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Abstract 

Wildfires are a growing management concern in western US rangelands, where invasive 

annual grasses have altered fire regimes and contributed to an increased incidence of 

catastrophic large wildfires. Fire activity in arid, non-forested ecosystems is thought to be largely 

controlled by interannual variation in fuel amount, which in turn is controlled by antecedent 

weather. Thus, long-range forecasting of fire activity in rangelands should be feasible given 

annual estimates of fuel quantity. Using a 32 yr time series of spatial data, we employed 

machine learning algorithms to predict the relative probability of large (>405 ha) wildfire in the 

Great Basin based on fine-scale annual and 16-day estimates of cover and production of 

vegetation functional groups, weather, and multitemporal scale drought indices. We evaluated 

the predictive utility of these models with a leave-one-year-out cross-validation, building spatial 
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hindcasts of fire probability for each year that we compared against actual footprints of large 

wildfires. Herbaceous aboveground biomass production, bare ground cover, and long-term 

drought indices were the most important predictors of burning. Across 32 fire seasons, 88% of 

the area burned in large wildfires coincided with the upper 3 deciles of predicted fire 

probabilities. At the scale of the Great Basin, several metrics of fire activity were moderately to 

strongly correlated with average fire probability, including total area burned in large wildfires, 

number of large wildfires, and maximum fire size. Our findings show that recent years of 

exceptional fire activity in the Great Basin were predictable based on antecedent weather-driven 

growth of fine fuels and reveal a significant increasing trend in fire probability over the last three 

decades driven by widespread changes in fine fuel characteristics. 
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Introduction 

Shifting fire regimes in the western US present escalating management challenges. 

Though a century of aggressive fire suppression has resulted in an overall deficit of fire (Marlon 

et al. 2012), the annual area burned and incidence of large wildfires (>405 ha) have risen in 

recent decades (Dennison et al. 2014, Westerling 2016, Iglesias et al. 2022). Humans have 

increased ignitions (Balch et al. 2017), altered fuel characteristics (Noss et al. 2006, Balch et al. 

2013, Fusco et al. 2019), and otherwise modified fire regimes of many western ecosystems, 

with impacts including permanent vegetation state transitions (D’Antonio and Vitousek 1992, 

Coop et al. 2020) and degradation or loss of habitat for sensitive species (Rockweit et al. 2017, 

O’Neil et al. 2020). Responding to these trends and threats, the US federal fire suppression 

budget has grown more than six-fold in the past three decades, from an average of $370M·yr-1 
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from 1985–1989 to $2.38B·yr-1 from 2016–2020 (National Interagency Fire Center, 2021). Even 

so, widespread and synchronous fire activity across western North America increasingly 

exceeds fire suppression capacity (Podur and Wotton 2010, Abatzoglou et al. 2021), 

contributing to increased incidence of wildfire disasters and underscoring the need for accurate, 

long-range forecasts to guide management and allocation of fire suppression resources. 

Although forest fires have historically been the focal point of fire management and 

research, increasing wildfire in non-forested ecosystems across western North America 

(hereafter rangelands) is a growing concern. The Great Basin, a cold desert covering most of 

Nevada and parts of California, Idaho, Oregon, and Utah, has recently experienced particularly 

damaging fire seasons fueled in part by highly flammable exotic annual grasses such as 

cheatgrass (Bromus tectorum L.; Balch et al. 2013, Fusco et al. 2019). Native vegetation 

communities of the Great Basin, co-dominated by perennial grasses and non-resprouting 

shrubs such as sagebrush (Artemisia spp.), evolved with infrequent fire and can take many 

decades to recover after burning (Knutson et al. 2014, Shriver et al. 2018, Bates et al. 2020). 

Larger and more frequent wildfires therefore threaten to catalyze widespread, permanent shifts 

to vegetation communities devoid of shrubs and dominated by exotic annual grasses, with 

negative consequences for rural communities and shrubland obligate species (Knick et al. 2003, 

Coates et al. 2016, O’Neil et al. 2020). 

Spatial tools quantifying wildfire hazard fall into two broad categories: static land cover- 

and climate-based maps depicting the long-term average annual probability of burning (e.g., 

Short et al. 2020), and short-term (daily to weekly) indices based on rapidly changing variables 

such as fuel moisture, humidity, wind speed, and temperature (e.g., the Keetch-Byram Drought 

Index [Keetch and Byram 1968] and the various indices under the National Fire Danger Rating 

System [Deeming et al. 1972, Burgan et al. 1998]). These tools reflect a historical focus on 

“flammability-limited” forested ecosystems, where fuel quantity changes little from one year to 
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the next but fire danger can change rapidly within a season as the moisture content of fuels 

responds to atmospheric conditions (Krawchuk and Moritz 2011, Abatzoglou and Kolden 2013). 

Semi-arid and arid grasslands and shrublands, in contrast, are considered “fuel-limited” 

in the sense that burnable biomass can vary considerably from year to year while fuel moisture 

is rarely limiting (Krawchuk and Moritz 2011, Abatzoglou and Kolden 2013). In these 

ecosystems, fire activity is strongly correlated with antecedent (i.e., prior to the onset of the fire 

season) precipitation and fuel growth, and relatively weakly related to weather during the fire 

season (Westerling et al. 2002, 2003, Brown et al. 2005, Littell et al. 2009, Abatzoglou et al. 

2018). Consequently, fire activity at the seasonal scale may be predictable further in advance in 

rangelands than in forested ecosystems. 

Precipitation and drought indices have long been employed as correlates of fine fuel 

growth for predicting fire activity in rangelands. Outlooks distributed months in advance of the 

fire season, for example, rely heavily on long-term drought indices (e.g., Palmer Drought 

Severity Index) to infer the relative quantity of fine fuels. Recent work has strengthened and 

refined the links between precipitation and fine fuels in Great Basin shrublands. Pilliod et al. 

(2017) found precipitation had complex, multi-year lagged effects on fuel accumulation that 

differed among plant functional groups and concluded that native perennial bunchgrass 

production in the previous year, as well as litter accumulated over 1–3 years’ production of 

exotic grasses and forbs, were among the main drivers of the number of large fires and total 

burned area in the Great Basin. Using only antecedent precipitation variables, they developed 

annual fire risk maps predictive of the distribution of large fires across the Great Basin (Pilliod et 

al. 2017). 

Precipitation and drought are, however, coarse proxies for fine fuel accumulation. Direct, 

remotely-sensed estimates of vegetation cover and/or production may better account for fine-

grained variation induced by factors such as topography and soil, invasion by exotic annual 

grasses, and legacies of management and disturbance. For example, MODIS-derived estimates 
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of production revealed high intra- and interannual variation in fuels driven by the combined 

effects of weather and disturbance history in northern Great Basin shrublands (Li et al. 2020). 

Despite its potential utility, the application of remotely sensed data to wildfire forecasting in 

rangelands has been hampered by a lack of readily available, timely data quantifying dynamic 

and spatially variable rangeland fuels at ecoregional and larger extents. 

Recently, datasets providing high-resolution, consistent, annual estimates of rangeland 

vegetation cover and production with extensive temporal and geographic coverage have been 

developed from long-term satellite imagery records (e.g., Jones et al. 2018, Zhang et al. 2019, 

Rigge et al. 2020). These dynamic vegetation datasets have been rapidly adopted for 

quantifying long-term vegetation trends (Robinson et al. 2019, Fogarty et al. 2020, Rigge et al. 

2021), wildlife habitat (Donovan et al. 2021, Olsen et al. 2021, Pilliod et al. 2022), spread of 

invasive species (Pastick et al. 2021, Smith et al. 2022), and outcomes of management 

(Bestelmeyer et al. 2021, Fick et al. 2022). To our knowledge, however, they have yet to be 

used in a wildland fire preparedness context. Our overarching objective was to explore the utility 

of these data for quantifying rangeland fuels and improving wildfire preparedness in the Great 

Basin. 

Specifically, we use vegetation cover and production data from the Rangeland Analysis 

Platform (hereafter RAP), a suite of dynamic rangeland vegetation datasets based on the 

extensive Landsat imagery record and decades of intensive ground sampling (Jones et al. 

2018). RAP provides annual estimates of cover of rangeland plant functional types (annual forbs 

and grasses, perennial forbs and grasses, shrubs, and trees), litter, and bare ground over the 

coterminous U.S. from 1984–present at a 30 m resolution (Allred et al. 2021). In addition to 

cover, RAP provides annual production (kg·ha−1) estimates for all plant functional types and 16-

day production (kg·ha−1·16 d-1) estimates for herbaceous plant functional types (Jones et al. 

2021).  
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Our aim was to use vegetation cover and production data from RAP in conjunction with 

gridded weather, drought, and climate data to produce annual, high-resolution (120 m) forecasts 

of the relative probability of burning in a large (>405 ha) wildfire available well before the onset 

of the fire season and to quantify the skill of these forecasts using a hindcasting (i.e., forecasts 

for past years) approach. Numerous factors, many unrelated to fuels and subject to change over 

time (e.g., ignition probability), influence where and when large wildfires occur (Balch et al. 

2018). Our objective was not to account for all these factors, but rather to develop a fuels-based 

index proportional to the annual probability of burning. An additional objective was to explore the 

trade-off between forecast lead-time and accuracy. We anticipated that short-term drought 

indices and herbaceous vegetation production in the spring would become increasingly 

informative as the forecast date approached the onset of the fire season, and therefore 

forecasts made earlier in the year, when they would potentially be more useful for planning, 

would be less accurate than forecasts made later in the spring. Finally, to explore the utility of 

our approach relative to currently available spatial fire risk products we compare the skill of our 

hindcasts to a static burn probability map widely used by land management agencies (Short et 

al. 2020) in predicting the spatial patterns of large wildfires over the last 3 decades. 

Methods 

Study area and period 

We focused our analysis on rangelands as defined by Reeves and Mitchell (2011) in the 

Great Basin. EPA Level III ecoregions (Omernik and Griffith 2014) defined the boundaries of our 

study area, which included the Central Basin and Range, Northern Basin and Range, and 

Snake River Plain ecoregions. Data availability constrained our analysis to fire seasons from 

1988 to 2019. 
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Data sources 

Annual estimates of vegetation cover (percent) and aboveground biomass production 

(kg·ha−1), and short-term estimates of herbaceous aboveground biomass production 

(kg·ha−1·16-d-1), were derived from the Rangeland Analysis Platform (RAP; Jones et al. 2018, 

2021, Allred et al. 2021). Annual cover and production, which are updated each year in early 

spring with estimates for the previous year’s growing season, were included at 1- and 2-yr lags; 

i.e., we used cover and production in year t-2 and t-1 to predict the occurrence of fire in year t. 

The short-term (16 d) herbaceous production dataset is updated in near-real-time as provisional 

Landsat images are made available, and was used to quantify cumulative growth of fine fuels in 

year t from January 1 until the date the forecast was made. 

Water availability is a dominant control on primary production in most terrestrial 

ecosystems (Churkina and Running 1998), and precipitation is the primary driver of interannual 

variation in herbaceous vegetation cover in Great Basin rangelands (Pilliod et al. 2017). We 

therefore included precipitation and drought variables derived from the Gridded Surface 

Meteorological dataset (gridMET; Abatzoglou 2013) as indicators of resource availability for 

vegetation growth at multiple temporal scales. Precipitation was quantified over the preceding 

year (pr_annual) and over the water year-to-date (pr_wytd; October 1 of the previous year 

through the forecast date). Although the Palmer Drought Severity Index (PDSI; Palmer 1965) 

has historically seen wide use in fire forecasting (Westerling et al. 2002, 2003), newer drought 

indices have been developed that allow drought to be quantified over various user-specified 

temporal scales. We explored two of these indices, the standardized precipitation-

evapotranspiration index (SPEI; Vicente-Serrano et al. 2010) and evaporative demand drought 

index (EDDI; Hobbins et al. 2016, McEvoy et al. 2016), calculated at 30 d, 90 d, 180 d, 270 d, 1 

yr, 2 yr, and 5 yr temporal scales. The SPEI and EDDI both range from approximately -2 to 2, 

but their interpretations are opposite: negative values of SPEI indicate drought, whereas 
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negative values of EDDI indicate wetter conditions (less evaporative demand). These indices 

are updated every 5 days and are available for the period 1980–present. 

Low temperature limits vegetation growth during a significant portion of the year in the 

Great Basin. With adequate moisture, more rapid spring warming should facilitate faster 

vegetation growth and greater accumulation of fine fuels. We therefore calculated accumulated 

growing degree days (gdd) from January 1 to the date of the forecast using daily minimum and 

maximum temperatures from gridMET. 

Climate may directly or indirectly influence the annual probability of burning. A direct 

effect might include variation in the annual number of days with weather conducive to wildfire 

ignition and spread. Climate may also indirectly affect annual probability of fire, e.g. via 

vegetation community composition. Vegetation communities occupying different biophysical 

settings are likely to differ in their responses to precipitation, temperature, and drought. To 

account for this spatial climate variation, we included mean annual temperature and mean 

annual precipitation from the PRISM 30-yr (1991–2020) normal dataset (Daly et al. 2015). 

We derived the categorical response, burned (y = 1) or unburned (y = 0) from the 

Monitoring Trends in Burn Severity dataset (MTBS; Eidenshink et al. 2007). MTBS maps all 

fires >405 ha (>1000 ac) since 1984 across all land ownerships. Unburned inclusions often 

occur within MTBS mapped fire perimeters (Kolden et al. 2012), introducing opportunity for 

class label errors. Therefore, we used the MTBS thematic burn severity raster dataset to assign 

each pixel to the burned or unburned class. Thematic burn severity classes 1–5 indicate 

increasing burn severity. We assigned all pixels in burn severity class 1 (low severity/unburned) 

or outside fire perimeters to the unburned class (y = 0), and all pixels in classes 2–5 to the 

burned class (y = 1). Class 6 represents pixels of unknown burn severity within fire perimeters. 

We assumed pixels in class 6 were assigned this class due to imagery issues (e.g., clouds or 

shadows), not because they were unburnable land cover types such as large water bodies; 
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unburnable land cover types were already masked from our analysis. Therefore, we assigned 

pixels in class 6 to the burned class (y = 1). 

Because MTBS only maps fires >405 ha, some sampled pixels assigned to the 

unburned class may have, in fact, burned in small wildfires. However, using data from the USFS 

Fire Program Analysis Fire Occurrence dataset (Short 2021), we estimated that fires <405 ha 

affected, on average, only ~0.05% of the study area not burned in MTBS-mapped fires each 

year. We therefore assumed the level of contamination of the unburned sample was negligible. 

All data were accessed via Google Earth Engine (GEE; Gorelick et al. 2017), and analyses were 

conducted using the GEE code editor and R (version 4.0; R Development Core Team, 2021). 

Modeling approach 

We used random forests (RF; Breiman 2001) to predict the response variable (burned or 

unburned). Random forests are widely used for prediction in ecology because they are 

straightforward to fit, require little tuning, and readily accommodate non-linear relationships and 

interactions among predictors (Cutler et al. 2007). Because they are based on decision trees, 

predictive accuracy of RF is robust to collinearity among predictors. Importantly for our 

application, RF generally perform well at predicting probabilities (Niculescu-Mizil and Caruana 

2005). 

Like many classification algorithms, however, RF performance is degraded when training 

data are highly imbalanced among classes (Sage et al. 2020). Because only a small fraction of 

the study area burns annually, a simple random sample would be dominated by unburned 

pixels. We therefore stratified by outcome to train the model on equal numbers of burned and 

unburned pixels. This sampling scheme results in pixel-level model predictions, ranging from 0–

1, that do not represent absolute probabilities of burning. However, our goal was not to estimate 

absolute probabilities of burning, but rather to quantify the relative probability of burning in a 

large wildfire based on fuel characteristics. We define this quantity p at a given pixel with 
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observed predictors 𝑥, 𝑝 = 𝑃(𝑦 = 1|𝑥). Estimates of probabilities �̂� were derived from RF 

classification models using tree vote aggregation (Sage et al. 2020). Each tree t predicts the 

most probable class, �̂�𝑡 ∈ {0,1} (‘casts a vote’), and �̂� is derived by averaging votes across T 

trees, �̂� =
1

𝑇
∑ �̂�𝑡

𝑇
𝑡=1 . 

Workflow 

Our goal was to develop and tune a RF model that can be updated annually to produce 

a pre-fire season forecast using data sampled from the extensive historical record available in 

GEE. Although GEE is a powerful platform for accessing, processing, and sampling data, fitting 

a model, and mapping predictions across large areas, it has limited built-in statistical functions. 

Therefore, hyperparameter tuning and statistical evaluation of hindcasts were accomplished 

outside of GEE. The basic outline of our workflow is shown in Fig. 1. 

1. Sampling 

We drew a sample of n = 10,000 pixels (5,000 each burned and unburned) for model 

tuning and testing. Native resolution of response and predictor datasets varied from 30 m to 4.6 

km (Table 1); we chose to resample all data to a common 120 m resolution for model fitting and 

prediction. Training data were sampled randomly in time and space to reduce spatial and 

temporal autocorrelation among training data. This is particularly important for modeling a 

process like fire; in any given fire season, the outcomes of spatially adjacent pixels are strongly 

interdependent. Our sampling schema ensured only a single year’s observation, randomly 

selected from the 32 yr time series, could be included at any given spatial coordinates. Thus, 

even when sampled pixels were in close spatial proximity, it was unlikely the observations 

represented by those samples were proximal in time, and vice versa. This sample size was 

chosen to balance predictive accuracy and processing time; in preliminary analysis, the 
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incremental improvements in accuracy yielded by larger samples did not justify the increase in 

processing time. This was likely related to the fact that only 2,201 large wildfires overlayed our 

study area; additional burned samples would largely be drawn from fires already sampled, and 

therefore yield diminishing returns in terms of new information. 

2. Dividing into training and testing data 

We split the sample into a tuning set (~80%) and testing set (~20%) by randomly 

selecting 6 of the 32 years and withholding all samples from those years to evaluate the final 

model. 

3. Tuning via cross-validation 

RF defaults are to build each tree on a bootstrap sample of the training data (sampling 

fraction = 1, sampled with replacement) and consider a random selection of 𝑚 = √𝑘 of the k 

available predictors at each split (𝑚𝑡𝑟𝑦 = √𝑘; Breiman 2001). We performed a grid search to 

select the optimal combination of mtry and sampling fraction for our application. We considered 

values of mtry from 
√𝑘

2
 to 

𝑘

3
, and trees grown on subsamples (without replacement) of the training 

data ranging in size from 0.1n to 0.5n, or the default bootstrap sample (with replacement) of size 

n (Martínez-Muñoz and Suárez 2010). We held the minimum node size and maximum number 

of nodes constant at values (1 and unlimited, respectively) recommended for probability 

estimation using tree vote aggregation (Liaw and Wiener 2012, Sage et al. 2020). RF models 

were fit with the ranger function in the “ranger” package (version 0.12.1; Wright and Ziegler 

2017) in R. All forests were grown to 1,001 trees. 

We used cross-validation to assess each combination of tuning parameters. Cross-

validation folds were defined using the natural grouping structure of the data; one year’s 

samples were withheld at a time for prediction. When accurate class probabilities (e.g., relative 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.25.449963doi: bioRxiv preprint 

https://paperpile.com/c/HD3jOA/tsR0k
https://doi.org/10.1101/2021.06.25.449963


11 

probability of burning) are the primary objective, the log-loss is more informative than threshold-

based metrics such as percent correctly classified, area under the receiver operating 

characteristic curve (AUC), or kappa. For a predicted fire probability �̂� and observed outcome 𝑦, 

the log-loss is defined as: 

𝐿𝑙𝑜𝑔(𝑦, �̂�) =  −𝑦log(�̂�) + (1 − 𝑦)log(1 − �̂�). 

The equation can be modified to place larger penalties on “bad” probabilities (i.e., outcomes 

predicted to be highly improbable) for a particular class by introducing a weighting parameter, : 

𝐿𝑙𝑜𝑔
∗ (𝑦, �̂�|𝛼) =  −𝛼𝑦log(�̂�) + (1 − 𝛼)(1 − 𝑦)log(1 − �̂�). 

For our purposes, a pixel may remain unburned despite suitable fuels for numerous reasons 

including lack of ignition, successful fire suppression, or unfavorable weather. Moreover, the 

cost of underestimating burn probabilities among areas that do, in fact, burn (i.e., a false 

negative signal) is potentially greater than the cost of overestimating probabilities of areas that 

remain unburned (i.e., a false positive signal). We therefore scored predictions using the 

weighted log-loss, setting 𝛼 =
10

11
 to weight predictions of burned pixels 10 times higher than 

predictions of unburned pixels. We selected as our final model the set of hyperparameters that 

minimized the global weighted log-loss across the tuning set. 

4. Pixel-level model evaluation 

Samples from the 6 years withheld from model tuning were used to evaluate accuracy of 

probabilities from the tuned model at the 120 m pixel level. We report the log-loss as well as the 

more familiar classification accuracy metrics, kappa and AUC. 

5. Hindcasting 

To evaluate model predictions at a practical spatial scale and provide information about 

the predictive utility that could be expected of future forecasts beyond what is provided by 
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standard model performance metrics, we conducted a secondary validation based on hindcasts 

developed for each year from 1988–2019 (Fig. 2). As in our cross-validation model tuning 

procedure, hindcasts were constructed by withholding one year’s data at a time, fitting the 

model to samples drawn from all remaining 31 years, and then mapping predicted probabilities 

for the withheld year. These 32 hindcasts were then evaluated against actual burn footprints. 

6. Hindcast evaluation 

We evaluated hindcasts by 1) converting continuous pixel-level estimates, �̂�, to ten 

decile bins, 2) overlaying the binary burned/unburned maps derived from the MTBS thematic 

burn severity dataset (see Data sources, above), and 3) calculating i) total area (roughly equal 

across bins) and ii) burned area in each bin. We then derived the proportion of the total area in 

each bin that burned. This proportion should increase monotonically from the lowest to highest 

bin if model fit is adequate. We also compared performance among forecast dates using a 

precision-recall curve based on the same aggregate decile bin data. Considering the lower 

bound of each bin sequentially as prediction thresholds, precision was approximated by the 

burned area for which �̂� > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 divided by the total area for which �̂� > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Recall 

was approximated by the burned area for which �̂� > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 divided by the total burned area 

across bins. Higher precision for a given recall indicates higher skill in discriminating between 

pixels likely and unlikely to burn. 

To evaluate correspondence between hindcasts and fire activity at the scale of the Great 

Basin over time, we aggregated predicted fire probability across the study area (mean) and 

calculated Pearson correlations between annual mean predicted fire probabilities and several 

annual metrics of fire season activity. These included total area burned in large wildfires, 

number of large wildfires, maximum fire size, and season length (number of days between 

ignition date of the first and last large wildfires). Total area burned was calculated using the 

MTBS thematic burn severity dataset to account for unburned inclusions within fire perimeters, 
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while all other metrics were derived from the MTBS fire perimeter dataset. Highly skewed 

variables (total area burned, number of fires, max fire size) were either square-root (areas) or 

log (number of fires) transformed. 

Forecast date 

To explore the trade-off between forecast lead time and accuracy, we tested forecasts 

made every 16 days from January 1 to May 25, aligning with the schedule of 16-day NDVI 

composites used to produce NPP estimates (Jones et al. 2021). For reference, between 1988 

and 2019 the median ignition date of the first large wildfire in the Great Basin was March 30, 

and 95% of large wildfires started on or after June 12. Variables quantifying cumulative growing 

degree days and vegetation production in the current year (gdd, afgAGB_ytd, and pfgAGB_ytd) 

were omitted for January 1 forecasts. We repeated steps 1–6 for each forecast date, and report 

cross-validation metrics for each date. 

Variable importance and effects 

We computed the permutation-based mean decrease in accuracy (hereafter permutation 

importance) and conditional importance to assess the relative importance of variables. Although 

permutation importance is an established method of ranking variables from RF models, it can be 

biased in the presence of highly correlated predictors (Strobl et al. 2007, Nicodemus and Malley 

2009). The predictors we used were characterized by many high pairwise correlations. The 

conditional importance (Strobl et al. 2007, 2008) was developed as a less biased metric of 

variable importance under strong multicollinearity and other conditions that distort traditional 

variable importance metrics. We therefore calculated the conditional importance from 

conditional inference forests fit with the party package (version 1.3; Hothorn et al. 2006, Strobl 

et al. 2007, 2008) in R and compared importance rankings based on these two metrics. We also 

provide partial dependence plots to visualize the effects of individual predictors on fire 
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probability. Partial dependence plots were produced for the 12 predictors ranking highest in 

conditional importance. 

Results 

Model tuning and evaluation 

For all forecast dates, models constructed by building trees with a small subset of the 

training data sampled without replacement (sample fraction = 0.1) minimized the log-loss (Table 

2). Cross-validation performance was less sensitive to mtry, but values near random forest 

defaults (√𝑘 ≈ 6) tended to perform well (Table 2). Pixel-level model performance on the 

withheld independent testing dataset was similar to performance in cross-validation, with 

threshold-based performance metrics (i.e., AUC, kappa) slightly improved, but log-loss slightly 

higher (Table 2). 

Forecast date 

At the pixel level, accuracy was less sensitive to forecast date than expected (Table 2). 

In cross-validation, the log-loss was minimized on the March 22 (DOY 81) forecast date, but 

January 1 and May 25 (DOY 145) forecasts performed similarly (Table 2). We therefore 

selected 3 forecast dates—one early (January 1), one middle (March 22) and one late (May 

25)—for evaluating hindcast performance and variable importance. 

Hindcast evaluation 

Proportional area burned increased monotonically with increasing predicted fire 

probability for all three forecast dates (Fig. 3A). This contrasted with the static burn probability 
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map (Short et al. 2020); although proportional burned area increased steadily through the 8th 

decile bin, roughly equal proportions of the upper 3 decile bins burned (Fig. 3A). 

Precision-recall curves revealed that hindcast skill increased only slightly from the 

earliest to the latest forecast date (Fig. 3B). Dynamic hindcasts consistently outperformed the 

static burn probabilities (Fig. 3B). The upper decile of probabilities from the January 1 hindcasts, 

for example, captured 43.8% of the total burned area, while the upper decile of probabilities 

from the static map captured only 18.5% of the total burned area. The upper 3 deciles of 

January 1 hindcasts captured approximately 88% of the cumulative burned footprint, compared 

to only 54% captured by the upper 3 deciles of static burn probabilities. 3.2% of the area in the 

upper decile from January 1 hindcasts burned, while only 1.3% of the upper decile of static burn 

probabilities burned. 

Across years, mean predicted fire probability was strongly positively correlated (𝜌 > 0.6) 

with total burned area and number of large fires, and moderately positively correlated (0.6 > 𝜌 > 

0.4) with maximum fire size and fire season length (Fig. 4). These correlations varied little 

across the 3 examined forecast dates, although correlations were slightly stronger for the two 

earlier dates (January 1 and March 22). 

Variable importance 

Permutation importance and conditional importance metrics agreed on the most 

important categories of variables (Fig. 5), including past years’ herbaceous vegetation cover 

and production, bare ground cover, and drought indices measured at 1- and 2-yr temporal 

scales. The highest-ranking vegetation variable was total herbaceous production in the previous 

year for both metrics, with the exception of conditional variable importance for the May 25  

forecast. The 2-yr SPEI was also highly important, ranking in the top 3 variables for both metrics 

across forecast dates. Both metrics also agreed on the relatively low importance of shrub and 

litter cover, mean annual temperature (bio01), short-term drought indices (e.g., spei30d and 
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eddi30d), and growing degree day accumulation (gdd). Lag-2 vegetation variables ranked lower 

in importance than lag-1 variables. A notable disagreement between permutation and 

conditional importance rankings was for tree cover; permutation importance placed tree cover 

as the lowest-ranked variable, while conditional importance ranked tree cover near the middle. 

However, because of the highly skewed distribution, even the conditional importance for tree 

cover was quite low relative to variables such as total herbaceous production and 2 yr SPEI. 

As anticipated, cumulative 16-day production of perennial and annual herbaceous 

vegetation (pfgAGB_ytd and afgAGB_ytd) were more important for forecasts made later in the 

spring (i.e., May 25) than those made earlier (i.e., March 22). In contrast, 1-yr SPEI was highly 

important for January 1 forecasts, but progressively diminished in importance for later forecast 

dates (Fig. 5). 

Discussion 

Our analyses demonstrate how high-resolution, dynamic, remotely sensed vegetation 

data can be used to map fuels conducive to wildfires months in advance of the fire season in 

Great Basin rangelands. Annual hindcasts were predictive of both spatial and interannual 

patterns in fire activity over the last three decades, providing improved skill over static burn 

probabilities. Because the most important predictors were the previous year’s herbaceous 

vegetation production and long-term (1- to 2-yr scale) drought indices, accuracy was less 

sensitive to forecast lead time than anticipated. Thus, forecasts providing timely and accurate 

information about the spatial distribution of fuels and the potential severity of the upcoming fire 

season can be made available in early January, potentially expanding opportunities for 

advanced planning and resource allocation for wildfire preparedness. 

The strong correlations between average predicted fire probability and annual metrics of 

fire activity (number of large fires, total area burned, etc.; Fig. 4) speak to the extent to which fire 
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in Great Basin rangelands is controlled by antecedent conditions related to the growth of 

herbaceous vegetation as opposed to fuel moisture or fire weather; i.e., it is a fuel-limited 

system. This finding is consistent with past research (e.g., Knapp 1998, Abatzoglou and Kolden 

2013, Pilliod et al. 2017), and suggests information about fuel quantity (i.e., biomass) is equally 

or more important than information about fuel quality (i.e., moisture content) in sagebrush 

rangelands.  

A role of fuel moisture is, however, suggested by effects of shorter-term drought indices 

(Fig. S2, S3). For example, the opposite effects of EDDI at longer (e.g., 2 yr) and shorter (e.g., 

90 d) temporal scales indicates fire probability is maximized when a long-term moisture surplus 

(i.e., SPEI > 0 or EDDI < 0 at 1-2 yr scales) is followed by a dry winter/spring (Fig. S2). Among 

later forecast dates, however, the effect of current year’s growth of fine fuels (afgAGB_ytd and 

pfgAGB_ytd) becomes increasingly important (Fig. 5, S3). These opposing effects of spring 

moisture on fire probability may help explain the weak correlation between spring conditions and 

annual fire activity in rangelands of the Great Basin (Fig. S4). 

Evidence of weather’s influence during the fire season also appears in a few notable 

outliers in the regression of burned area on mean fire probability. These include years 

characterized by particularly wet late spring and summer conditions in which the burned area 

was well below expectations (e.g., 1997; Fig. S5) and years of above average summer 

temperatures in which the burned area exceeded expectations (e.g., 2007; Fig. S5). Weather is 

also highly influential in determining the intra-annual timing of fire activity and outcomes of 

individual fires, and therefore fire danger indices based on vegetation flammability and 

atmospheric conditions will continue to play a central role in short-term preparedness and fire 

suppression. 

Herbaceous fuels—forbs and grasses—were the most influential predictors of fire 

probability, whereas woody fuels (trees and shrubs) were relatively unimportant (Fig. 5). 

Inference regarding the effects of tree cover was limited, however, by the way we defined our 
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study area; most regions exceeding approximately 5% tree cover were excluded. Although the 

presence and abundance of woody vegetation increases flame lengths, fire intensity, and 

residence time with potential negative implications for suppression and post-fire recovery 

(Strand et al. 2013, Boyd et al. 2015, Weiner et al. 2016), the probability of burning per se is 

controlled primarily by characteristics of the herbaceous understory. To the extent that certain 

woody species (e.g., western juniper; Miller et al. 2000) can reduce herbaceous cover, higher 

woody fuel loads may in fact be associated with reduced incidence of fire (Miller and Tausch, 

2001). Moreover, certain treatments to reduce woody vegetation can increase herbaceous fuels, 

e.g., through soil disturbance or release from competition (Pyke, 2011, Pyke et al. 2014). An 

effective fuel management program must consider the distinct roles of herbaceous and woody 

fuels and the likely effects of management interventions on both fuel types. If reducing the 

incidence of large wildfires is the objective, fuel management should emphasize the reduction of 

herbaceous fuel loads. Where fire suppression effectiveness and safety are primary concerns, 

woody fuel treatments may be appropriate. 

Although intense interest has attended the role of exotic annual grasses in fueling large 

fires in the Great Basin and throughout the western US (Balch et al. 2013, Davies and Nafus 

2013, Fusco et al. 2019), perennial grasses and forbs were equally important as predictors of 

burning (Fig. 5). Total annual herbaceous production in the previous year was the highest in 

overall importance across metrics and forecast dates (with the exception of conditional 

importance for May 25 forecasts). This suggests the composition of herbaceous fine fuels may 

be less critical than the quantity for predicting occurrence of fire. While there is ample evidence 

exotic annual grasses have reduced fire return intervals in western US rangelands (Balch et al. 

2013), ecoregional-scale interannual variation in fire activity remains strongly controlled by 

weather-driven variation in productivity of perennial herbaceous vegetation (Pilliod et al. 2017). 

Long-term trends in fire activity, on the other hand, appear to be driven predominantly by 

increasing cover and production of annuals. A trend of increasing annual burned area has 
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recently emerged in the Great Basin (Fig. S6), with the 12 largest fires in the MTBS record 

within our study area having occurred since 2000 (of those, 8 occurred since 2010). This mirrors 

increases in fire activity occurring across ecosystems of the western US—a trend which has 

been attributed in part to the emerging influence of anthropogenic climate change on fire 

weather and fire season length (Jolly et al. 2015, Abatzoglou and Williams 2016, Abatzoglou et 

al. 2019, Bowman et al. 2020). Among the shrublands and grasslands of the Great Basin, 

however, the upturn appears to be driven largely by increasing fine fuels—in particular, exotic 

annual grasses. While perennial forb and grass production has remained stationary to slightly 

decreasing, cover and production of annuals has increased rapidly (Pastick et al. 2021, Smith et 

al. 2022), with an attendant rise in average fire probability (Fig. S6). This trend in fire probability, 

in turn, appears to largely explain the increase in burned area (Fig. 4; Fig. S6), with little 

indication that variation in burned area has become decoupled from variation in fuel quantity. 

We verified this with a post-hoc analysis in which we fit a linear regression relating total annual 

burned area (√ha) to mean herbaceous production (kg·ha−1) in the previous year (the most 

important predictor from our models) at the scale of the Great Basin. The fitted regression had 

an R2 of 0.48, and residuals exhibited no temporal trend (Mann-Kendal Z = -0.34, p = 0.73). This 

implicates increasing fine fuels, rather than more extreme fire weather or longer fire seasons, as 

the primary factor responsible for increasing fire activity in the Great Basin (also see Balch et al. 

2013). 

Implications 

The ascendancy of fine fuels as drivers of interannual and spatial patterns in wildfire 

activity in Great Basin rangelands underscores the potential efficacy of fuel management for 

mitigating wildfire hazard. Alongside ignitions, fuels are among the only factors that can be pre-

emptively addressed by land managers. Although fine fuels exert strong control on fire in these 
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ecosystems, other factors such as extreme fire weather and national-scale demand on 

resources still play an important role in the outcomes of individual fires and fire seasons. The 

combination of rising production by invasive annual grasses, weather-driven peaks in perennial 

forbs and grass production, and synchronous extreme fire weather are likely to increasingly 

challenge the capacity of fire suppression resources and cause wildfire disasters. However, 

long-lead, fuels-based spatial forecasts such as those developed here may help managers 

anticipate and mitigate such events. Managers monitor a suite of indicators of fire danger, 

including drought indices, snowpack, long-term weather outlooks, and vegetation moisture data 

as the fire season approaches. Because these indicators vary widely in spatial and temporal 

grain and extent, their integration into a coherent picture of the regional distribution of fuels 

leading into the fire season remains challenging, particularly at sub-ecoregional scales. A major 

contribution of the framework we present here is the integration of many of the indicators 

already widely used by managers into a single predictive metric applicable across a broad range 

of spatial scales, from the pixel to the ecoregion (Fig. 6). Used alongside short-term fire danger 

indices and other tools, these forecasts may help managers more accurately predict and 

prepare for where and when ignitions are likely to result in expensive, dangerous, and 

ecologically damaging large wildfires. 
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Tables 

Table 1. Predictors used in random forest models of large rangeland wildfire occurrence in the 

Great Basin, USA, 1988–2019. 

Predictor Abbreviation 

Native 

resolution1 Temporal period/scale Source2 

Annual forb and grass cover AFGC 30 m 

Annual, lag-1 and lag-

2 1 

Perennial forb and grass cover PFGC 30 m 

Annual, lag-1 and lag-

2 1 

Shrub cover SHR 30 m Annual, lag-1 1 

Litter cover LTR 30 m 

Annual, lag-1 and lag-

2 1 

Bare ground cover BG 30 m 

Annual, lag-1 and lag-

2 1 

Tree cover TREE 30 m Annual, lag-1 1 

Annual forb and grass aboveground 

biomass production afgAGB 30 m 

Annual, lag-1 and lag-

2 2 

Perennial forb and grass aboveground 

biomass production pfgAGB 30 m 

Annual, lag-1 and lag-

2 2 

Herbaceous aboveground biomass 

production herbAGB 30 m 

Annual, lag-1 and lag-

2 2 

Shrub net primary production shrNPP 30 m 

Annual, lag-1 and lag-

2 2 

Cumulative 16-d annual forb and grass 

aboveground biomass production afgAGB_ytd 30 m Jan 1-forecast DOY 2 

Cumulative 16-d perennial forb and grass 

aboveground biomass production pfgAGB_ytd 30 m Jan 1-forecast DOY 2 

Standardized Precipitation-

Evapotranspiration Index spei 4.6 km 

30 d, 90 d, 180 d, 270 

d, 1 yr, 2 yr 3 

Evaporative Demand Drought Index eddi 4.6 km 

30 d, 90 d, 180 d, 270 

d, 1 yr, 2 yr 3 

Precipitation pr 4.6 km 

Annual (ann) and 

water year to date (wy) 4 

Cumulative growing degree days gdd 4.6 km Jan 1-forecast DOY 4 

Mean annual temperature bio01 800 m  5 

Mean annual precipitation bio12 800 m  5 

1All data were resampled to a common 120 m resolution for model fitting and prediction. 
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2Sources: 

1: Rangeland Analysis Platform (RAP) fractional cover dataset (Jones et al. 2018, Allred et al. 2021). 

2: RAP annual and 16-day production dataset (Jones et al. 2021) 

3: gridMET Drought Indices; University of California Merced (Abatzoglou 2013). 

4: gridMET; University of California Merced (Abatzoglou 2013) 

5: PRISM 30-yr (1991–2020) climate normals (Daly et al. 2015)  
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Table 2. Model tuning and pixel-level evaluation of fuel-based rangeland fire probability models 

for the Great Basin using drought indices and concurrent year’s cumulative precipitation, 

growing degree days, and vegetation production at the indicated forecast date (DOY = day of 

year), and vegetation cover and annual production from the past 2 years. Performance in cross-

validation and on independent testing data is shown for the optimal combination of random 

forest hyperparameters for each forecast date. 

   Cross-validation Independent testing set 

Forecast 
DOY mtry

1 
Sample 
fraction2 AUC kappa L*log AUC kappa L*log 

1 5 0.1 0.851 0.524 0.27 0.868 0.552 0.33 

17 4 0.1 0.849 0.525 0.27 0.870 0.522 0.34 

33 4 0.1 0.853 0.521 0.27 0.868 0.565 0.32 

49 6 0.1 0.847 0.510 0.27 0.871 0.575 0.32 

65 4 0.1 0.851 0.521 0.27 0.872 0.570 0.33 

81 6 0.1 0.856 0.535 0.26 0.873 0.582 0.32 

97 5 0.1 0.846 0.518 0.27 0.866 0.548 0.34 

113 5 0.1 0.841 0.483 0.28 0.863 0.545 0.33 

129 5 0.1 0.851 0.518 0.27 0.870 0.554 0.34 

145 5 0.1 0.855 0.525 0.27 0.862 0.538 0.34 

 

1 The RF hyperparameter mtry controls the number of randomly selected predictors to consider 

at each split for building trees. 

2 Sample fraction refers to the fraction of training cases subsampled to train each tree.   
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Figures 

 

Figure 1. Workflow used to develop and evaluate dynamic spatial wildfire forecasts based on 

antecedent cover and production of vegetation, multitemporal scale drought indices, and climate 

variables for the Great Basin, USA. 
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Figure 2. Hindcasts of fire probability in the Great Basin, USA, predicted by random forest 

models using antecedent cover and production of vegetation, multitemporal scale drought 

indices, and climate variables. Perimeters of wildfires >405 ha are depicted in purple. A leave-

one-out approach was used to generate predictions for each year, with that year’s data withheld 

from model training. The nine most recent years with complete MTBS fire perimeter data are 

shown. An animation of the full time series of hindcasts, 1988–2019, is available online 

(https://rangelands.app/great-basin-fire/). 
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Fig. 3. Validation of fuel-based rangeland fire probability hindcasts (“Dynamic”) using weather 

and vegetation production data through the indicated forecast date. Continuous predictions of 

large fire probability (�̂�) were divided into 10 equal-area bins. Panel A shows the proportion of 

the total mapped area in each bin that burned in large wildfires across years (1988–2019). 

Panel B shows the precision-recall tradeoff for each forecast date (see methods for 

calculations). Performance of a widely-used static burn probability map (“Static”) is shown for 

comparison (dashed black line). 
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Figure 4. Metrics of annual wildfire activity in the Great Basin, USA, from 1988–2019 in relation 

to mean predicted fire probability. Mean fire probability was moderately to strongly correlated 

with the number of large wildfires, total area burned, and maximum fire size, and weakly 

correlated with fire season length. Mean predicted fire probability was calculated from January 1 

(left column), March 22 (middle column) and May 25 (right column) forecast dates. Fitted lines 

are from least squares regressions.  
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Figure 5. Importance of variables used to predict fire probability in the Great Basin, USA, 1988–

2019, corresponding to 3 forecast lead times (forecast date). The commonly-used permutation 

variable importance (left) yielded rankings that were generally similar to the conditional variable 

importance (right), which accounts for correlations among predictors. Antecedent production of 

herbaceous vegetation, long-term (1- to 2-year) drought indices, and bare ground were the most 

important predictors regardless of importance metric. 
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Figure 6. 2017 fire probability in the Great Basin, USA (March 22 forecast date). Insets highlight 

the applicability across a range of spatial scales. Used in conjunction with fire danger indices, 

other fire forecasts, and expert knowledge, seasonal fire probability maps may help managers 

at multiple levels prepare for where and when ignitions are likely to result in large and damaging 

wildfires. Perimeters of large (>405 ha) wildfires that occurred in 2017 are depicted in purple 

within insets. The lower left inset shows the 2017 Rooster Comb fire, with darker shading 

indicating unburned areas. 
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