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Abstract 

Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging 

biomarker for brain health; however, the underlying neural features have remained unclear. 

We combined ensembles of convolutional neural networks with Layer-wise Relevance 

Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic 

resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models 

estimated age accurately based on single and multiple modalities, regionally restricted and 

whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates 

capture aging at both small and large-scale changes, revealing gross enlargements of 

ventricles and subarachnoid spaces, as well as white matter lesions, and atrophies that 

appear throughout the brain. Divergence from expected aging reflected cardiovascular risk 

factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our 

study demonstrates how superior deep learning models detect brain-aging in healthy and at-

risk individuals throughout adulthood.  
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1. Introduction 

With the advent of large-scale magnetic resonance imaging (MRI) studies (e.g., UK Biobank, 

Sudlow et al. 2015; LIFE, Loeffler et al. 2015), the estimation of brain age (BA), and its contrast 

to the chronological age of a person (diverging BA, DBA), have become an increasingly 

predictive imaging marker for brain health. Higher DBA relates to accelerated cognitive 

decline, pathologies such as Alzheimer Disease (AD), hypertension and type 2 diabetes, as 

well as other lifestyle-related cardiovascular risk factors (Franke and Gaser 2019; Dadi et al. 

2020). However, underlying alterations of neural structures reflecting the relationship between 

BA and such factors are not well known. BA has been linearly estimated on predefined 

neuroimaging outcomes (e.g., cortical thickness maps Liem et al. 2017). Yet, feature 

extraction and preprocessing could lead to overconfidence w.r.t., or to the dismissal of, neural 

properties that can be relevant to BA. In contrast, deep learning (DL) models, specifically 

convolutional neural networks (CNNs; LeCun et al. 1989; Ji et al. 2013) are trained on raw 

data and provide more precise BA estimates (Cole et al. 2017; Cole and Franke 2017). 

Particularly on large MRI datasets CNNs converge to a minimal mean absolute error (MAE) 

of 2.14 years (Peng et al. 2021; see also Jonsson et al. 2019; Feng et al. 2020; Kolbeinsson 

et al. 2020; Dinsdale et al. 2021; Levakov et al. 2020; Bashyam et al. 2020). Despite these 

advantages, their complex architectures restrict straightforward interpretations of which image 

features drive their estimates, known as the black-box problem (Samek et al. 2019; Samek et 

al. 2021). Several methods have been proposed to open the black-box (Samek et al. 2021), 

such as perturbation and gradient techniques (Baehrens et al. 2010; Simonyan et al. 2014; 

Zeiler and Fergus 2014; Sundararajan et al. 2017; Zintgraf et al. 2017; Smilkov et al. 2017) , 

which also have been applied for BA predictions (Levakov et al. 2020). While many of these 

methods highlight input areas or intermediate feature maps that are relevant for the prediction, 

they do not indicate whether this information increases or decreases the predictor output. For 

the continuous case of BA estimates this means that neither the pace of aging processes (i.e., 

DBA), nor the state of their progression (BA) can be inferred from computed saliency maps. 
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Conversely, the Layer-wise Relevance Propagation algorithm (LRP) highlights relevant areas 

in the input (image) that both favor and dismiss corresponding output decisions (Bach et al. 

2015; Montavon et al. 2018; Lapuschkin et al. 2019). LRP has been successfully used with 

DL in MRI-based classification tasks (Böhle et al. 2019; Eitel et al. 2019; Thomas et al. 2019). 

However, the biological alterations that underlie aging are continuous in nature, which raises 

more challenges for both the DL model, and, consequently, its interpretation.  

Here, we therefore aimed to provide a novel, openly available analysis pipeline extrapolating 

from a proof-of-concept simulation study to the implementation of superior CNNs on multi-

modal MRI with the explanation algorithm LRP. Specifically, we asked which neurostructural 

features drive individual predictions and whether BA truly captures biological aging processes. 

On a group level we explored, how DBA is modulated by cardiovascular risk factors, and how 

this relationship manifests in distinct neural features. Based on previous findings, we 

hypothesized that BA relies on grey matter atrophy which include (pre)frontal and 

mesiotemporal cortex and cerebellum, and that risk factors such as obesity, hypertension and 

type 2 diabetes correlate with higher DBA, reflected in augmented vascular pathologies such 

as higher white matter lesion load. Importantly, opening the black box of DL image analysis is 

expected to reveal novel features of MRI-based neuronal properties that contribute to BA 

estimates, and thus advance our knowledge of brain health in aging. 

2. Materials and methods 

2.1. Data acquisition  

The LIFE Adult study (Loeffler et al. 2015), a population-based cohort study, encompasses 

dense clinical screenings of more than 10,000 participants coming from the area of Leipzig, 

Germany. Among others, the screening included measures of height, weight, blood pressure, 

blood-based biomarkers, cognitive performance and questionnaire batteries on mental health, 

and lifestyle (for more details see: Loeffler et al. 2015). 
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2.1.1. Study sample and exclusion criteria  

Of the more than 10,000 subjects of the LIFE Adult study, 2637 participants underwent a 1-

hour MRI recording session at baseline. Of those participants with MR-scans, 621 participants 

were excluded mainly due to pathologies, leaving 2016 subjects for further analysis (age range 

18-82 years, meanage = 57.32, medianage = 63.0; nfemale = 946; see Fig. 2 and Fig. A3 in 

Appendix D). Partially overlapping exclusion criteria were previous strokes (n=54), excessive 

brain lesions rated by trained medical staff (n=114), including white matter (WM) lesions rated 

with a Fazekas (Fazekas et al. 1987) score of 3 (n=44), radiological diagnosis of brain tumor 

(n=22), diagnosis of multiple sclerosis (n=5), epilepsy (n=27), cancer treatment in the last 12 

months (n=109), centrally active medication (n=275), cognitive impairments indicated by a 

MMSE  score < 26 (n=80), and poor quality MRIs (failing a visually quality check, e.g., 

regarding motion artefacts, n=41).  

2.1.2. MRI data 

MRI data was acquired in a 1-hour recording session using a 32-channel head coil in a 3T 

Siemens Verio scanner. Various MRI sequences were applied (see Loeffler et al., 2015). For 

this study, we trained models on three MRI sequences used in clinical settings: i) structural 

T1-weighted images were taken with an MP-RAGE sequence (1 mm isotropic voxels, 176 

slices, TR=2300 ms, TE=2.98 ms, TI=900 ms, field of view 256 x 240 x 176 mm3, sagittal 

orientation) which is often used to quantify cerebrospinal fluid, white and gray matter among 

others. ii) Fluid-attenuated inversion recovery images (FLAIR) were acquired (1 mm isotropic 

voxels, 192 slices, TR=5000 ms, TE=395 ms, TI=1800 ms, field of view 250 x 250 x 192 mm3, 

sagittal orientation). FLAIR is highly sensitive towards lesions in the WM, which are known to 

accumulate with age (Tang et al. 1997; Ge et al. 2002; Beck et al. 2021). Lastly, iii) 

susceptibility-weighted magnitude images (SWI) are used to detect iron-deposits in the basal-

ganglia (Pfefferbaum et al. 2009; Bekiesinska-Figatowska et al. 2013), which could be linked 

to neurodegeneration and cognitive decline (Haller et al. 2010; Du et al. 2018; Thomas et al. 
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2020), and are used to discover brain hemorrhages. SWIs were recorded with a T2*-weighted 

pulse sequence (0.8 x 0.7 x 2.0 mm non-isotropic voxels, 64 slices, TR=28 ms, TE=20 ms, 

field of view 230 x 173 x 128 mm3, sagittal orientation). 

2.2. MRI preprocessing  

 

MRIs of the three sequences (T1, FLAIR, SWI) were saved in three processing stages: raw, 

freesurfer volume (recon-all, FreeSurfer 5.3.0; Fischl 2012), and MNI stage (MNI152; Fonov 

et al. 2011, 2mm; via ANTs 2.2, Tustison et al. 2020). In the freesurfer volume stage, FLAIR 

and SWI images were linear registered (linear interpolation; ANTs 2.2) to the corresponding 

space of the T1-weighted images (‘brain.finalsurf.mgz’), which were subject to various 

intensity normalization steps and a skull stripping procedure, which are all part of the 

preprocessing steps in FreeSurfer (for more details see the Appendix A). For memory and 

processing efficiency, all images in all stages were pruned, i.e., their background was 

maximally removed, while keeping the same volume shape in the respective stage and, for 

raw images, respective sequence across all participants. These minimally-sized volumes were 

constrained to have a 2-voxel margin around the full brain of the largest brain in the whole 

dataset in the respective stage and sequence. Moreover, the image data of each subject was 

compressed by clipping upper intensity values to 383 (255 + 50%), which affected an 

insignificant number of voxels (< 0.001%), and subsequently, by re-normalizing the data 

between 0-255 (i.e., into 28 discrete intensity values per voxel). The re-normalized images 

were then processed as memory efficient arrays of single-byte, unsigned integers (here: uint8 

type numpy 1.18.1 arrays; Harris et al. 2020).  

2.3. Prediction model architecture (MRI data) 

Ensembles have been shown to predict more accurately and reduce model biases (Dietterich 

2000), also in the domain of BA prediction (Jonsson et al. 2019; Couvy-Duchesne et al. 2020; 

Dinsdale et al. 2021; Peng et al. 2021; Levakov et al. 2020). The individual predictions of the 
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base models were used to train and evaluate a linear head model of the respective sub-

ensemble, leading to a weighted prediction of the whole ensemble. Subsequently, an 

additional linear top-head model was trained to aggregate predictions over those sub-

ensembles (see the following paragraphs, and Fig. 1). 

2.3.1. Base model 

The base model architecture was a 3D convolutional neural network (3D-CNN; LeCun et al. 

1989; Lecun et al. 1998; Ji et al. 2013; Cole et al. 2017), implemented in native Keras 2.3.1 

(Chollet 2015). Base models were tested with two intermediate activation functions: i) the 

commonly applied rectified linear units (ReLUs), and ii) leaky ReLUs, which promise to 

overcome some of the drawbacks of absent gradients in standard ReLUs resulting from the 

background of MRIs, i.e., zero value input during training (Maas et al. 2013). From bottom up, 

the network consists of 5 convolutional blocks (ConvB), each starting with a convolutional 

layer (nfilters , sizekernel ), followed by leaky ReLUs (, alpha = 0.2), and a 3D-max pool layer (, 

sizepool = 33, stride = 23). Then the signal was flattened to a 1-D vector, and during training a 

dropout layer (rate = 0.5) was applied. Finally, a fully connected layer (size = 64) with (leaky) 

ReLUs propagated the signal to the linear output neuron. The bias at the linear output layer 

was set to the target mean  of the dataset (i.e., meanage = 57.32), all other biases were 

randomly initialized around zero (Keras' default). The network was trained to minimize the 

mean squared error (MSE) w.r.t. chronological age, using the ADAM optimizer (learning rate 

= 5e-4; Kingma and Ba 2015). The data for the base models were split to a training, validation 

and test set (8:1:1 ratio). The training process on the training set was monitored on the 

validation set. The reported model performances are the results of its evaluation on the test 

set, and are given as the mean absolute error (MAE) for better interpretability. 
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2.3.2. Model ensembles 

Two types of multi-level ensembles (MLENS) were trained (Fig. 1): The first type consists of 

3 sub-ensembles for 3 MRI sequences (T1, FLAIR, SWI), respectively. Each sub-ensemble 

has 10 base models (BM) that were independently trained on the same training data (whole 

brain data in freesurfer volume stage of its respective MRI sequence). Then, a linear head 

model (HM) with weight regularization, i.e. ridge regression (alpha = 1.) implemented in scikit-

learn 0.22.1 (Buitinck et al. 2013), was trained on the predictions P of the 10 BMs per sub-

ensemble on the validation set (Pval, BM = Xtrain, sub-HM with shape: Nval x 10; where Nval is the 

number of samples in the validation set), and evaluated on the test set (shape of Xtest, sub-HM : 

Ntest x 10; where Xtest, sub-HM = Ptest, BM). The resulting predictions Ptest, sub-HMs of these 3 sub-

ensembles on the test set were then used to train yet another head model on top of the MLENS 

in a 5-fold cross-validation (CV; XCV, top-HM = Ptest, sub-HMs of shape Ntest x 3) approach to obtain 

aggregated predictions across all MRI sequences. Note, only after the training of the whole 

MLENS, we evaluated single sub-ensembles, that is, we computed their MAE on the test set. 

This was done to compare the information gain between input MRI modalities with respect to 

age (see Tab. 1). Hence, using the test set predictions of the independently trained sub-

ensembles for the training and evaluation of the MLENS top head model was still naïve about 

the corresponding participants’ age in the respective test fold of the CV, and only aimed to 

aggregate and weight the different input modalities. 

For the second MLENS type, the MRI data (in MNI stage, i.e., MNI152; see Section 2.2.) was 

additionally masked in three different brain regions defined by the three complementary 

atlases (see Appendix A: Brain atlases). For each combination of region and MRI sequence 

(3x3), 5 base models were trained, leading to a total of 45 base models. For each such 

combinatorial pair, its base model predictions were first aggregated with a linear head model 

(as above). Then, a linear top-head model combined these sub-ensemble predictions on the 

test set in the above mentioned 5-fold-cross-validation fashion to receive predictions across 

all input feature pairs (Fig. 1).   
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Both MLENS types (i, ii) can be conceptualized as neural additive models (Hastie and 

Tibshirani 1990; Agarwal et al. 2020), i.e. sub-parts of the ensemble are trained on different 

input features.  

To receive an age estimate for each subject, the training procedure was run 10 times, such 

that each subject lies once in the test set. In each of the runs the MLENS models were re-

initialized.  

2.4. Estimation of model uncertainty  

Model certainty was measured subject-wise on both model levels, over each sub-ensemble 

and across them. That is, on the sub-ensemble level, model (un-)certainty is expressed as the 

standard deviation around the mean prediction of all its base models for each subject. 

Additionally, 95%-confidence intervals were computed for visual interpretation. Similarly, the 

standard deviation across the predictions of all sub-ensembles indicates the overall (un-

)certainty of the MLENS. Note, the latter could also be interpreted as information gain across 

input features. 

2.5. Prediction analyzer: Layer-wise Relevance Propagation 

Layer-wise Relevance Propagation (LRP; Bach et al. 2015; Montavon et al. 2018; Lapuschkin 

et al. 2019) is an algorithm that provides explanatory heatmaps in the input to machine 

learning models, including non-linear deep learning models. To this end, the method 

decomposes the prediction 𝑓(𝑥) of the model 𝑓 w.r.t. the input 𝑥 into relevance scores 𝑅. For 

deep learning models, this decomposition is computed layer-by-layer down to the input space, 

while satisfying the conservation criterion: ∑𝑅 = 𝑓(𝑥) (for details, see Montavon et al. 2019). 

In contrast to gradient-based and occlusion-based explanation methods, LRP is 

computationally efficient, since it only needs a single backward sweep. This is particularly 

important for large size MRI data. Moreover, LRP does not suffer problems such as shattered 

gradients or pathological minima (Montavon et al. 2019; Samek et al. 2021), while it shows 
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similarities to the benefits of gradient smoothing as in SmoothGrad (Smilkov et al. 2017). In 

contrast to standard occlusion-based explanation methods, LRP takes not only local but also 

global feature interactions into account that are crucial for the model prediction (however, 

there can be occlusion-based methods formulated that overcome this locality issue; see 

Samek et al. 2021). Lastly, Arras et al. (2022) could show in a ground-truth testbed developed 

for explanation methods that LRP performed best across 10 different algorithms. 

LRP, which has been mainly employed in classification tasks, can be simply adapted to a 

regression problem (Letzgus et al. 2022). Artificial neural networks (ANNs) used for 

classification usually have an output neuron for each class label in the employed dataset. LRP 

allows tracing the activation of each of these individual output neurons back to the input space 

through the network layers following a set of rules that depend on the layer types (for details, 

see Montavon et al. 2019). That is, LRP highlights areas in the input most relevant for the 

activation of the output neuron of interest (e.g., the neuron representing the ground-truth label, 

or the neuron with the highest output representing the model prediction). Information for the 

prediction will result in positive relevance scores in the input, while negative scores reflect 

information that the model considers as speaking against the respective output label. This 

feature of discretizing between positive and negative evidence makes LRP an useful approach 

among other explanation algorithms (e.g., SmoothGrad; Smilkov et al. 2017) of which many 

are used in absolute terms, i.e., without discretizing between positive and negative relevance 

(e.g., in Levakov et al. 2020).  

ANNs for regression problems, mostly have only one output neuron (or more in multivariate 

regressions). In our case, adopting LRP for brain-age predictions means applying its algorithm 

starting at the single output neuron of the regression model. This is analogous, and 

mathematically equivalent to choosing the output neuron representing the ground-truth label 

of a given sample in a classification task. Differences are the task-specific objective function, 

the bias at the output layer, which we set to the distribution mean, and the accompanying 

interpretation of the relevance maps. Setting the output bias to the sample mean entails that 

positive relevance values indicate information towards the upper bound of the regression 
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domain, while negative relevance values indicate the opposite (here: model evidence for a 

younger age). 

2.5.1. Simulation study on LRP for regression 

We created two-dimensional images of tori on black backgrounds at an intensity range 

comparable to T1-weighted MRIs that exhibited inner and outer surface atrophies as a linear 

function of their age (20-80 years) with a normally distributed variance, to simulate cortical 

atrophy and enlargement of cerebrospinal fluid space. Additionally, we simulated that the older 

a torus was, the more lesions it accumulated within its body, appearing as image 

hyperintensities. In contrast to the atrophies, this accumulation of lesions was non-linearly 

increasing with age (i.e., onset of linear increase at age 40), also with a normally distributed 

variance. For each torus, the location of atrophies and lesions were known allowing for the 

evaluation of the sensitivity of the model represented in the relevance maps (see Section 

2.5.2.). For the image details, please see the openly available code 

(https://github.com/SHEscher/XDLreg). We created 2000 tori, with a similar age-distribution 

as in the LIFE MRI sample. On this dataset, we then trained a 2D-version of the CNN as 

described above. Finally, LRP heatmaps were created on samples of the corresponding test 

set similar as described in following section. Since these heatmaps served only a qualitive 

analysis, we did not run statistical tests between them as we did for the MRI case.  

2.5.2. LRP for the MRI-based multi-level ensembles  

LRP was applied on the trained base models in one ensemble of each type (via iNNvestigate 

1.08; Alber et al. 2019), using the best-practice, composite rules (Montavon et al. 2019; 

Kohlbrenner et al. 2020) of LRP for CNNs (alpha = 1) implemented in iNNvestigate as 

"LRPSequentialPresetA". Note that we ran the LRP analysis only on models with ReLU 

activation functions, as it is recommended in iNNvestigate.  
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For the evaluation of the heatmaps, we took the average of the various relevance maps across 

base models similar to Levakov et al. (2020). For between-subject analyses, we warped the 

subject respective heatmaps to MNI space. Relevance map aggregations within each subject 

were performed subsequently. The contribution of individual brain-regions to the model 

prediction was evaluated by mapping the LRP heatmaps to the merged brain-atlas, and the 

Juelich histological atlas (see Appendix A: Brain atlases). Additionally, we ran significance 

tests on the relevance maps with FSL 5.0.8 (randomise function; using 5000 permutations 

and threshold-free cluster enhancement, TFCE) to determine brain areas which were 

statistically relevant for the BA prediction (Jenkinson et al. 2012). This was done, across all 

participants on their absolute aggregated relevance maps (one-sample t-test). Absolute 

relevance values were taken, since they reflect meaningful information for a model, 

irrespective of the age of a participant’s brain; conversely, relevance values of zero reflect 

areas in the image that the model ignored for its age estimates.  Contrastive relevance maps 

(unpaired two-sample t-test) were computed in a young (age ≤ 40 years) versus elderly (age 

≥ 60 years) group on their signed aggregated relevance maps. In older adults (age ≥ 50 years), 

we analyzed in which brain regions relevance is attributed as function of the diverging (or 

delta) BA (DBA := ypredicted-age - ytrue-age) independent of chronological age. That is, we ran a 

generalized linear model (GLM; FSL 5.0.8, randomize), with relevance maps as regressand, 

and DBA as regressor, while controlling for age as covariate. Additionally, we explored the 

role of a pathobiological biomarker (see the following section for more details), specifically 

type 2 diabetes mellitus on the BA estimates within a wider, older age range (50-75 years), 

contrasting diabetics to healthy controls (unpaired two-sample t-test on their signed 

aggregated relevance maps). Lastly, to test whether the MLENS capture individual WM 

lesions, we followed a two-step approach. First, we calculated for each individual a WM lesion 

probability map using the Lesion segmentation toolbox (Schmidt et al. 2012), and applied a 

threshold of 0.8. In a second step, we aligned these binarized WM lesion maps to our 

relevance maps. For participants with more than 30 WM lesion voxels, we calculated the 

average relevance per WM lesion voxel. If the MLENS were able to capture individual WM 
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lesions and use them as an information source to predict higher age, the calculated average 

relevance for these voxels should be positive. To increase the sample size for all tests, we 

combined relevance maps from the validation and test set. 

2.6. Brain-age as a biomarker  

As an exploratory analysis, we correlated (Pearson’s R; scipy 1.4.1; Virtanen et al. 2020; 

Bonferroni-corrected) DBA with a set of variables known to relate to accelerated brain aging. 

These included cardiometabolic risk factors (BMI, waist-to-hip-ratio, hyperlipidemia, 

hypertension, systolic blood pressure, type 2 diabetes, glycated hemoglobin), genetic factors 

(apolipoprotein epsilon 4 risk-allele, APoE4, which has been associated with AD; Strittmatter 

et al. 1993), gender, time of education, cognitive functioning (composite score of executive 

functions, memory and processing speed, as reported in (Kharabian Masouleh et al. 2016; 

Zhang et al. 2018), and neural integrity (here measured as the logarithm of the ratio between 

number of lesions and white matter volume). For this, we applied an overlapping sliding 

window approach over the full age range (width 10 years) to model age-related associations 

between DBA and the above-mentioned variables, and to minimize the effect of age on the 

prediction error itself. In each window we calculated R between DBA and the respective 

continuous variable. For the remaining categorical variables, which are all binary, Pearsons R 

is equivalent to the Phi coefficient or Kendall’s Tau coefficient that are usually applied for 

categorical variables. For simplicity, we report for both binary and continuous variables the 

corresponding coefficient as R. To control for multiple comparisons, we applied Bonferroni 

correction taking the number of variables into account (n=12).  

3. Results 

We implemented two types of multi-level ensembles (MLENS, Fig. 1) on three clinically 

relevant MRI modalities (T1-weighted, fluid-attenuated inversion recovery, FLAIR, and 
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Susceptibility Weighted Imaging, SWI) of a well-characterized population-based cohort study 

(LIFE-Adult; Loeffler et al. 2015; age range 18-82 years, n = 2016).  

Briefly, MLENS type I was trained on whole brain MRI with a sub-ensemble for each sequence 

with ten 3D-CNN models (base models, BM). Sub-ensembles served to extract information on 

model certainty and to compute more robust BA estimates. To additionally explore the 

contribution of three distinct brain regions (cortical, sub-cortical structures, and cerebellum) to 

the BA estimate, MLENS type ii was trained on 32 combinations of the MRI sequences and 

the brain regions, while employing 5 BMs for each combination. 
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Fig. 1 Multi-level ensembles (MLENS) MLENS trained on the different MRI sequences (T1, 

FLAIR, SWI; top: MLENS type i), and their combinations with 3 brain regions (bottom: MLENS 

type ii). The predictions of the sub-ensembles of each MLENS on the test set were used to 

train and evaluate the top-level linear head model. 
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3.1. Model prediction performances 

Ensembles Head model Base models 

  meanMAE ±SD minMAE maxMAE Nbm, MLENS 

Multi-level ensemble (type i)  3.86 - - - 30 

T1 sub-ensemble 4.11 4.66±0.28 4.03 5.50 10 

FLAIR sub-ensemble 4.16 4.64±0.24 3.97 5.27 10 

SWI sub-ensemble 5.74 6.54±0.63 4.93 7.88 10 

Multi-level ensemble (type ii)  3.37 - - - 45 

Cortical-T1 sub-ensemble 4.64 5.33±0.31 4.67 6.09 5 

Cortical-FLAIR sub-ensemble 4.27 4.91±0.35 4.05 5.81 5 

Cortical-SWI sub-ensemble 5.87 6.70±0.54 5.52 7.88 5 

Sub-Cortical-T1 sub-ensemble 4.53 5.46±0.46 4.28 6.65 5 

Sub-Cortical-FLAIR sub-ensemble 3.89 4.66±0.44 3.94 5.97 5 

Sub-Cortical-SWI sub-ensemble 4.79 5.73±0.52 4.64 7.02 5 

Cerebellum-T1 sub-ensemble 5.27 6.17±0.40 5.50 7.40 5 

Cerebellum-FLAIR sub-ensemble 4.83 5.49±0.40 4.76 6.62 5 

Cerebellum-SWI sub-ensemble 7.21 8.22±0.74 6.75 10.55 5 

Table 1 Prediction performances of both types of multi-level ensembles (MLENS type i, 

ii) and their respective sub-ensembles and 3D-CNN base models (bm), measured in mean 

absolute error (MAE). To receive an age estimate for each subject, MLENS were trained in a 

10-fold cross-validation approach such that each subjects lies once in an unseen test set.  

 

The MLENS type i had a MAE of 3.86 and performed slightly better than all its sub-ensembles 

(MAET1 = 4.11, MAEFLAIR = 4.16, MAESWI = 5.74; Table 1). The MLENS type ii had a smaller 

MAE of 3.37 (see Fig. 2 for prediction accuracy and model uncertainty) and was again superior 

to the performances of its sub-ensembles (Table 1). Between both MLENS, there were highly 

significant correlations between their predictions (R = 0.97, p < 0.001) and their prediction 

errors (R = 0.73, p < 0.001) on the test set. Note that these models were trained with leaky 

rectified linear units (ReLUs), while models trained with standard ReLUs performed worse 

(MLENS type i, MAE = 3.88; MLENS type ii, MAE = 3.69; see Appendix C Table A2). 
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Fig. 2 Brain-age prediction performance and model certainty of deep learning-based 

multi-level ensembles (MLENS) combining clinically relevant MRI sequences Left panel: 

test set predictions of the MLENS type ii), trained on 32 combinations of MRI sequences (T1, 

FLAIR, SWI) and brain regions (cortical, subcortical structures, and cerebellum). Right: 

prediction error (in red) and model uncertainty (in blue) per participant. Model uncertainty is 

measured as the standard deviation across the predictions of the sub-ensembles, and 

visualized as the width of the corresponding 95%-confidence interval. The modulation of both 

variables as function of age was modeled with a 3rd order polynomial (red and blue lines). Both 

plots are produced over the concatenated test sets of the 5-fold-cross-validation, which were 

used to evaluate the top-level head models of the ensemble. 

3.2. Relevance maps of model predictions 

To verify the behavior of the LRP algorithm and its correct interpretation in a regression task, 

we first performed a simulation study. 

The CNN model for the simulation task corresponded to a 2D-version of one base model in a 

MLENS. It was trained on a simulation dataset of abstracted head models (tori; Fig. 3), in 

which aging was simulated as the accumulation of atrophies and lesions. The model had a 

MAE of 2.80 on the hold-out test set. The prediction model captured the simulated aging 

process in both its facets well, which is revealed by the LRP relevance maps (i.e., heatmaps) 
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highlighting the inner and outer borders (atrophies), and the added lesions within the older tori 

(30+ years; Fig. 3). Areas, where atrophies can occur were considered as information bearing, 

i.e., they received both positive and negative relevance. Moreover, the model seemed to 

cluster information w.r.t. its regression task, which is represented in the unique sign of 

relevance over larger areas (see both tori on the right, Fig. 3). That is, while there were 

accumulations of atrophies at the border of some tori, the CNN also took adjacent lesions into 

account to aggregate the overall information in a specific region. Note that in some occasions 

this could lead to inversely weighted relevance in single pixels or small areas (see upper left 

part of green box in Fig. 3). The sum over all distributed relevance r is a proxy for the final 

model prediction (). If it is positive, the prediction p is greater than the initiated model target 

bias (bt; here, set to the mean age of the sample: bt = 51.1 years), and vice versa for the 

negative case. Hence, the summed relevance represented the evidence over the whole image 

that the model accumulated to make its prediction.  
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Fig. 3 Analysis of simulated aging in artificial tori Top left: Summed relevance per 

predicted sample in the test dataset, reflecting the model prediction relative to the sample 

mean (i.e., target bias = 51.1 years). That is, this global conversation property entails that all 

distributed relevance R in the input space of a given image x reflects the model prediction: , 

where Ri is the relevance at pixel i (Montavon et al., 2019). Bottom left and right column: three 

image samples of tori (T[age]) with their corresponding LRP relevance maps overlaid. Gray 

boxes: Details of relevance maps of tori T41 (green) and T63 (blue), respectively. Here, arrows 

indicate added lesions, while mint-green pixels at the inner and outer borders of the tori 

indicate ground-truth atrophies. Note that intact matter is predominantly attributed with 

negative (blue-turquois) relevance, indicating a younger age, while lesioned or atrophied 

matter is attributed with positive (red-yellow) relevance pointing to an older age. Color coding: 

relevance values were symmetrically clipped around zero at the 0.99-percentile, then 
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normalized (rnorm ) and the corresponding colormap was multiplied by a factor of 5 for better 

contrasts. Note, while the model predictions are continuous, we deliberately decided for a 

binary color scaling to better contrasts the lower (young) and upper (old) bound of the 

regression. 

3.2.1. Relevance maps of the aging brain in individuals  

Qualitative LRP analysis revealed individual relevance maps highlighting brain areas that 

voted for higher or lower BA predictions. Overall, we detected strong contributions from voxels 

in and around the ventricles and at the border from the brain to meningeal areas, independent 

of MRI sequence, while white-matter (WM) areas appeared to be less informative, except WM 

lesions in FLAIR images (Fig. 4a). In older participants, voxels covering cortical sulcal 

structures were often more relevant than in younger participants and voted more often in favor 

of older BA. Also, the corpus callosum, the brain stem and areas in and around the cerebellum 

appeared to be relevant structures, from which the models gained information for both younger 

and older participants. Overall, in all three major brain components (GM, WM, and cortical 

spinal fluids, CSF), there was a linear increase of relevance scores as function of age, being 

strongest in GM, and weakest in CSF (see Fig. A4 and Table A5 in Appendix E).  

Both types of MLENS (whole-brain type i and region-based type ii) found similar brain 

structures important for their prediction (Fig. 4b). Visually most recognizable are areas around 

the ventricles, and subject specific sulci, e.g., in the cortex and cerebellum. 
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Fig. 4 Exemplary individual LRP heatmaps (a) of multi-level ensemble (MLENS) type i. 

trained on whole brain data. Rows: three participants (S1-S3) drawn from different age groups. 

Columns: three MRI sequences (T1, FLAIR, SWI), individually sliced in all three axes to 

highlight crucial areas that are unique to each participants’ age estimate. Next, to more global 

intact (mostly in young S3) or atrophied tissue (S1, S2), e.g., at the cortical surface, LRP also 

reveals smaller structures such as white-matter lesions (S1, FLAIR; which the model 

associates with higher age; see Section 3.2.2.), vessel expansions and putative small iron 

depositions, e.g., in the form of cerebral microbleeds (S1, SWI; see Discussion) driving the 

BA estimation. Relevance maps per subject were aggregated over the base models of each 

sub-ensemble. (b) LRP heatmaps of regional (top row, type ii) and whole-brain (bottom 

row, type i) MLENS in elderly subject (S1). Here, models were trained on FLAIR data of 

cerebellum (left), subcortical structures (mid), and cortex (right), or of the whole-brain, 

respectively. For comparison, we warped the heatmap of whole-brain MLENS type i from 

subject space to MNI152 space (cf. top row in a). Note, that the average age of the cohort that 

was used to compute the MNI152 brain-space was 25.02±4.9 years (Fonov et al. 2011). 

Hence, the elderly subject S1 is warped to an aggregated young brain, which might lead to 

the impression that atrophies are less pronounced. Color coding: as in Fig. 3. Negative 

relevance scores (blue-turquois) represent model evidence in the input towards a younger 

age, and positive relevance (red-yellow) shows evidence towards a higher age. 

3.2.2. Statistical relevance maps over the adult lifespan 

Quantitively, permutation-based one-sample t-tests (5000 permutations, threshold-free cluster 

enhancement, TFCE, and family wise error, FWE-corrected p ≤ 0.05) on combined relevance 

maps of the validation and test set (nT1 = nFLAIR = 402, nSWI = 314) of one MLENS type i revealed 

that on average, in all 3 MRI sequences, nearly the full brain contains meaningful information 

about BA (Fig. 5). The base models trained within the T1 sub-ensemble, gained most 

information in the lateral ventricle areas, corpus callosum, pre- and postcentral gyri in the 
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motor and sensorimotor cortex, operculum, and all grey matter (GM) border areas including 

the frontal pole, temporal and visual poles and brainstem, and cerebellar borders. In the FLAIR 

sub-ensemble, most relevance was found around lateral ventricles, anterior temporal gyri, the 

pre- and postcentral gyri, and WM areas including cingulate gyrus, corpus callosum and fornix. 

Base models of the SWI sub-ensemble had a stronger focus on GM areas in the visual pole 

and occipital lobe, limbic areas, corpus callosum, WM fornix, internal capsule and on 

subcortical nuclei and brainstem areas, including striatum, subthalamic nucleus, raphe and 

substantia nigra. For an analysis of the differences between modalities see Appendix F. 
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Fig. 5 Relevant areas for brain-age predictions across adult lifespan T-maps of one-

sample t-test over aggregated, absolute relevance maps shown in several brain slices. Left 
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column: t(2,16); MNI152 z-axis range: 3-74. The wider range of t-values shows that the model 

uses information from the whole brain for its age estimates. Right column: 3D-projection of t-

maps focusing on higher t-values narrowly clipped for each MRI sequence, separately. These 

narrower t-maps highlight areas which dominate the model estimates. Top row: tested on the 

T1 sub-ensemble (Iype i; n = 402, tmax = 23.61). Mid row: FLAIR sub-ensemble (n = 402, tmax 

= 25.82). Bottom row: SWI sub-ensemble (n = 314, tmax = 16.07). The relevance scores were 

drawn from one of the MLENS type i models. 

 

Next, we compared the LRP heatmaps of the young (age ≤ 40 years, n = 61) versus older 

cohort (age ≥ 60 years, n = 243). Areas showing greater relevance in older compared to 

younger brains (TFCE, FWE-corrected p ≤ 0.5) were found in the T1 sub-ensemble of MLENS 

type i in lateral ventricles, corpus callosum, amygdala, cerebral WM, particularly paracingulate 

gyrus, opercular cortex, and (secondary) somatosensory cortex. For FLAIR, there were 

increased relevance values found in cerebellum (specifically, left and right crus I-II), caudate, 

inferior frontal gyrus, pars triangularis, insular cortex, and inferior parietal lobule. For the SWI 

sub-ensemble, frontal pole, frontal orbital cortex, Inferior frontal gyrus, pars triangularis, 

precuneus, basal nuclei including putamen and caudate, and occipital pole showed higher 

(i.e., positive) relevance on average (Fig. 6a). 
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Fig. 6 (a) Contrastive relevance maps of young vs. elderly participants T-maps of two-

sample t-test over relevance maps in the young and elderly group. Here, testing shows in 

which areas the relevance is greater in elderly (age ≥ 60 years) than in the young (age ≤ 40 

years) group. Relevance maps were aggregated within each sub-ensemble of one of the 
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MLENS type i models trained on T1 (top), FLAIR (mid), and SWI (bottom) data, respectively. 

(b) Contrastive relevance maps of healthy vs. diabetic participants T-maps (2, 6) of two-

sample t-test show in which areas the relevance is greater in participants with type 2 diabetes 

than in healthy controls of the older cohort (60-75 years). Relevance maps were aggregated 

within each sub-ensemble of one of the MLENS type i models trained on T1 (top), and FLAIR 

(bottom). Note, only for T1 significant regional differences were found between the groups 

(see TFCE FWE-corrected maps in Fig. A7 in the Appendix G). However, t-maps of T1 and 

FLAIR sub-ensembles show high correspondence (sliced in all three axes at x=-18., y=18.1, 

z=28.1). 

3.2.3. Lastly, based on our binarized WML probability maps, 654 

participants had more than 30 WML voxels. The average 

relevance in WML voxels was significantly higher (i.e., 319 

times) than the expected relevance per brain voxel (Mdiff = 

0.001, d = 0.9, t(653) = 22.95, p < 0.001).Relevance maps in 

diabetes and accelerated brain aging 

To explore the role of health-related risk factors on BA, we contrasted the LRP relevance 

maps of subjects with type 2 diabetes (n=29) with healthy subjects (n=217) in the age range 

of 50 to 75 years (meanage = 65.61). For the T1 sub-ensemble (MLENS, type i), clusters of 

higher positive relevance (non-healthy > healthy) were found to be significant in the pre- and 

postcentral gyrus near the cortico-spinal tract in the primary motor cortex (TFCE, FWE-

corrected p ≤ 0.011), corpus callosum and cingulum (TFCE, FWE-corrected p ≤ 0.02; see Fig. 

A7 in Appendix G). For the other two sub-ensembles (FLAIR, SWI), there were no clusters 

indicating significant regional differences. However, there was a high spatial correspondence 

between t-maps of the T1 and FLAIR sub-ensembles (Fig. 6b).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 8, 2022. ; https://doi.org/10.1101/2021.06.25.449906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

We further estimated the change in relevance maps as function of DBA, i.e., the signed 

prediction error, in an older cohort (age ≥ 50, meanage = 67.07, n = 134), while controlling for 

age (as 2nd order polynomial regression; cf. Fig. 2). Accordingly, all clusters indicating a 

significant association spatially corresponded to areas found in the BA analysis, however, 

accelerated aging (DBA) was more strongly related to higher relevance values in specific 

regions (see Fig. A8 in Appendix G):  for the T1 sub-ensembles (MLENS type i) this 

difference was found in frontal pole, brain stem, outer cerebellar boarders, WM including the 

cortical spinal tract, putamen, caudate, amygdala, pre- and post-central gyri, and cingulate 

gyri. For the FLAIR sub-ensemble, primarily posterior region showed significant associations, 

including occipital and parietal pole, lingual gyrus, and cerebellum (crus I and II, V, VI). Finally, 

for the SWI sub-ensembles, posterior and anterior regions showed significant associations, 

including the frontal pole, frontal orbital cortex, occipital pole, cerebellum (crus I and II, vermis 

VIII), but also some more left-lateral parieto-temporal WM structures close to putamen and 

operculum (for all sub-ensembles; TFCE, FWE-corrected p ≤ 0.05). 

3.3. Diverging brain-age and its relationship to other 

biomarkers 

We found in the younger cohort (age < 45 years) that higher DBA correlated with 

cardiovascular risk factors such as hypertension and hyperlipidemia according to exploratory 

correlation analyses, which were run on the hold-out test sets (Fig. 7). In older subjects (age 

> 60 years) the most prevalent positive association of DBA was found with type 2 diabetes 

and accordingly, but weaker with glycated hemoglobin levels (HbA1c). BMI, waist-to-hip ratio 

and WM lesion load showed positive associations with DBA in participants almost across the 

full age range. Weak but relatively consistent trends appeared for the effect of gender (age > 

30 years, where men had a higher BA on average) and the cognitive composite score, which 

showed a negative relationship with DBA. There was nearly no evident association between 

DBA and the presence or absence of an Apolipoprotein E epsilon 4 gene allele (APoE4), 
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systolic blood pleasure or for higher education. Note, bivariate correlations were run in a 

sliding-age-window approach without adjusting for possible confounders; for multiple 

comparison a Bonferroni-correction was applied. While the here applied sliding-window 

approach aims to reduce the age-bias in DBA (Fig. 2), in a further analysis, we regressed this 

effect out over the full age range, before running the same correlation analysis (see Appendix 

H).  

Fig. 7 Relationship of diverging brain-age to biomarkers and lifestyle factors 

Correlations (R) in overlapping sliding windows (width 10 years) between prediction errors 

(DBA) of both models (blue: type i; orange: type ii MLENS) and LIFE variables. Note, Kendall’s 
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Tau for binary variables is equivalent to Pearson’s R that is used for the correlation analysis 

of continuous variables; we therefore name all correlations R for simplicity. Inverse width of 

the purple confidence band represents the number of participants per bin. Red rhombus: 

Bonferroni-corrected (n=12) p-value ≤ 0.05 per bin. Variables: education: time of education in 

years. bmi: body-mass-index. waist2hip: waist-to-hip-ratio. systolic BP: systolic blood 

pressure. APoE4: apolipoprotein epsilon 4 risk-allele carrier status. HbA1c: glycated 

hemoglobin. Log lesionload-WM-ratio: logarithmized ratio between number of lesions and 

white matter volume. Binary variables: hypertension, diabetes, hyperlipidemia, APoE4: no = 

0, yes = 1. gender: female = 0, male = 1. 

4. Discussion 

The estimation of age and deviance from expected aging trajectories from brain images is a 

difficult task that has been solved to a surprisingly high accuracy using various DL 

architectures (Cole et al. 2017; Cole and Franke 2017; Jonsson et al. 2019; Feng et al. 2020; 

Kolbeinsson et al. 2020; Dinsdale et al. 2021; Peng et al. 2021; Levakov et al. 2020; Bashyam 

et al. 2020). We provide a further dimension to this challenge, namely, the means to extract 

insight from the trained neural networks, such that neurobiological theories can be validated 

and novel hypotheses can be generated. Specifically, we demonstrate that our accurate 

estimates of continuous brain aging can be related back to neurostructural features, by 

employing interpretable (here using LRP) DL-ensemble models on multi-modal 3D-MRIs that 

are trained end-to-end (i.e., no prior knowledge on brain features is induced to the model). 

Our analysis demonstrates that grey matter changes and atrophies detectable in the cortex, 

subcortex, cerebellum and brainstem, but also white matter lesions, as well as more global 

brain shrinkage represented in the larger size of ventricles and sulci drove the age estimates 

of the models. In further studies, this list of brain features should be validated further, for 

instance, by exploring the role of iron accumulations, cerebral microbleeds, or calcium 

depositions for the model estimates, which are associated with age and neural pathologies 
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(Haller et al. 2010; Du et al. 2018; Thomas et al. 2020). This happens to a degree that even 

parts of the brain and single MRI modalities (including SWI) led to accurate and comparable 

BA predictions. While voxels around the ventricular system and subarachnoid spaces were 

most informative for our model, the progression of aging and its pace (i.e., BA and DBA, 

respectively) could be related back nearly to the whole brain. Our simulation model 

furthermore revealed – as to be expected – that undamaged tissue (i.e., absence of atrophies 

and lesions) is associated with (young) age. From a methodological perspective, this 

demonstrated how the LRP algorithm can be integrated into a complex regression task on 

continuous aging, and how resulting relevance maps carry information about age-related 

changes. Moreover, we found that accelerated aging (DBA), which is associated with 

pathologies (here type 2 diabetes), shows relevant indicators in distinct brain areas, which 

could be differentiated by the complementary information from different MRI sequences and 

brain regions which we fed to the MLENS models, leading to overall better prediction results. 

With this, we established a novel DL-based pipeline for MRI analysis, which leverages the 

predictive advantages of this model class while at the same time making its estimates 

interpretable for research and clinical applications.  

4.1. Opening the black-box of deep learning predictions 

To understand the estimates of our DL models, we applied the LRP algorithm, which provides 

directed, i.e., sign-specific, relevance maps in the input space. Since, at the point of model 

inference a classification problem is mathematically similar to a regression problem, LRP 

could be straight-forwardly adapted to the purpose of our study (see Methods). We 

successfully validated this approach in the regression domain according to a simulation study 

with a 2D-version of the model architecture that we employed in the main study. We found 

that the DL model captures the simulated aging processes well by identifying the 

corresponding features. Explanations maps have to be interpretated carefully, avoiding 

potential confirmation biases of the researcher (Adebayo et al. 2020). To validate the 
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approach further, we ran additional simulations, where age is not modeled with strong image 

contrasts as in lesions and atrophies, but as function of shape and gradual local intensity 

shifts, respectively (for details see Appendix B). Also these analyses showed that the model 

captures the relevant information in the image, namely at the border of the torus for age 

estimations based on shape, and at the local area which was subject to age-related intensity 

shifts (Fig. A1). In the MRIs, we compared WM lesion maps with the relevance maps and 

found that also here, the model detects the WM lesions and associates higher age with them. 

LRP comes with the advantage of being directional, i.e., it indicates not only that a certain 

input area is relevant for a given prediction, but also whether it provides information in direction 

to the upper (here old age) or lower bound (young age) of the regression problem (Fig. 3, 4). 

The sign of the sum of relevance (SoR) is arbitrary in this case, essential is the magnitude of 

the value. Here, we chose to set the bias at the output layer of the CNNs to the mean of the 

target variable (age). As a consequence, the SoR becomes negative for predictions lower, 

and positive for estimates higher than the bias. The model does not only capture the features 

that represent the aging process (atrophies and lesions), but also the absence of them. That 

is, for the young torus it attributes (here negative) relevance also to its intact surface and 

borders. Moreover, LRP shows that the CNN finds irregular occurring features (here lesions) 

which were randomly placed. However, the interpretation of the local attribution of relevance 

needs to be taken with caution, as we observed that the model often generalizes relevance 

over larger areas of the simulated tori. One possible explanation for this is that relevance might 

be clustered over bigger areas after being passed through the intermediate pooling and 

convolutional layers in the network, which aggregate information over increasingly larger 

areas in the computed feature maps. Then, later layers (usually fully connected layers) make 

decisions over these pooled regions by attributing relevance towards one of the main 

directions in the regression (Kohlbrenner et al. 2020).  
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4.2. Normal and accelerated brain aging 

Applying LRP in the BA case shows that the DL models integrate information from the whole 

brain (Fig. 5). However, we see also that neurostructural properties specific to individual 

participants are detected, specifically in the cortical surface areas, around ventricles, the 

corpus callosum, at the surface of the brain stem, and cerebellum, and distinct smaller regions 

in WM areas of the cortex. Ventricles are known to increase in size with age due to regional 

or global brain shrinkage (Earnest et al. 1979). Also, cortical surface (LeMay 1984; Kochunov 

et al. 2005; Jin et al. 2018), the corpus callosum (Doraiswamy et al. 1991), cerebellum and 

basal ganglia (Raz et al. 2005; Raz et al. 2010) among others are subject to alterations. While 

Raz et al. (2005, 2010) found no age-related volume changes in, e.g., primary visual cortices 

and putamen, our model showed that both areas were relevant for the BA estimation across 

the full life-span, and age-independent rate-of-aging (DBA) in the older cohort (age ≥ 50 

years). This may have several reasons: in contrast to linear feature selective models (such as 

those using regional volume in Raz et al. 2005; Raz et al. 2010), our DL-architectures are 

trained end-to-end, and thus can incorporate information from diverse neural features, 

including volume, but also region-specific sizes and shapes, tissue structures etc. Within our 

model those features can be non-linearly related and weighted, and lastly, our multi-modal 

MLENS leverage this capacity by incorporating complementary image-contrasts.  

Similarly, in contrastive relevance maps, we found that heightened DBA values for subjects 

with type 2 diabetes displayed regions that corresponds to findings of recent animal models 

(Muramatsu et al. 2018) and known diabetes-associated degenerations in the sensorimotor 

areas in humans (Ferris et al. 2020). Moreover, our results support previous findings in 

diffusion imaging studies of changes in fiber bundles of the cingulum (Hoogenboom et al. 

2014; Cui et al. 2020) and neighboring corpus callosum (Yu et al. 2019). That these findings 

appeared only significant in T1-weighted images, and not, as expected in FLAIR, might be 

due to the small sample size in the hold-out subset in combination with the less specific 
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contrast of FLAIR in the absence of lesions. However, we found a strong spatial 

correspondence between the t-maps of both modalities. 

We conclude that normal and pathologically driven aging is not exclusively represented in 

selective features (e.g., in the decline of regional volume) but also in diverse neurostructural 

properties accentuated by different MRI sequences, throughout the whole brain. More 

specifically, our analysis pipeline revealed that an individual's structural MRI carries not only 

global, macrostructural hints towards its age trajectory, but also reliable information on age-

related, subtle grey and white matter changes, including WM lesions that occur all over the 

brain. While the limited image resolution does not offer explanations at the cellular level, those 

ubiquitous, rather subtle changes stem most likely from micro-changes, including oxidative 

stress, DNA damage, cell death and inflammation, in neuronal, vascular and glial 

compartments of the brain (Cole and Franke 2017; Pluvinage and Wyss-Coray 2020) that 

eventually alter the magnetic properties and thus image contrasts of the respective 

sequences. We can further infer that all brain regions and different neural properties that are 

highlighted with the different MRI sequences are predictive w.r.t. age, i.e., the aging process 

emerges in all these modalities. This calls for a multi-modal approach towards brain-aging 

rather than restricting this foundational phenomenon to selective neural variables such as grey 

matter volume, and acknowledges the capability of common structural MRI to reveal not only 

gross anatomical changes but also subtle microstructural changes with advancing age. 

4.3. The benefit of multi-level ensemble models   

Both types of MLENS performed close to the state-of-the-art in the domain of BA prediction. 

Note that small performance differences might stem from our smaller dataset with a large age-

range in comparison to studies that used, e.g., UK Biobank data (n > 14,000 MRIs, age range 

44-81 years; e.g., the state-of-the-art model of Peng et al., 2021, for brain-age predictions 

achieved a MAE of 2.14 years. In Fig.2 of their publication, we can estimate a MAE of 3.1 

years for a similar amount of training data, as we used in our study. This performance is almost 
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on par with our model, MLENS type 2: MAE = 3.37. The difference is most likely explained by 

the smaller age-range in the UK Biobank). With our MLENS we demonstrated that i) 

ensembles are performing better than their base models, and ii) MLENS integrating diverse 

input features, here MRI sequences and brain regions, perform even better than ensembles 

that are only trained on one of these features.  

On a methodological side, this shows that due to the feature selective training the model is 

prone to specialize on properties inherent to the respective feature (e.g., a brain region). 

Splitting the brain in sub-regions and feeding them to different models seems to push the 

respective models (here MLENS type ii) to specialize on the characteristics of each brain 

region rather than learning filters that are generally usable across the whole brain, however, 

this needs to be tested systematically. 

The variability of predictions between different DL models (here defined as the uncertainty 

between base models, which was higher for age groups with less MRI data) with an identical 

architecture and training on the same data, underlines the importance of the aggregation over 

a set of models (i.e., an ensemble) to reduce both the variance and biases of single networks. 

In summary, MLENS can not only compensate for the stochasticity of single DL models, but 

also provide estimates of model certainty and insights on the relationship of input features and 

prediction.  

4.4. Brain-age predictions and their association with other 

biomarkers 

To investigate biological determinants of BA, we showed in an additional exploratory analysis 

that DBA was associated with cardiovascular risk factors such as BMI, waist-to-hip-ratio and 

type 2 diabetes. Notably, we found that many of these associations depend on the age of 

participants. For instance, despite the smaller sample size in our younger (healthy) cohort, we 

discovered a high correlation between BMI and the estimated BA (age < 40 years), which was 
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also reported in (Kolenic et al. 2018) for younger participants with first-episode psychosis (18-

35 years). Also in mid-aged participants (40-60 years) we saw a significant correlation, for 

whom previous studies found higher BMI to be associated with cortical thinning (Shaw et al. 

2018). Similar to previous findings (Kharabian Masouleh et al. 2016), also in the older cohort 

(60-80 years), a positive relationship appeared. Overall, with age the association between BA 

and BMI becomes weaker. Also, we found the positive correlation between DBA and type 2 

diabetes, which was reported in Franke et al. (2013), and the corresponding relevance map 

analysis showed overlapping evidence w.r.t. GM changes as discussed above. Blood glucose 

levels (here HbA1c) showed relative consistent association across the cohort. With the 

estimates of MLENS type i this association could also be seen in the 20-35 years old, a result 

that corresponds to recent findings showing a negative relationship HbA1c and WM integrity 

in young, non-diabetic (i.e., healthy) adults (mean age 28.8 years, HbA1c < 5.7%; Repple et 

al. 2021), motivating further investigations. Overall, we found similar relationships of DBA and 

various clinical markers as summarized in (Franke and Gaser 2019), but not regarding ApoE-

4 (cf. Raz et al. 2010). The found association between DBA and gender should be taken with 

caution, since demographic factors might have influenced the cohort composition in different 

age groups. Also, the gender difference is typically most pronounced in younger ages (Gur et 

al. 2002), while with menopause it appears to become smaller, brain-region specific (e.g., 

Ritchie et al. 2018; Raz et al. 2010) or is even absent (Jäncke et al. 2015). While we found a 

consistent, slightly negative trend (age > 25 years) between DBA and cognitive performance, 

the correlation was not significant for most age strata; however, this association has been 

reported to be more pronounced in patients with AD or mild cognitive impairments (Gaser et 

al. 2013; Liem et al. 2017). Note that we excluded participants with AD and other 

neurodegenerative diseases from this study, in which the relationship of DBA to cognitive 

performance, but also to associated biomarkers such as ApoE14 (see above) might be more 

pronounced. A very robust positive correlation, nearly across the full age range was found 

between the WM lesion-load and DBA. The typical accumulation of WM lesions with higher 

age as well as their pathological consequences are widely known (Beck et al. 2021; Dinsdale 
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et al. 2021), and consequently and conversely, validates the BA models, while in parallel, this 

highlights the possibility that typical and pathological aging share similar fundamental 

mechanisms.  

Clearly, these results indicate that BA is a reliable imaging marker reflecting biological 

plausible age-related neural changes. As deviations from the chronological age correlate with 

known risk factors for brain damage, BA can be considered as a biomarker of the brain health 

status of a person.  

4.5. Limitations and future research    

Several limitations need to be considered. First, despite the local information we receive with 

the LRP heatmaps, they do not explain per se what the biological mechanisms are that made 

the respective highlighted area relevant to the model. For instance, when considering relevant 

voxels around ventricles, we do not know whether a model tracks the size of a ventricle or 

potentially alterations at the tissue around it, or both. Further developments in interpretation 

algorithms, such as LRP could allow the detection of interactions between local and global 

relevance structures and in addition reveal causal relationships beyond correlation. Second, 

similar to Levakov et al. (2020), we found that aggregating relevance maps compensated for 

the observed variability between heatmaps of single base models (for a discussion see 

Levakov et al., 2020). However, aggregation techniques can also cause information loss, for 

instance, not all of the base models within an ensemble might detect all WM lesions in an 

image. Third, the age distribution in the LIFE MRI dataset is non-uniform, with a majority of 

participants being 65 to 75 years of age. This introduces a bias in the training dataset. 

Moreover, many papers on brain-age estimation reported a corresponding prediction bias 

towards the mean age in the data (Cole et al. 2017; Beheshti et al. 2019; Smith et al. 2019; 

Peng et al. 2021). This bias we also observed in our stimulation. Although our ensemble 

architectures compensate for the prediction bias towards the distribution mean, this tendency 

could not be fully eliminated. Therefore, we used a sliding-window approach in the correlation 
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analysis with other biological markers, which attenuated this bias further. The assessment of 

the covariate shift (e.g., Sugiyama et al. 2007), nonlinear head-models, and over- or 

undersampling techniques, combined with data augmentation could be further means to tackle 

this bias. Moreover, it is to be expected that age-related structural changes systematically 

effect MRI intensity distributions that models can exploit for their predictions; however, our 

analysis of relevance maps has shown that the models integrate biologically meaningful brain 

features across all age groups. Fourth, in future research one could run several cluster 

analyses to find common relevance patterns within, for instance, participants with certain 

pathologies or between different age groups. These could then be related to interpretable 

structural properties, such as cortical thickness (Frangou et al. 2021). Finally, the majority of 

studies cannot afford to scan thousands of participants. To make the presented explanation 

pipeline more sustainable, one could explore transfer learning techniques to adapt the pre-

trained models to smaller datasets and different (target) variables. Since our approach makes 

it possible to combine information from different modalities and single out regions which show 

alterations in these modalities, one might also extend it to incorporating further imaging 

measures, e.g., diffusion imaging or resting-state studies in fMRI or EEG.   

5. Conclusion  

While certain brain areas shrink in volume more dramatically with older age than others, aging 

processes emerge in the whole brain. Their progress and pace can now be accurately 

captured and interpreted by DL ensembles from various brain regions and structural MRI 

modalities (T1, FLAIR, SWI), proposing that higher age and the presence of cardiovascular 

risk factors contributes to regionally pronounced yet ubiquitous changes in the brain. 

Employing the LRP interpretation algorithm, estimates of brain-aging can thus be related back 

to established, gross but also subtle, most likely microstructural biological markers of the aging 

process. This bias-free computational approach yields insights into the global nature of brain 

aging as well as pathomechanisms. Finally, due to its generalizability, this approach can be 
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broadly applied across clinical neuroscience, galvanizing the generation of data-driven 

hypotheses and boosting its applications in personalized medicine (Esteva et al. 2021; 

Stenzinger et al. 2021; Binder et al. 2021). 
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