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Abstract 
The perception of pain is shaped by somatosensory information about threat. However, pain 

is also influenced by an individual’s expectations. Such expectations can result in clinically 

relevant modulations and abnormalities of pain. In the brain, sensory information, expectations 

(predictions), and discrepancies thereof (prediction errors) are signaled by an extended 

network of brain areas. These brain areas generate evoked potentials and oscillatory 

responses at different latencies and frequencies. Recent evidence has provided first insights 

into how oscillatory responses at different frequencies signal predictions and prediction errors. 

However, a comprehensive picture of how evoked and oscillatory brain responses signal 

sensory information, predictions, and prediction errors in the processing of pain is lacking so 

far. We therefore built upon a neuroimaging study which investigated the spatial signalling of 

sensory information, predictions and predictions errors in the processing of pain (Geuter et al., 

2017). To complement and extend this study, we applied brief painful stimuli to 48 healthy 

human participants and independently modulated sensory information (stimulus intensity) and 

expectations of pain intensity while measuring brain activity using electroencephalography 

(EEG). Pain ratings confirmed that pain intensity was shaped by both sensory information and 

expectations. In contrast, Bayesian analyses revealed that stimulus-induced EEG responses 

at different latencies (the N1, N2, and P2 components) and frequencies (alpha, beta, and 

gamma oscillations) were shaped by sensory information but not by expectations. 

Expectations, however, shaped alpha and beta oscillations before the painful stimuli. These 

findings indicate that commonly analyzed EEG responses to painful stimuli are more involved 

in signaling sensory information than in signaling expectations or mismatches of sensory 

information and expectations. Moreover, they indicate that the effects of expectations on pain 

are served by brain mechanisms which differ from those conveying effects of sensory 

information on pain.   
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Introduction 
The perception of pain emerges from the integration of sensory information about threat and 

contextual factors such as an individual’s expectations (Atlas and Wager, 2012; Peerdeman 

et al., 2016a; Fields, 2018). For instance, expectations of pain relief during placebo 

manipulations can yield substantial and clinically highly relevant decreases of pain (Finniss et 

al., 2010; Enck et al., 2013; Wager and Atlas, 2015). Moreover, expectations cannot only 

alleviate pain but also significantly influence the development (Vlaeyen et al., 2016) and 

prognosis of chronic pain (Cormier et al., 2016; Peerdeman et al., 2016b). Thus, understanding 

how the brain translates sensory information and expectations into pain promises important 

insights into the neural mechanisms of pain in health and disease.  

In the brain, pain is associated with the activation of an extended network of brain areas 

(Garcia-Larrea and Peyron, 2013; Baliki and Apkarian, 2015) which yields electrophysiological 

responses at different latencies and frequencies (Ploner and May, 2018). These responses 

comprise evoked potentials including the early N1 and later N2 and P2 components (Garcia-

Larrea et al., 2003; Lorenz and Garcia-Larrea, 2003) as well as oscillatory responses at alpha 

(8-13 Hz), beta (13-30Hz) and gamma (40-100 Hz) frequencies (Ploner et al., 2017). 

Electroencephalography (EEG) and magnetoencephalography (MEG) studies have provided 

important insights into the functional significance of these responses. The early N1 response 

has been particularly related to objective sensory information while the later N2 and P2 

components (Garcia-Larrea et al., 1997; Lee et al., 2009) as well as gamma oscillations (Gross 

et al., 2007; Hu and Iannetti, 2019) are more closely related to subjective pain perception. 

However, results on how expectations shape the different responses are inconsistent (Lorenz 

et al., 2005; Wager et al., 2006; Brown et al., 2008; Colloca et al., 2008; Iannetti et al., 2008; 

Morton et al., 2010; Lyby et al., 2011; Huneke et al., 2013; Tiemann et al., 2015; Hird et al., 

2018). Thus, a comprehensive assessment of how different evoked and oscillatory brain 

responses signal sensory information, expectations, and pain is lacking so far. 

Moving beyond the domain of pain, the predictive coding framework of brain function 

(Huang and Rao, 2011; Clark, 2013) is a general theory used to describe the encoding and 

integration of sensory information and expectations (de Lange et al., 2018). The predictive 

coding framework proposes that the brain continuously generates predictions about the 

environment. These predictions are compared against sensory evidence and discrepancies 

produce prediction errors that serve to optimize future predictions. In this way, the brain 

efficiently allocates its limited resources to events that are behaviorally relevant and useful for 

updating predictions (i.e., learning processes) (Friston, 2010). It has been suggested that 

predictive coding processes are implemented by evoked potentials at different latencies 

(Friston, 2005) and neuronal oscillations at different frequencies (Arnal and Giraud, 2012; 

Bastos et al., 2012). In particular, it has been shown that already the earliest evoked potential 
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components are shaped by predictions (Rauss et al., 2011; Bendixen et al., 2012), whereas 

later responses have been related to prediction errors (Stefanics et al., 2018). Moreover, alpha 

and beta oscillations have been implicated in the signaling of predictions, whereas gamma 

oscillations have been proposed to signal prediction errors (Arnal and Giraud, 2012; Bastos et 

al., 2012; Bastos et al., 2015; Michalareas et al., 2016; Sedley et al., 2016).  

Considering the preeminent role of the integration of sensory information and 

expectations in the processing of pain, an application of predictive coding frameworks to pain 

is obvious (Buchel et al., 2014; Ploner et al., 2017; Tabor et al., 2017; Ongaro and Kaptchuk, 

2019; Seymour, 2019). This is even more appealing as abnormally precise predictions and/or 

abnormal updating of predictions might figure prominently in the pathology of chronic pain 

(Edwards et al., 2012; Wiech, 2016; Henningsen et al., 2018). Consequently, recent fMRI 

studies have applied predictive coding frameworks to the processing of pain (Geuter et al., 

2017; Fazeli and Buchel, 2018). The results revealed a spatial dissociation of stimulus intensity 

coding and predictions coding. For instance, in the insular cortex, a striking posterior-to-

anterior gradient from the encoding of stimulus intensity to the encoding of predictions and 

prediction errors was observed. Most recently, a first EEG study applied a predictive coding 

framework to oscillatory responses to noxious stimuli (Strube et al., 2021). The findings 

indicated that alpha-to-beta and gamma oscillations signal expectations and prediction errors 

in the processing of pain, respectively. However, a model which comprehensively describes 

how evoked potentials at different latencies – which are the electrophysiological gold-standard 

for assessing the cerebral processing of pain – and oscillations at different frequencies signal 

sensory information, expectations, and prediction errors in the processing of pain is lacking so 

far.  

Here, we therefore used EEG to systematically assess the role of evoked potentials 

and oscillations in the signaling of sensory information, expectations, and prediction errors in 

the processing of pain. We specifically hypothesized that alpha/beta and gamma oscillations 

signal predictions and prediction errors, respectively. We further expected that already the 

earliest evoked responses to noxious stimuli are shaped by predictions, whereas later 

responses are also shaped by prediction errors. In addition, we speculated that predictions not 

only shape brain responses to noxious stimuli but also brain activity before a noxious stimulus. 

To test these hypotheses, we built upon (Geuter et al., 2017), applied a probabilistic cueing 

paradigm in healthy human participants and performed both frequentist analyses and Bayesian 

model comparisons. 
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Results 
To investigate how EEG responses to brief painful stimuli signal stimulus intensity, 

expectations, and prediction errors (PEs) in the processing of pain, we employed a probabilistic 

cueing paradigm in 48 healthy human participants. We applied brief painful heat stimuli to the 

left hand and independently modulated stimulus intensity and expectations in a 2x2 factorial 

design. To modulate stimulus intensity, we applied painful stimuli of two different levels (high 

intensity [hi], low intensity [li]). To modulate expectations, the painful stimuli were preceded by 

one out of two visual cues. The high expectation (HE) cue was followed by a high intensity 

stimulus in 75% of the trials and by a low intensity stimulus in 25% of the trials. Vice versa, the 

low expectation (LE) cue was followed by a high intensity stimulus in 25% of the trials and by 

a low intensity stimulus in 75% of the trials. The experiment, thus, comprised four trial types 

(Fig. 1a): high intensity, high expectation (hiHE); high intensity, low expectation (hiLE); low 

intensity, high expectation (liHE); low intensity, low expectation (liLE). In each trial, the 

participants were asked to provide a rating of the perceived pain intensity on a numerical rating 

scale ranging from 0 (no pain) to 100 (maximum tolerable pain). In addition, skin conductance 

responses (SCR) were recorded. Fig. 1b shows the sequence of a single trial. 

 

 

Figure 1. Experimental design. (a) Probabilities of high and low intensity stimuli (p(hi) and p(li), 
respectively) in high expectation (HE) and low expectation (LE) trials. (b) Each trial started with a 
central fixation cross with a varying duration of 1.5 to 3 s followed by either a blue dot or yellow square 
as visual cue. Cues were presented for 1 s and indicated the probability of a subsequent high intensity 
painful stimulus (0.75 for HE cue or 0.25 for LE cue). The association between the blue dot/yellow 
square and high intensity (hi)/low intensity (li) painful stimuli was balanced across participants. Next, 
a painful heat stimulus was applied (3.5 J for high intensity and 3.0 J for low intensity stimuli). Three 
seconds after the onset of the painful heat stimulus, participants were asked to verbally rate the 
perceived pain intensity on a numerical rating scale (NRS) ranging from 0 (no pain) to 100 (maximum 
tolerable pain). In 10% of the trials, a match-to-sample task ensured attention to the cues. In these 
catch trails, participants were prompted to select the cue that had been displayed during the current 
trial by a button press. Trials were separated by a break of 3 s during which a white fixation cross 
was presented. 

During the experiment, we recorded EEG and assessed the most consistently observed EEG 

responses to painful stimuli (Ploner and May, 2018). Evoked EEG responses included the N1, 
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N2, and P2 components. Oscillatory responses included stimulus-induced changes of alpha, 

beta, and gamma oscillations. In addition, we quantified brain activity before the painful 

stimulus including the stimulus preceding negativity (SPN; Brown et al., 2008) and oscillatory 

activity at alpha and beta frequencies. 

Building upon previous investigations (Egner et al., 2010; Geuter et al., 2017), we made 

specific predictions how EEG responses signaling stimulus intensity, expectations, PEs or 

combinations thereof are modulated across the four trial types (Fig. 2). To formally test these 

predictions, we pursued two complementary approaches (Egner et al., 2010; Geuter et al., 

2017). First, we performed repeated measures analyses of variance (rmANOVAs) with the 

independent variables stimulus intensity and expectation. In these rmANOVAs, responses 

signaling stimulus intensity and expectations would manifest as main effects whereas 

responses signaling PEs would manifest as interactions. To quantify effects and to facilitate 

interpretation of negative findings, we primarily performed Bayesian rmANOVAs (Keysers et 

al., 2020). In addition, we performed traditional frequentist rmANOVAs. Detailed results of both 

Bayesian and frequentist rmANOVAs are provided in Tables 1-3. Second, we employed 

Bayesian model comparisons based on single-trial data to formally test which combination of 

stimulus intensity, expectations, and PEs best explained the observed EEG responses. 

Building upon previous studies (Egner et al., 2010; Geuter et al., 2017), we specifically 

compared models where stimulus intensity only (INT model), stimulus intensity and 

expectations (INT+EXP), and expectations and PE (EXP+PE) shaped the respective 

responses. In line with Geuter et al. (2017), the PE was defined as aversive PE meaning that 

a prediction error occurs only if the stimulus is more painful than expected. This model has 

been shown to outperform models with absolute and signed PE formulations (Geuter et al., 

2017). 

 

 

Figure 2. Predicted response patterns for responses signaling stimulus intensity (INT model), 
expectations (EXP model), prediction errors (PE model) or combinations thereof (INT+EXP model, 
EXP+PE model). 
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The effects of stimulus intensity, expectations, and prediction errors on pain ratings and SCR  

Before analyzing EEG responses, we investigated the effects of stimulus intensity, 

expectations, and prediction errors on pain intensity ratings. We therefore calculated 

rmANOVAs with the independent variables stimulus intensity and expectation. Results are 

shown in Table 1 and Fig. 3. Bayes factors indicated strong evidence for main effects of 

stimulus intensity (BF = 1.6e26) and expectations (BF = 1.2e4). Specifically, pain intensity was 

higher for high intensity than for low intensity stimuli and higher for high expectation than for 

low expectation trials. Bayesian rmANOVA showed weak evidence against an interaction of 

stimulus intensity and expectation (BF = 0.36). To further investigate the relationship between 

stimulus intensity, expectations, prediction errors, and pain ratings, we tested INT, INT+EXP, 

and EXP+PE models against each other. The comparisons showed strong evidence that the 

INT+EXP model explained the data better than the INT (BF = 7.8e20) or the EXP+PE (BF = 

2.8e-45) model. Thus, we found that stimulus intensity and expectations, but not prediction 

errors shaped pain ratings. 

We next investigated how stimulus intensity, expectations and prediction errors shaped 

SCR. The rmANOVA for the SCR showed strong evidence for a main effect of stimulus 

intensity (BF = 3.2e12), i.e. the amplitude of SCRs was higher in high intensity than in low 

intensity trials (Table 1 and Fig. S1). However, we found inconclusive evidence regarding a 

main effect of expectation (BF = 0.68) and weak evidence against an interaction of stimulus 

intensity and expectation (BF = 0.24) on SCR. Bayesian model comparisons of single-trial 

SCRs showed evidence that the INT model explained the SCR just as well as the INT+EXP 

model (BF = 1.0) and better than the EXP+PE (BF = 1.4e-4) model (Fig. 3). 

 
Table 1. Effects of stimulus intensity, expectations and prediction errors on pain 
ratings and skin conductance responses (SCR). Results of Bayesian and frequentist 
repeated measures ANOVAs with pain rating and skin conductance response as 
dependent variables. 

 IV F p h2 BF  mean ± SD 
pain intensity 86.0 < 0.001 0.55 1.6e26 hiLE 28.7 ± 16.6 

 cue 57.0 < 0.001 0.068 1.2e4 hiHE 35.8 ± 19.5 

 intensity x cue 12.8 < 0.001 4e-3 0.36 liLE 14.0 ± 8.9 

 IV df, error df 1, 47    liHE 18.3 ± 10.5 

        

SCR intensity 51.1 < 0.001 0.53 5.0e13 hiLE 0.32 ± 0.24 

 cue 6.5 0.016 0.014 0.68 hiHE 0.35 ± 0.23 

 intensity x cue 0.081 0.78 2.2e-4 0.24 liLE 0.12 ± 0.11 

 IV df, error df 1, 30    liHE 0.15 ± 0.13 

IV = independent variable; BF = Bayes Factor. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449790
http://creativecommons.org/licenses/by/4.0/


Sensory information and expectations in the cerebral processing of pain 

8 
 

 

Figure 3. Effects of stimulus intensity, expectations and prediction errors on pain ratings and 
skin conductance responses (SCR). (a) Raincloud plots (Allen et al., 2019) of pain ratings and 
SCRs in hiLE, hiHE, liLE, and liHE conditions. The clouds display the probability density function of 
the individual means, indicated by dots. Boxplots depict the sample median as well as first (Q1) and 
third quartiles (Q3). Whiskers extend from Q1 to the smallest value within Q1 – 1.5 x interquartile 
range (IQR) and from Q3 to the largest values within Q3 + 1.5 x IQR. (b) Bayesian model comparisons 
between stimulus intensity (INT) and stimulus intensity + expectations (INT+EXP) models, stimulus 
intensity (INT) and expectations + prediction error (EXP+PE) models, and stimulus intensity + 
expectations (INT+EXP) and expectations + prediction error (EXP+PE) models. Bars depict the 
natural logarithm of the Bayes factors (BFs). Discontinuous bars indicate log(BF) > 20 or log(BF) < -
20. Dotted lines indicate the bounds of strong evidence (log(BF = 0.1) and log(BF = 10)) (Keysers et 
al., 2020). 

Taken together, we found strong effects of stimulus intensity on pain intensity ratings and 

SCRs. Moreover, we found a strong effect of expectations on pain intensity but only 

inconclusive evidence for an effect of expectations on SCRs. Furthermore, we did not observe 

an interaction between stimulus intensity and expectation in shaping pain ratings and SCRs. 

 

The effects of stimulus intensity, expectations, and prediction errors on EEG responses to 

noxious stimuli 

To investigate the effects of stimulus intensity, expectations, and PEs on EEG responses, we 

calculated rmANOVAs as done for pain intensity ratings and SCR. Bayesian rmANOVAs 

showed strong evidence for a main effect of stimulus intensity on all EEG responses (BF > 

1.2e3). N1, N2, and P2 responses (Table 2, Fig. 4) as well as post-stimulus gamma oscillations 

and alpha- and beta-suppressions (Table 3, Fig. 5) were stronger in the high intensity than in 

the low intensity conditions. 
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Table 2. Effects of stimulus intensity, expectations and prediction errors on evoked 
EEG responses to noxious stimuli. Results of Bayesian and frequentist repeated 
measures ANOVAs with amplitudes of N1, N2 and P2 responses as dependent variables. 

 IV F p h2 BF  mean ± SD 
N1 intensity 30.5 < 0.001 0.36 3.4e11 hiLE -4.1 ± 4.6 

 cue 6.0 0.018 9e-3 0.39 hiHE -4.7 ± 4.9 

 intensity x cue 0.92 0.34 1e-3 0.24 liLE -1.2 ± 1.8 

 IV df, error df 1, 44    liHE -1.6 ± 2.2 

        

N2 intensity 72.0 < 0.001 0.57 3.6e24 hiLE -7.7 ± 6.3 

 cue 0.29 0.59 2e-4 0.17 hiHE -7.9 ± 6.5 

 intensity x cue 0.068 0.80 3.8e-5 0.20 liLE -2.0 ± 2.5 

 IV df, error df 1, 47    liHE -2.0 ± 2.7 

        

P2 intensity 93.8 < 0.001 0.54 1.5e22 hiLE 5.1 ± 3.4 

 cue 0.098 0.76 2.4e-4 0.16 hiHE 5.1 ± 3.9 

 intensity x cue 8.1e-6 0.99 1.4e-9 0.20 liLE 1.8 ± 2.3 

 IV df, error df 1, 47    liHE 1.8 ± 2.7 

IV = independent variable; BF = Bayes Factor. 

 

Table 3. Effects of stimulus intensity, expectations and prediction errors on induced 
oscillatory EEG responses to noxious stimuli. Results of Bayesian and frequentist 
repeated measures ANOVAs with amplitudes of alpha, beta and gamma oscillations as 
dependent variables. 

 IV F p h2 BF  mean ± SD 
alpha intensity 25.4 < 0.001 0.22 2.3e6 hiLE 1.2 ± 0.88 

 cue 0.63 0.43 2e-3 0.22 hiHE 1.1 ± 0.80 

 intensity x cue 0.008 0.93 2.5e-5 0.22 liLE 1.5 ± 1.3 

 IV df, error df 1, 47    liHE 1.5 ± 1.1 

        

beta intensity 11.8 0.001 0.12 1.2e3 hiLE 0.27 ± 0.14 

 cue 0.31 0.58 2e-3 0.18 hiHE 0.27 ± 0.13 

 intensity x cue 0.62 0.43 2e-3 0.26 liLE 0.30 ± 0.17 

 IV df, error df 1, 47    liHE 0.30 ± 0.15 

        

gamma intensity 10.3 0.002 0.14 4.6e3 hiLE 0.045 ± 0.02 

 cue 3.7e-4 0.99 6.6e-7 0.16 hiHE 0.045 ± 0.02 

 intensity x cue 9.7e-5 0.99 2.6e-7 0.24 liLE 0.040 ± 0.01 

 IV df, error df 1, 47    liHE 0.040 ± 0.02 

IV = independent variable; BF = Bayes Factor. 
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Figure 4. Effects of stimulus intensity, expectations and prediction errors on evoked EEG 
responses to noxious stimuli. (a) Grand averages of laser-evoked responses. Orange and violet 
shadings indicate the standard error of the mean. Topographies are based on the average of all four 
conditions at peak latencies. (b) Raincloud plots (Allen et al., 2019) of N1, N2, and P2 amplitudes in 
hiLE, hiHE, liLE and liHE conditions. The clouds display the probability density function of the 
individual means indicated by dots. Boxplots depict the sample median as well as first (Q1) and third 
quartiles (Q3). Whiskers extend from Q1 to the smallest value within Q1 – 1.5 x interquartile range 
(IQR) and from Q3 to the largest values within Q3 + 1.5 x IQR. (c) Bayesian model comparisons 
between stimulus intensity (INT) and stimulus intensity + expectations (INT+EXP) models, stimulus 
intensity (INT) and expectations + prediction error (EXP+PE) models, and stimulus intensity + 
expectations (INT+EXP) and expectations + prediction error (EXP+PE) models. Bars depict the 
natural logarithm of the Bayes factors (BFs). Discontinuous bars indicate log(BF) > 20 or log(BF) < -
20. Dotted lines indicate the bounds of strong evidence (log(BF = 0.1) and log(BF = 10)) (Keysers et 
al., 2020). 

In contrast, we found moderate evidence against an expectation effect on all EEG responses 

(all BF < 0.22) apart from the N1 where evidence was inconclusive (BF = 0.39). In addition, we 

found moderate evidence against an interaction of stimulus intensity and expectation for all 

EEG responses (all BF < 0.26). We, thus, observed that the most consistently observed 

evoked and oscillatory EEG responses to noxious stimuli were shaped by stimulus intensity 

but not by expectations or prediction errors. 
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Figure 5. Effects of stimulus intensity, expectations, and prediction errors on oscillatory EEG 
responses to noxious stimuli. (a) Grand averages of time-frequency representations (TFRs) are 
depicted as relative change to the baseline preceding the cue presentation (-3.3 to -2.8 s). For 
visualization TFRs at Cz are presented. Statistical analysis was performed on absolute power values 
without baseline correction averaged across regions-of-interest (ROIs) as indicated by the dotted 
boxes and marked electrodes. Topographies display the average of ROIs across all four conditions. 
(b) Raincloud plots (Allen et al., 2019) of alpha, beta and gamma power in hiLE, hiHE, liLE and liHE 
conditions. The clouds display the probability density function of the individual means indicated by 
dots. Boxplots depict the sample median as well as first (Q1) and third quartiles (Q3). Whiskers 
extend from Q1 to the smallest value within Q1 – 1.5 x interquartile range (IQR) and from Q3 to the 
largest values within Q3 + 1.5 x IQR. (c) Bayesian model comparisons between stimulus intensity 
(INT) and stimulus intensity + expectations (INT+EXP) models, stimulus intensity (INT) and 
expectations + prediction error (EXP+PE) models, and stimulus intensity + expectations (INT+EXP) 
and expectations + prediction error (EXP+PE) models. Bars depict the natural logarithm of the Bayes 
factors (BFs). Discontinuous bars indicate log(BF) > 20 or log(BF) < -20. Dotted lines indicate the 
bounds of strong evidence (log(BF = 0.1) and log(BF = 10)) (Keysers et al., 2020). 
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To test for effects on brain activity other than the predefined EEG responses, ANOVAs and 

cluster-based permutation tests were performed across the post-stimulus time period from 0 s 

to 1 s, all frequencies, and all channels which corroborated the results at alpha, beta, and 

gamma frequencies (Fig. S2). Accordingly, model comparisons for N1, N2 and P2, alpha, beta 

and gamma responses yielded stronger evidence for the INT model than for the INT+EXP (BF 

< 0.10) and EXP+PE (BF < 0.012) models except for the N1 which showed inconclusive 

evidence regarding the comparison of the INT and the INT+EXP models (BF = 0.84). Thus, 

post-stimulus EEG responses were consistently modulated by stimulus intensity but not by 

expectations.  

Having found no expectation effects on EEG responses, we further asked whether the 

expectation effect on pain ratings can be explained by a pattern of the different EEG responses 

rather than each response in isolation. We therefore performed a multiple regression analysis 

to test whether difference values (HE - LE) of N1, N2, P2, and alpha-, beta-, and gamma-

responses together capture the expectation effect on pain ratings. However, the multiple 

regression model did not significantly explain any variance in the data (F(6, 44) = 0.66, p = 0.68, 

R2 = 0.094).  

In summary, results from rmANOVAs and model comparisons convergingly showed 

that stimulus intensity shapes all EEG responses. In contrast, we found evidence against an 

effect of expectations and/or prediction errors on EEG responses. Moreover, expectation 

effects on pain ratings were neither captured by any single EEG response nor by their 

combination. 

 

The effects of expectations on EEG activity before the noxious stimuli 

Lastly, expectations might not only influence post-stimulus responses to a painful stimulus but 

also shape brain activity in anticipation of the painful stimulus. We utilized the high temporal 

resolution of EEG to disentangle these effects. Specifically, we analyzed the SPN reflected by 

the average amplitude at Cz during 500 ms directly preceding the laser stimulus. In addition, 

we analyzed oscillatory brain activity during two pre-stimulus phases, i.e. during cue 

presentation and between cue presentation and painful stimulus (Table 4 and Fig. 6a). 

Bayesian dependent samples t-tests showed evidence against an expectation effect on the 

SPN (BF = 0.17). In contrast, expectations significantly influenced oscillatory brain activity at 

alpha and beta frequencies (Table 4 and Fig. 6b). In particular, the cue-induced decrease in 

alpha oscillations was stronger for high expectation trials than for low expectation trials (BF = 

98.8 for the cue presentation phase, BF 2.0 for the phase between cue presentation and painful 

stimuli). In addition, the cue-induced decrease in beta oscillations was stronger for high 

expectation than for low expectation trials (BF = 8.5 for the phase between cue presentation 

and pain stimulus). These results were corroborated by cluster-based permutation tests which 
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were performed less restrictively across time, frequencies, and all channels (Fig. S2). The 

cluster-based permutation tests were performed separately for the period of cue presentation 

and for the period closely preceding the painful stimulus. We, thus, found that expectations 

shaped neuronal oscillations at alpha and beta frequencies before the painful stimulus. 

 
Table 4. The effects of expectations on EEG activity before the noxious stimuli. Dependent 
samples t-tests of pre-stimulus brain activity between high expectation and low expectation trials. 

 time  
window t(df) p dCohen BF HE  

(mean ± SD) 
LE  

(mean ± SD) 
SPN -0.5 to 0 s 0.33(42) 0.75 0.05 0.17 1.5 ± 2.9 1.3 ± 3.2 

        

alpha -2.5 to -1.5 s -3.96(47) < 0.001 -0.57 98.8 1.8 ± 1.3 1.9 ± 1.4 

 -1.25 to -0.25 s -2.38(47) 0.021 -0.34 2.0 1.8 ± 1.4 1.9 ± 1.4 

        

beta -2.5 to -1.5 s -0.36(47) 0.72 -0.052 0.17 0.34 ± 0.19 0.34 ± 0.19 

 -1.25 to -0.25 s -3.03(47) 0.004 -0.44 8.5 0.32 ± 0.17 0.33 ± 0.18 

BF = Bayes Factor; HE = high expectation; LE = low expectation. 
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Figure 6. The effects of expectations on EEG activity before the noxious stimuli. (a) Grand 
averages of time-domain signals at Cz are depicted which preceded the laser stimulus. Orange and 
violet shadings denote the standard error of the mean. The amplitude of the SPN was determined by 
averaging the signal at Cz between -0.5 and 0 as indicated by the dotted box. Painful stimuli onset 
occurs at t=0. The grey bar below the x-axis indicates the time period of cue presentation. (b) Grand 
averages of the time-frequency representation are depicted as relative change to the baseline 
preceding the cue presentation (-3.3 to -2.8 s). Dotted boxes represent the two different time windows 
considered at the alpha and beta frequencies. Painful stimuli onset occurs at t=0. The grey bar below 
the x-axis indicates the time period of cue presentation. Data were averaged across channels Cz, 
C2, C4, CPz, CP2, and CP4 and across time and frequency points as indicated by the dotted boxes. 
Statistical analysis was performed on absolute power values without baseline correction. 
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Discussion 

In the present study, we observed that sensory information significantly shaped the perception 

of pain and EEG responses commonly associated with pain. Expectations, in contrast, 

modulated the perception of pain but not associated EEG responses. Bayesian hypothesis 

testing confirmed that the observed lack of expectation effects on EEG responses can indeed 

be interpreted as an absence of effects. These findings indicate that commonly analyzed EEG 

responses to painful stimuli are more involved in signaling sensory information than in signaling 

expectations or mismatches of sensory information and expectations. Moreover, they indicate 

that the effects of expectation on pain are served by different brain mechanisms than those 

conveying effects of sensory information on pain and are not well captured by commonly 

analyzed EEG responses to noxious stimuli. We will discuss the implications of these findings 

for understanding the functional significance of EEG responses to pain, particularly in the 

context of predictive coding frameworks of brain function, and for understanding how the brain 

mediates expectation effects on pain.  

 

The functional significance of pain-associated EEG responses  

Our observation that stimulus intensity shapes EEG responses to noxious stimuli is in 

accordance with previous studies which nearly uniformly showed such effects. Expectation 

effects, on the other hand, were limited to pain ratings and not found for EEG responses in the 

present study. At first glance, this contrasts with previous studies which have shown that 

expectations significantly modulate EEG responses (Wager et al., 2006; Colloca et al., 2008; 

Iannetti et al., 2008; Morton et al., 2010; Lyby et al., 2011; Huneke et al., 2013; Tiemann et al., 

2015; Hird et al., 2018). However, expectation effects in those studies were weaker and less 

consistent than stimulus intensity effects. Moreover, limited statistical power (Button et al., 

2013) and publication bias (Ioannidis et al., 2014) might have resulted in an over-estimation of 

expectation effects across the literature. Thus, although expectations can, in principle, shape 

EEG responses, the present findings indicate that these responses are more sensitive to 

stimulus intensity effects than to expectations. Whether this fundamental difference 

generalizes from expectations to other contextual modulations of pain remains to be 

determined.  

 

Pain-associated EEG responses in a predictive coding model of brain function 

As the interaction of sensory evidence and predictions crucially shapes the perception of pain, 

predictive coding frameworks of brain function have been increasingly applied to the 

processing of pain (Buchel et al., 2014; Ploner et al., 2017; Tabor et al., 2017; Ongaro and 

Kaptchuk, 2019; Seymour, 2019). Based on these considerations, recent functional imaging 

studies have started to investigate how the brain encodes sensory information, predictions, 
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and prediction errors in the processing of pain (Geuter et al., 2017; Fazeli and Buchel, 2018). 

The results have revealed a spatial dissociation between brain areas encoding stimulus 

intensity, predictions, and prediction errors. More precisely, a dissociation was found in the 

insular cortex where posterior parts signalled sensory information whereas anterior parts 

additionally signalled predictions and prediction errors. The present study was inspired by 

these investigations and adapted their paradigm for EEG. We particularly aimed to assess how 

evoked and oscillatory brain responses at different latencies and frequencies encode sensory 

information, expectations, and prediction errors. Based on previous anatomical and 

physiological evidence (Arnal and Giraud, 2012; Bastos et al., 2012; Bastos et al., 2015; 

Michalareas et al., 2016), we specifically hypothesized that alpha/beta and gamma oscillations 

signal predictions and prediction errors, respectively. We further expected that already the 

earliest laser-evoked responses are shaped by predictions (Rauss et al., 2011; Bendixen et 

al., 2012), whereas later responses are also shaped by prediction errors (Stefanics et al., 

2018).  

Our observed pre-stimulus effects support the idea that alpha/beta oscillations are 

indeed involved in signaling predictions also in the context of pain. However, Bayesian 

hypothesis testing of post-stimulus effects provided evidence against the hypothesis that 

predictions and prediction errors shape evoked and oscillatory responses to noxious stimuli. 

This contrasts with the results of a recent EEG study (Strube et al., 2021) which showed that 

post-stimulus alpha/beta oscillations and gamma oscillations were shaped by predictions and 

prediction errors, respectively. This difference between the previous and the present study 

might be due to different durations of the employed noxious stimulation models. The previous 

study used contact-heat stimuli of a few seconds duration whereas the present study used 

radiant-heat laser stimuli of a few milliseconds duration. Laser stimuli are a standard tool for 

research on the brain mechanisms of pain and for the clinical assessment of nociceptive 

pathways (Plaghki and Mouraux, 2003). They yield a highly synchronized activation of 

nociceptive afferents resulting in a short and clear-cut pain sensation. These stimuli therefore 

offer the opportunity to not only detect non-phase-locked oscillatory responses but to also to 

record phase-locked evoked responses and to determine their role in signaling sensory 

information, expectations, and predictions errors as previously done in other modalities 

(Todorovic et al., 2011; Todorovic and de Lange, 2012). However, predictive coding concepts 

propose that the precision of sensory information and predictions crucially determines their 

weight in further processing (Buchel et al., 2014). Thus, the brief laser stimuli of the present 

study might yield sensory information with a high precision and weight which, in turn, might 

result in a relative down-weighting of predictions. Hence, for very brief and clear-cut stimuli, 

the influence of sensory information might outweigh the influence of predictions and prediction 

errors on EEG responses.  
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In the present study, we for the first time performed direct Bayesian model comparisons 

to assess the role of EEG responses in the signaling of sensory evidence, expectations and 

predictions errors in the processing of pain. While our results reveal that evoked and oscillatory 

EEG responses – which are commonly used to assess brain processes related to pain for 

research and clinical practice – are more involved in signaling sensory evidence than 

expectations or prediction errors, it is important to note that these findings do neither argue in 

favor of nor against predictive coding models of brain function. Our findings should, thus, not 

discourage the application of predictive coding frameworks to the processing of pain but rather 

encourage the search for brain features – other than the commonly analyzed EEG responses 

– that signal predictions and predictions errors in the processing of pain.    

 

Brain mechanisms of expectation effects on pain 

Our observation of expectation effects on the perception of painful stimuli without effects on 

associated EEG responses support that neither evoked nor oscillatory EEG responses to 

noxious stimuli represent a reliable correlate of pain (Legrain et al., 2011). This dissociation 

might also be relevant for the search for brain-based biomarkers of pain (Davis et al., 2020). 

Instead, our findings indicate that EEG responses rather represent a correlate of sensory 

processing which is not always sensitive to contextual modulations. Thus, other processes not 

captured by commonly analyzed EEG responses to noxious stimuli likely contribute to 

contextual modulations of pain. These processes might include cognitive evaluation, pain 

affect, decision making and reward processing. Such higher-level processes might be less 

strictly time-locked to noxious stimuli and might therefore not be captured by commonly 

analyzed EEG responses. Furthermore, these processes might take place in deeper brain 

areas such as the striatum, medial temporal lobe areas, and the brainstem which are involved 

in expectation effects on pain (Grahl et al., 2018; Shih et al., 2019; Henderson et al., 2020; Tu 

et al., 2020) but are not well captured by EEG. In this way, the current EEG findings 

complement fMRI studies showing that the influence of contextual factors including 

expectations and placebo effects on pain are mediated by spatial patterns other than those 

capturing sensory processing (Woo et al., 2015; Woo et al., 2017; Zunhammer et al., 2018). 

This is also in accordance with previous fMRI studies on predictive coding in the processing of 

pain which showed that the nociceptive sensitive neurologic pain signature (NPS) was mostly 

shaped by stimulus intensity rather than expectations (Geuter et al., 2017; Fazeli and Buchel, 

2018). Moreover, expectation effects on pain are likely not homogenous. For instance, it has 

been shown that expectation effects induced by social information and associated learning 

(Koban et al., 2019) as well as positive and negative expectation effects (Shih et al., 2019) 

differ fundamentally.  
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Conclusions 

The present results indicate that commonly analyzed EEG responses to noxious stimuli are 

more sensitive to sensory processes than to expectations or mismatches between sensory 

processes and expectations. This finding provides novel insights into the functional 

significance of the complex spatial-temporal-spectral patterns of brain activity associated with 

pain. Moreover, our observations might motivate and guide further investigations on how the 

brain signals sensory information, predictions, and prediction errors in the processing of pain. 

Understanding these processes might also have implications for understanding the brain 

mechanisms of chronic pain which have been related to abnormally precise predictions 

(Edwards et al., 2012; Wiech, 2016; Henningsen et al., 2018).  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449790
http://creativecommons.org/licenses/by/4.0/


Sensory information and expectations in the cerebral processing of pain 

19 
 

Materials and Methods 
Participants 

This study was performed in healthy human participants who were recruited through 

advertisements on an online platform of the Technical University of Munich. Prior to any 

experimental procedures, all participants gave written informed consent. The study protocol 

was approved by the Ethics Committee of the Medical Faculty of the Technical University of 

Munich and pre-registered at ClinicalTrials.gov (NCT04296968). The study was conducted in 

accordance with the latest version of the Declaration of Helsinki and followed recent guidelines 

for the analysis and sharing of EEG data (Pernet et al., 2020). 

Inclusion criteria were age above 18 years and right-handedness. Exclusion criteria 

were pregnancy, neurological or psychiatric diseases, severe internal diseases including 

diabetes, skin diseases, current or recurrent pain, regular intake of medication (aside from 

contraception and thyroidal medication), previous surgeries at the head or spine, metal or 

electronic implants, and any previous side effects associated with thermal stimulation.  

A priori sample size calculations using G*Power (Faul et al., 2007) determined a sample 

size of 36 participants for a repeated measures analysis of variance (rmANOVA) design with 

one group and 4 measurements (see below for conditions), a power of 0.95, an alpha of 0.05, 

and medium effect sizes of f = 0.25. This corresponds to an η2 (proportion variance explained) 

of 0.06 (Correll et al., 2020). Overall, 58 healthy human participants (29 females, age: 24.0 ± 

4.3 years [mean ± SD]) were recruited. Nine participants were excluded due to either the 

absence of pain or low pain ratings (< 10 on a numerical rating scale from 0 (no pain) to 100 

(maximum tolerable pain)) during the familiarization run (n = 8), excessive startle responses in 

response to painful stimulation during the training run (n = 1) or technical issues with the 

response box used during catch trials (n = 1). The final sample comprised 48 participants (all 

right-handed, 23 females, age: 23.7 ± 3.4 years). Average clinical anxiety and depression 

scores obtained using the Hospital Anxiety and Depression Scale (HADS) (Zigmond and 

Snaith, 1983) were below clinically relevant cut-off scores of 8/21 (Bjelland et al., 2002) 

(anxiety: 3.0 ± 2.1; depression: 0.9 ± 1.1). 

 

Procedure 

To investigate how noxious stimulus intensity, expectations, and prediction errors relate to the 

cerebral processing of a painful stimulus and the preceding brain activity, the experiment 

incorporated two noxious heat stimulus intensities (high and low intensity, hi and li) and two 

visual cues (high and low expectation cue, HE and LE) resulting in four experimental 

conditions. High expectation cues were followed by high intensity stimuli in 75% of trials (high 

intensity & high expectation condition, hiHE) and low intensity stimuli in 25% of trials (low 

intensity & high expectation condition, liHE). Conversely, low expectation cues were followed 
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by low intensity stimuli in 75% of trials (low intensity & low expectation condition, liLE) and by 

high intensity stimuli in 25% of trials (high intensity & low expectation condition, hiLE; Fig. 1a). 

The sequence of events for each trial is depicted in Fig. 1b. After a fixation period with a 

duration of 1.5 to 3 s, a visual cue (blue dot or yellow square) was presented for 1 s. 1.5 s after 

the offset of the cue presentation, a brief painful heat stimulus was applied. Three s after the 

noxious stimulus, participants were prompted to rate the perceived pain intensity of the 

preceding painful heat stimulus on a numerical rating scale ranging from 0 (no pain) to 100 

(maximum tolerable pain). To ensure sustained attention to the visual cues, a match-to-sample 

task was incorporated in 10% of the trials. In these catch trials, HE and LE cues were shown 

simultaneously after the pain rating and participants were asked to identify the cue of the 

current trial by a button press (left vs. right, according to the position of the cue on the screen). 

Participants successfully focused on the task during the whole experiment as indicated by an 

average accuracy of 95.6 ± 0.1% during the match-to-sample task in catch trials. Trials were 

separated by 3 s during which a white fixation cross was presented. The experiment consisted 

of four runs with 40 trials each (hiHE [n = 15], hiLE [n = 5], liLE [n = 15], liHE [n = 5]), resulting 

in total trial numbers of hiHE [n = 60], hiLE [n = 20], liLE [n = 60], liHE [n = 20]. Runs were 

separated by short breaks of ~3 mins. Contingencies of visual cues and stimulus intensities, 

i.e. whether a blue dot or a yellow square predicted high/low intensity stimuli and whether the 

blue dot/yellow square was presented either on the left or right side of the catch trial screen 

were balanced across participants. 

Prior to the main experiment, we applied a sequence of 10 heat stimuli with different 

intensities to familiarize the participants with the painful stimulation and the intensity rating 

procedure. Furthermore, participants were explicitly informed about the contingencies between 

cues and stimulus intensities and participated in a training run with 16 trials using the same 

experimental setup and contingencies as in the main experiment. The information and the 

training run were designed to ascertain that all participants were aware of the contingencies 

and to minimize learning during the main experiment. During the experiment, participants were 

seated in a comfortable chair and wore protective goggles and headphones playing white noise 

to cancel out ambient sounds. 

 

Stimulation 

Painful stimuli were applied to the dorsum of the left hand using a neodymium yttrium aluminum 

perovskite laser (Nd:YAP, Stimul 1340, DEKA M.E.L.A. srl, Calenzano, Italy) with a wavelength 

of 1340 nm, a pulse duration of 4 ms, and a spot diameter of ~7 mm (Hu and Iannetti, 2019). 

Stimulus intensity was set to 3.5 J for high intensity stimuli and 3 J for low intensity stimuli (Hu 

and Iannetti, 2019). To avoid tissue damage and habituation/sensitization, the stimulation site 

was slightly changed after each stimulus.  
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Recordings and preprocessing 

EEG data were recorded using actiCAP snap/slim with 64 active sensors placed according to 

the extended 10-20 system (Easycap, Herrsching, Germany) and BrainAmp MR plus 

amplifiers (Brain Products, Munich, Germany). All sensors were referenced to FCz and 

grounded at Fpz. The EEG was sampled at 1000 Hz (0.1 μV resolution) and band-pass filtered 

between 0.016 and 250 Hz. Impedances were kept below 20 kΩ.  

Preprocessing was performed using BrainVision Analyzer software (v2.1.1.327, Brain 

Products). EEG data were downsampled to 500 Hz after low-pass filtering with a cutoff 

frequency of 225 Hz. To detect artifacts and to compute independent component (IC) weights, 

a 1 Hz high-pass filter (fourth-order Butterworth) and a 50 Hz notch filter removing line noise 

were applied. EEG data of all runs were concatenated. Independent component analysis 

based on the extended infomax algorithm was applied to the filtered EEG data ranging from -

4.2 s to 3.2 s with respect to laser stimulus onset and resulted in 64 ICs. ICs representing eye 

movements and muscle artifacts were identified (Jung et al., 2000). Subsequently, the 

identified ICs were subtracted from the unfiltered EEG and data segments of 400 ms centered 

around data samples with amplitudes exceeding ±100 μV and data jumps exceeding 30 μV 

were automatically marked for rejection. Remaining artifacts were identified by visual 

inspection and manually marked for rejection. All electrodes were re-referenced to the average 

reference. Finally, data were exported to Matlab (vR2019b, Mathworks, Natick, MA) and further 

analyses were performed using FieldTrip (v20200128 (Oostenveld et al., 2011). We 

segmented the EEG data into 7 s-epochs ranging from -4 s to 3 s with respect to the laser 

stimulus onset. All epochs including marked artifacts or trials in which the laser stimulus was 

not perceived as painful (pain rating = 0) were excluded from further analysis. To match the 

number of trials between both hi and both li conditions, respectively, the condition with the 

lowest trial count was identified for every participant and the same number of trials was 

randomly drawn from the other conditions (maximum number = 20 trials). Further analyses 

were based on 17.7 ± 1.6 (range: 14 - 20) trials for hiHE/hiLE conditions and 15.3 ± 4.4 (range: 

4 - 20) trials for liHE/liLE conditions for each participant. 

Skin conductance data were recorded using two Ag/AgCl electrodes attached to the 

palmar distal phalanges of the left index and middle finger. Data were recorded using the GSR-

MR module with constant voltage of 0.5 V and a BrainAmp ExG MR amplifier (Brain Products, 

Munich, Germany) with low-pass filtering at 250 Hz and a sampling frequency of 1000 Hz. 

Subsequent offline analysis included low-pass filtering at 1 Hz using a fourth-order Butterworth 

filter, downsampling to 500 Hz and a visual artifact inspection. Finally, data were exported and 

segmented into 14 s-epochs ranging from -4 s to 10 s with respect to the laser stimulus. 

Identical epochs as for the EEG analyses were selected. Furthermore, we had to exclude 

additional epochs of skin conductance data comprising marked artifacts. As a result, further 
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analyses of skin conductance data were based on 17.7 ± 1.8 (range: 14 - 20) and 17.6 ± 1.6 

(range: 14 - 20) trials for hiHE and hiLE conditions, respectively, and 15.2 ± 4.7 (range: 4 - 20) 

and 15.2 ± 4.8 (range: 4 - 20) trials for liHE and liLE conditions, respectively. 

 

Time-domain analysis of EEG data 

To quantify the amplitudes of laser-evoked N1, N2, and P2 responses, EEG data were band-

pass filtered between 1 and 30 Hz (fourth-order Butterworth) and a baseline correction was 

applied using the time interval between -3.3 and -2.8 s before the painful stimulus. The selected 

baseline interval preceded the visual cue to avoid expectation effects during the baseline 

period. To investigate the amplitude of the N1, the data were re-referenced to Fz. First, the 

latencies of all laser-evoked responses were assessed for each participant using the average 

across all trials and conditions. We used a peak/trough detection procedure within the time 

windows 120 to 200 ms, 180 to 300 ms and 250 to 500 ms (Hu and Iannetti, 2019) for the N1, 

N2, and P2, respectively. Second, to obtain the amplitudes of the average evoked responses, 

trials were averaged separately for each condition. Amplitudes of N1, N2, and P2 were 

assessed by averaging a 30 ms window centered at respective latencies determined in the 

previous step. Amplitudes of N1 and N2/P2 were extracted at channel C4 (Hu et al., 2010) and 

Cz, respectively. Finally, single-trial estimates of N1, N2, and P2 amplitudes were obtained 

accordingly by averaging single-trial data across the same 30 ms windows centered at the 

latencies identified in step one. For the N1, three participants were excluded from statistical 

analyses due to a lack of a response in step one. 

 Besides laser-evoked post-stimulus responses, we were interested in pre-stimulus 

differences in brain activity induced by the expectation of high or low stimuli. Hence, we 

investigated the stimulus preceding negativity (SPN) by averaging the amplitude at Cz across 

the 500 ms interval directly preceding the laser stimulus (Brown et al., 2008). All HE and LE 

trials were averaged separately for each participant. A low-pass filter with a cutoff frequency 

of 30 Hz (fourth-order Butterworth) and a baseline correction using the time interval between -

3.3 and -2.8 s were applied. No further high-pass filter was applied to take low frequencies of 

the SPN into account. As a consequence, 5 participants had to be excluded from this analysis 

due to sweating artifacts which could be corrected by high-pass filtering when laser-evoked 

responses were analyzed. 

 

Time-frequency analysis of EEG data 

To quantify the power of laser induced oscillatory responses, data were transformed to the 

time-frequency domain. To this end, we applied a fourth-order Butterworth high-pass filter of 1 

Hz and a band-stop filter of 49 to 51 Hz to dampen line noise. Subsequently, a fast Fourier 

transformation was applied to Hanning-tapered EEG data with a moving time window of 500 
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ms length for the frequencies from 1 to 30 Hz and a window of 250 ms length for the 

frequencies from 31 to 100 Hz. The step size was set to 20 ms. We chose a longer window for 

lower frequencies to retrieve more accurate power estimates including at least 4 cycles for 

frequencies above 8 Hz. To obtain average responses at different frequency bands, time-

frequency data were averaged across trials separately for each of the 4 conditions. Responses 

at alpha (8-12 Hz), beta (13-30 Hz) (Pernet et al., 2020), and gamma (70-90 Hz) (Tiemann et 

al., 2018) frequency bands were quantified using the time windows 500-900 ms, 300-600 ms 

(Mouraux et al., 2003; Ploner et al., 2006) and 150-350 ms (Tiemann et al., 2018), respectively. 

Alpha and beta power was estimated at sensors Cz, C2, C4, CPz, CP2, CP4 covering the 

somatosensory cortex (Mouraux et al., 2003; Ploner et al., 2006; Hu and Iannetti, 2019). 

Gamma power was retrieved at sensor Cz (Hu and Iannetti, 2019). Average responses at the 

different frequency bands were assessed by calculating the mean power estimates across the 

selected frequencies, time windows and channels (region-of-interest, ROI). Consequently, we 

obtained three power values for each condition, i.e. 12 power values for each participant. 

Single-trial responses of different frequency bands were quantified by averaging across the 

same time-frequency-sensor selection as for the average responses for each trial. 

 In addition to oscillatory post-stimulus responses, we were interested in pre-stimulus 

differences in oscillatory brain activity induced by the expectation of high intensity or low 

intensity stimuli. Pre-stimulus alpha (8-12 Hz) and beta (13-30 Hz) power were obtained using 

the mean power across the time windows -2.5 to -1.5 s as well as -1.25 to -0.25 s and the 

sensors Cz, C2, C4, CPz, CP2, CP4. We chose these time windows to investigate power 

differences during cue presentation (-2.5 to -1.5 s) and closely before laser stimulus onset (-

1.25 to -0.25 s). Data immediately preceding the laser stimulus were not analyzed to avoid 

confounding pre-stimulus power estimates with post-stimulus activity due to the 500 ms sliding 

window. 

 

Analysis of skin conductance data 

To quantify skin conductance responses (SCRs), epochs of skin conductance data were 

averaged across trials for each condition and participant. Amplitudes were defined as peak 

amplitudes of the maximal peak within a time window from 1 to 7.8 s post-stimulus following a 

peak detection procedure (Boucsein, 2012; Tiemann et al., 2018) and a baseline correction 

using skin conductance data at time point zero of the laser stimulus onset. Prior to the 

quantification of skin conductance responses (SCRs), we identified non-responders by 

averaging skin conductance data across all trials and conditions for each participant. If the 

detected global amplitude was below 0.05 µS participants were defined as non-responders 

(Boucsein, 2012). Based on these criteria, 17 participants were classified as non-responders 

and excluded from further analysis of SCR data. 
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Statistical analyses 

Statistical analyses were performed using the statistical software packages JASP (v0.14.1, 

(JASP) and R (v3.6, (R Core Team, 2020). Motivated by previous findings (Egner et al., 2010; 

Geuter et al., 2017), we investigated 5 different response patterns (Fig. 2) which vary with 

respect to the integrated predictors. Specifically, the predictors stimulus intensity (INT), 

expectation (EXP), prediction error (PE), a linear combination of stimulus intensity and 

expectation (EXP+INT) as well as a linear combination of expectation and prediction error 

(EXP+PE) were investigated. The latter has been termed the predictive coding model (Buchel 

et al., 2014). To investigate these patterns, we computed repeated-measures analysis of 

variance rmANOVAs for each post-stimulus response (pain rating, N1, N2, P2, alpha-, beta- 

and gamma-power, SCR) as dependent variable using stimulus intensity (hi vs. li) and cue (HE 

vs. LE) as factors. Bayesian rmANOVAs were performed as these allow to specifically evaluate 

evidence for the null hypothesis of no effect (Keysers et al., 2020). In Bayesian rmANOVAs, 

the Bayes Factor (BF) is defined as ratio between the likelihood of the data given a model 

including the effect of interest and the likelihood of the data given an equivalent model with the 

effect of interest removed. BF < 1/3 and BF < 1/10 indicate moderate and strong evidence in 

favor of the absence of the effect of interest, respectively. BF > 3 and BF > 10 indicate 

moderate and strong evidence in favor of the effect of interest, respectively (Keysers et al., 

2020). For all Bayesian statistics, default Cauchy priors were chosen in JASP. Complementing 

Bayesian inference, we also conducted frequentist rmANOVAs with the same factors. Post-

hoc dependent samples t-tests were performed if a statistically significant interaction was 

observed. To test for additional effects outside the predefined ROIs, we performed cluster-

based permutation tests across time, frequencies and all channels (see supplementary 

material for details). 

 Furthermore, on a single-trial level, we performed formal pairwise model comparisons 

to test which model explains post-stimulus responses best. Models including stimulus intensity 

and expectation (INT+EXP) as well as expectation and prediction error (EXP+PE) as 

predictors were compared to the model solely including stimulus intensity (INT), respectively. 

Additionally, the EXP+PE model was compared with the INT+EXP model. Linear mixed effects 

models included either stimulus intensity, expectation, prediction error or combinations thereof 

as fixed effects and participants as random effects. In contrast to the rmANOVA approach, 

linear mixed effects models are based on single-trial data and account for differences in trial 

numbers and variability between subjects. Moreover, the different models can be explicitly 

formulated and compared. We used the R package BayesFactor (v0.9.12) (Rouder and Morey, 

2012) to compute Bayes factors for model comparisons. These Bayes factors quantify the 

evidence for one model over another model as a ratio of two likelihoods, i.e. the likelihood of 

the data given each model. Stimulus intensity was coded as 1 for high intensity stimuli and as 
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0 for low intensity stimuli. Expectation was coded as the probability of a following high intensity 

stimulus, i.e. 0.75 for high intensity cue conditions (hiHE and liHE) and 0.25 for low intensity 

cue conditions (hiLE and liLE). Finally, the prediction error was defined as aversive prediction 

error meaning that a prediction error occurs only if the outcome (stimulus intensity) is more 

painful than expected. Specifically, the aversive PE was selected because a previous study by 

Geuter et al. (2017) demonstrated that models incorporating the aversive PE explained brain 

responses to pain better than absolute and signed PEs. Hence, it was coded as difference 

between stimulus intensity and expectation, i.e. PE = 1 - 0.25 for hiLE, PE = 1 - 0.75 for hiHE 

and PE = 0 for for liHE and liLE (Geuter et al., 2017). 

To complement univariate analyses using single post-stimulus responses as outcome 

variables and to investigate whether a combination of N1, N2, P2, alpha-, beta- and gamma-

power can predict the expectation effect on pain ratings, we computed difference values of 

pain ratings, N1, N2, P2, alpha-, beta- and gamma-power by subtracting average values of the 

LE trials from HE trials for each participant. Subsequently, we tried to predict difference values 

of pain ratings (dependent variable) based on difference values of N1, N2, P2, alpha-, beta- 

and gamma-power (independent variables) using multiple regression. Prior to the analysis, all 

difference values were z-transformed across participants to adjust the data to the same scale. 

 Finally, we investigated whether cue-induced expectations affected brain activity 

preceding the laser stimulus. To this end, we performed Bayesian dependent samples t-tests 

comparing the average amplitude of the SPN between HE and LE trials. Similarly, we 

compared alpha- and beta-power during two pre-stimulus windows, one during cue 

presentation and one closely preceding the painful laser stimulus. Again, these tests were 

accompanied by Bayesian dependent samples t-tests to estimate the evidence for the null-

hypothesis. To test for additional effects outside the predefined ROIs, we performed cluster-

based permutation tests across time, frequencies and all channels (see supplementary 

material for details). 

 

Data availability 

All data in EEG-BIDS format (Pernet et al., 2019) and code are available at https://osf.io/jw8rv/. 
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Figure S1. Effects of stimulus intensity, expectations, and prediction 
errors on skin conductance responses to noxious stimuli. Grand averages 
of skin conductance responses. Orange and violet shadings indicate the 
standard error of the mean. HE, high expectation; hi, high intensity; LE, low 
expectation; li, low intensity; SCR, skin conductance responses.  
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Methods – cluster-based permutation tests 

Nonparametric cluster-based permutation tests (Maris and Oostenveld, 2007) were performed 

on three different intervals, two pre-stimulus intervals corresponding to the duration of cue 

presentation (-2.5 to -1.5 s) and the interval closely before laser stimulus onset (-1.25 to -0.25 

s) and one post-stimulus interval from 0 to 1 s after the laser stimulus. Spectral estimates were 

clustered across time, frequencies, and channels. To test for main effects, all hi, li, LE, and HE 

trials were pooled separately for each participant and averaged resulting in 4 average time-

frequency representations (TFR) per participant. To test for the interaction, we subtracted the 

liLE from the hiLE (DLE) condition and the liHE from the hiHE (DHE) condition after averaging 

across trials within each condition for each participant. Dependent samples t-tests were 

performed on each time-frequency-channel value. Resulting t-values were thresholded at a = 

0.05 and values exceeding the threshold were summed up across neighboring time-frequency-

channel values. The minimum number of channels for a cluster was set to 2. To determine the 

p-value of each cluster, the TFRs hi and li, LE and HE as well as DLE and DHE were swapped 

randomly for each participant and the aforementioned statistical procedure was applied. During 

each of the 1000 permutations, the maximum summed t-value was kept to establish a 

distribution under the null hypothesis. 
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Results – cluster-based permutation tests 

The effects of stimulus intensity, expectations, and prediction errors on post-stimulus 

oscillatory brain activity 

We observed a main effect of stimulus intensity during the post-stimulus interval as indicated 

by two significant positive clusters and one significant negative cluster (Fig. S2). The positive 

cluster at lower frequencies (1 to 18 Hz, p = 0.002) mostly reflected the evoked potential, 

whereas the positive cluster at higher frequencies (49 to 100 Hz, p = 0.02) represented the 

gamma response to the painful laser stimuli. Both positive clusters indicate higher power in hi 

trials than in li trials. In contrast, the significant negative cluster (3 to 36 Hz, p = 002) indicates 

a stronger decrease in power at alpha and beta frequencies in hi trials as compared to li trials. 

No additional significant clusters for the main effects of stimulus intensity or expectations (p > 

0.39), or the interaction stimulus intensity x expectations (p > 0.71) were found in the post-

stimulus interval.  

 
Figure S2. Effects of stimulus intensity, expectations, and prediction errors on pre-stimulus and 
post-stimulus oscillatory brain activity. T-maps of the cluster-based permutation tests across time, 
frequencies, and channels at Cz (left column) and averaged across the channels Cz, C2, C4, CPz, CP2, 
and CP4 (right column). Main effects of stimulus intensity and expectations as well as the interaction 
stimulus intensity x expectations were tested. Cluster-based permutation tests were performed 
separately for two pre-stimulus intervals of 1 s each and one post-stimulus interval of 1 s (saturated 
colors). Significant clusters are outlined in black. Seemingly non-contiguous clusters are connected 
via additional channels (not depicted). For visualization purposes, time-frequency data points in the 
right column were marked as part of a significant cluster if the cluster included at least one of the 
channels averaged. 
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The effects of expectations on pre-stimulus oscillatory brain activity 

We observed one significant negative cluster (5 to 15 Hz, p = 0.02) during the cue presentation 

period which indicated a stronger decrease in alpha power in HE trials as compared to LE trials 

(Fig. S2). In addition, we found a second significant negative cluster (6 to 22 Hz, p = 0.048) 

during the period closely preceding the laser stimulus affecting alpha and beta power. Thus, 

alpha and beta power during the pre-stimulus interval was lower for HE than for LE trials. 

 

References 

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data. J 
Neurosci Methods 164:177-190. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449790
http://creativecommons.org/licenses/by/4.0/

