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Abstract 

Linear motifs have an integral role in dynamic cell functions including cell signalling, the cell cycle 

and others. However, due to their small size, low complexity, degenerate nature, and frequent 

mutations, identifying novel functional motifs is a challenging task. Viral proteins rely extensively 

on the molecular mimicry of cellular linear motifs for modifying cell signalling and other processes 

in ways that favour viral infection. This study aims to discover human linear motifs convergently 

evolved also in disordered regions of viral proteins, under the hypothesis that these will result in 

enrichment in functional motif instances. We systematically apply computational motif prediction, 

combined with implementation of several functional and structural filters to the most recent 

publicly available human-viral and human-human protein interaction network. By limiting the 

search space to the sequences of viral proteins, we observed an increase in the sensitivity of 

motif prediction, as well as improved enrichment in known instances compared to the same 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449930doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449930
http://creativecommons.org/licenses/by/4.0/


 

analysis using only human protein interactions. We identified > 8,400 motif instances at various 

confidence levels, 105 of which were supported by all functional and structural filters applied. 

Overall, we provide a pipeline to improve the identification of functional linear motifs from 

interactomics datasets and a comprehensive catalogue of putative human motifs that can 

contribute to our understanding of the human domain-linear motif code and the mechanisms of 

viral interference with this. 

Keywords: 

Host-viral, short linear motifs, motif mimicry, protein-protein interaction, protein domains, 
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Introduction 

Short Linear Motifs (SLiMs; also, often referred to as ELMs - Eukaryotic Linear Motifs) are short 

linear peptides approximately 3-10 amino acids long, that have a specific sequence pattern that 

is recognized by interacting domains (Van Roey et al., 2014). They typically lie in disordered 

regions of proteins, and they are mediators of critical, usually transient interactions involved in 

dynamic cell processes such as cell signaling, protein degradation, the cell cycle and others 

(Davey et al., 2011). Therefore, mutations in such motifs often lead to disease, and indeed they 

have been found to be enriched in cancer (Mészáros et al., 2017; Reimand et al., 2015; Uyar et 

al., 2014), and several other diseases (Ahmed et al., 2003; Furuhashi et al., 2005; Meyer et al., 

2018; Pandit et al., 2007).  Gene fusions in cancer often remove SLiM-containing protein regions 

and the capacity for gene regulation (Latysheva et al., 2016). Due to their short length, small 

number of specificity-determining residues and disordered nature, they are characterized by high 

evolutionary plasticity (Davey et al., 2015). They have therefore been used throughout evolution 

to rewire biological networks, increase their complexity and can often arise through convergent 

evolution (E. Davey et al., 2012).  

A prime example of convergent evolution for the formation of linear motifs are those present in 

viruses and other pathogens (Davey et al., 2011; Via et al., 2015). Viruses often use molecular 

mimicry to target hubs or other strategic nodes in host networks and hijack cellular functions. For 

example the HIV-1 Nef protein interacts with the SH3 domain of the Src family kinases Hck, Lyn 

and c-Src via a PxxP motif, which leads to their strong activation (Trible et al., 2006).  It has been 

shown that viruses often act in similar ways as oncogenic variations to cause cancer (Rozenblatt-
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Rosen et al., 2012). A well-studied example of this is the LxCxE motif in the E7 protein of HPV 

and other viral proteins (Felsani et al., 2006) which acts to inactivate the retinoblastoma protein 

leading to deregulation of cell cycle control; this inactivation is also common in non-viral cancers 

(Horowitz et al., 1989; Weinberg, 1995). Viral motifs are generally similar to the host ones, 

however they tend to be of higher affinity so as to outcompete them (Sheng et al., 2006). 

Due to their small size and often low complexity, linear motifs tend to be difficult to discover both 

by experimental and computational methodologies. In the past decade the availability of high-

throughput protein interaction and genomic datasets (Huttlin et al., 2017; Luck et al., 2017; 

Orchard et al., 2014) have allowed significant advances to be made in developing computational 

tools for motif discovery.  DiliMot (Neduva et al., 2005) and SliMFinder (Edwards et al., 2007) are 

the first methods able to predict the presence of human motifs at scale, by evaluating over-

representation of specific motifs in the interactors of a specific protein and combining it with 

conservation measures. QSLiMFinder (Palopoli et al., 2015) provides additional functionality by 

requiring the hits to be present in additional query proteins. FIRE-Pro has also been used to 

discover yeast motifs in proteome scale datasets based on an information theoretic framework 

(Lieber et al., 2010). The ELM database and server (Kumar et al., 2020), and SLiMSearch 

(Krystkowiak and Davey, 2017) can search individual protein sequences or entire proteomes 

respectively for a given motif pattern. Edwards and colleagues (J. Edwards et al., 2012) 

demonstrated that using these tools to scan the entire human interactome allows the identification 

of not only new instances of known motifs, but also entirely novel ones. There are multiple other 

methods available for discovery of de-novo, known and user-defined motifs which can be used 

for simple protein search of motif patterns or at a much larger scale (Edwards and Palopoli, 2015; 

Hraber et al., 2020).  

By scanning the disordered proteome of a large number of viruses for instances of ELMs, several 

instances of known SLiMs have been identified (Becerra et al., 2017; Hagai et al., 2014; Liu-Wei 

et al., 2021). And during the current pandemic, multiple resources have emerged to delineate 

SLiM based viral-host interactions and discover SLiM instances in SARS-CoV-2 (Li et al., 2021; 

Mészáros et al., 2021; Yang and Shi, 2021). However, this kind of approach doesn’t consider the 

wealth of information included in the interacting partners of viral proteins. It also doesn’t allow the 

discovery of motifs that are not already annotated in public databases. Zheng et al. (Zheng et al., 

2014) used the available host-viral interactomes to identify domain-domain interactions between 

them but did not search for enrichment of linear motif-mediated interactions. 
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Despite advances in computational discovery of linear motifs the problem remains that only a 

small fraction of identified motifs is likely to be functional. Thus, additional layers of evidence for 

each hit can be important to help prioritize them. Here, we hypothesize that requiring human 

motifs to be present also in viral proteins with common interactors will improve their identification, 

while also pointing to nodes of viral interference with human host networks. We have thus 

combined proteome-wide motif search methods with domain enrichment, structural bioinformatics 

and integration with pathogenic variant information, to perform the first systematic search for 

human linear motifs also present in common viral interactors, based on the latest available 

human-viral interactome.   

Results 

A workflow for the discovery of functional linear motifs 

Since viruses commonly interfere with human protein interaction networks through viral motif 

mimicry, we hypothesized that requiring putative new linear motifs to be present both in human 

and viral protein interactors of specific protein domains would result in enrichment of functional 

motif instances. Our workflow is based on this principle and in addition filters motifs according to 

other relevant parameters, such as domain enrichment, predicted binding on domain structure 

and others (Figure 1; Methods). 

In brief, for each known human-viral protein interaction pair (H1-V), we first used QSLiMFinder 

(Palopoli et al., 2015) to identify sequence patterns that were both present in the respective viral 

protein and enriched in the protein interacting partners of the human protein H1 of the query pair 

(H1-H2, H1-H3 etc). For brevity, throughout the text, V denotes a viral protein that potentially 

carries a motif, H2, H3 etc human putative motif-carrying proteins and H1 the human domain-

carrying protein that interacts with both V and the H2, H3 etc proteins. We thus identified 8,403 

putative linear motif instances on 2,757 unique proteins (2457 human and 300 viral) 

(Supplementary Table 1). An interaction-mediating motif is typically recognized by specific 

domains. To reduce the potential spurious motifs from our identified set, we thus imposed as an 

additional filter a requirement for a domain enrichment in the interacting partners of each motif -

bearing protein (adjusted p-value <0.05 & present in at least 5 interacting partners 

(Supplementary Table 1). This reduced our initial list to 1,970 motif instances presenting 1.8-

fold higher enrichment in proteins including true SLiMs compared to raw predicted hits (Figure 2  
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Figure 1: Workflow for discovery of short linear motifs. A schematic describing the 

overall pipeline for this study. For each from viral-human (V-H1) protein interaction 

downloaded from IntAct, the respective set of the human interacting partners of H1 were 

submitted to QSLiMFinder for motif prediction restricting hits to those present also in the 

respective viral interactor. Then, the predicted hits were evaluated against both ELM and 

PRMdb to measure how well they capture known hits. In addition, they were also 

compared against known ELM classes to further differentiate between known, new 

and novel motif instances. Finally, they were subjected to multiple downstream filters to 

reduce false positives and further enrich functional instances. Arrow labels show the method/

resource used for each step. V: Viral Protein; H: Human protein which directly interacts with 

viral protein. 
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C,D; Methods).  As part of the workflow, we also use HMM profiles from the iELM web server 

(Weatheritt et al., 2012) to identify domains that have a match to domain profiles known to bind 

to known ELM motifs. While this leads to an improvement in the enrichment of known motifs 

(Figure S1), and is provided for information (Supplementary Table 1), we don’t use it as a filter, 

as there are only available domain-specific HMMs for a small fraction of our H1 interacting 

proteins (125/517). 

Using a structural bioinformatics strategy, we then sought to further reduce false positive hits. 

Specifically, we used PepSite2 (Petsalaki et al., 2009; Trabuco et al., 2012), which identifies 

binding pockets for peptides on protein structures, and tested whether the domains we identified 

above indeed carry a pocket that can accommodate the peptides carrying our putative new motifs.  

This step was dependent on the availability of the relevant protein domain structure, and thus was 

applicable to 7,941/8,403 of our identified motif instances. The result was 1,033 high quality 

putative linear motif instances for which we found evidence at the sequence, network and 

structural level and showed a further enrichment in known motif-carrying proteins 

(Supplementary Table 1; Figure 2 C,D). 

Finally, to provide functional support for our predicted motifs and further study the crosstalk 

between viral SLiMs and disease pathways, we mapped the predicted motifs to pathogenic 

variants from ClinVar (Landrum et al., 2018). We found that ~13% of our predicted motif instances 

were associated with a ClinVar variant, with 27% of these mapping to a pathogenic variant and 

~85% having a significant fit on the structure, as predicted by PepSite2, to a pocket of a relevant 

domain (OR = 3.47, p-value = 5.3x10-18). We thus identified 105 ‘gold’ functional linear motif 

instances that present a 2.15-fold enrichment in proteins including true SLiMs compared to the 

initial QSLiMFinder scan (Supplementary Table 1; Figure 2 C,D). 

To evaluate the benefit of requiring motifs to be present in both human and viral interaction 

partners of a protein, this workflow was repeated as described also on the human interactome 

without this requirement (Supplementary Table 2).  Starting from 3,994 initial predicted motifs 

from SLiMFinder (Edwards et al., 2007), our filtering process resulted in 29 ‘gold’ human motifs. 

We found that the inclusion of the viral motif requirement as a filter resulted in a 2.1 fold higher 

number of motifs and in improvement in almost all metrics of performance (Figure S2 A,B; 8,403 

vs 3,994). We additionally used SLiMEnrich (Idrees et al., 2018), to evaluate the level of 

enrichment of known Domain-motif interactions (DMIs) compared to random predictions for both 

analyses. Using ELM as background, 86 and 45 non-redundant DMIs were predicted compared  
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Figure 2: Evaluation of known motif-carrying proteins. (A & B) UpSet plots 

showing the overlapping number of known motif-carrying proteins that are found in either 

ELM (A) or PRMdb (B) and predicted datasets defined by a single or multiple filters. (C & 

D) Bar graph plotting the enrichment of known ELM (C) or PRMdb (D) motif-

carrying proteins represented by log2(odds ratio) for each set of applied filters. Odds 

ratio was calculated based on a one-tailed fisher-exact test using query input to 

QSLiMFinder as background. All filters mentioned were applied on the raw output of the 

QSLiMFinder method (See also Figure S1)
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to mean random DMI of 17.29 and 16.5 with an enrichment score of 5 and 2.7 (FDR 0.2 vs FDR 

0.37) for host-viral and human-only hits, respectively (Figure S2 C,D). Therefore, the observed 

DMIs are significantly higher than expected for both datasets (P < 0.001) with the host-viral screen 

having ~2X fold higher enrichment than the human-only one.  

Similarity between discovered motifs and known motif classes 

To further classify the predicted motifs, we compared their regular expression patterns to those 

of known ELM identifiers using CompariMotif (Edwards et al., 2008), which scores each 

comparison based on the shared information content between two motifs. We found that the ELM 

classes were equally represented, with a slightly higher representation of Ligand binding sites 

(Figure S3A). When we only consider high-similarity comparisons (i.e having CompariMotif 

scores >= 3) and excluding CLV (cleavage) and TRG (targeting)  classes (Figure 3; Methods), 

we found that 18 out of 77 motif patterns were part of previously known ELM instances, whereas 

the rest were novel ELM instances matching to 30 ELM identifiers.  The top matched ELM 

identifiers are LIG_PDZ_Class_1, LIG_ULM_U2AF65_1, and DOC_MAPK_gen_1 showing high 

similarity with 30 out of 77 predicted motif patterns (Figures 3, S3B). The aforementioned ELM 

classes have been previously reported to be involved in multiple host-viral interactions throughout 

the viral life cycle (James and Roberts, 2016; Pabis et al., 2019; Evans et al., 2010). If  we only 

consider the ‘gold’ instances, approximately 50% of the predicted motif patterns are associated 

with CFTR protein which bears multiple disease mutations, mapped through various host-viral 

interactions (Figure 4A & B).  
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Figure 3: Comparison of predicted motif patterns to known ELM classes. 

Network showing the connection between predicted motif patterns with > 60% similarity 

to known ELM classes according to CompariMotif scores. For the sake of visualization, 

CLV and TRG classes were excluded as they tend to be easily discovered because of 

their shared location, and thus multiple patterns can be promiscuously mapped to few 

ELM classes. Predicted motif patterns are shown in red, while ELM classes are shown in 

blue. Green dash-dotted edges represent motif patterns that match to a known ELM instance, 

while solid edges represent new instances. 
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Figure 4: Putative functional motif instances. Network showing novel motif instances (A) 

and new ELM instances (B) associated with a ClinVar pathogenic variant in addition 

to confirmed structural binding with enriched domains according to PepSite. Stricter 

significance cutoffs were used for this figure compared to the ‘gold set’ (QSLiMFinder p-

value < 0.05; PepSite p-value < 0.05) for simplicity of visualization. Nodes colored in 

green, cyan and dark blue represent viral, human and predicted motif patterns, 

respectively. Viral protein labels include protein name and viral strain separated by “_”. 

Dashed edges are only drawn between motif patterns and human proteins, where a 

ClinVar variant is associated with that motif pattern that is predicted on the respective 

human protein. Solid edges between proteins represent PPI as retrieved from the IntAct 

database. 
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Functional enrichment, essentiality and pathway-specificity of linear motifs 

Next, we sought to identify the functional pathways in which our predicted DMIs are involved.  

First, we performed Gene Ontology (biological process - GOBP) enrichment (Ashburner et al., 

2000; Gene Ontology Consortium, 2021) for H1 proteins to find overrepresented pathways in 

each filter combination using all 517 H1 proteins as background (Methods). The top enriched GO 

terms can be summarized in 4 major categories: regulation of gene expression and nucleosome 

assembly, metabolic processes and protein-modification, interaction with host and symbiotic 

processes, and nuclear import/export and protein localization (Figure 5). Some filter combinations 

(e.g. Enriched Domains, ClinVar and PepSite) are almost exclusively enriched in protein transport 

and localization (Figure 5). Additionally, we performed GOBP enrichment analysis of either H1 

domains or domains that interact with predicted human motifs, using the pfam2go (biological 

process - PFAM2GOBP) associations (see Methods) as background (Mitchell et al., 2015). Only 

180 out of possible 679 H1 domains and 1,204 out of possible 4,674 enriched domains are 

annotated in PFAM2GOBP, thus this analysis was performed only on the subset for which 

annotations were available. As in H1 GOBP enrichment, we identified overrepresented pathways 

in each filter combination (Methods). Only 3 filter combinations had significantly enriched terms 

(adjusted p-value < 0.05): iELM, Enriched Domain & Pepsite, and ClinVar and PepSite. Domains 

in H1 proteins were mostly enriched in metabolic processes, specifically nitrogen-compound 

metabolism and RNA synthesis processes (Figure 6 A,B). Domains in interacting partners of 

predicted host motifs were mostly enriched in protein phosphorylation, RNA biosynthetic 

processes, and protein transport and localization (Figure S4 A,B). Moreover, we also measured 

the semantic similarity between the enriched GO terms for H1 domains and domains that pass 

either the PepSite filter, the Enriched Domain filter or both. In concordance with the 

aforementioned enriched terms, the most prominent PFAM domain-associated biological 

processes represented are transcription-related (Myc_N, Creb_binding, KIX), translation related 

(Ribosomal_S17, Ribosomal_S13), and phosphorylation-related (Pkinase, PK_Tyr_Ser-Thr, 

Pkinase_C) (Figure 6C, S4C). 

We then explored whether the domains involved in our predicted domain-motif interactions tend 

to be specific to certain GOBP or KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2021) 

pathways using a published network-based scoring approach (Shim et al., 2019). The top-scoring 

(z-score > 1) processes and pathways associated with at least 3 filter-combinations are: cell  
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Figure 5: H1 protein GO enriched pathways. Dot plot showing the enriched GO 

terms (biological process) for each filter combination. This is based on an overrepresentation 

test using the 517 H1 proteins as background. The color scale corresponds to adjusted p-

value and the size of dots corresponds to the proportion of overlapping proteins between 

input query and annotated proteins for each GO term. The number of enriched H1 proteins 

in each dataset is enclosed in parentheses for each filter combination annotated under x-axis 

labels. 
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Figure 6: GO pathway enrichment of PFAM domains in H1 proteins. (A) Binary 

heatmap describing association between enriched GO terms (biological process, y-

axis) and the corresponding overlapping domains between input dataset and 

PFAM2GOBP annotations (x-axis) for a given term, where red and blue boxes represent 

presence or absence of enriched terms for a given domain, respectively. Only Domain-

pathway pairs with adjusted p-value < 0.05 are displayed. Domains are clustered by filter 

combinations shown as colored annotation bars above columns. E, Enriched Domains; 

P, PepSite; C,ClinVar; I, iELM. (B) Network showing the Jaccard similarity coefficient 

between enriched GO terms. Each node is a pie chart colored by filter combinations and the 

size of the nodes correspond to the number of domains. E, Enriched Domains; P, PepSite; 

C,ClinVar; I, iELM. (C) Heatmap showing GO semantic similarity between enriched domains 
calculated using the “Wang'' method (Wang et al., 2007) between GO terms for each domain-
pair. The color scale represents the similarity score where 1 denotes complete overlap, and 0 
denotes no similarity..  
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motility, translation, and regulation of transcription (Figure S5A), and DNA repair and 

transcriptional misregulation in cancer (Figure S5B), respectively. 

To gain more insight into the types of proteins that are involved in motif-domain interactions we 

also assessed the essentiality of both H1 proteins and predicted motif-carrying proteins. For our 

H1 proteins, all filter combinations including Enriched Domains, PepSite and ClinVar were 

significantly enriched in essential genes. Combinations including iELM datasets were mainly 

enriched in context-essential genes (Figure S6), although not significant due to the very low 

numbers of H1 and predicted motif-proteins covered.  

Identification of candidates for Drug repurposing 

Given that for all our human predicted motifs there was a corresponding viral motif targeting the 

same domain-carrying protein (H1), we sought therapeutic drugs that target the latter. Our 

hypothesis was that, if those drugs are indicated for the ClinVar diseases resulting from a 

pathogenic mutation in the relevant predicted motifs, they may be suitable for repurposing for the 

corresponding viral infection. 

By mining the ChEMBL database (Gaulton et al., 2017; Mendez et al., 2019) we retrieved 13 

molecules targeting 5 H1 proteins that also had drug indications matching the relevant ClinVar 

disease (Figure 7; Supplementary Table 3). Roscovitine (Seliciclib), which targets PSMC4 (26S 

proteasome regulatory subunit 6B), was one of the identified compounds. PSMC4 interacts with 

CFTR, where the pathogenic mutation (AlA412del) was found in the motif pattern ([KR].K.N). The 

same motif pattern was also observed in HPV11-E5B (Human Papillomavirus 11 – E5B) which is 

associated with PSMC4 through Tandem Affinity Purification (TAP) / MS (Rozenblatt-Rosen et 

al., 2012). Roscovitine has been previously reported to prevent the proteasomal degradation of 

F508del-CFTR through a CDK-independent mechanism, thus restoring the cell surface 

expression of CFTR in human CF (cystic fibrosis) airway epithelial cells (Norez et al., 2014). On 

the other hand, there have been several reports linking HPV E5 proteins with the host ubiquitin-

proteasome system to modify and regulate host proteins (Wilson, 2014). Accordingly, Roscovitine 

can be potentially repurposed as pharmacological therapy for HPV 11 infections. Moreover, 

several other drugs that we identified (Figure 7) already have indications in ChEMBL or evidence 

for reducing the relevant viral infection, such as Sirolimus and Everolimus for Influenza A infection 

(Alsuwaidi et al., 2017; Murray et al., 2012), Vorinostat and Cytarabine for human herpesvirus  
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Figure 7: Potential Drug candidates for repurposing. Sankey network displaying 

the relationship between ClinVar diseases and their indicated ChEMBL drugs that can be 

potentially repurposed for the respective viral infection. Drugs target the host domain 

protein (H1) which directly interacts with the relevant viral protein (V1). Nodes colored in red, 

blue, green and violet represent ClinVar disease, ChEMBL drugs, host protein, and viral 

protein respectively. 
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type-8 (hhv8) (Hogan et al., 2018; Jc et al., 2020), and Erlotinib, Vatalanib, and Dasatinib for 

Hepatitis C (HCV) (Lupberger et al., 2011; Elsebai et al., 2016). 

Discussion 

Despite their genome size constraints, viruses manage to hijack a myriad of cellular processes 

and signalling pathways, often by means of SLiM-mediated interactions with the host proteome, 

thereby taking control of the host cellular machinery to their reproductive advantage (Davey et al., 

2011). Moreover, because of their small size, degenerate nature, low complexity, and presence 

in intrinsically disordered regions, SLiMs are rapidly evolving ex nihilo (evolution from “nothing”) 

due to frequent mutations in these disordered regions, thus allowing a diverse repertoire of motifs 

to emerge in unrelated proteins through convergent evolution (Davey et al., 2015). Altogether, the 

nature of these short motifs explains the highly inflated false positive rates that can be 

computationally discovered throughout the proteome, due to their relatively poor signal to noise 

ratio (Gibson et al., 2015). While there has been a considerable effort to elucidate the molecular 

mechanisms by which viral proteins interact with the host proteome, there are relatively few 

resources (Hraber et al., 2020) highlighting SLiM-mediated interactions, the best of which is 

currently the ELM database (Kumar et al., 2020). In addition, resources and approaches to 

discover new linear motifs in general, rely on the largely manual identification of limited new motif 

instances or the re-discovery of known ELMs in different protein sequences, and in doing so, they 

fail to consider the wealth of information included in the interacting partners of viral proteins. 

Here we describe a proteome-wide approach to identify novel functional human motifs by taking 

advantage of the latest available human-viral interactome (Orchard et al., 2014), and including 

evidence from domain enrichment, structural modelling of SLiM-domain interactions (Petsalaki et 

al., 2009; Trabuco et al., 2012), and mapping ClinVar (Landrum et al., 2018) pathogenic variants 

on our predicted motifs, to improve both the sensitivity and specificity of computational motif 

discovery. Overall, using the principle of viral motif convergent evolution, we improved both the 

sensitivity and the specificity of the motif identification (Figure S2) and discovered 74 and 3,673 

known and new motif instances, respectively, in addition to 4,656 novel motifs.  

Functional analysis of our putative motif-domain interactions showed enrichment in processes 

known to be mediated by motifs, and importantly also hijacked by viruses. These include protein 

translocation (Cook and Cristea, 2019), transcriptional regulation (Kropp et al., 2014; Tarakhovsky 

and Prinjha, 2018), cell signalling (Alto and Orth, 2012), and cellular metabolism (Mayer et al., 
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2019; Thaker et al., 2019) among others, highlighting that despite a potential high number of false 

positive motifs identified, our resource is enriched in functional hits that describe biologically 

relevant processes. These have also been identified in a similar study that performed a proteome-

wide analysis of human motif-domain interactions in influenza A viral proteins (García-Pérez et 

al., 2018).  Interestingly we found a significant enrichment of essential genes to be involved in 

motif-domain interactions. This highlights the importance of such interactions in cell functions and 

provides additional support for the functionality of our predicted motif-domain interaction set. Our 

observation can partially be explained by the fact that motif-binding domains and on occasion 

also motif-carrying proteins can interact with multiple diverse partners, i.e. be hubs, which are 

known to be more essential than other nodes in protein interaction networks (Puschnik et al., 

2017; García-Pérez et al., 2018). 

We also highlight specific diseases associated with a disease-causing variant mapped to the 

shared motif pattern between host-viral and human PPIs, thus providing potential insights into the 

crosstalk between viral infection and the underlying disease. Interestingly, among the gold set of 

our hits about 50% putative motif patterns were associated with a pathogenic variant in CFTR 

gene (Figure 4). Viral infections have been heavily implicated in the pathogenesis of cystic 

fibrosis by increasing the susceptibility to other bacterial infections leading to further complications 

in the respiratory tract in cystic fibrosis patients (Frickmann et al., 2012). It has also been reported 

that multiple viral proteins with homology to CFTR interact with the same targets as CFTR, to 

commandeer the CFTR interactome. Several pathways are common between CFTR interactome 

and the viral life cycle including: endosomal pathways, lysosomal trafficking and protein 

processing (Carter, 2010). This could explain why we got multiple hits with CFTR and these 

putative motif-domain interactions shed light on the potential mechanisms by which viral proteins 

interfere with the CFTR interactome.  

In a search for drug repurposing candidates, we also identified drugs that target domain-carrying 

properties that we predicted to be relevant both for the viral infection and associated ClinVar 

disease. While only 13 drugs targeting 5 of our proteins were retrieved, several of them already 

had indications for the relevant viral infection in addition to the disease used to extract the drugs 

from the database (Alsuwaidi et al., 2017; Elsebai et al., 2016; Hogan et al., 2018; Jc et al., 2020; 

Lupberger et al., 2011; Murray et al., 2012). This suggests that our collection of paired viral-human 

motifs could be a good starting point for identifying key nodes to target in the pathogenesis of 

both the disease associated with the motif mutations and the viral infections. 
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Although we observed evidence for the presence of functional novel motifs and the recovery of 

known instances, computational de novo SLiM prediction remains a difficult challenge despite the 

plethora of available SLiM prediction methods, and thus the number of false positive predictions 

is expected to be high (Prytuliak et al., 2017). Our approach is vulnerable to additional 

uncertainties, which can be attributed to multiple confounders throughout our workflow in addition 

to the inherent false positive rate of the motif prediction method. Starting off with the PPI data 

from IntAct (Orchard et al., 2014), some of the binary interactions reported in IntAct database 

have weaker interaction evidence and thus an overall low Molecular Interaction score (MIscore) 

compared to “true” interactions which has been confirmed by several methods and has more 

literature evidence (Villaveces et al., 2015). Therefore, some of the input host-viral interactions 

are merely association events as opposed to having strong structural binding evidence and could 

be introducing noise to the analysis. Furthermore, as with all proteome-wide motif discovery 

methods, the precision and recall were relatively low when we evaluated the predicted instances 

against that of ELM’s. Nevertheless, when we used SLiMFinder (Edwards et al., 2007) to apply 

the same pipeline on all human proteins without restricting the motif space to viral motifs, we 

obtained even lower precision and recall in most of the evaluations (Figure S2). Therefore, the 

predicted hits conditioned on the presence of viral motifs recover more known instances with 

higher accuracy compared to their absence despite their apparent high false positive rate. 

Our study provides a considerable number of potential motif instances with several levels of 

support for functionality that can be prioritized for further investigation and validation studies (e.g. 

using ITC or Fluorescent Polarization). We show that taking advantage of the principle of 

convergent evolution allows us to reduce the false positive rate inherent to computational screens 

for linear motifs, which we then further reduce using additional orthogonal filters.  This not only 

provides an improved catalogue of putative human motifs but also provides indications for points 

of motif-mediated viral interference that can be easier to target than interactions mediated by 

larger interfaces. This resource will be valuable towards improved understanding of the biological 

functions of motif-mediated interactions in humans and viruses. As more human-viral protein 

interactions, domain structures and other information become available, our workflow will be able 

to provide evidence for an increasing number of human motifs.  
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Methods 

Interactome Datasets 

We extracted all human-viral interactions from the IntAct database (Orchard et al., 2014) on 

18/05/2020 by using the query:“(taxidA:9606 AND taxidB:10239) OR (taxidA:10239 AND 

taxidB:9606) AND ptypeA:protein AND ptypeB:protein” on 20/05/2020. This resulted in 22,839 

binary interactions. We then removed the duplicate entries resulting in a Human-Viral dataset of 

15,559 interactions including unique 5,575 proteins from 325 viruses (types and isolates) and 

humans (Supplementary Table 4). Distributions of interactions per virus type are shown in 

Supplementary table 5. 

In addition, we extracted all human interactions that had more than 2 types of evidence and at 

least one of the two interacting proteins was present in the Human-Viral dataset we had already 

collected. The resulting dataset included 49,000 interactions amongst 10,707 proteins 

(Supplementary Table 6).  

Validation datasets 

Our main benchmarking dataset comprises 1,936 known human SLiMs in 1,153 human proteins, 

extracted from the Eukaryotic Linear Motif (ELM) database on 24.07.2020 (Kumar et al., 2020) 

(Supplementary Table 7). In addition, we considered PRMdb (Peptide Recognition Modules 

database) which is based on large-scale peptide phage-display methods (Teyra et al., 2020) and 

comprises 386 PRM modules covering 50 structural families in 12,771 human proteins spanning 

47,657 SLiMs (Supplementary Table 8).   

Identification of linear motifs in viral-human protein interaction networks 

QSLiMFinder (Palopoli et al., 2015) was used for the identification of motifs in our networks with 

the default settings in terms of filtering except for setting the maximum number of sequences to 

evaluate to 800 (dismask=T, consmask=T, cloudfix=T, maxseq=800, gnspacc=F). Specifically, 

for each viral protein (V1) interacting with a specific human protein (H1) we searched for motifs 

that are enriched in the known human protein interaction partners of H1 and the viral protein. We 

also imposed the restriction that the motif must also be present in the viral protein.  
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Enrichment of human protein domains as potential motif interactors 

For each viral-human V-H1 protein interaction we extracted all human interactors of H1 from the 

IntAct database (Orchard et al., 2014). To avoid bias towards specific domain types due to 

sequence similarity of these interactors, we then used cd-hit (Fu et al., 2012; Li and Godzik, 2006) 

to reduce redundancy at 70% sequence identity level. We then used a two-tailed fisher-test 

(Fisher, 1934) to calculate the enrichment of observing a specific domain for each interaction set 

compared to the background. These p-values were FDR corrected using the Benjamini-Hochberg 

approach (Benjamini and Hochberg, 1995). We only considered as enriched the domains that 

had a significant adjusted p-value in terms of enrichment compared to the background (adjusted 

p-value < 0.05). As an additional stringency filter, we required that the identified domain was 

present in at least 5 interacting partners of the motif carrying protein. This choice was made after 

evaluating multiple different cutoffs for the adjusted p-value and domain numbers and selecting 

the best performing combination (Figure S7 – also see next section). 

Selection of domain enrichment filter 

To select possible filters for functional motif enrichment, we first tested the effect of considering 

enriched domains on the enrichment of known hits. We tried different combinations of parameters 

concerning the minimum number of interaction partners for a specific domain (1-10), odds ratio 

(>1 or >4), and adjusted p-value (0.01, 0.05, 0.1) for a total of 60 datasets. Based on the scores 

for all 3 levels, a minimum of at least 5 interaction partners returned the best results, where the 

difference was more pronounced in PRMdb (Teyra et al., 2020) compared to ELM (Kumar et al., 

2020) (Figure S7). Therefore, the predicted hits were filtered so that the identified domain was 

present in at least 5 interaction partners of the motif carrying protein with an adjusted p-value of 

< 0.05. The previous dataset was used in further downstream analyses as another functional filter 

to reduce false positives and will be referenced as “Enriched Domain”. Additionally, we applied 

the same evaluation pipeline using combinations of functional filters described below including: 

ClinVar, PepSite, Enriched Domain, and iELM HMMs to check which functional filters are better 

at capturing known instances.  

Comparison of discovered motifs with known ELM classes 

To further classify the predicted motifs, we compared their regular expression patterns to those 

of known ELM identifiers using CompariMotif (Edwards et al., 2008), which scores each 

comparison based on the shared information content between two motifs. We grouped the 
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matched relationships identified by CompariMotif into 5 confidence levels ranked by their 

proposed heuristic score. This considers the number of matched positions and a normalized score 

corresponding to the information content between the respective motifs. For each of the six major 

ELM classes, (ligand (LIG), cleavage (CLV), docking (DOC), degradation (DEG), post-

translational modification (MOD), and targeting (TRG)), we performed an all Vs all comparison 

against the relevant ELM identifiers (Supplementary Table 1). The predicted instances were also 

classified into known and new instances based on whether the instance overlaps with a true 

positive instance in the ELM database or not, respectively (Figure S3A). In addition, we also 

checked the concordance between CompariMotif similarity score and the known instances that 

we predicted, confirming that indeed high CompariMotif scores were able to identify true ELM 

class labels (AUC 0.791-0.829 depending on the set evaluated).  

Evaluation of predicted motifs  

Fair evaluation of linear motif identification methods is complicated partly due to: a) the difficulty 

to define terms like ‘true positive’, because motif instances often overlap and are found in 

duplicates and b) the very unbalanced nature of the validation dataset with very few known motifs 

and undefined, but likely large, numbers of true but not yet discovered motif instances. Thus to 

provide performance metrics from different points of view, we performed the evaluation at 3 levels 

(motif-carrying protein, motif instances, protein-domain interaction) using both ELM (Kumar et al., 

2020) and PRMdb (Teyra et al., 2020) as separate validation datasets. 

For the protein-level enrichment, we measured the enrichment of true-positives in our predicted 

dataset using a one-tailed Fisher’s exact test (Fisher, 1934), where the odds ratio represents the 

magnitude of the enrichment. True positives are the number of motif-carrying proteins present in 

both the predicted dataset and the validation dataset regardless of whether the predicted protein 

has the right motif or is found in the right location. For this level, we used the odds ratio to evaluate 

enrichment of true positives in each filtered dataset, as a measure of improved quality of the 

predictions after each filter.  

For the motif and protein-domain levels the evaluation was restricted to the proteins present in 

the validation dataset as they are not applicable, for proteins that don’t carry a known motif. For 

the motif-level enrichment, due to the possibility for partially correct hits, we used a re-

implemented version of the evaluation protocol proposed in (Prytuliak et al. 2017) to compute 

common performance metrics (recall, precision F1, etc) both residue-wise and site-wise. Given 

the skewed imbalance towards higher “false positives” compared to “false negatives”, we use the 
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F0.5 score instead of the F1 score, which puts more weight on the precision than the recall and 

is calculated as follows:  

𝐹0.5 =  
1.25 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

0.25 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
  

Finally, for evaluating protein-domain interactions we measured the enrichment of true-positive 

interactions between a given motif-carrying protein and its associated domains as reported in the 

validation dataset (Kumar et al. 2020). Here, true-positives represent the number of correctly 

associated domains for a given motif-carrying protein and then summed over all motif-carrying 

proteins in the predicted dataset. 

Prediction of viral SLiM binding on identified human domains 

We used PepSite2 (Petsalaki et al., 2009; Trabuco et al., 2012) to predict the binding interface of 

each SLiM on the respective domains. Note that the PepSite2 tool tends to have a high number 

of false negatives but a high accuracy. PDB structures for the respective domains were selected 

based on the protein interaction partners for a given motif-carrying protein harboring the specified 

domain according to the pdb_pfam data downloaded from 

(http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/database_files/pdb_pfamA_reg.txt.

gz). The lowest resolution structure was selected if there was more than one potential structure 

for each domain protein. Only hits with p-value < 0.1 were considered to indicate a significant 

motif-domain interaction. We also applied multiple testing correction for each peptide length (3-

10) using the Benjamini-Hochberg approach (Benjamini and Hochberg, 1995) and the same hits 

were retained after selecting those with adjusted p-value < 0.1. From the total of 501,109 peptide-

domain pairs we identified, we were able to find an available structure for 439,192, of which 

284,707 were associated with a domain protein that directly interacts with the motif-carrying 

protein. Those pairs were sent to PepSite2, and 76,399 peptide-domain pairs were returned as 

significant hits (p-value < 0.1). Since PepSite2 takes as input PDB_ID, chain and peptide 

sequence, some of the hits’ binding sites might not be within the specified domain region, so we 

filtered only those hits for a total of 46,325 peptide-domain pairs with the correct motif-domain 

binding interface. 
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Identification of SLiM binding domains in H1 proteins 

We used the iELM method (Weatheritt et al. 2012) to identify SLiM binding domains using both 

iELM and Pfam HMMs which are trained to recognize SLiM binding interfaces (Weatheritt et al., 

2012). The HMMs were downloaded from http://elmint.embl.de/program_file/ and we used 

hmmsearch from the HMMER3 toolkit (http://hmmer.org/) to search each HMM profile (both iELM 

and pfam HMMs) against all H1 proteins that are reported to bind to a predicated motif instance 

and a viral protein. In concordance with the iELM method, we also used an E-value cut-off of 0.01 

and excluded all hits with a length of <80% of the annotated SLiM-binding domain's length. The 

returned domtblout output was parsed using the R package “rhmmer” (Zebulun, 2017) and ELM 

classes were updated to the current version of ELM database (Kumar et al., 2020) using renamed 

ELM classes table downloaded from ELM database 

(http://elm.eu.org/infos/browse_renamed.tsv). 

Clinvar mapping 

Data for mapping ClinVar (Landrum et al., 2018) variants to motif residues were downloaded from 

(https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/archive/submission_summary_2021-

03.txt.gz) on 03/04/2021. For each motif in a given protein, we check the amino acid change of 

each reported variant in the corresponding protein in ClinVar and we establish a mapping if there’s 

at least one overlapping residue. Some of the variants in ClinVar had only genomic information 

with no reported amino acid changes. In that case we used the EMBL-EBI Proteins API 

(https://www.ebi.ac.uk/proteins/api/doc/) to retrieve the genomic coordinates of each motif that 

can be directly compared to those ClinVar variants with no information about amino acid changes. 

The mapped variants were filtered to include only single nucleotide variants (SNVs) and deletions 

as opposed to insertions, duplications and CNVs, since we only consider variants potentially 

having deleterious effects on motif function and binding affinity.  

Identification of potential Drug candidates 

ChEMBL27 (Gaulton et al., 2017; Mendez et al., 2019) was downloaded from 

(ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/) and data tables corresponding to 

compound, target and assay information were concatenated according to the database schema. 

The following filters were applied to retrieve high-confidence Drug-target records: 1) Only human 

single-protein targets were considered as opposed to protein-complex, tissue, cell_type, etc…. 2) 
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Only compounds that are indicated to have a therapeutic application (Therapeutic_flag == 1) were 

considered as opposed to imaging agents, additives, etc … 3) Assays that are classified as 

Binding assays (Assay_type == “B”) and with high confidence score (confidence_score  == 9) 

were considered to retrieve the assays where a precise molecular target is assigned. Using this 

curated dataset, we mapped the drugs that are reported to target H1 proteins (V1 → H1, where 

V is the viral protein). Additionally, we used the R packages: reactome.db, KEGG.db, and msigdbr 

to retrieve the pathways where H1 and H2 are involved, from Reactome, KEGG and MsigDB, 

respectively (Carlson, 2019; Dolgalev, 2020; Ligtenberg, 2019). Finally, we used the Experimental 

factor ontology (EFO) (Malone et al., 2010) to map the drugs and ClinVar diseases to disease 

ontology terms that can be systematically compared across the whole dataset. EFO disease 

ontologies corresponding to the identified drugs were directly retrieved from the Drug_indication 

table in ChEMBL database, while the ClinVar disease ontologies were cross-referenced with EFO 

using EMBL-EBI ontology xref service (OXO) (https://www.ebi.ac.uk/spot/oxo/index) which finds 

mapping between different ontology terms.  

Functional protein and domain enrichment analysis 

To identify the functional pathways associated with our predicted motifs and proteins that are 

directly targeted by viral proteins, we performed a hypergeometric overrepresentation test on H1 

proteins and PFAM (Mistry et al., 2021) domains found in both H1 proteins and those that are 

found to bind with our putative motif instances. For H1 proteins, we performed the enrichment 

against GO (biological process) (Ashburner et al., 2000; Gene Ontology Consortium, 2021) using 

only the domain proteins (H1) as background. We used the “enrichGO” function in the R package 

ClusterProfiler (Yu et al., 2012) to perform GO enrichment using default parameters except the 

universe parameter where we selected all 517 H1 proteins as background. We applied the 

enrichment on H1 proteins for all the combinations of filtered datasets and considered enriched 

terms with an adjusted p-value cutoff of 0.05. 

Regarding domain enrichment, we used the R package “dcGOR” (Fang, 2014) to perform PFAM 

domain enrichment against GOBP (biological process) and using pfam2go (Mitchell et al., 2015) 

as background annotation which was downloaded from 

(http://current.geneontology.org/ontology/external2go/pfam2go) on 20.5.2021. For each set of 

filter combinations (Enriched Domain, PepSite, ClinVar, iELM) we used as input either the 

domains found in H1 proteins of the corresponding motif instances or the domains that are found 

in the interaction partners of the predicted motif-carrying proteins. For filter sets including 
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“PepSite” or “Enriched Domain” we additionally required evidence of binding of the query domain 

to predicted motif instance or enrichment in at least 5 interacting partners of motif -carrying 

proteins with adjusted p-value < 0.05, respectively. Moreover, the background for each filter set 

was adjusted based on the initial query of the respective filter combination. For example, the 

background for sets including the PepSite filter would be the domains found in the original 

requests sent to PepSite for the respective motif instances involved. The function “dcEnrichment” 

was used to perform the enrichment of PFAM domains as input against their respective 

background. The default parameters were used except “ontology.algorithm” where we used “lea” 

algorithm to account for the hierarchy of the GO ontology. Specifically, once domains are already 

annotated to any children terms with more significance than itself, then all these domains are 

eliminated from the use for the recalculation of the significance at that term and the final p-values 

takes the maximum of the original p-value and the recalculated p-value. Finally, in order to 

compare the similarity of the enriched PFAM domains, we used the R package “GOSemSim” (Yu 

et al., 2010) to calculate the semantic similarity between the GOBP terms between each pair of 

PFAM domains using the “Wang” method (Wang et al., 2007). Visualization of enrichment output 

of “dcGOR” was implemented using the R package “ClusterProfiler” and heatmap visualization of 

semantic similarity was implemented using the “pheatmap” R package (Kolde, 2012). 

Enrichment of Domain-Motif interactions 

Given the high false positive rate in our predicted hits and the inherent challenges in de-novo 

SLiM discovery, we wanted to assess whether the predicted domain-motif interactions (DMIs) are 

merely due to chance or can be used to infer functional SLiMs. For this purpose, we used SLiM-

Enrich (Idrees et al., 2018), which calculates the enrichment of DMIs in a given PPI (protein-

protein interaction) network using a permutation approach to create a background distribution of 

expected DMIs. We used the SLiM-Enrich Shiny webserver 

(http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/) which takes as input PPI data in terms of domain 

and motif proteins. We used the ELMc-Domain strategy and either ELM as the default background 

for motifs or our own predicted hits from QSLiMFinder (Palopoli et al., 2015) as proxy for the motif 

compositions of the input motif proteins. We performed this analysis using both host-viral and 

human-only predicted hits in order to compare the enrichment of DMIs in both datasets.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449930doi: bioRxiv preprint 

http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/
https://doi.org/10.1101/2021.06.25.449930
http://creativecommons.org/licenses/by/4.0/


 

Context Essentiality of H1 and Motif proteins 

We used CEN-tools (Sharma et al., 2020) in order to assess the essentiality of the host-proteins 

that are directly targeted by viral proteins and the motif-carrying proteins in our predicted motif 

instances. We used the classifications already provided by CEN-tools which are integrated from 

both Project Score (Behan et al., 2019) and DepMap (GTEx Consortium et al., 2017; Tsherniak 

et al., 2017) large-scale CRISPR screens in addition to a gold standard gene set from BAGEL 

(Hart and Moffat, 2016). We grouped both context-essential and rare-context essential so that 

each protein can be classified as essential, context-essential, or non-essential. Finally, we used 

a one-tailed Fisher’s exact test (Fisher, 1934) to perform overrepresentation of either H1 or motif-

carrying proteins for each essentiality cluster in all filter combinations. Out of 517 and 2,457 H1 

proteins and predicted motif proteins, 487 and 2,261 had essentiality information available, 

respectively and were considered for downstream analysis. 

Identification of pathway-specific domains 

We used a network-based scoring approach to quantify domain-pathway associations and their 

specificity (Shim et al., 2019) in human domains that are found in host-viral PPI. The approach is 

mainly based on first constructing a domain-based network using weighted mutual information 

between domain profiles of human proteins, then using a Bayesian framework to assign log-

likelihood scores to links of co-pathway networks. Finally, the Gini index (GI) was used to account 

for the distribution of each domain across pathways which eventually yields a pathway specificity 

(PS) score for each domain-pathway association (Shim et al., 2019). We already used the 

provided InterPro (Blum et al., 2021) domain profile for a total of 17,013 human proteins and 8,362 

InterPro domains on both GOBP (which was already provided) and KEGG pathways (Kanehisa 

et al., 2021; Kanehisa and Goto, 2000) which were retrieved using the KEGGREST R package 

(Tenenbaum, 2020). We mapped the corresponding PFAM (Mistry et al., 2021) domains 

according to InterPro-PFAM cross-reference which was downloaded from 

(https://www.ebi.ac.uk/interpro/entry/pfam/#table), resulting in a total of 4,283 PFAM domains 

mapped to 4,140 out of 8,362 InterPro domains. Then, for all filter combinations, we mapped all 

domain-pathway associations for both KEGG and GOBP against domains in H1 proteins and 

domain-proteins binding to predicted motif instances. Finally, we combined all the associations 

and scaled their pathway-specificity scores and selected only associations with z-scores > 1 which 

corresponds to pathway specificity scores > 0.2. 
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