
BayesDeBulk: A Flexible Bayesian Algorithm for the

Deconvolution of Bulk Tumor Data

Francesca Petralia1, Azra Krek1, Anna P. Calinawan1, Song Feng2,
Sara Gosline2, Pietro Pugliese3, Michele Ceccarelli4, Pei Wang11

1Icahn School of Medicine at Mount Sinai, NY, USA
2Pacific Northwest National Laboratory, Seattle, WA, USA

3University of Sannio, Benevento, Italy
4University of Naples “Federico II”, Naples, Italy

Abstract

Motivation: To improve cancer immunotherapy response, one crucial step is
to study the immune/stromal cell composition in the tumor microenvironment.
The fraction of different cell types in the tumor microenvironment can be esti-
mated via deconvolution algorithms from bulk transcriptomic profiles. One class of
such algorithms, known as reference-based, requires as input a reference signature
matrix containing the gene expression measurements of different cell types. The
limitation of these algorithms is that problems might arise when the transcriptomic
profiles of different cell types in solid tumors deviate from the reference, leading to
poor estimation performance. A more flexible alternative is given by reference-free
methods which can perform the simultaneous estimation of cell-type fractions and
cell-type gene expression from the data. However, most of these algorithms rely
on factor modeling which unfortunately suffers from interpretability issues, as the
labeling of different factors into cell types is often problematic.
Results: To overcome these limitations, we propose BayesDeBulk, a novel
reference-free Bayesian model which flexibly leverages existing information of
known cell-type specific markers and performs the simultaneous estimation of cell-
type fractions and cell-type gene expression. Specifically, BayesDebulk imposes
a novel Repulsive prior distribution on the mean of cell-type specific markers to
ensure the upregulation of cell-type specific markers in a particular component.
Using this prior specification, each component of the mixture model is identifiable
and automatically assigned to a particular cell type, overcoming the identifiability
issues affecting reference-free methods. This flexible framework enables BayesDe-
Bulk to perform the deconvolution by integrating proteomic and transcriptomic
data measured for the same set of samples. Improved performance of BayesDe-
Bulk over state-of-the-art deconvolution algorithms such as Cibersort and xCell is
shown on different synthetic and real data examples.

Availability: Software available at http://www.bayesdebulk.com/

Contact: For any information, please contact francesca.petralia@mssm.edu
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1 Introduction

Solid tumors are composed of a variety of cell types including immune and stromal
cells. Quantifying the proportion of different cell types in the tumor microenvi-
ronment is crucial in order to capture patient heterogeneity and develop better
therapeutic targets. In the last decade, different algorithms have been proposed
for the estimation of the tumor microenvironment from bulk data. Some algo-
rithms, known as reference-based, require gene expression of purified cells as prior
information [4, 18, 34]. However, problems might arise when the gene expression
of different cell types in certain organs or tumors does not align with those in
purified cells. In addition, this prior information might not be appropriate when
performing the deconvolution based on other data types such as proteomic pro-
files. In recent cancer studies [5, 8, 21, 29], it is becoming common to collect
multi-omic data including gene expression and global proteomic data for the same
set of biological samples. In this context, it is crucial to fully leverage all available
data in order to better estimate the immune and stromal composition in the tumor
microenvironment.

To overcome this lack of flexibility, efforts have been made to use semi-reference
approaches [6, 22, 31]. Recently, Tai et al, [31] proposed a Bayesian algorithm
which jointly models gene expression from purified cells and that from bulk data
through a hierarchical model. This model is more flexible than reference-based
methods since gene expression in different cell types is inferred from the data.
However, it still relies on the assumption that the mean expression of a particular
cell type in the reference data is similar to that in the bulk data.

Aran et al (2017) [1] proposed xCell, a flexible tool for bulk deconvolution
based on transcriptomic data. xCell considers as prior information a list of markers
expressed in each cell type, and returns an enrichment score reflecting the amount
of different cell types in the tumor microenvironment. Although more flexible
than other deconvolution algorithms, xCell does not estimate gene expression of
different cell types from the data. These estimates are particularly useful in order
to perform differential expression analyses between tumor and adjacent normal
tissues while accounting for immune and stromal composition.

There are a few other reference-free algorithms that are able to infer both
cell-type proportions and marker expression in different cell types [10, 11, 15, 26].
These algorithms utilize factor analysis or similar strategies to avoid the usage of
reference signatures. While more flexible, the labeling and interpretation of differ-
ent components (factors) might be problematic. Recently, Tang et al [32] proposed
an algorithm based on non-negative matrix factorization. This method recovers
the identifiability and the labeling of different components using a penalized re-
gression, where the gene expression of markers expected to be less expressed in
a particular cell type are shrunk towards zero. This algorithm requires that, for
each cell type, markers are divided into three categories: not expressed, expressed
and highly expressed. A possible drawback of such algorithm is that marker strat-
ification into such categories might not be easy to achieve in practice.

To overcome these limitations, we propose BayesDeBulk - a new flexible
Bayesian method for bulk deconvolution. Given a list of markers expressed in
a particular cell type (cell-type specific markers), BayesDebulk imposes a repul-
sive prior distribution on the mean of marker expression in different cell types to
ensure that cell-type specific markers are upregulated in the corresponding cell-
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type component. Repulsive class of priors have been introduced by Petralia et al
[20]; and were recently extended to different applications [23, 24, 35, 36]. Contrary
to existing reference-free methods, the labeling of different components is speci-
fied a priori through a repulsive prior. The cell-type fraction parameter is instead
modeled through a spike-and-slab prior [7] in order to induce sparsity and iden-
tify cell types which are not present in the tumor microenvironment. Contrary to
reference-based algorithms, our framework estimates different cell-type fractions
and the mean of gene expression in different cell types from the data, simulta-
neously. Furthermore, the labeling of different components is specified a priori,
which helps to avoid the ambiguity issue encountered by factor models. Finally,
the flexible framework of BayesDeBulk naturally supports the joint modeling of
multi-omic data, such as proteomic and transcriptomic data, measured for the
same set of samples. The performance of BayesDeBulk is compared to existing
deconvolution methods such as Cibersort [18], CibersortX [19], Epic [25], Plier
[15], xCell [1] and MCP-counter [2] using extensive synthetic data and real data
experiments.

2 Background

Gene expression data from bulk experiments is the weighted average of the gene
expression of all the cell types in the tissue. In this framework, the expression of
gene j for the i-th patient can be modeled as a Gaussian distribution with mean
parameter being the linear combination of the expression of gene j in different cell
types as follows:

yi,j ∼ N(θi,j , σj) , θi,j =

K∑
k=1

πi,kµk,j

with K being the total number of cell types in the tissue, πi,k being the fraction of
the k-th cell type for sample i, µk,j being the expression of gene j for the k-th cell
type and σj being the variance of the j-th gene. Reference-based models would
consider µk,j as fixed with measurements derived from existing transcriptomic data
from purified cells [4, 18, 34]; while reference-free models would estimate that from
the data. A Bayesian model would specify prior distributions for all parameters in
the model; with conjugate priors being Gaussian distributions for {πi,k}Kk=1 and
{µk,j} and inverse-gamma distributions for {σj}pj=1. However, this model would
not be identifiable without further constraints on the parameter space. To over-
come this problem we propose a Bayesian model where identifiability is recovered
via a repulsive prior specified on the mean parameters {µk,j} [20].

3 Methods

3.1 Prior Specification

Let us assume that for each k-th cell type, there is a set Ik of markers whose
expression is upregulated in the k-th cell type compared to all others. We will use
a flexible repulsive prior [20] in order to ensure that markers in set Ik will have
a ”larger” mean in the k-th cell type compared to other cell types. Figure 1(A)
provides a schematic of the proposed model. Let µk be a p dimensional vector
containing the expression of p markers in the kth cell type. Then, (µ1, . . . ,µK) is
jointly modeled through the following multivariate prior distribution:

p(µ1, . . . ,µK) =

K∏
k=1

[
p∏
j=1

N(µk,j ; ξk,j , λk,j)

]
h(µ1, . . . ,µK)

with h(−) being a repulsive function defined as

h(µ1, . . . ,µK) = min
∀s

min
∀j∈Is;∀k 6=s

exp(−τ(|µs,j − µk,j |)−η)1(µs,j > µk,j)
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with ξk,j and λk,j being the mean and the variance parameter of the Gaussian
prior distribution, 1(A) being an indicator function equal to 1 if A is satisfied and
0 otherwise, τ > 0 is a scale parameter and η > 0 a positive integer controlling the
rate at which the repulsive function approaches zero. This function is an extension
of the repulsive function introduced by Petralia et al [20], and it approaches zero
as the distance between mean parameters goes to zero and the upregulation of
markers belonging to set Ik in the k-th cell type is not satisfied. According to this
function, markers contained in set Ik will have a mean value greater in component
k-th compared to all other components. It is important to note that only markers
contained in set I = ∪Kk=1Ik will be assigned a repulsive prior; other markers will
have a Gaussian prior distribution. This is sufficient to recover identifiability of the
model and will reduce substantially the computational burden. Prior knowledge on
markers upregulated in each cell type can be leveraged from existing databases and
single-cell data. Depending on the cell types considered in the model, it might be
problematic to find a set of markers upregulated in a particular cell type compared
to all other cell types. For instance, the set of markers upregulated in Naive CD4
T Cells compared to Myeloid cells might be very different from the set of markers
upregulated in Naive CD4 T Cells compared to Memory CD4 T Cells. In order to
better leverage prior information, our flexible framework allows the user to specify
cell type specific makers for each pair of cell types. For instance, assume that Is>k
is the set of markers upregulated in the s-th cell type compared to the k-th cell
type. In this case, the repulsive prior can be easily modified to incorporate this
information in the following way:

h(µ1, . . . ,µK) = min
∀s

min
∀j∈Is>k;∀k 6=s

exp(−τ(|µs,j − µk,j |)−η)1(µs,j > µk,j)

Standard choice for the parameters of the Gaussian prior is ξk,j = 0 and λk,j = 1;
alternatively, those parameters might be chosen based on prior knowledge from
existing databases and single-cell datasets. For ease of computation, we will not
require {πi,k}Kk=1 to sum to 1. However, we will require these parameters to be
defined on the unit interval [0, 1]. As prior specification, we will use a spike-and-
slab prior [7] defined on the unit interval, i.e., πi,k ∼ wkN[0,1](0, 0.0001) + (1 −
wk)N[0,1](0, γk) with wk ∼ Beta(1, 1) and γk ∼ Inverse-Gamma(aγ , bγ). The spike
component concentrates its mass at values close to zero, shrinking small effects
to zero and inducing sparsity in the estimates {πi,k}. Since some cell types will
be more abundant (i.e., different from zeros) than others, the percentage of zero
values, i.e., wk, will vary across different cell types. For instance, T cells will be
more likely present in kidney or lung tissues rather than brain tissues. For the
variance components {σj}pj=1, standard inverse-gamma priors will be utilized.

3.2 Multi-omic Framework

BayesDeBulk can be utilized to perform the deconvolution by integrating gene
expression and protein expression data as illustrated by Figure 1(B). In this case,
each data type can be modeled via a BayesDeBulk model, with different data-
specific models sharing the same set of cell type fraction parameters. Let yi,j and
zi,j be the RNA and protein expression of marker j for sample i. The proposed
multi-omic framework models yi,j and zi,j as follows:

yi,j ∼ N(θYi,j , σj) , θYi,j =

K∑
k=1

πi,kµ
Y
k,j

zi,j ∼ N(θZi,j , ιj) , θZi,j =

K∑
k=1

πi,kµ
Z
k,j

with K being the total number of cell types, πi,k being the fraction of the k-th cell
type for sample i, µYk,j being the expression of gene j for the k-th cell type, µZk,j
being the expression of protein j for the k-th cell type. It is important to notice
that the two models share the same set of cell type fractions, i.e. {πi,k}. In this
case, a repulsive prior will be placed on the mean parameters of both models, i.e.,
{µYk,j} and {µZk,j}.
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Figure 1: Algorithm Schematic (A) Bulk data is modeled as a linear combination of
marker expression in different cell types. Given a list of markers expressed in each cell
type, a repulsive prior is placed on the mean of marker expression in different cell types
to ensure that cell type specific markers are upregulated in a particular component.
(B) Multi-omic framework to estimate cell type fractions integrating global proteomic
and RNAseq data. Given a list of cell-type specific markers, the algorithm returns the
estimated protein/RNA expression for different cell types and cell-type fractions for
different samples.
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3.3 Full conditionals and posterior computation

Posterior computation of model parameters will be performed via Gibbs sampling
[30]. Following Petralia et al [20], a latent variable ρ will be introduced to facilitate
the sampling from the repulsive prior. This latent variable will be jointly modeled
with µ through the following multivariate density:

p(µ, ρ) =

 ∏
∀k;∀j

N(µk,j ; ξk,j , λk,j)

 1(h(µ1, . . .µK) > ρ)

A set of additional latent variables {Zi,k} will be introduced in order to facili-
tate the sampling from the spike-and-slab prior placed on {πi,k}. In particular,
Zi,k will be equal to 1 if πi,k will be sampled from the ”spike” component, i.e.,
πi,k ∼ N[0,1](0, 0.0001); while equal to 0 if πi,k will be sampled from the ”slab”
component, i.e., πi,k ∼ N[0,1](0, γk). The Gibbs sampler steps are summarized in
Section 1 and 2 of the Supplementary Material.

4 Validation based on synthetic data

4.1 Data generated from a Gaussian model

The performance of BayesDeBulk in estimating cell-type fractions and the marker
expression in different cell types was evaluated based on extensive synthetic data.
Let p be the total number of markers, n the total number of samples and K the
number of cell types. Let Ik be the set containing 20 cell-type specific markers for
the k-th cell type; which were randomly sampled from the full list of markers. The
mean of cell-type specific markers for a particular cell type k, i.e., µk,j with j ∈ Ik,
was drawn from a Gaussian distribution with mean uniformly sampled from the
interval [1, 3] and standard deviation 0.5; while the mean of other markers, i.e., µk,j
for j 6∈ Ik, from a Gaussian distribution centered on zero and standard deviation
0.5. The fraction of different cell types, i.e., (π1,i, . . . πK,i), was randomly generated
from a Dirichlet distribution with parameter 0.5. Given these parameters, mixed
data for the i-th sample was generated as follows:

Yi = π1,iV1,i + . . . πK,iVK,i + εi

with εi ∼ N(0, νI) and Vk,i ∼ N(µk, σI). Further details on data generation
can be found in Section 3 of the Supplementary Material and Supplementary
Figure 1.

BayesDeBulk was compared with Cibersort [18], Plier [15], xCell [1] and EPIC
[25] based on different simulation scenarios with varying numbers of cell types
and markers; i.e., (K, p, n) = (10, 200, 50), (K, p, n) = (20, 400, 50), (K, p, n) =
(10, 200, 100) and (K, p, n) = (20, 400, 100), and variance levels ν and σ. For
each synthetic scenario, 30 replicate datasets were generated and the performance
of different models was evaluated based on two metrics: Pearson’s correlation
and mean squared error (MSE) between estimated fractions and true fractions.
For each replicate, BayesDeBulk was estimated considering 10, 000 Marcov Chain
Monte Carlo (MCMC) iterations; with the estimated fractions being the mean
across iterations after discarding a burn-in of 1, 000. Different methods were im-
plemented (i) assuming that all cell-type specific markers are known a priori and
(ii) only 50% of cell-type specific markers are known a priori. This second sce-
nario is more representative of real world applications, where only a proportion of
cell-type specific markers is usually known. Cibersort and EPIC require as input
a signature matrix containing the expression of different markers for different cell
types. In order to make a fair comparison, a perturbed version of the original
signature matrix was considered as input (further information can be found in
Section 3 of the Supplementary Material and Supplementary Figure 2).
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Figure 2 shows the performance of all the models in estimating cell-type frac-
tions for different synthetic data scenarios considering a sample size n = 100 under
the assumption that only 50% of cell-type specific markers is known. As shown,
BayesDeBulk resulted in the highest Pearson’s correlation and lowest MSE be-
tween estimated and true cell-type fractions for different synthetic data scenarios.
A median correlation above 0.90 was observed for BayesDeBulk for all simulation
scenarios involving K = 10 components. Among other deconvolution algorithms,
Plier resulted in the best performance in terms of Pearson’s correlation with a
median correlation greater than 0.85 for all synthetic scenarios involving K = 10
cell types, although leading to the worst MSE. In addition, given the identifiability
issue affecting factor models, for many synthetic scenarios, Plier was not able to
map factors to a particular cell type (see Section 3 of Supplementary Material for
further information). This identifiability issue is expected to be more pronounced
in real-world applications, posing considerable challenges to Plier’s implementa-
tion. As expected, the performance of all models decreased as more cell types
were considered (K=20). Given their ability to estimate the expression of different
markers for multiple cell types, BayesDeBulk and Plier were also compared in this
regard. Figure 2 shows the performance of BayesDeBulk and Plier in estimating
the mean of marker expression for different components. As expected, higher noise
levels resulted in lower performance in terms of both correlation and MSE. The
median Pearson’s correlation between estimated and true values across replicates
was above 0.80 for the simulations involving 10 cell types. Although the median
correlation decreased substantially when the number of components increased to
K = 20, it remained above 0.50 for different simulation scenarios. Additional syn-
thetic data scenarios based on lower sample size n = 50 and different degree of
prior knowledge can be found in Supplementary Figures 3, 4 and 5. Overall, we
observe that the performance of BayesDeBulk is not affected by different degree
of prior knowledge contrary to Cibersort, Epic and xCell.

5 Validation based on flow cytometry

In this section, the performance of BayesDeBulk is compared with Plier [15], Ciber-
sort [18], xCell [1], CibersortX [19], EPIC [25] and MCP-counter [2] based on tran-
scriptomic data from peripheral blood mononuclear cells. For this comparison, we
used two public gene expression data based on influenza vaccination cohorts re-
ferred to as influenza cohort 1 [33] and influenza cohort 2 [3, 16, 17]. As additional
cohort, we used the gene expression of a peripheral blood data cohort involving
20 patients [18]. For BayesDeBulk, Epic, Plier and Cibersort inference the LM22
signature matrix from Cibesort was considered. For MCP-counter and xCell esti-
mation, their default signature was utilized. Further details on how the signature
matrix was leveraged for different algorithms can be found in Section 4 of the
Supplementary Material.

Figure 3 shows the Spearman’s correlation and MSE between flow-cytometry
data and estimates derived using different algorithms. BayesDeBulk resulted in an
overall Spearman’s correlation higher than all other algorithms for the influenza
cohort 1. Cibersort and CibersortX models performed poorly in estimating the
fraction of Monocytes. All algorithms performed well in estimating the fraction of
B cells and CD8 T cells. For influenza cohort 2, BayesDeBulk was outperformed
only by MCP-counter in terms of both Spearman’s correlation and mean squared
error. Again, Cibersort and CibersortX performed poorly in estimating Mono-
cytes fractions. For both data sets, MCP-counter and BayesDeBulk resulted in
the lowest MSE considering all cell types combined. Finally, for the peripheral
blood data involving 20 samples, BayesDeBulk was outperformed only by Ciber-
sort and CibersortX in terms of Spearman’s correlation. Plier was not able to map
any estimated factors to CD8 T cells; and therefore summary statistics for this
cell type were not reported. The overall Spearman’s correlation considering the
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Figure 2: Pearson’s correlation and mean squared error (MSE) between estimated val-
ues and true values over 30 replicates for BayesDeBulk (red), Cibersort (blue), xCell
(green), Epic (gray) and Plier (gold). Barplots correspond to the median across differ-
ent replicates while error bars to the interquartile range. For each simulation scenario,
we report the correlation and MSE between the estimated cell-type fractions and the
true values (left-hand panel) for all five algorithms, and between the estimated cell-type
expression and true values (right-hand panel) for BayesDeBulk and Plier. Results are
based on data simulated for (A) K = 10 and σ = 0.5; (B) K = 10 and σ = 1; (C)
K = 20 and σ = 0.5 for different level of measurement errors ν (noise).
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Figure 3: Spearman’s correlation and MSE between estimated cell-type fractions and
estimates based on flow-cytometry for BayesDeBulk, Cibersort, CibersortX, Plier, EPIC
and MCP-counter for different datasets.

remaining cell types was lower than that of BayesDeBulk (spearman’s correlation
of 0.40 versus 0.45). For all three datasets, Plier was the algorithm resulting in
the worst mean squared error. Since BayesDeBulk perform the estimation of both
cell-type fractions and cell-type gene expression, we expect BayesDeBulk to per-
form less accurately for small number of samples compared to algorithms using a
fixed signature matrix (e.g., Cibersort). However, as shown by this data example,
BayesDeBulk is still among the top performers in estimating cell-type fractions for
datasets involving a small number of samples (n=20).

6 Validation based on mixture of protein and
gene expression from purified cells

In this section, we compare different algorithms based on mixture of gene and
protein expression datasets from purified cells. For this experiment, we considered
data from [13] which contains transcriptomic profile of K = 6 immune cell types
such as Neutrophil, Natural Killers, B cells, CD4 T cells, CD8 T cells and Mono-
cytes. Considering the transcriptomic profiles of these immune cells, we obtained
pseudo-bulk RNA data as explained in Section 5 of the Supplementary Material.
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Then, we considered data from Rieckmann et al [27] including proteomic profiles
for the same set of immune cells. Mixed proteomic data was generated in a similar
fashion as the transcriptomic profile, considering the same set of mixture propor-
tions. BayesDeBulk was compared with Cibersort [18], Epic [25], Plier [15], xCell
[1] and MCP-counter [2] in estimating immune cell-type fractions. Considering a
sample size of n = 50, 30 replicate datasets were generated and the performance
of the models were evaluated based on the correlation between estimated and
true fractions. For each replicate, BayesDeBulk was estimated considering 10, 000
Marcov Chain Monte Carlo (MCMC) iterations; with the estimated fractions be-
ing the mean across iterations after discarding a burn-in of 1, 000. All algorithms
were implemented using proteomic and transcriptomic data. Given the ability of
BayesDeBulk to integrate both proteomic and RNAseq data, a multi-omic based
learning for BayesDeBulk was also implemented. For BayesDeBulk, Epic, Plier
and Cibersort inference the LM22 signature matrix from Cibersort was consid-
ered. For MCP-counter and xCell estimation, their default signature was utilized.
Further details on how the signature matrix was leveraged for different algorithms
can be found in Section 5 of the Supplementary Material.

Figure 4 shows the Spearman’s correlation and mean squared error (MSE)
between true and estimated cell-type fractions for different algorithms. Overall,
BayesDeBulk resulted in the highest correlation and lowest MSE. For some cell
types such as Neutrophils, the multi-omic based deconvolution was able to slightly
outperform single-omic based deconvolutions revealing the advantage of a multi-
omic based learning. As shown by Figure 4, Epic was the worst algorithm when
performing the deconvolution based on proteomic data; resulting in a negative
correlation for CD4 T cells and CD8 T cells. Although Plier was the algorithm
with the highest correlation among competitors, it resulted in the highest MSE.
Similarly to other data examples, for a large number of replicates (∼ 50%), Plier
could not map estimated factors to each one of the 6 immune cell types. Only
replicates for which this mapping was possible were considered to produce sum-
mary statistics in Figure 4. As previously highlighted, this identifiability problem
is an issue when applying Plier to real-world data.

7 Conclusion

We introduce BayesDeBulk, a new Bayesian method for the deconvolution of bulk
data which can be applied to both gene-expression and protein-expression data or
their integration. BayesDeBulk allows the simultaneous estimation of both cell-
type fractions and marker expression for different cell types. As prior information,
our proposed framework requires a set of cell-type specific markers which can be
obtained from existing gene expression and protein expression from purified cells
or single-cell experiments. BayesDeBulk models the bulk proteomic and transcrip-
tomic data via a Gaussian distribution with mean being the linear combination of
marker expression in different cell types. By leveraging existing prior knowledge on
cell-type specific markers, a repulsive prior is placed on the mean of marker expres-
sion in different cell types to ensure that cell-type specific markers are upregulated
in a particular component. This prior specification facilitates the identification
and the labeling of the components corresponding to different cell types.

Contrary to reference-based methods, our framework estimates different cell-
type fractions and the mean of marker expression in different cell types from the
data, simultaneously. Reference-based algorithms often rely on the assumption
that the transcriptomic profile of different immune/stromal cells in the tissue is
similar to that of the reference data derived from purified cells. Violation of this
assumption might lead to poor performance in the estimation of cell-type fractions.
On the other hand, BayesDeBulk does not need to rely on such assumption since
it estimates markers’ abundance of different cell types directly from the data.

In addition, the estimation of markers’ abundance of different cell types is very
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Figure 4: (A) Pseudo-bulk gene- and protein- expression were generated based on im-
mune profiles from two publicly available data sets. The same set of mixture weights
drawn from a Dirichlet distribution were considered in order to obtain pseudo-bulk
data. (B-C) Spearman’s correlation and mean squared error (log(1/x) scale) between
true and estimated cell-type fractions for BayesDeBulk, Cibersort, EPIC, MCP-counter,
Plier and xCell. Barplots correspond to median values, while error bars to interquartile
range across 30 replicates. All algorithms were implemented based on proteomic (Pro)
and transcriptomic (RNA) data. For BayesDeBulk, a multi-omic based deconvolution
was also performed (Multi-omic).
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important in order to perform differential expression analyses between adjacent
normal and tumor tissues while accounting for tumor purity. One problem that
researchers encounter when performing differential expression analyses between
tumor and adjacent normal tissues is that some immune genes might be detected
as differentially expressed between tumor and adjacent normal tissues driven by
the higher immune composition in tumor tissue. BayesDeBulk can be used to
estimate the marker abundance in tumor cells by adding an extra component. This
estimated tumor profile can be used to identify markers differentially expressed
between tumor-cells and the adjacent normal tissue.

The performance of BayesDeBulk was compared with Cibersort, Epic, xCell,
MCP-counter and Plier for different synthetic data examples. As shown, Bayes-
DeBulk resulted in superior performance compared to other algorithms based on
synthetic data generated from a Gaussian model or from a mixture of protein/gene
expression of purified cells. In particular, we demonstrated that the multi-omic
deconvolution resulted in superior performance compared to single-omic deconvo-
lution, confirming the importance of multi-omic data integration. We then eval-
uated the performance of BayesDeBulk and other methods based on data with
flow-cytometry measurements. We demonstrated that BayesDeBulk was among
the top-performers in estimating cell-type fractions for different data sets.

Given that BayesDeBulk performs a simultaneous estimation of cell-type frac-
tions and markers’ expression in different cell types, the number of parameters to
be estimated can quickly increase with the number of cell types. For this reason,
we encourage the user to estimate a moderate number of cells (K < 20), especially
when working with a moderate sample size (n < 100).

Besides proteomic and RNAseq data, BayesDeBulk could be easily extended
to integrate other data types such as methylation profiles and single cell omics
data measured for the same set of tumors. With the advancement of sequencing
technology, it is more and more common to obtain multi-omic data for the same
set of samples. In this framework, there is an urgent need of flexible algorithms
able to integrate disparate omics data in order to better estimate the composition
of the tumor microenvironment.

8 Data Availability

Gene expression data for the two influenza vaccination cohorts can be found in
GEO GSE107990 and GSE59654. Flow cytometry data for both cohorts can be
found in supplementary data of Monaco et al [16].
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