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Abstract

Characterizing the tumor microenvironment is crucial in order to improve re-
sponsiveness to immunotherapy and develop new therapeutic strategies. The frac-
tion of different cell-types in the tumor microenvironment can be estimated based
on transcriptomic profiling of bulk tumor data via deconvolution algorithms. One
class of such algorithms, known as reference-based, rely on a reference signature
containing gene expression data for various cell-types. The limitation of these
methods is that such a signature is derived from the gene expression of pure cell-
types, which might not be consistent with the transcriptomic profiling in solid
tumors. On the other hand, reference-free methods usually require only a set of
cell-specific markers to perform deconvolution; however, once the different com-
ponents have been estimated from the data, their labeling can be problematic.
To overcome these limitations, we propose BayesDeBulk - a new reference-free
Bayesian method for bulk deconvolution based on gene expression data. Given a
list of markers expressed in each cell-type (cell-specific markers), a repulsive prior
is placed on the mean of gene expression in different cell-types to ensure that cell-
specific markers are upregulated in a particular component. Contrary to existing
reference-free methods, the labeling of different components is decided a priori
through a repulsive prior. Furthermore, the advantage over reference-based algo-
rithms is that the cell fractions as well as the gene expression of different cells are
estimated from the data, simultaneously. Given its flexibility, BayesDeBulk can be
utilized to perform bulk deconvolution beyond transcriptomic data, based on other
data types such as proteomic profiles or the integration of both transcriptomic and
proteomic profiles.
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1 Introduction

Solid tumors are composed of a variety of cell-types including immune and stromal
cells. Quantifying the proportion of different cell-types in the tumor microenvi-
ronment is crucial in order to capture patient heterogeneity and develop better
therapeutic targets for precision medicine. In the last decade, different algorithms
have been proposed for the estimation of the tumor microenvironment from bulk
data. Some algorithms, known as reference-based, require gene expression of pu-
rified cells as prior information [2, 9, 18]. However, problems might arise when
the gene expression of different cell-types in solid tumors are not consistent with
this prior knowledge. In addition, this prior information might not be appropriate
when performing the deconvolution based on other data types such as proteomic
profiles.

Some algorithms have tried to overcome this lack of flexibility by proposing
a semi-reference approach [3, 11, 16]. Recently, Tai et al, [16] proposed a semi-
reference Bayesian method which jointly models gene expression from purified cells
and that from bulk data through a hierarchical model. This model is more flex-
ible than reference-based methods since gene expression in different cell-types is
inferred from the data; however, it relies on the assumption that the mean expres-
sion of a particular cell in the reference data and in bulk data are the same. Aran
et al (2017) [1] proposed a flexible tool for bulk deconvolution based on transcrip-
tomic data, which requires only a list of markers expressed in each cell-type as
prior information. However, this algorithm does not provide an estimate of the
gene expression of different cell types from the data. These estimates are particu-
larly useful in order to perform differential expression analyses between tumor and
adjacent normal tissues while accounting for immune and stromal infiltration.

To this end, there are many reference-free algorithms which can infer both
cell-type proportions and gene expression in different cell-types [5, 6, 8, 14]. These
algorithms represent a more flexible alternative to reference-based algorithms; how-
ever, once estimated, the interpretation and the labeling of different components
might be problematic. Recently, Tang et al [17] proposed an algorithm based on
non-negative matrix factorization. This method recovers the identifiability and
the labeling of different components using a penalized regression, in which mark-
ers expected to be less expressed in a particular cell type shrink towards zero. For
this purpose, for each cell-type, markers are divided into three categories: not ex-
pressed, expressed and highly expressed. However, marker stratification into such
categories might not be easy to achieve in practice.

To overcome these limitations, we propose BayesDeBulk - a new flexible
Bayesian method for bulk deconvolution. Bayesian inference is very appealing
in this framework since prior information for different cell-types can be flexibly
incorporated through the prior. Given a list of markers expressed in a particular
cell-type (cell-specific markers), a repulsive prior is placed on the mean of gene ex-
pression in different cell-types to ensure that cell-specific markers are upregulated
in a particular component. Repulsive classes of priors have been introduced by
Petralia et al [10]; and recently extended to different applications [12, 13, 19, 20].
Contrary to existing reference-free methods, the labeling of different components is
specified a priori through a repulsive prior. The cell fraction parameter is instead
modeled through a spike-and-slab prior [4] in order to induce sparsity and identify
cells which are not present in the tumor tissue. Contrary to reference-based algo-
rithms, our framework estimates different cell-type fractions and the mean of gene
expression in different cell-types from the data, simultaneously. Given its flexibil-
ity, BayesDeBulk can be used to perform the deconvolution based on other data
types such as methylation data and proteomic profiles or the integration of multi-
omic data. The performance of our model is evaluated using extensive synthetic
data and real data examples.
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2 Method

2.1 Bulk Deconvolution

Since the expression of bulk tumor data is the average across different cells in
the tumor microenvironment, the expression of gene j for patient i, i.e., yi,j , can
be modeled as a Gaussian distribution with mean parameter being the weighted
average between the expression of gene j in different cell-types. Mathematically,
yi,j is modeled as

yi,j ∼ N(θi,j , σj) , θi,j =

K∑
k=1

πi,kµk,j

with K being the total number of cell-types, πi,k being the fraction of the k-th cell-
type for sample i, µk,j being the expression of gene j for the k-th cell-type and σj
the variance of the j-th gene. Reference-based models would consider µk,j as fixed
with measurements derived from existing pure cell transcriptomic data [2, 9, 18];
while reference-free models would estimate mean parameters {µk,j} from the bulk
data. A Bayesian model would specify prior information for all parameters in the
model; with conjugate priors being Gaussian distributions for {πi,k}Kk=1 and {µk,j}
and inverse-gamma distributions for {σj}pj=1. However, this model would not be
identifiable without further constraints on the parameter space. To overcome
this problem we propose a Bayesian model where identifiability is recovered via a
repulsive prior specified on the mean parameters [10].

2.2 Bayesian model based on repulsive prior

Let us assume that for each k-th cell-type, there is a set Ik of genes whose ex-
pression is upregulated in the k-th cell-type compared to all others. We will use
a flexible repulsive prior [10] in order to ensure that genes in set Ik will have a
”larger” mean in the k-th cell-type compared to other cell-types. Let µk be a p
dimensional vector containing the gene expression of p genes in the kth cell-type.
Then, (µ1, . . . ,µK) is jointly modeled through the following multivariate prior:

p(µ1, . . . ,µK) =

K∏
k=1

[
p∏
j=1

N(µk,j ; 0, 1)

]
h(µ1, . . . ,µK)

with h(−) being a repulsive function defined as

h(µ1, . . . ,µK) = min
∀s

min
∀j∈Is;∀k 6=s

exp(−τ(|µs,j − µk,j |)−η)1(µs,j > µk,j)

with τ > 0 and η > 0. This function is an extension of the repulsive function
introduced by Petralia et al [10], and it approaches zero as the distance between
mean parameters goes to zero and the upregulation of genes belonging to set Is
in the s-th cell is not satisfied. According to this function, genes contained in
set Ik will have a mean value greater in component k-th compared to all other
components. It is important to note that only genes contained in set I = ∪Kk=1Ik
will be assigned a repulsive prior; other genes will have a standard normal prior.
This is sufficient to recover identifiability of the model and will reduce substantially
the computational burden. Prior knowledge on markers upregulated in each cell-
type can be leveraged from existing databases and single cell RNA data. Instead
of requiring a set of markers to be upregulated in one cell-type compared to all
other cell-types; the user might specify this requirement for each pair of cells. For
instance, assume that Is>k is the set of genes upregulated in the s-th cell-type
compared to the k-th cell-type. In this case, the repulsive prior can be easily
modified to incorporate this information in the following way:

h(µ1, . . . ,µK) = min
∀s

min
∀j∈Is>k;∀k 6=s

exp(−τ(|µs,j − µk,j |)−η)1(µs,j > µk,j)
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To facilitate computation, we will not require {πi,k}Kk=1 to sum to 1. However,
we will require these parameter to be defined on the unit interval [0, 1]. As prior
specification, we will use a spike-and-slab prior [4] defined on the unit interval,
i.e., πi,k ∼ wkN[0,1](0, 0.0001) + (1 − wk)N[0,1](0, γk) with wk ∼ Beta(1, 1) and
γk ∼ Inverse-Gamma(aγ , bγ). The spike component concentrates its mass at values
close to zero, shrinking small effects to zero, and therefore inducing sparsity in
cell fractions estimates. The percentage of zero values (i.e., wk) will vary across
different cell-types. We expect that some cell-types will be more abundant (i.e.,
different from zeros) than others in a particular tissue. For instance, T cells will
be more likely present in kidney or lung tissues rather than brain tissues. For
the variance components {σj}pj=1, standard inverse-gamma priors will be utilized.
Figure 1 provides a summary of the proposed model.

This algorithm can be easily utilized to perform a multi-omic based deconvo-
lution. In this case, each data type can be modeled via a BayesDeBulk model,
with different data-specific models sharing the same set of cell fraction parame-
ters. Let yi,j and zi,j be the RNA and protein expression of gene j for sample i.
A multi-omic framework would model yi,j and zi,j as

yi,j ∼ N(θi,j , σj) , θi,j =

K∑
k=1

πi,kµk,j

zi,j ∼ N(βi,j , ιj) , βi,j =

K∑
k=1

πi,kδk,j

with K being the total number of cell-types, πi,k being the fraction of the k-th
cell-type for sample i, µk,j being the expression of gene j for the k-th cell-type,
δk,j being the expression of protein j for the k-th cell-type. It is important to
notice that the two models share the same set of cell fractions, i.e. {πi,k}. In this
case, the same repulsive prior would be placed on the mean parameters of both
models, i.e., {µk,j} and {δk,j}.

2.3 Full conditionals and posterior computation

Following Petralia et al [10], a latent variable ρ will be introduced to facilitate
the sampling from the repulsive prior. This latent variable will be jointly modeled
with µ through the following multivariate density:

p(µ, ρ) =

 ∏
∀s;∀j

N(µs,j ; 0, 1)

 1(h(µ1, . . .µK) > ρ)

A set of additional latent variables {Zi,k} will be introduced in order to facili-
tate the sampling from the spike-and-slab prior placed on {πi,k}. In particular,
Zi,k will be equal to 1 if πi,k will be sampled from the ”spike” component, i.e.,
πi,k ∼ N[0,1](0, 0.0001); while equal to 0 if πi,k will be sampled from the ”slab”
component, i.e., πi,k ∼ N[0,1](0, γk). Let 1(A) be an indicator function equal to
1 if A is satisfied and 0 otherwise. The Gibbs sampler can be summarized in the
following steps.

Step 1 Sample mean parameter µk,j from a truncated normal distribution:

µk,j ∼ N

(∑n
i=1Mi,jπi,k

σj

(
1 +

∑n
i=1 π

2
i,k

σj

)−1

,

(
1 +

∑n
i=1 π

2
i,k

σj

)−1)
1(µk,j ∈ Sk,j)

with Mi,j = yi,j −
∑
s6=k µs,jπi,s and Sk,j being defined as the intersection across

all constraints involving µk,j . This set is defined in section 1 of the supplementary
material.
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Figure 1: Algorithm Schematic
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Step 2 Sample Zi,k from

Zi,k ∼ Binomial
(

wkN[0,1](πi,k; 0, 0.0001)

wkN[0,1](πi,k; 0, 0.0001) + (1− wk)N[0,1](πi,k; 0, γk)

)
Step 3 Sample πi,k from a truncated univariate normal defined as:

[πi,k|Zi,k = `] ∼ N[0,1]

(
p∑
j=1

Ti,k,jµk,j
σj

(
p∑
j=1

µ2
k,j

σj
+

1

ηk

)−1

,

(
p∑
j=1

µ2
k,j

σj
+

1

ηk

)−1)

with Ti,k,j being defined as yi,j −
∑
s6=k µs,jπi,s and ηk = γk if ` = 0 and

ηk = 0.0001 if ` = 1.

Step 4 Sample wk from Beta
(
1 +

∑
i 1(Zi,k = 1), 1 +

∑
i 1(Zi,k = 0)

)
Step 5 Sample γk from:

Inverse-Gamma

αγ +
∑
i

1(Zi,k = 0)/2, βγ + 0.5
∑

i|Zi,k=0

π2
i,k


Step 6 Sample σj from:

Inverse-Gamma

ασ + n/2, βσ + 0.5

n∑
i=1

(
yi,j −

K∑
k=1

µk,jπi,k

)2


Step 7 Sample ρ from a uniform distribution

(ρ|−) ∼ Uniform(0, h(µ1, . . . ,µK))

Detailed information on how full-conditionals were derived is contained in sec-
tion 1 of supplementary material.

3 Synthetic Data

3.1 Data Generation

The performance of BayesDeBulk in estimating cell-type fractions and the gene
expression in different cells was evaluated based on extensive synthetic data. Let
p be the total number of genes, n the total number of samples and K the number
of cell-types. Let Ik be the set containing 20 cell-specific markers for the k-th
cell; which were randomly sampled from the full list of genes. The mean of cell-
specific markers for a particular cell k, i.e., µk,j with j ∈ Ik, was drawn from
a Gaussian distribution with mean uniformly sampled from the range [1, 3] and
standard deviation 0.5; while the mean of other markers, i.e., µk,j with j 6∈ Ik,
from a Gaussian distribution centered on zero and standard deviation 0.5. The
fraction of different cell-types, i.e., (π1,i, . . . πK,i), was randomly generated from a
Dirichlet distribution with parameter 1. Given these parameters, mixed data for
the i-th sample was generated as follows:

Yi = π1,iV1,i + . . . πK,iVK,i + εi

with εi ∼ N(0, νI) and Vk,i ∼ N(µk, σI).

3.2 Results

BayesDeBulk was compared with Cibersort [9] based on different simulation sce-
narios with varying numbers of cells and genes; i.e., (K, p, n) = (10, 200, 100) and
(K, p, n) = (20, 400, 100), and variance levels ν and σ. For each synthetic scenario,
10 replicate datasets were generated and the performance of the two models was
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evaluated based on two metrics: Pearson’s correlation and mean squared error
(MSE) between estimated fractions and true fractions. For each replicate, Bayes-
DeBulk was estimated considering 10000 Marcov Chain Monte Carlo (MCMC)
iterations; with the estimated fractions being the mean across iterations after dis-
carding a burn-in of 1000. BayesDeBulk was implemented (i) assuming that all
cell-specific markers are known a priori (BayesDeBulk 100) and (ii) only 50% of
cell-specific markers are known a priori (BayesDeBulk 50). This second scenario
is more representative of real world applications, where only a proportion of cell-
specific markers is usually known. Contrary to BayesDeBulk, Cibersort requires
as input a signature matrix containing the mean of different markers for different
cell-types. In order to make a fair comparison, a perturbed version of the original
signature matrix was considered as input in Cibersort based inference. Specifi-
cally, the original signature matrix was perturbed following two approaches: (i)
preserving the upregulation of key cell-specific markers (Cibersort 100), and (ii)
preserving only 50% of markers upregulation. The scatterplot between true and
perturbed signature matrices can be found in the supplementary material (section
2.1, Supplementary Figure 1).

As shown in Figure 2, BayesDeBulk resulted in a higher Pearson’s correlation
for different synthetic data scenarios. In particular, a median correlation above
0.90 was observed for BayesDeBulk for all simulation scenarios involving K = 10
components; while Cibersort resulted in a median correlation lower than 0.70 for
higher noise levels. As expected, the performance of both models decreased as more
components were incorporated into the model. Overall, we observe that Cibersort
is more sensitive to the prior knowledge incorporated in the model; in fact its
performance substantially decreases when only 50% of the markers are known a
priori. This is due to the lack of flexibility of Cibersort, which requires as input a
signature matrix containing the mean levels of different markers for different cells.
Indeed, the advantage of our proposed Bayesian framework is the estimation of the
expression of different markers for different cell-types. Section 2.2 of supplementary
material shows the performance of BayesDeBulk in estimating the mean of gene
expression for different components. As expected, higher noise levels result in
lower performance in terms of both correlation and MSE (Supplementary Figures
2, 3). The median Pearson’s correlation between estimated and true values across
replicates was above 0.80 for the simulations involving 10 cell types; including
when only 50% of cell-specific markers are known a priori. Although the median
correlation decreases substantially when the number of components increases to
K = 20, it remains above 0.50 for different simulation scenarios.

4 Real data examples

4.1 Multi-omic based deconvolution

Our simulation framework relied on two published datasets. First, we consid-
ered data from [7] which contains transcriptomic profiling of K = 6 immune cell
types such as Neutrophil, Natural Killers, B cells, CD4 T cells, CD8 T cells and
Monocytes. Let µk be the averaged transcriptomic data across multiple repli-
cates for the k-th cell type. For each sample n, weights of different immune cells
were randomly sampled from a Dirichlet distribution with parameter 0.5 (i.e.,
πn,1, πn,2...πn,K). Count data was first log2 transformed and then mixed data was
derived as the weighted average of transcriptomic profiling of different cell-types
as follows yn =

∑K
k=1 πn,kZn,k + εn with Zn,k ∼ N(µk, σ) and εn ∼ N(0, δ). In

particular, δ was chosen to ensure a 1:1 signal to noise ratio. Then, we considered
data from Rieckmann et al [15] including proteomic profiling of the same set of
immune cells. Considering the same set of weights {πn,k}, mixed proteomic data
was generated in a similar fashion as the transcriptomic profiling. BayesDeBulk
was compared with Cibersort [9] in estimating immune cell fractions. For this
comparison, different simulation scenarios with varying number of samples; i.e.,
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Figure 2: Boxplot of Pearson’s correlation and MSE between estimated cell fractions
and truth over 10 replicates. Results based on data simulated for (A) K = 10 and
σ = 0.5; (B) K = 10 and σ = 1; (C) K = 20 and σ = 0.5 for different level of
measurement errors ν. Results based on BayesDeBulk 100, BayesDeBulk 50, Cibersort
100 and Cibersort 50 are shown.
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Figure 3: Boxplot of Pearson’s correlation between true and estimated cell fractions
across 20 replicates for BayesDeBulk and Cibersort models based on different simula-
tion scenarios involving N = 50, N = 100 and N = 150 samples. BayesDeBulk and
Cibersort were implemented based on proteomic (Pro) and transcriptomic (RNA) data.
For BayesDeBulk, a multi-omic based deconvolution was also performed (Multi-omic).

(N = 50, N = 100, N = 150), were considered. Specifically, for each synthetic
scenario, 20 replicate datasets were generated and the performance of the two
models was evaluated based on the Pearson’s correlation between estimated and
true fractions. For each replicate, BayesDeBulk was estimated considering 10, 000
Marcov Chain Monte Carlo (MCMC) iterations; with the estimated fractions be-
ing the mean across iterations after discarding a burn-in of 1, 000. BayesDeBulk
and Cibersort were implemented based on proteomic and transcriptomic data. For
BayesDeBulk, a multi-omic based deconvolution was also performed.

Figure 3 shows the boxplot of Pearson’s correlation over 20 replicates between
the true and estimated fractions for BayesDeBulk and Cibersort based on differ-
ent data types and simulation scenarios. The performance for each cell-type can
be found in Supplementary Figure 4. As shown, BayesDeBulk results in higher
correlation between true and estimated cell-fractions than Cibersort. In particu-
lar, the multi-omic based deconvolution can outperform single-omic deconvolutions
revealing the advantage of a multi-omic based learning.

4.2 Validation based on flow cytometry

In this section, the performance of BayesDeBulk is compared with Cibersort [9]
and xCell [1] based on transcriptomic data from peripheral blood mononuclear cells
from 20 adults who received influenza immunization [9]. For inference, BayesDe-
Bulk considered the same set of cell-types used in Cibersort; however, both sig-
natures from Cibersort and xCell were considered as prior information. Detailed
information on how cell-type specific markers were identified based on both signa-
tures can be found in Section 3 of supplementary material. BayesDeBulk model
was estimated considering 3000 MCMC iterations; with the estimated fractions
derived as the mean across iterations after discarding a burn-in of 1000. Figure 4
shows the Pearson’s correlation between flow-cytometry estimates and estimates
derived via different algorithms. As illustrated, BayesDeBulk outperformed both
Cibersort and xCell in the estimation of gamma delta T-cells and monocytes. In
addition, BayesDeBulk performed better than xCell in the estimation of NK cells
and CD8 T cells. For 5 out of 7 cells, BayesDeBulk resulted in a correlation higher
than 0.5; compared to 6 out of 7 for Cibersort and 4 out of 7 for xCell. xCell
resulted in estimates equal to zero for gamma delta T cells and NK cells.
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Figure 4: Pearson’s correlation between estimated cell fractions and estimates based on
flow cytometry data for BayesDeBulk (red), Cibersort (blue) and xCell (green).

5 Conclusion

We introduce BayesDeBulk, a new Bayesian method for the deconvolution of bulk
tumor data. BayesDeBulk allows the simultaneous estimation of both cell fractions
and gene expression for different cell-types. To perform the deconvolution, Bayes-
DeBulk requires a set of genes expressed in each cell-type, which can be obtained
from existing transcriptomic profiles of pure cells. Bulk RNA data is modeled via
a Gaussian distribution with mean being the weighted average of expression in
different cell-types. Given a list of markers expressed in a particular cell-type, a
repulsive prior is placed on the mean of gene expression in different cell-types to
ensure that cell-specific markers are upregulated in a particular component. This
prior specification facilitates the identification and the labeling of the components
contained in the mean parameter; which is a common problem of reference-free
methods.

Contrary to reference-based methods, our framework estimates different cell-
type fractions and the mean of gene expression in different cell-types from the
data, simultaneously. Reference-based algorithms often rely on the assumption
that the transcriptomic profiling of different immune/stromal cells in solid tumor
is similar to that of the reference data derived from pure cells. Violation of this
assumption might lead to poor performance in the estimation of cell fractions. On
the other hand, BayesDeBulk does not need to rely on such an assumption since
it estimates the transcriptomic profiling of different cells directly from the data.

In addition, the estimation of transcriptomic profiling for different cells is very
important in order to perform differential expression analyses between adjacent
normal and tumor tissues while accounting for tumor purity. For example, one
problem that researchers encounter when performing differential expression anal-
yses between tumor and adjacent normal tissues is that some immune genes might
be detected as differentially expressed between tumor and adjacent normal tissues
driven by the higher immune infiltration in tumor. BayesDeBulk can be used to
estimate the transcriptomic profile of tumor cells by adding an extra component.
Then, the estimated profiling of tumor cells might be used in order to identify
genes differentially expressed between specifically tumor-cells and adjacent nor-
mal tissues.

Given its flexibility, BayesDeBulk can be utilized to characterize the tumor
microenvironment based on other data types such as methylation or proteomic
profiling. In addition, the algorithm can be easily utilized for a multi-omic based
deconvolution. In this case, each data type can be modeled via a BayesDeBulk
model, with different data-specific models sharing the same set of cell fraction
parameters. This multi-omic framework would allow the estimation of cell fractions
based on multi-omic data as well as multi-omic measurements of different markers
across different cell-types.
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