1, e. g., by dividing them
by their mean, such that the range of the ad-
justed counts is about the same as that of the
raw counts. The simplest estimate of the size
factor for cell c is

sc =

∑
g ygc

L
, (3)

where the numerator is the total number of
UMIs for cell c, g indexes the genes, and L =
(#cells)−1∑

gc ygc is the average across all cells
of these numerators.

Sometimes, a fixed value is used instead for
L. For instance, Seurat uses L = 10 000, others
have used L = 106 (Luecken and Theis, 2019),
calling the resulting values ygc/sc counts per mil-
lion (CPM). Even though the choice of L may
seem arbitrary, it matters greatly. For example,
for typical droplet-based single-cell data with se-
quencing depth of

∑
g ygc ≈ 5 000, using L = 106

and then transforming to log(ygc/sc+1) is equiv-
alent to setting the pseudo-count to y0 = 0.005
in Eq. (2). This amounts to assuming an overdis-
persion of α = 50, based on the relation between
pseudo-count and overdispersion explained in
Appendix B.2. That is two orders of magni-
tude larger than the overdispersions seen in typ-
ical single-cell datasets. In contrast, using the
same calculation, Seurat’s L = 10 000 implies a
pseudo-count of y0 = 0.5 and an overdispersion
of α = 0.5, which is closer to overdispersions
observed in real data. Yet, choosing L or y0
is unintuitive. Instead, we recommend param-
eterizing the shifted logarithm transformation
in terms of the typical overdispersion, using the
relation y0 = 1/(4α) motivated above.

What is the delta method?

The delta method is a way to find the standard
deviation of a transformed random variable.

If we apply a differentiable function g to a
random variable X with mean µ, the standard
deviation of the transformed random variable
g(X) can be approximated by

Sd[g(X)] ≈ a Sd[X],

where a = |g′(µ)| is the slope of g at µ.

Now consider a set of random variables
X1, X2, . . . whose variances and means are re-
lated through some function v, i. e., Var[Xi] =
v(µi), or equivalently Sd[Xi] =

√
v(µi). Then

we can find a variance-stabilizing transforma-
tion g by requiring constant standard devi-
ation, Sd[g(Xi)] = const., which using the
above approximation becomes

g′(µ) =
const.√
v(µ)

,

and can be solved by integration.

Hafemeister and Satija (2019) suggested a dif-
ferent approach to variance stabilization based
on Pearson residuals

rgc =
ygc − µ̂gc√
µ̂gc + α̂g µ̂2

gc

, (4)

where µ̂gc and α̂g come from fitting a Gamma-
Poisson generalized linear model,

Ygc ∼ Gamma-Poisson (µgc, αg)

log(µgc) = βg,intercept + βg,slope log(sc).
(5)

Here, sc is again the size factor for cell c, and
βg,intercept and βg,slope are intercept and slope pa-
rameters for gene g. Note that the denominator
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in Eq. (4) is the standard deviation of a Gamma-
Poisson random variable with parameters µ̂gc

and α̂g.

A third set of transformations infers the param-
eters of a postulated generative model, aiming to
estimate so-called latent gene expression values
based on the observed counts. A prominent in-
stance of this approach is Sanity, a fully Bayesian
model for gene expression (Breda et al., 2021). It
infers latent gene expression using a method that
resembles a variational mean-field approximation
for a log-normal Poisson mixture model. Sanity
comes in two flavors: Sanity Distance calculates
the mean and standard deviation of the poste-
rior distribution of the logarithmic gene expres-
sion; based on these, it calculates all cell-by-cell
distances, from which it can find the k near-
est neighbors of each cell. Sanity MAP (short
for maximum a posteriori) ignores the inferred
uncertainty and returns the maximum of the pos-
terior as the transformed value. A related tool is
Dino, which fits mixtures of Gamma-Poisson dis-
tributions and returns random samples from the
posterior (Brown et al., 2021). Normalisr is a
tool primarily designed for frequentist hypothesis
testing (Wang, 2021), but as it infers logarith-
mic latent gene expression, it might also serve
as a generic preprocessing method. Normalisr
returns the minimum mean square error estimate
for each count assuming a binomial generative
model.

In this work, we analyze transformations for
preprocessing UMI-based single-cell RNA-seq
data based on each of these approaches. We
will first contrast the conceptual differences be-
tween them. In a second part, we benchmark the
empirical performance of all approaches and pro-
vide guidelines for practitioners to choose among
the methods. In the benchmarks, we also in-
clude a fourth preprocessing approach that is
not transformation-based and directly produces
a low-dimensional latent space representation of
the cells: factor analysis for count data based
on the (Gamma−)Poisson sampling distribution.
An early instance of this approach, called GLM
PCA, was presented by Townes (2019) and ap-
plied to biological data by Townes et al. (2019).
Recently, Agostinis et al. (2022) presented an
optimized implementation called NewWave.

Results

There are multiple flavors for each of the four
approaches:

• Among the delta method-based variance-
stabilizing transformations, we considered
the acosh transformation Eq. (1), the shifted
logarithm Eq. (2) with pseudo-count y0 = 1
or y0 = 1/(4α), and the shifted logarithm
with counts per million (CPM). In addition,
we tested the shifted log transformation
with highly variable gene selection (HVG),
z-scoring (Z), and rescaling the output as
suggested by Booeshaghi et al. (2022).

• Among the residuals-based variance-
stabilizing transformations, we considered
the clipped and unclipped Pearson residuals
(implemented by sctransform and trans-
formGamPoi) and randomized quantile
residuals. In addition, we tested the clipped
Pearson residuals with highly variable
gene selection, z-scoring, and an analytical
approximation to the Pearson residuals
suggested by Lause et al. (2021).

• Among the latent gene expression-based
transformations (abbreviated Lat. Expr.),
we considered Sanity Distance and Sanity
MAP, Dino, and Normalisr.

• Among the count-based factor analysis mod-
els (abbreviated Count), we considered
GLM PCA and NewWave.

Lastly, we include two methods as negative
controls in our benchmarks (abbreviated Neg.),
for which we expect poor performance: the raw
untransformed counts (y) and the raw counts
scaled by the size factor (y/s).

Conceptual differences

A known problem for variance-stabilizing trans-
formations based on the delta method derives
from the size factors. Fig. 1A shows the first two
principal components of a homogeneous solution
of droplets encapsulating aliquots from the same
RNA (Svensson et al., 2017) for representative
instances of the delta method-, residuals- and la-
tent expression-based transformation approaches.
(Suppl. Fig. S1 shows the results for all transfor-
mations.) Despite the size factor scaling, after
the delta method-based transformation, the size
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M ∼ LogNormal(µ, σ2)

(A) Confounding effect of size factors on PCA embedding of droplets encapsulating a homogeneous RNA solution
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(C) Distribution of a single gene (Sftpc) with a bimodal expression pattern in lung epithelium
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Figure 1 | Conceptual differences between variance-stabilizing transformations. The four columns of this
figure correspond to raw counts and transformation by shifted logarithm, clipped Pearson residuals, and Sanity MAP. (A)
Scatter plot of the first two principal components of data from droplets encapsulating a homogeneous RNA solution.
Each point corresponds to a droplet and is colored by its size factor. (B) Scatter plot of the mean-variance relation, where
each point is a gene from a human hematopoietic cell dataset. Note that the y-axis range differs between transformations,
and outliers are plotted on the edge of the plot. (C) Histogram of the transformed values for Sftpc, a marker for type II
pneumocytes, that has a bimodal gene expression in mouse lung epithelium. Details on the data are in Suppl. Table S1.

factor remained a strong variance component in
the data. In contrast, the other transformations
better mixed droplets with different size factors.
Intuitively, the trouble for the delta method-
based transformation stems from the fact that
the division of the raw counts by the size fac-
tors scales large counts from droplets with large
size factors and small counts from droplets with
small size factors to the same value. This vio-
lates the assumption of a common mean-variance
relationship. In Appendix B.3, we dissect this
phenomenon more formally.

One of the motivations stated by Hafemeis-
ter and Satija (2019) for the Pearson residuals-
based variance-stabilizing transformation is that
the delta method-based transformations fail to
stabilize the variance of lowly expressed genes.
Warton (2018) provided a theoretical explanation
for this fact. Indeed, Fig. 1B shows that the vari-
ance after transformation with a delta method-
based variance-stabilizing transformation was
practically zero for genes with a mean expression

of less than 0.1. In contrast, after residuals-based
transformation, the variance showed a weaker de-
pendence on mean expression, save very lowly
expressed genes whose variance is limited by the
clipping step (compare Pearson and Pearson (no
clip) in Suppl. Fig. S2). The results of the latent
expression-based transformations were diverse,
reflecting that these methods are not directly con-
cerned with stabilizing the variance. Individual
patterns ranged from higher variance for lowly
expressed genes (Sanity Distance and Normalisr)
to the opposite trend for Dino (Suppl. Fig. S2).

A peculiarity of the Pearson residuals is their
behavior if a gene’s expression strongly differs
between cell subpopulations. Fig. 1C shows a
bimodal expression pattern of Sftpc, a marker
for type II pneumocytes. Unlike the transfor-
mations based on the delta method or latent
expression models, the Pearson residuals are an
affine-linear transformation per gene (Eq. (4))
and thus cannot shrink the variance of the high-
expression subpopulation more than that of the
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low-expression subpopulation (compare the Pear-
son residuals with y/s in Suppl. Fig. S3). This
can affect visualizations of such genes and, in
principle, other analysis tasks such as detection
of marker genes or clustering and classification
of cells.

An alternative is to combine the idea of delta
method-based variance-stabilizing transforma-
tions with the generalized linear model resid-
uals approach by using non-linear residuals. We
considered randomized quantile residuals (Dunn
and Smyth, 1996). (Suppl. Fig. S4 shows how
they are constructed.) Like Pearson residuals,
randomized quantile residuals stabilized the vari-
ance for small counts (Suppl. Fig. S2), but in
addition, they also stabilized the within-group
variance if a gene’s expression strongly differed
across cells (Suppl. Fig. S3).

Such conceptual differences of the transfor-
mation approaches are important to understand
when applying them to novel data types or when
developing new transformations; but for most
practitioners, empirical performance will be of
primary interest. We look at this in the next
section.

Benchmarks

There is no context-free measure of success for
a preprocessing method, as it is contingent on
the objectives of the subsequent analysis. For in-
stance, if interest lies in identification of cell type-
specific marker genes, one could assess the shape
of distributions, such as in Fig. 1C, or the per-
formance of a supervised classification method.
Here, we considered the objective that arguably
has been the main driver of single-cell RNA-Seq
development and applications so far: understand-
ing the variety of cell types and states in terms
of a lower-dimensional mathematical structure,
such as a planar embedding, a clustering, trajec-
tories, branches, or combinations thereof. For all
of these, one can consider the k-nearest neighbor
(k-NN) graph as a fundamental data structure
that encodes essential information. The next
challenge is then the definition of “ground truth”.
We designed our benchmarks upon reviewing pre-
vious benchmarking approaches. For instance,
Breda et al. (2021) and Lause et al. (2021) em-
ployed synthetic or semi-synthetic data. This is
operationally attractive, but it is difficult to be
certain about biological relevance. Hafemeister
and Satija (2019) and Lause et al. (2021) used

qualitative inspection of non-linear dimension
reduction plots. This can be informative, but is
difficult to scale up and make objective. Germain
et al. (2020) compared how well the transforma-
tions recovered a priori assigned populations,
defined either through FACS or by mixing dif-
ferent cell lines. This is conceptually clean, but
restricts analysis to a limited range of data sets
that also may only offer a caricature view of cell
diversity.

For all our benchmarks, we applied the trans-
formations to the raw counts of each dataset
listed below, computed a lower-dimensional rep-
resentation of the cells using principal component
analysis (PCA), identified the k nearest neigh-
bors of each cell as measured by Euclidean dis-
tance, and, finally, computed the overlap of the
thus obtained k-NN graph with a reference k-NN
graph (see Methods for details). We performed
these three benchmarks:

Consistency. We downloaded ten 10X datasets
from the GEO database. Since there was no
formal ground truth, we measured the con-
sistency of the results (a necessary, although
not sufficient, condition for their goodness)
by splitting the genes of each dataset into
two disjoint subsets.

Simulation. We used four different previously
published simulation frameworks and one
adapted by us to generate a diverse collec-
tion of datasets for which we had full access
to the true k-NN graph.

Downsampling. We used five deeply sequenced
datasets based on mcSCRB and Smart-seq3
(details in Suppl. Table S2), which we down-
sampled to sequencing depths typical for the
10X technology. We postulated that a proxy
for ground truth could be constructed from
the k-NN graph inferred from the deeply se-
quenced data intersected across all transfor-
mations which we call reliable nearest neigh-
bors. To our knowledge, this work presents
the first instance of such an approach.

Suppl. Table S3 and Suppl. Figs. S5 and S6 give
an overview over the datasets.

We tested 22 transformations—where applica-
ble with an overdispersion fixed to 0, 0.05, and
a gene-specific estimate from the data—across
four to eight settings for the number of dimen-
sions of the PCA and measured the overlap with
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Figure 2 | Benchmark results. (A) Overlap between the k-nearest neighbors (k-NN) inferred separately on two halves
of the data. The colored points show the averages across 10 datasets, each with 5 replicate random data splits (small,
grey points). (B) Overlap between k-NN inferred from simulated data and ground truth, using 5 simulation frameworks
and 5 replicates per framework. (C) Overlap between a reference k-NN graph (inferred using all transformations on
deeply sequenced data and taking the intersection) and the k-NN inferred on data downsampled to match typical 10X
data (i.e., 5,000 counts per cell) for 5 datasets with 5 replicates each. To compare and aggregate results across the
different datasets, Panels A-C show relative overlap, which was computed by dividing, for each dataset, the overlap by its
average across all transformations, fixing k = 50 and using a dataset-specific number of PCA dimensions (Suppl. Fig. S8
shows the underlying, unaggregated data). (D) Overlap (y-axis) as a function of PCA dimensions (x-axis); the different
transformation types are indicated by the colors, using the same palette as in Panels A-C. The performance of Sanity
Distance is shown as a dashed line.

k = 10, 50, and 100 nearest neighbors. In total,
we collected more than 61 000 data points. In
addition to the results highlighted in the follow-
ing, we provide an interactive website with all
results for all tested parameter combinations.

Fig. 2 shows the aggregated results for the
three benchmarks for k = 50. Similar results
were obtained for k = 10 and k = 100, shown in
Suppl. Fig. S7.

In the consistency benchmark, the delta
method-based transformations performed better
than the other transformations (Fig. 2A).

On the simulated data, the differences between
the transformations looked less pronounced in
Fig. 2B than for the other two benchmarks. How-
ever, this is a result of the aggregated view. For
each particular simulation framework, large dif-

ferences between the transformations appeared,
but the results varied from simulation to simula-
tion framework (Suppl. Fig. S8B) and averaged
out in the aggregated view.

The results of the downsampling benchmark
(Fig. 2C) agreed well with the trends observed in
the simulation and the consistency benchmark.
This benchmark is particularly informative be-
cause the data had realistic latent structures,
which were reliably detectable through the high
sequencing depth. The downsampling produced
data that resembles the more common 10X data
in many characteristics: e.g., UMIs per cell, pro-
portion of zeros in the data (Suppl. Tab. S3), and
mean-variance relation (Suppl. Fig. S5). The
main difference was that the suitable (high se-
quencing depth per cell) datasets we could ac-
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(A) Computational expense for transform and k-NN calculation
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→HVG

Figure 3 | Computational Expense. (A) CPU time
needed to calculate the transformation and identify the
k-NNs for the 10X human T helper cell dataset. The
secondary axis shows the duration relative to the shifted
logarithm. (B) Dependence of run time on the number
of cells, across datasets, shown on a double-logarithmic
scale, with a linear fit. Most transformations have a
slope of approximately 1 (i.e., scale linearly), whereas
Sanity Distance and GLM PCA have a slope > 1.5 which
indicates quadratic scaling.

cess mostly comprised only a few hundred cells,
except for the 4 298 cells siRNA KD dataset
(Suppl. Fig. S6).

The results in Fig. 2 are on a relative scale,
which hides the magnitude of the differences. In
Suppl. Fig. S8, we show the underlying results
for each dataset on an absolute scale. The range
of k-NN overlaps was dataset dependent, ranging
from 34/50 for the best performing transforma-
tion versus 9/50 for the negative control for the
SUM149PT cell line consistency benchmark, to
2.9/50 vs. 1.5/50 for the HEK downsampling
benchmark. For the latter, the overall small
overlaps were due to small sets of reliable nearest
neighbors (Suppl. Fig. S9). We also ran a ver-
sion of the downsampling benchmark that only
used the top two transformations per approach
(Suppl. Fig. S10), which increased the number
of reliable nearest neighbors, and confirmed the
trends we saw in the full version.

In addition to the k-NN overlap with the
ground truth, we also calculated the adjusted
Rand index (ARI) and the adjusted mutual infor-

mation (AMI) for the five simulation frameworks.
Suppl. Figs. S11A, B show the aggregated results,
which were similar to the results for the k-NN
overlap (Fig. 2B). Suppl. Figs. S11C, D show
that the ARI and AMI had a larger dynamic
range than the k-NN overlap for datasets with
a small number of distinct clusters; however, for
datasets with a complex latent structure, the
k-NN overlap was more informative, which may
reflect limitations of ARI and AMI to assess the
recovery of gradual changes typical for many
biological tissues.

The Random Walk simulation reproduced the
benchmark based on which Breda et al. (2021)
argued that Sanity was the best method for
identifying the k nearest neighbors of a cell
(Fig. 5A of their paper). We found that the
delta method-based and residuals-based variance-
stabilizing transformations performed as well
in this benchmark if we projected the cells to
a lower-dimensional representation before con-
structing the k-NN graph. In fact, Fig. 2D shows
for four example datasets that the number of
dimensions for the PCA was an important de-
terminant of performance. This is because the
dimension reduction acts as a smoothener, whose
smoothing effect needs to be strong enough to
average out uncorrelated noise (i.e., small enough
target space dimension), but flexible enough to
maintain interesting variation (i.e., large enough
target space dimension).

The latent expression-based transformations
(except Normalisr) and the count-based factor
analysis models were computationally more ex-
pensive than the delta method- and residuals-
based transformations. Fig. 3A shows the CPU
times for calculating the transformation and find-
ing the k nearest neighbors on the 10X human T
helper cell dataset with 10 064 cells. Sanity Dis-
tance took particularly long because its distance
calculation, which takes into account the uncer-
tainty for the nearest neighbor search, scaled
quadratically with the number of cells (Fig. 3B).
Across all benchmarks, the computations took 24
years of CPU time, of which the latent expression-
based transformations accounted for over 90%.
The delta method-based transformations were
the fastest, especially if the overdispersion was
not estimated from the data. The residuals-based
transformations took somewhat more time, ex-
cept for the analytic approximation of the Pear-
son residuals, which could be calculated almost
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log(y/s+ 1)

better
Sanity MAP

better

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

log(y/s+ 1)

better
Dino
better

log(y/s+ 1)

better
GLM PCA

better
log(y/s+ 1)

better
acosh(2αy/s+ 1)

better
log(y/s+ 1)

better
Pearson

better

Pearson
better

Sanity MAP
better

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Pearson
better

Dino
better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Pearson
better

GLM PCA
better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Pearson
better

Analytic Pearson
better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Pearson
better

Random Quantile
better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

(B) Post-processing does not consistently
improve results
log(y/s+ 1)

better
log(y/s+ 1)/u

better

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

log(y/s+ 1)

better
log(y/s+ 1) →HVG

better

Pearson
better

Pearson→HVG
better

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling
simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

simulation

consistency

downsampling

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Pearson
better

Pearson→Z
better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

(C) Non-zero overdispersion improves results for delta method
and Pearson transformation

α = 0

better

α = est.

better

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

acosh(2αy/s+ 1)

α = 0

better

α = est.

better

Pearson

α = 0

better

α = 0.05

better

GLM PCA

α = 0

better

α = 0.05

better

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

simulation

consistency

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

α = 0

better

α = 0.05

better

-0.5 0.0 0.5
Diff. Rel. k-NN Overlap

Neural Progen. (10X) scDesign2 siRNA KD (ss3)

1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1000 3000 10000
0

5

10

0
10
20
30
40

0
10
20
30
40

UMIs / cell

k
-N

N
O

ve
rla

p

(D) More UMIs/cell, better k-NN overlap

Delta Method
GLM Residuals
Latent Expression
Count Model

Figure 4 | Comparison of selected transformations. (A-C) 95% confidence intervals of the differences of the relative
k-NN overlap between selected transformations as shown in Fig. 2. (A) Shifted logarithm and Pearson residuals against a
selection of the best performing transformations from the other preprocessing approaches. (B) Effect of applying various
post-processing methods after applying the shifted logarithm or Pearson residuals transformation. (C) Effect of fixing the
overdispersion to 0 or 0.05, or estimating a gene-specific overdispersion from the data. (D) Smoothed line plots of the
k-NN overlap (y-axis) as a function of the UMIs per cell (x-axis) for the shifted logarithm transformation, the Pearson
residuals, Sanity MAP, and GLM PCA colored by the respective transformation approach.

as fast as the shifted logarithm. In terms of
memory consumption, the delta method-based
transformations were most attractive because
they retained the sparsity of the data.

In terms of uncovering the latent structure
of the datasets, none of the other transforma-
tions consistently outperformed the shifted loga-
rithm (Fig. 4A), one of the simplest and oldest
approaches. In fact, when followed by PCA di-
mension reduction to a suitable target dimension,
the shifted logarithm performed better than the
more complex latent expression-based transfor-
mations across all three benchmarks.

We found no evidence that additional post-
processing steps (rescaling the output of the
shifted logarithm, selecting highly variable genes,
or equalizing the variance of all genes using z-
scoring) improved the results for identifying near-

est neighbors (Fig. 4B). Lause et al. (2021) and
Choudhary and Satija (2022) debated on how to
best choose the overdispersion parameter. We
found empirically that, for Pearson residuals and
the acosh transformation, it is beneficial to have
α > 0, but saw no clear benefits from estimating
this parameter from the input data versus using
a generic, fixed value of, say, 0.05 (Fig. 4C).

Lastly, we found that with increasing sequenc-
ing depth per cell, all methods generally had
a better k-NN overlap with the ground truth
(Fig. 4D). This makes intuitive sense: with higher
sequencing depth, the relative size of the sam-
pling noise is reduced. Based on Fig. 1A, we
might assume that delta method-based transfor-
mations would perform particularly poorly at
identifying the neighbors of cells with extreme
sequencing depths; yet on three datasets, the
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shifted logarithm performed as well for cells with
particularly large or small size factors, as for
other cells (Fig. 4D). We also considered the per-
formance of the transformations as a function of
cluster size (Suppl. Figs. S12-S14); while we see
some interesting variation, we do not find that
a single transformation performed consistently
better or worse for small clusters.

Discussion

We compared 22 transformations, conceptually
grouped into four basic approaches, for their abil-
ity to recover latent structure among the cells.
We found that one of the simplest approaches,
the shifted logarithm transformation log(y/s+y0)
with y0 = 1 followed by PCA, performed surpris-
ingly well. We presented theoretical arguments
for using the related acosh transformation or
an adaptive pseudo-count y0 = 1/(4α), but our
benchmarks showed limited performance benefits
for these.

We recommend against using counts per mil-
lion as input for the shifted logarithm. We
pointed out that for typical datasets, this
amounts to assuming an unrealistically large
overdispersion, and in our benchmarks this ap-
proach performed poorly compared to applying
the shifted logarithm to size factor-scaled counts.
We also advise against scaling the results of the
shifted logarithm by the sum of the transformed
values per cell as, e.g., suggested by Booeshaghi
et al. (2022). In our hands (Suppl. Fig. S1),
this additional operation failed to remove the
confounding effect of the sequencing depth (the
authors’ stated motivation for it) and did not
improve the k-NN recall performance.

The Pearson residuals-based transformation
has attractive theoretical properties and, in our
benchmarks, performed similarly well as the
shifted logarithm transformation. It stabilizes
the variance across all genes and is less sensitive
to variations of the size factor. The analytic
approximation suggested by Lause et al. (2021)
is appealing because it worked as well as the
exact Pearson residuals but could be calculated
faster. However, as seen in Eq. (4), the Pear-
son residuals-based transformation is affine linear
when considered as a function per gene, and this
may be unsatisfactory for genes with a large
dynamic range across cells. As an alternative,
we considered randomized quantile residuals as

a non-linear transformation, but found no per-
formance improvement. This result exemplifies
that choosing a transformation for conceptual
reasons does not necessarily translate into better
downstream analysis results.

The use of the inferred latent expression state
as a transformation and count-based latent factor
models are appealing because of their biological
interpretability and mathematical common sense.
In particular, Sanity Distance is appealing be-
cause it does not have any tunable parameters.
However, all these transformations performed
worse than the shifted logarithm with a reason-
able range of PCA dimensions in our benchmarks
and some of the transformations were exception-
ally computationally expensive (e.g., the median
CPU time of Sanity Distance was 4 500× longer
than for the shifted logarithm).

Our results partially agree and disagree with
previous studies. Germain et al. (2020) bench-
marked many steps of a typical single-cell RNA-
seq analysis pipeline, including a comparison of
clustering results obtained after different trans-
formations against a priori assigned populations.
In line with our findings, they reported that
dimension reduction was of great importance.
They went on to recommended sctransform (i.e.,
Pearson residuals) based on its good performance
on the Zhengmix4eq dataset, which is a mixture
of PBMCs sorted by surface markers using flow
cytometry. However, it is not clear how gener-
alizable this result is, and our benchmarks do
not support such a singling out of that method.
Lause et al. (2021) considered the related Zheng-
mix8eq dataset, into which they implanted a
synthetic rare cell type by copying 50 B-cells and
appending 10 genes exclusively expressed in the
synthetic cell type. They used k-NN classifica-
tion accuracy of the cell type averaged per cell
type (macro F1 score, Fig. 5c of their paper) and
averaged over all cells (online version of Fig. 5c).
They found a performance benefit for the Pear-
son residuals over the shifted logarithm with the
macro F1 score, but similar performance with
regard to overall accuracy. The macro F1 score
emphasizes the performance difference for the
synthetic cell type, which appears somewhat con-
strued and might not be a good model for most
biologically relevant cell type and state differ-
ences. Instead of comparing clustering results to
discrete cell type assignments, we have focused
on the inference of the k nearest neighbors of
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each cell, with the expectation that this enables
consideration of more subtle latent structures
than well-separated, discrete cell types.

Pearson residuals- and delta method-based
transformations weight genes differently; e.g.,
Pearson residuals put more weight on lowly ex-
pressed genes than the delta method (Fig. 1B).
This can lead to different downstream results,
but our benchmarks did not indicate that any
particular weighting is generally better; only that
the delta method-based transformation produced
more consistent results on the 10X datasets.

We did not evaluate the impact of alternative
size factor estimators. We also did not consider
how suitable a transformation is for marker gene
selection, because we are not aware of a suit-
able metric to determine success, as the utility
of a marker gene hinges on its biological inter-
pretability. For a recent effort to compare dif-
ferent marker gene selection methods, see Pullin
and McCarthy (2022).

Considerable effort has been invested in the
space of preprocessing methods for single-cell
RNA-seq data. Somewhat to our surprise, the
shifted logarithm still performs among the best
for preprocessing, but crucially only if combined
with a dimensionality reduction method like PCA
and an appropriate number of latent dimensions.

Availability

An R package that implements the delta
method- and residuals-based variance-stabilizing
transformations is available on bioconduc-
tor.org/packages/transformGamPoi/. The
code to generate the figures is available
on github.com/const-ae/transformGamPoi-
Paper. We provide an interactive web-
site to explore the benchmark results at
shiny-portal.embl.de/shinyapps/app/08 single-
cell transformation benchmark. All datasets
used in this manuscript are listed in Suppl. Ta-
ble S1 and S2.
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Methods

Transformations

We compared 22 transformations that can be
grouped into four approaches.

The delta method-based transformations were:
the shifted logarithm (log(y/s+ 1)), the acosh
transformation (acosh(2αy/s + 1)), the shifted
logarithm with pseudo-count dependent on the
overdispersion (log(y/s + 1/(4α))), the shifted
logarithm with counts-per-million (log(CPM +
1)), the shifted logarithm with subsequent size
normalization as suggested by Booeshaghi et al.
(2022) (xgc/uc, where xgc = log(ygc/sc + 1) and
uc =

∑
g xgc), the shifted logarithm with subse-

quent highly variable gene selection (log(y/s +
1) → HVG), the shifted logarithm with subse-
quent z-scoring per gene (log(y/s + 1) → Z),
the shifted logarithm with subsequent highly
variable gene selection and z-scoring per gene
(log(y/s + 1) → HVG → Z). For all composite
transformations, we first calculated the variance
stabilizing transformation, then chose the highly
variable genes and used the results without recal-
culating the variance stabilizing transformation.

To retain the sparsity of the output also if the
pseudo-count y0 ̸= 1, transformGamPoi uses the
relation

log(
y

s
+ y0) = log

(
y

y0 s
+ 1

)
+ log y0. (6)

Subtracting the constant log y0 from this expres-
sion does not affect its variance stabilizing proper-
ties, but has the desirable effect that data points
with y = 0 are mapped to 0.

The residuals-based transformations were:
Pearson residuals implemented with the transfor-
mGamPoi package where each residual is clipped
to be within ±√

#Cells, as suggested by Hafe-
meister and Satija (2019) (Pearson), Pearson
residuals with clipping and additional heuristics
implemented by sctransform Version 2 (sctrans-
form), an analytic approximation to the Pearson
residuals with clipping suggested by Lause et al.
(2021) (Analytic Pearson), randomized quan-
tile residuals implemented by transformGamPoi
(Random. Quantile), Pearson residuals with-
out clipping implemented by transformGamPoi
(Pearson (no clip)), Pearson residuals with clip-
ping and subsequent highly variable gene selec-
tion (Pearson → HVG), Pearson residuals with
clipping and subsequent z-scoring per gene (Pear-
son → Z), Pearson residuals with clipping and

subsequent highly variable gene selection and
z-scoring per gene (Pearson → HVG → Z). For
each composite Pearson residual transformation
(i.e., with HVG. and / or z-scoring), we used the
transformGamPoi implementation.

The latent expression-based transformations
were: Sanity with point estimates for the latent
expression (Sanity MAP) and with calculation
of all cell-by-cell distances taking into account
uncertainty provided by the posteriors (Sanity
Distance), Dino as provided in the corresponding
R package, and Normalisr with variance normal-
ization, implemented in Python, which we called
from R using the reticulate package.

The count-based factor analysis models were:
GLM PCA using the Poisson model and the
Gamma-Poisson model with α = 0.05. In the
figures, we show the results for the Poisson model
unless otherwise indicated. We used the avagrad
optimizer. We ran NewWave with 100 genes for
the mini-batch overdispersion estimation.

For the delta method-based transformations
and the residuals-based transformations calcu-
lated with the transformGamPoi package, we
calculated the size factor s using Eq. (3).

We defined highly variable genes (HVG) as the
1 000 most variable genes based on the variance
of the transformed data.

For z-scoring, we took the transformed values

xgc = g(ygc) and computed zgc =
xgc−mean(xg)√

var(xg)
,

where mean and variance are the empirical mean
and variance taken across cells.

In the overview figures (Fig. 2, 3, and 4), we
use a gene-specific overdispersion estimate for
all residuals-based transformations and for the
delta method-based transformations which can
handle a custom overdispersion; for GLM PCA,
we use α = 0, because these settings worked best
for the respective transformations. The latent
expression-based transformations and NewWave
do not support custom overdispersion settings.

Conceptual differences

For the visualization of the residual structure af-
ter adjusting for the varying size factors, we chose
a control dataset of a homogeneous RNA solution
encapsulated in droplets (Svensson et al., 2017).
We filtered out RNAs that were all zero and plot-
ted the first two principal components. Where
applicable, we used the gene-specific overdisper-
sion estimates. For visualizing the results of
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Sanity Distance, instead of the PCA, we used
multidimensional scaling of the cell-by-cell dis-
tance matrix using R’s cmdscale function. We
calculated the canonical correlation using R’s
cancor function on the size factors and the first
10 dimensions from PCA and multi-dimensional
scaling.
The plots of the mean-variance relation are

based on the 10X human hematopoietic cell
dataset (Bulaeva et al., 2020). Where appli-
cable, we used the gene specific overdispersion
estimates. The panel of Sanity Distance shows
the variance of samples drawn from a normal dis-
tribution using the inferred mean and standard
deviation.
For the mouse lung dataset (Angelidis et al.,

2019), we filtered out cells with extreme size fac-
tors (0.1smedian < sc < 10smedian, where smedian

is the median size factor). We also removed cells
that did not pass the scran quality control crite-
rion regarding the fraction of reads assigned to
mitochondrial genes. To account for the fact that
some transformations share information across
genes, we applied all transformations to the 100
most highly expressed genes and three genes
(Sftpc, Scgb1a1, Ear2) known to be differentially
expressed in some cell types according to the
assignment from the original publication.

Benchmark

The benchmarks were executed using a custom
work scheduler for slurm written in R on Cen-
tOS7 and R 4.1.2 with Bioconductor version 3.14.
The set of R packages used in the benchmark
with exact version information was stored us-
ing the renv package and is available from the
GitHub repository.

k-NN identification and dimensionality re-
duction

To calculate the PCA, we used the irlba package.
To infer the k nearest neighbors, we used annoy,
which implements an approximate nearest neigh-
bor search algorithm. To calculate the t-SNEs,
which we only used for visualization, we used
the Rtsne package on data normalized with the
shifted logarithm with a pseudo-count of 1.

Consistency Benchmark

We downloaded ten single-cell datasets listed
in the gene expression omnibus database (GEO)

browser after searching for the term mtx on 2021-
10-14. All Datasets are listed in Suppl. Tab. S2.
To measure the consistency of the transforma-
tions, we randomly assigned each gene to one
of two groups and processed the two resulting
data subsets separately. We calculated the con-
sistency as the mean overlap of the k nearest
neighbors for all cells.

Simulation Benchmark

We used five frameworks to simulate single-cell
counts in R: we ran dyngen (Cannoodt et al.,
2021) using a consecutive bifurcating mode and
the default parameters otherwise. We ran muscat
(Crowell et al., 2020) with 4 clusters, a default of
30% differentially expressed genes with an aver-
age log-fold change of 2, and a decreasing relative
fraction of log-fold changes per cluster. We ran
scDesign2 (Sun et al., 2021) with the 10X hu-
man hematopoietic cell dataset as the reference
input with a copula model and a Gamma-Poisson
marginal distribution. We simulated the Ran-
dom Walk by translating the Matlab code of
Breda et al. (2021) to R and using the data by
Baron et al. (2016) as a reference. For the Linear
Walk, we adapted the Random Walk simulation
and, instead of following a random walk for each
branch, we interpolated the cells linearly between
a random start and end point. For both bench-
marks, we used a small non-zero overdispersion
of α = 0.01 to mimic real data.

With each simulation framework, we knew
which cells were, in fact, the k nearest neigh-
bors to each other. We calculated the overlap
as the mean overlap of this ground truth with
the inferred nearest neighbors on the simulated
counts for all cells. Furthermore, we calculated
the adjusted Rand index (ARI) and adjusted mu-
tual information (AMI) by clustering the ground
truth and the transformed values with the graph-
based walktrap clustering algorithm from the
igraph package.

Downsampling Benchmark

We searched the literature for single-cell datasets
with high sequencing depth and found five (one
from mcSCRB, four from Smart-seq3) that had
a sequencing depth of more than 50 000 UMIs
per cell on average. We defined reliable nearest
neighbors as the set of k nearest neighbors of a
cell that were identified with all 22 transforma-
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tions on the deeply sequenced data (excluding
the two negative controls). We used the down-
sampleMatrix function from the scuttle package
to reduce the number of counts per cell to ap-
proximately 5 000, a typical value for 10X data.
We considered only one setting for the overdis-
persion per transformation (instead of allowing
multiple overdispersion settings for some trans-
formations as in the other benchmarks). We ran
all transformations, which supported the setting,
with a gene-specific overdispersion estimate (ex-
cept GLM PCA which performed better with an
overdispersion fixed to 0). Finally, we computed
the mean overlap between the k nearest neigh-
bors identified on the downsampled data with
the set of reliable nearest neighbors for all cells
with more than one reliable nearest neighbor.

k-NN Overlap

For all three benchmarks, we calculated over-
laps between pairs of k nearest neighbor graphs.
Denoting their #cell×#cell adjacency matrices
(i.e., a matrix of zeros and ones, where an entry is
is one if a cell d is among the k nearest neighbors
of cell c) by N1 and N2, we defined their overlap
as

1

#cells

#cells∑
c,d=1

N1
cd N2

cd. (7)
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Supplementary Tables

Suppl. Table S1: Datasets used to illustrate the conceptual differences between transformations.

Confounding effect of varying
sequencing depth on dimen-
sionality reduction

Droplet encapsu-
lated RNA

Chromium v1 Svensson et al. (2017),
CalTech Data Repo entry 1264

Mean-variance relation Human
hematopoi-
etic cells

Chromium v3 Bulaeva et al. (2020)
GEO GSE130931

Effect of transformation on
marker genes

Mouse lung DropSeq Angelidis et al. (2019),
GEO GSE124872
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Suppl. Table S2: Datasets used to benchmark the performance differences between transformations.

Consistency Human hematopoi-
etic cells

Chromium v3 Bulaeva et al. (2020)
GEO GSE130931

SUM149PT cell line 10X Genomics No corresponding publication
GEO GSE142647

Human lung epithe-
lium

Chromium v3 Kathiriya et al. (2022)
GEO GSE150068

Mouse pharyngeal
mesoderm

Chromium v2 Nomaru et al. (2021)
GEO GSE158941

Human neural progen-
itor cells

Chromium v3 De Santis et al. (2021)
GEO GSE163505

Mouse mammary Chromium v2 Pal et al. (2021)
GEO GSE164017

Mouse aorta Chromium v3 Porritt et al. (2021)
GEO GSE178765

Bovine intervertebral
discs (IVDs)

Chromium v3 Panebianco et al. (2021)
GEO GSE179714

Human T helper cells Chromium 5’ v1 Qian et al. (2021)
GEO GSE179831

Human T cells Chromium 5’ v1.1 Lu et al. (2021)
GEO GSE184806

Simulation Human pancreas InDrops Baron et al. (2016),
scRNAseq BioC package

Downsampling JM8 cells mcSCRB-seq Bagnoli et al. (2018),
GEO GSE103568

HEK cells Smart-seq3 Hagemann-Jensen et al. (2020),
ArrayExpress E-MTAB-8735

Fibroblasts (1) Smart-seq3 Hagemann-Jensen et al. (2020),
ArrayExpress E-MTAB-8735

Fibroblasts (2) Smart-seq3 Larsson et al. (2021),
ArrayExpress E-MTAB-10148

siRNA Knockdown
(KD)

Smart-seq3 Johnsson et al. (2022),
Github Sandberg-lab
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Suppl. Table S3: Overview of the datasets used for the benchmark. The #Genes and #Cells columns
show the number of rows and columns in the count matrix after filtering out rows and columns for
which all values were zero. Perc. Zeros shows what fraction of all values were 0. 99% Quant shows the
99% quantile of the counts. Overdisp. shows the global overdispersion estimate with glmGamPoi.

#Cells #Genes Perc. Zeros 99% Quant UMI/cell Overdisp.

Consistency

Hematopoietic Cells 2,838 21,398 87% 12 5,020 0.33

SUM149PT Cells 1,196 25,231 74% 35 54,900 0.14

Lung Epithelium 11,407 20,728 90% 5 7,730 0.17

Pharyngeal Mesoderm 7,581 19,939 79% 19 21,700 0.12

Neural Progenitors 13,572 25,711 87% 7 11,500 0.31

Mouse Mammary 6,969 19,757 89% 6 6,970 0.24

Mouse Aorta 10,477 20,020 86% 8 9,420 0.89

Bovine IVDs 8,231 17,464 90% 6 3,940 1.20

T Helper Cells 10,064 21,153 83% 15 19,300 0.33

T Cells 43,283 23,978 92% 4 5,360 0.53

Simulation

Dyngen 5,000 995 75% 3 291 0.20

Linear Walk 8,569 17,130 90% 5 4,340 2.20

muscat 5,000 999 63% 22 1,830 0.98

Random Walk 8,569 17,192 90% 5 4,820 2.60

scDesign2 2,838 16,199 82% 15 5,170 0.35

Downsampling (original)

mcSCRB 249 16,864 57% 48 59,000 0.47

Fibroblasts 369 16,535 45% 224 199,000 0.82

Fibroblasts 2 737 18,682 48% 181 197,000 0.33

HEK 339 18,746 63% 38 56,100 0.15

siRNA KD 4,298 18,956 56% 106 122,000 0.36

Downsampling (reduced)

mcSCRB 249 16,864 87% 5 5,020 0.32

Fibroblasts 369 16,535 85% 6 5,020 0.19

Fibroblasts 2 737 18,682 88% 5 5,020 0.13

HEK 339 18,746 89% 4 5,140 0.11

siRNA KD 4,298 18,956 88% 5 4,990 0.23
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Suppl. Figure S1: Scatter plot of the first two principal components of the transformed data colored
by the sequencing depth (expressed as a normalized size factor on a logarithmic scale) per cell. The
data are from droplets that encapsulate a homogeneous RNA solution, and thus the only variation is
due to technical factors like sequencing depth (Svensson et al., 2017). The annotation at the bottom
of the plot shows the canonical correlation coefficient ρ (Hotelling, 1936) between the size factor and
the first ten principal components. A lower canonical correlation means that the variance-stabilizing
transformation more successfully adjusts for the varying size factors; a canonical correlation of ρ = 1
means that the ordering of the cells along some direction in the first 10 PCs is entirely determined by
the size factor.
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Suppl. Figure S2: Scatter plot of the variance per gene after applying the variance-stabilizing trans-
formation against the means of the 10X human hematopoietic cell dataset subset to 400 cells and
5000 genes. Note that the scale of the y-axis differs for the raw counts, log(CPM+ 1), log(y/s+ 1)/u,
Pearson (no clip), Sanity MAP, Dino, and Normalisr for aesthetic purposes. Points that exceed the
y-axis scale are drawn on the top of each facet.
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Suppl. Figure S3: Histograms of the transformed values for a gene with a bimodal expression pattern.
Counts from cells identified as type II pneumocytes are shown in purple and a matching number of
counts from all other cell types are shown in grey.
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Construction of Randomized Quantile Residuals
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Suppl. Figure S4: Schematic representation of how randomized quantile residuals are constructed. In
the first step, a Gamma-Poisson distribution (black line) is fitted to the observed counts. Then, the
quantiles of the Gamma-Poisson distribution are matched with the quantiles of a standard normal
distribution by comparing their respective cumulative density functions (CDFs). This obtains a
mapping from the raw count scale to a new, continuous scale. The two colored bars (orange for y = 2,
yellow for y = 21) exemplify this mapping. The non-linear nature of the CDFs ensures that small
counts are mapped to a broader range than large counts. This helps to stabilize the variance on the
residual scale. Furthermore, the randomization within the mapping sidesteps the discrete nature of the
counts.
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Suppl. Figure S5: Log-log scatter plot of the mean-variance relation across all genes for each dataset.
As size factor variations between cells introduce heterogeneity, for each dataset, we filtered out the
largest and smallest 25% of cells.
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Suppl. Figure S6: tSNE plot of each dataset. The cells are colored by clustering using the walktrap
clustering algorithm. For the consistency data we clustered the counts after transformation with the
shifted logarithm. For the simulation data, we clustered the ground truth. For the downsampling data,
we clustered the deeply sequenced data after transformation with the shifted logarithm.
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(C) Simulation: k = 10
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(D) Simulation: k = 100
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(E) Downsampling: k = 10
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(F) Downsampling: k = 100

Suppl. Figure S7: Plot of the aggregate results of the consistency (A, B), simulation (C, D), and
downsampling benchmarks (E, F) for k = 10 and k = 100, respectively. The results for each dataset
are broad to a common scale by normalizing to the mean k nearest neighbor overlap per dataset. The
colored points show the mean per group.
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(A) Consistency: 10X gene subset 1 vs. gene subset 2
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(B) Simulation: Ground truth vs. simulated counts
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(C) Downsampling: Original vs. downsampled deeply sequenced data

Suppl. Figure S8: The unaggregated results from the consistency (A), simulation (B), and downsampling
benchmarks (C) for k = 50. The grey points show the raw results from the five replicates per dataset;
the colored points show their mean. The dashed vertical line indicates the mean k-NN overlap per
dataset and is the reference used to aggregated the results as shown in Fig. 2A-C. The subtitles of
each plot indicate the number of dimensions used for the PCA per dataset, which we chose based on
the complexity of the dataset.
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(A) Pairwise k-NN overlap for mcSCRB (B) Histogram of reliable-NN for mcSCRB
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(C) Pairwise k-NN overlap for Fibroblasts (ss3) (D) Histogram of reliable-NN for Fibroblasts (ss3)

0

10

20

30

40

0 5 10 15 20
Reliable neighbors per cell

n

log(y/s+ 1)
log(y/s+ 1) →HVG
log(y/s+ 1) →Z
log(y/s+ 1) →HVG→Z
log(CPM+ 1)
log(y/s+ 1)/u
acosh(2αy/s+ 1)
log(y/s+ 1/(4α))
Pearson (no clip)
Pearson
Pearson→HVG
Pearson→Z
Pearson→HVG→Z
Analytic Pearson
sctransform
Random Quantile
Dino
Normalisr
Sanity MAP
Sanity Distance
GLM PCA
NewWave
y
y/s

(E) Pairwise k-NN overlap for Fibroblasts 2 (ss3) (F) Histogram of reliable-NN for Fibroblasts 2 (ss3)
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(G) Pairwise k-NN overlap for HEK (ss3) (H) Histogram of reliable-NN for HEK (ss3)
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(I) Pairwise k-NN overlap for siRNA KD (ss3) (J) Histogram of reliable-NN for siRNA KD (ss3)
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Suppl. Figure S9: Inference of the reliable nearest neighbors for the five deeply sequenced datasets. The
left column (A,C,E,G,I) shows heatmaps of the average k-NN overlap for all pairs of transformations.
The right column (B,D,F,H,J) shows histograms of the number of reliable neighbors per cell (i.e., the
neighbors among the 50 k-NN that were identified by all 22 transformations). The dark shaded bars
show the cells that were used to calculate the overlap with the downsampled version of the data in
Suppl. Fig. S8C.
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(A) Downsamping results considering only the top two transformations per approach
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Suppl. Figure S10: The downsampling benchmark considering only the top two transformations per
approach. (A) The unaggregated results of for downsampling benchmarking using the same settings
as in Suppl. Fig. S8C. (B) The histograms of reliable neighbors per cell only considering the eight
transformations from (A).

28

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2022. ; https://doi.org/10.1101/2021.06.24.449781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449781
http://creativecommons.org/licenses/by-nd/4.0/


0.5

1.0

1.5

lo
g
(y
/
s
+
1)

ac
os
h
(2
α
y
/s

+
1)

lo
g
(y
/s

+
1
/
(4
α
))

lo
g
(C

P
M

+
1)

lo
g
(y
/
s
+
1)
/u

lo
g
(y
/
s
+
1)

→
H

V
G

lo
g
(y
/s

+
1
)
→

Z
lo
g
(y
/
s
+
1)

→
H

V
G
→

Z

Pe
ar

so
n

sc
tra

ns
fo

rm
A

na
ly

tic
Pe

ar
so

n
R

an
do

m
Q

ua
nt

ile
Pe

ar
so

n
(n

o
cl

ip
)

Pe
ar

so
n→

H
V

G
Pe

ar
so

n→
Z

Pe
ar

so
n→

H
V

G
→

Z

S
an

ity
M

A
P

S
an

ity
D

is
ta

nc
e

D
in

o
N

or
m

al
is

r

G
LM

P
C

A
N

ew
W

av
e y

y
/s

Delta Method GLM Residuals Lat. Expr. Count Neg.

R
el

.
A

R
I

(A) Simulation: Adjusted Rand Index
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(B) Simulation: Adjusted Mututal Information
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(C) Adjusted Rand index vs. Mean overlap per dataset
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(D) Adjusted Mutual Information vs. Mean overlap per dataset

Suppl. Figure S11: Results of the simulation benchmark in terms of the adjusted Rand index (A) and
the adjusted mutual information (B) instead of the k-NN overlap. (C-D) Scatter plots facetted by
simulation framework that compares the results for the k-NN overlap with the adjusted Rand index
and adjusted mutual information, respectively. Each point is one replicate for the transformation
results of that dataset colored by the transformation approach. The black dashed line shows the linear
fit and the number at the bottom of each plot is the correlation coefficient. The horizontal dashed line
is the mean ARI / AMI that is used for forming the relative performance in (A) and (B). The vertical
dashed line is the mean k-NN overlap and corresponds to the vertical dashed line in Suppl. Fig. S8B.
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(A) k-NN overlap stratified by cluster size for Neural Progen. (10X)

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

1551

1004

354
1388

1425

662

465

891

1089

461

970

1170

627

689

826

(B) tSNE of Neural Progen. (10X) data with cluster sizes annotated
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Suppl. Figure S12: k-NN overlap of the two halves of the human neural progenitor dataset stratified
by cluster (A, B) and by location in the two-dimensional tSNE projection (C).
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(A) k-NN overlap stratified by cluster size for scDesign2
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(B) tSNE of scDesign2 data with cluster sizes annotated
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(C) k-NN overlap plotted on the tSNE

Suppl. Figure S13: k-NN overlap on the dataset simulated with scDesign2 stratified by cluster (A, B)
and by location in the two-dimensional tSNE projection (C).
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(A) k-NN overlap stratified by cluster size for siRNA KD (ss3)
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(B) tSNE of siRNA KD (ss3) data with cluster sizes annotated
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(C) k-NN overlap plotted on the tSNE

Suppl. Figure S14: (Relative ) k-NN overlap between the deeply sequenced and downsampled version
of the siRNA knockdown dataset stratified by cluster (A, B) and by location in the two-dimensional
tSNE projection (C). All cells for which the intersection of nearest neighbors on the deeply sequenced
data was less than 4, were filtered out.
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B Appendix

B.1 Variance-stabilizing transforma-
tion for a quadratic mean-
variance relation

The Gamma-Poisson distribution with mean µ
and overdispersion α implies a quadratic mean-
variance relation

Var[Y ] = v(µ) = µ+ αµ2.

Our goal is to find a function g for which

Sd[g(Y )] ≈ const.

The delta method approximates the standard
deviation of a transformed random variable as

Sd[g(Y )] ≈ |g′(µ)| Sd[Y ].

We can require this to be constant and solve for
|g′(µ)|:

|g′(µ)| Sd[Y ] = const.

g′(µ) =
const.

Sd[Y ]
=

const.√
v(µ)

(8)

Given the derivative g′, we can use integration
to identify the functional form of our transfor-
mation (note that without loss of generality, we
can ignore the constant, whose value does not
affect the variance stabilization property.)

g(µ) =

∫
1√
v(µ)

dµ

=

∫
1√

µ+ αµ2
dµ

=
2√
α
asinh (

√
αµ)

=
1√
α
acosh (2αµ+ 1) .

(9)

The last two expressions are mathematically
equivalent. In the paper, we preferentially use
the acosh-based expression since it seems slightly
simpler. It is, however, worth noting that in the
past, the name asinh transformation has been
used (Bartlett, 1947).

If there is no overdispersion (α = 0), the acosh
transformation reduces to the well-known square
root variance stabilizing transformation for Pois-
son random variables

lim
α→0

g(µ) = 2
√
µ. (10)

B.2 Approximating the acosh trans-
formation with the shifted loga-
rithm

The inverse hyperbolic cosine (acosh) transfor-
mation from Eq. (1) can also be expressed in
terms of the logarithm function,

g(y) =
1√
α
acosh (2αy + 1)

=
1√
α
log

(
2αy +

√
(2αy + 1)2 − 1 + 1

)
.

(11)
We want to approximate this transformation us-
ing the shifted logarithm and thus find a, b, and
c in

h(y) = a+ b log(y + c), (12)

so that h(y) ≈ g(y).
We aim to find a, b, and c such that for large

y, h(y) converges to g(y). We notice that

lim
y→∞

√
(2αy + 1)2 − 1

2αy
= 1, (13)

and thus for large y

g(y) ≈ 1√
α
log (4αy + 1)

=
1√
α
log

(
y +

1

4α

)
+

log (4α)√
α

.

(14)

The linear scaling b and the offset a do not in-
fluence the variance stabilization; the important
insight is that the pseudo-count y0 = 1

4α ensures
that the shifted logarithm is most similar to the
variance-stabilizing transformation derived using
the delta method.

B.3 Delta method-based variance-
stabilizing transformation and
size factors

Suppl. Fig. S1 demonstrates that delta method-
based variance-stabilizing transformations strug-
gle to account for varying size factors.
To incorporate cell-specific size factors in the

delta method-based variance stabilizing transfor-
mation approach, the counts Yij are divided by
the size factor sj before applying the transfor-
mation: g(Yij/sj) (Love et al., 2014). To see the
implications of this, it is helpful to look at a de-
composition of the variance of a Gamma-Poisson
random variable Y :

Y |Q ∼ Poisson(Q)

Q ∼ Gamma(µ, α)

Y ∼ Gamma-Poisson(µ, α).

(15)
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In the context of RNA-seq count data, the Pois-
son level of this hierarchical model represents
the technical sampling noise and Q models ad-
ditional variation. According to the law of total
variation

Var[Y ] = E[Var(Y |Q)] + Var[E(Y |Q)]

= µ+ αµ2,
(16)

where Var[Y |Q] = µ and Var[Q] = αµ2.
If we apply the same approach to a model with

size factors

Y ′|Q, s ∼ Poisson(sQ), (17)

we find that

Var[Y ′] = E[Var(Y ′|Q)] + Var[E(Y ′|Q)]

= sµ′ + αs2µ′2

= µ+ αµ2

(18)

where µ = sµ′.
If, however, we want to apply the delta method-

based variance-stabilizing transformation to a
size factor standardized count

X = Y ′/s, (19)

we find that

Var[X] =
1

s2
Var[Y ′]

=
1

s2
(sµ′ + αs2µ′2)

=
1

s
µ′ + αµ′2

(20)

The difference between the final line of Eq. (18)
and Eq. (20) explains the problem observed
when applying the delta method-based variance-
stabilizing transformation to correct data where
the size factors vary a lot between cells.

34

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2022. ; https://doi.org/10.1101/2021.06.24.449781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449781
http://creativecommons.org/licenses/by-nd/4.0/

	Supplementary Figures
	Appendix
	Variance-stabilizing transformation for a quadratic mean-variance relation
	Approximating the acosh transformation with the shifted logarithm
	Delta method-based variance-stabilizing transformation and size factors


