bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Neural ADMIXTURE: rapid population clustering with
autoencoders

Albert Dominguez Mantes''2", Daniel Mas Montserrat!, Carlos D. Bustamante®,
Xavier Giré-i-Nieto?, Alexander G. Ioannidis" 3"

1 Department of Biomedical Data Science, Stanford University, Stanford, CA, United
States

2 Signal Theory and Communications Department, Universitat Politecnica de
Catalunya, Barcelona, Catalonia, Spain

3 Institute for Computational and Mathematical Engineering, Stanford University,
Stanford, CA, United States

* {adomi and ioannidis} @stanford.edu

Abstract

Characterizing the genetic substructure of large cohorts has become increasingly
important as genetic association and prediction studies are extended to massive,
increasingly diverse, biobanks. ADMIXTURE and STRUCTURE are widely used
unsupervised clustering algorithms for characterizing such ancestral genetic structure.
These methods decompose individual genomes into fractional cluster assignments with
each cluster representing a vector of DNA marker frequencies. The assignments, and
clusters, provide an interpretable representation for geneticists to describe population
substructure at the sample level. However, with the rapidly increasing size of population
biobanks and the growing numbers of variants genotyped (or sequenced) per sample,
such traditional methods become computationally intractable. Furthermore, multiple
runs with different hyperparameters are required to properly depict the population
clustering using these traditional methods, increasing the computational burden. This
can lead to days of compute. In this work we present Neural ADMIXTURE, a neural
network autoencoder that follows the same modeling assumptions as ADMIXTURE,
providing similar (or better) clustering, while reducing the compute time by orders of
magnitude. In addition, this network can include multiple outputs, providing the
equivalent results as running the original ADMIXTURE algorithm many times with
different numbers of clusters. These models can also be stored, allowing later cluster
assignment to be performed with a linear computational time.

Introduction

The rapid growth in numbers of sequenced human genomes and the proliferation of
population-scale biobanks have enabled the creation of increasingly accurate models to
predict traits and disease risk based on an individual’s genome. However, different
predictive models can be required depending on an individual’s genetic ancestry, and
this necessitates accurately characterizing an individual’s genetic ancestry composition
at the individual level [1]. Such characterization is also an essential part of most modern
population genetic studies and national biobanking projects. However, many existing
algorithms for population genetic analyses struggle to keep up with next generation

June 27, 2021

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

sequencing data sets, where both the number of samples and the number of sequenced
positions along the genome, are much greater. This has created an intense need for
more computationally efficient and accessible methods for detailed large-scale structure
analyses. To date the vast majority of association studies, such as genome-wide
association studies (GWAS), which look for correlations between genomics sequences
and phenotypes, and predictive models like polygenic risk scores (PRS), which indicate
genetic predisposition to phenotypes, rely on samples from individuals of European
descent, thus excluding most of the world’s population and creating a new divide in
healthcare [2]. The inclusion of fast, interpretable algorithms that characterize the
ancestry makeup of genetic sequences is an important part of facilitating the creation of
diverse association studies and expanding the reach of personalized genomic medicine.

A common approach for resolving the population structure within a genetic dataset
is to describe each sample by a set of proportional cluster assignments obtained through
an unsupervised clustering algorithm. Such methods take as input each individual’s
sequence of single nucleotide polymorphisms (SNPs), that is, those positions along the
genome known to vary between individuals. There are over 10 million known SNPs in
the human genome with most of the remainder of the human DNA sequence shared in
common between all humans. Such positions are commonly encoded with a binary value,
where 0 is used to encode the most common (or reference) variant at that SNP position
on the genome, and 1 is used to encode the minority (or sometimes called “alternative”)
variant. This binary encoding works, because the vast majority of such variable
positions have only one alternative to the common variant (are biallelic). The frequency
distribution of these variants, and the correlations (linkage disequilibrium) between
neighboring SNPs, will vary between populations due to different founder events,
migration histories, and genetic drift experienced by those different populations. These
differences can lead to predictive models trained on one population failing when faced
with sequences from an unseen population. In addition, characterizing differing variant
frequencies between populations can provide valuable historical and demographic
information such as divergence times, migration events, and historical census size [3].

In this paper we present an autoencoder that implements one of the most widely
used clustering methods for population genetics applications: ADMIXTURE [41[5].
ADMIXTURE was developed as a more computationally efficient solution than
Structure, and we now take this pursuit of efficiency to the next generation. Our
proposed method, Neural ADMIXTURE, follows the same modeling assumptions as
ADMIXTURE but re-frames the task as a neural network-based autoencoder, providing
much faster computational times, both on GPU and CPU, and higher quality cluster
assignments. Additionally, we introduce Multi-head Neural ADMIXTURE, which
combines multiple decoders to obtain clustering results equivalent to running the
original ADMIXTURE repeatedly with different priors for numbers of clusters. Both
methods also include a supervised version that performs regular classification given
ground truth training labels. The proposed method is fully compatible with the original
ADMIXTURE framework, allowing use of ADMIXTURE results as initialization for
Neural ADMIXTURE parameters, and vice-versa.

Related work

Model-based clustering methods such as FRAPPE [6], STRUCTURE |[7]| and
ADMIXTURE [4,/5] are the most commonly used unsupervised clustering techniques for
analyzing the population structure of genomic sequences. These methods, which
resemble probabilistic versions of the Non-negative Matrix Factorization (NMF),
decompose each input sequence into a set of cluster assignments and a set of centroids
(average SNP variant sequences) for each cluster. Specifically, the cluster assignments

June 27, 2021

219

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

specify what proportion of each ancestry cluster an individual has, while the centroids
indicate the SNP variant frequencies at each genetic position for each cluster. These
methods allow the user to visualize ancestry composition within genetic datasets,
compute how genetically distant different population groups are, and compute statistics
that allow the dating of migration history. STRUCTURE |[7] makes use of Bayesian
models, using a Dirichlet prior for cluster assignments and the cluster centers, trained
with Markov chain Monte Carlo (MCMC), making it highly computationally intensive.
FRAPPE [6] and ADMIXTURE [4|5] make use of maximum-likelihood point estimates,
obtaining predictions with a quality compared to STRUCTURE, but with much faster
computational times. FRAPPE makes use of the Expectation-Maximization algorithm
(EM) while ADMIXTURE, as explained in depth in the following section, makes use of
a faster block relaxation quasi-Newton optimization technique. However, each method
still requires many hours of compute time and is not well suited for modern biobank
datasets with tens or hundreds of thousands of samples and millions of SNP feature
dimensions.

Several autoencoder architectures similar to our work have been presented. Some
examples include the Dirichlet Variational Autoencoder [8], Deep Archetypal Analysis
(DeepAA) [9], and Genotype Convolutional Autoencoder (GCAE) [10]. Such networks
encode each sample as a point within a convex hull, or as a set of proportions and
probabilities. The Dirichlet VAE replaces the commonly used Gaussian prior in the
bottleneck by a Dirichlet prior. DeepAA adds constraints to enforce that the bottleneck
representation is non-negative and sums to one. GCAE is a convolutional neural
network with a Softmax activation in the bottleneck that provides similar clustering
results as ADMIXTURE, while being more computationally intensive. Such methods
are composed by non-linear encoders and decoders, which deny them the
interpretability that our method provides. In fact, our proposed method can be seen as
a non-variational version of the Dirichlet VAE with a linear decoder (without bias) and
additional constraints in the dynamic range of its weights.

Neural Network-based supervised methods for ancestry classification have also been
introduced. Some examples include LAI-Net |11}, which provides a high-resolution
ancestry estimate along a chromosome sequence, Diet Networks [12], which proposes a
genome classifier with different regularization techniques to deal with the high
dimensionality of genomic data, and Locator [13], which treats ancestry inference as a
geographical prediction problem. While these methods can accurately classify genomes
once trained, the ground truth labels used to train these supervised methods are
typically hand-crafted reflections of concepts such as ethnicity, or self-reported race of
the individual samples. These human-informed classes do not always reflect the full
spectrum, or significant clusters, of genetically relevant substructure within and between
populations. Therefore, in many genetic applications, it is preferred to use unsupervised
methods that do not rely on the complexity of socially-constructed labeling schemes.

ADMIXTURE

In this work, we follow the notation presented in Alexander et al [5]. Note that each
individual human has two copies of each chromosome (one paternal and one maternal).
Therefore, for a given individual at each genomic position we have the possibility of four
different combinations of biallelic SNPs (0/0, 0/1, 1/0, 1/1). It is common practice to
sum both maternal and paternal sequences, obtaining a count sequence n;;. In this
scenario, an individual ¢ has n;; € {0, 1,2} copies of the minority SNP j. ADMIXTURE
models each individual’s sequence, given a fixed number of clusters (population groups)
K, as n;j ~ Bin(2,p;;), where p;j = >, @ik frj, with ¢ denoting the fraction of
population k assigned to i, and fi; denoting the frequency of SNPs with value ”1” j in

June 27, 2021

319

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

population k. ADMIXTURE applies block relaxation to try to find the parameters @
and F' that minimize the following negative log-likelihood function:

Iélilgl Lo(Q,F)=— anj log(z Qi frj) + (2 —nyj) log(1 — Z%‘kfkj)
’ i,j k k

subject to 0 < fi; <1
> gn=1 M
k

Gik = 0

where Q = (g;x) and F = (fi;). ADMIXTURE also allows an
expectation-maximization (EM) based optimization, identical to FRAPPE [6], but this
approach is slower than the block relaxation approach [4]. The value of K is typically
chosen by using a cross-validation procedure, [5] necessitating runs across a range of
values.

ADMIXTURE allows, among others, two valuable optimization alternatives, which
are the projective analysis and the supervised training. In the projective analysis, F is
initialized to a previously estimated matrix, and only @ is optimized. The initialization
of F may come from previously fit ADMIXTURE models for which the learnt
population structure is considered robust. This is especially useful in scenarios where
ADMIXTURE is fit in a large dataset and new unseen samples need to be processed.
The projective analysis allows estimation of the cluster assignments without the need of
fitting the complete model with all the dataset samples. On the other hand, the
supervised version requires that some population ancestries are known, so some rows of
@ are initialized and fixed to these ancestries, while the rest of the rows of @ and F' are
optimized normally.

The block relaxation optimization in ADMIXTURE runs much faster than its main
competitors, namely FRAPPE [6] and STRUCTURE [7]. Moreover, it can be run in
multi-threading mode, greatly boosting the execution time. However, this boost is still
insufficient when dealing with either a large number of samples or a large number of
SNPs. A neural network version of the algorithm, however, benefits from massive
speedups during training (e.g. minibatch training, GPU usage), as well as during
inference time with a well-chosen architecture.

Neural ADMIXTURE

Network architecture

ADMIXTURE can be formulated as a non-negative matrix factorization problem. Let
X denote the training samples, where the features are the alternate allele counts per
SNP. Then, X =~ QF, where @) are the assignments, F' are the alternate allele
frequencies per SNP and population, and the negative log-likelihood in Equation is
the distance metric between X and QF. This can be naturally translated into the
neural network world as a vanilla autoencoder, with @ = fy(X) being the bottleneck
estimated by the encoder fy and F' being the decoder weights themselves. The
encoder-decoder architecture is depicted in Figure[I] The fact that @ is estimated at
every forward pass and not learnt as a whole for the training data means that, at
inference time, we will not have to run the optimization process again, as in
ADMIXTURE’s projective analysis, but instead perform a simple forward pass.

Note that the restrictions in the optimization problem (Equation) impose
restrictions in the architecture. Those relating to) (Zk qir = 1 and g;, > 0) can be

June 27, 2021

4/

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

enforced by applying a softmax activation at the encoder output, making the bottleneck
equivalent to the population estimates. Furthermore, while the decoder restriction

(0 < fr; < 1) could also be enforced in the architecture itself (e.g. applying the sigmoid
function to the decoder weights), we have found that it suffices to simply project the
weights of the decoder to the interval [0, 1] after every optimization step, which is one of
the most common forms of projected gradient descent [14].

We note that, critically, the decoder must be linear and cannot be followed by a
non-linearity, as it would break the interpretability of the F' matrix and the equivalence
between the decoder weights and the cluster centroids (frequencies per SNP and per
cluster) would be lost. On the other hand, the encoder architecture is free from
constraints, and it may be composed of several neural layers with its corresponding
non-linearities, if deemed appropriate. In fact, the proposed Neural ADMIXTURE
includes a 512-dimensional non-linear intermediate layer with a ReLLU activation before
the bottleneck, as well as a batch normalization layer that acts directly on the input.

— — é —
© - © E (50} -
x (0] = @] N 5
c [} c & =
4 o« 4 [3) 4
v
Encoder Decoder

Fig 1. Neural ADMIXTURE architecture. The batch-normalized input sequence
is projected into 512 dimensions and processed by a ReLU non-linearity. The cluster
assignment estimates @) are computed by feeding the 512-dimensional sequence to a
K-neuron layer activated with a Softmax. Finally, the decoder reconstructs the input
using a linear layer with weights F'. Note that the decoder is restricted to have this
architecture to ensure interpretability.

The classical ADMIXTURE model does not exactly reconstruct the input data as a
regular autoencoder would do, as the input SNP genotype sequences, n;; € {0, 1,2},
and the reconstructions p;; € [0, 1], do not have matching ranges. This can easily be
remedied by dividing the genotype counts by two, so that now the input data are

nl. = 2 € {0,0.5,1}. Moreover, instead of minimizing Lc (Equation), we propose
minimizing the binary cross-entropy instead, using a penalty term on the Frobenius

i 2
norm of the first non-linear layer weights, W7:

k

V(@ F) == ni;log(Y_ ainfrj) + (1 —ni)log(1 = > qinfas) + AWl (2)
ij k

This regularization term avoids hard assignments in the bottleneck, which helps
during the training process and reduces overfitting. In Equation we show that the
proposed optimization problem and the classical ADMIXTURE one are equivalent
(excluding the regularization term) by using the definitions of the parameters as well as

Equations (1)) and (2):

June 27, 2021 5

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

LN°(Q, F) Zn log(pij) + (1 —n;j)log(l — Dij)

= _Z 4 10g ng (7) IOg(l _pij) =

- Zn” log(pij) + (2 = n5) log(1 — pij) =

Note that a perfect reconstruction can be obtained by setting the number of clusters
equal to the number of training samples or to the number of input dimensions. However,
we want the bottleneck to capture elementary information about the population
structure of the given sequences, therefore we make use of low-dimensional bottlenecks.

Decoder initialization

Due to the restriction that non-linearities cannot be used in the decoder, as well as the
fairly large number of parameters for a single layer, the decoder weights (and thus, the
overall performance of the model) are quite sensitive to the initialization. Common
initializations, such as Xavier [15], do not work successfully in this architecture.
However, the fact that the decoder is interpretable can be exploited in our favour, as we
can try to insert information about the population structure into the initialization in an
unsupervised manner. As the entries of (fz;) are the frequencies of the alternate variant
of SNP j in population &, fi almost coincides with the centroid of the samples in
population k. This suggests that classical clustering methods can be performed with the
results used to initialize the decoder weights.

In the high dimensional space that we work, even fast clustering algorithms such as
K-Means would yield high execution times. Instead of clustering in the original feature
space, we propose to project the data using Principal Components Analysis (PCA) into
a lower dimensional subspace of only a few (2 to 6) principal components and then
perform K-Means. PCA is widely used in genetic analyses, as a small number of
principal components often explain much of the population substructure of the
sequences [16, (17, [18], which is what we are interested in. Hence, to initialize the
decoder weights, we propose Algorithm

Algorithm 1: PCK-Means Initialization
Result: Initialization weights W)
Input :Training data X', Number of populations K
Compute first two principal components on X
Xp = projection of X’ onto first two principal components
C = partition of Xp given by K-Means
for every cluster C; do
‘ Wi = ﬁ 21607’, x
end
Return: Inverse PCA transform of W

Multi-head architecture

In ADMIXTURE, cross-validation must be performed in order to choose the number of
population clusters (K), unless specific prior information about the number of

population ancestries is known. Furthermore, in many applications, practitioners desire
to observe how cluster assignments change as the number of clusters increase. With the

June 27, 2021

/i

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

number of both sequenced individuals and variants increasing, the feasible number of
different trials of cross-validation rapidly decreases due to its computational cost. As a
solution, we propose a variation to Neural ADMIXTURE: the Multi-head Neural
ADMIXTURE (MNA), which takes advantage of the 512-dimensional latent
representation (from now on, shared bottleneck) computed by the encoder. In MNA|
the shared bottleneck is jointly learnt for different values of K, {K; ... Ky}

Figure 2| shows how the shared bottleneck of the multi-head structure is split into H
different heads. The i-th head consists of a non-linear projection to a K;-dimensional
vector, which corresponds to an assignment assuming there are K; different populations
in the data. While every head could be combined and fed through a decoder, this would
cause the decoder weights F' not to be interpretable. Therefore, every head needs to
have its own decoder and, thus, H different reconstructions of the input are performed
in every forward pass.

5 & 3
- ¢ |JE o M Ty
5 ‘s L 5 *
v
>
] 2 © g] ~
X 2 o 2 . = S Xk,
= o = o =i
vy
x
B = £ £ [T | *s
= o -
w)
Encoder Decoders

Fig 2. Multi-head Neural ADMIXTURE architecture (H = 3).

As we have H reconstructions, we will now have H different loss values. We can
train this architecture by minimizing,

H
Luna(QF') = z Q. Fr), (4)

where @}, and Fj are, respectively, the cluster assignments and the SNP frequencies
per population for the h-th head. The restrictions of the ADMIXTURE optimization
problem (Equation (1)) must be satisfied by @), and F; Vh e {1,...,H}.

The multi-head architecture allows computation of H different cluster assignments,
for different values of K, efficiently in a single forward pass. Results can then be both
quantitatively and qualitatively analysed in order to decide which value of K is the
most suitable for the data.

Supervised training

ADMIXTURE allows for supervised training by fixing some (or all) entries in the @
matrix. The same approach cannot be applied to the neural network architecture
because @) are not learnt parameters (like F') but are instead the activation of the
encoder estimated at every forward pass. As a solution, we propose to add a

June 27, 2021

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

classification loss to the bottleneck entries. Let Y denote the ground truth ancestries
and Log(Q,Y) denote the cross-entropy loss. In the supervised version, the
optimization problem (assuming a single-head architecture) is formulated as

min - Lys(@Q FY) = pln (@ F) +1Lep(@.Y), (5)

along with the restrictions from Equation . Note that unsupervised Neural
ADMIXTURE can be seen as a particular case by setting = 0. Furthermore, having
both losses allows for semi-supervised training, where only part of the training samples
have ground truth labels.

In the supervised learning setting, instead of initializing the decoder weights using
PCK-Means (Algorithm 7 we can exploit the fact that we know to which population
each sample belongs; the decoder weights can simply be initialized as the centroid of
each ground truth population, a straightforward computation. Moreover, this
initialization will avoid permutation issues (i.e. cluster “i” found by PCK-Means may
not correspond to population encoded as “i”) which would make convergence slower, or
even have a negative impact on performance.

Pretrained Neural ADMIXTURE

As a final contribution, we propose a training scheme which allows reusing the results of
a previously optimized ADMIXTURE to speedup inference on a novel dataset. This is
especially useful when many ADMIXTURE runs have already been computed, so that
full retraining, which is computationally expensive with large datasets, is not desirable.
Let Iy denote the F' matrix estimated by ADMIXTURE. This matrix can be used
in Neural ADMIXTURE so the @ estimates will be similar to those given by
ADMIXTURE by (a) initializing the decoder weights Wp to F4, and (b) freezing Wp
and learning @ in a few epochs. While the resulting @ estimates will not be exactly
equal to the estimates coming from the classic ADMIXTURE, the computation of
cluster assignments will be sped up noticeably. We prove this in the next section.

Experiments

Datasets

We use a comprehensive set of publicly available human whole genome sequences from
diverse populations across the world, combining the 1000 Genomes Project [19], the
Simons Genome Diversity Project [20], and the Human Genome Diversity Project [21].
We include 550 Africans (AFR), 75 Native Americans (AMR), 651 East Asians (EAS),
496 Europeans (EUR), 27 Oceanians (OCE), 590 South Asians (SAS), and 127 West
Asians (WAS). Each category is defined geographically with the American populations
additionally filtered to exclude post-colonial groups with recent origins from other
continents (eg. Europe and Africa) by considering only samples with over 95%
indigenous local ancestry segments. The genome sequences are from anonymous
individuals sequenced with their full consent. Samples are randomly split into train and
validation using a 80/20 split. We make use of three different datasets: Chm-22,
Chm-22-SIM and Chm-1. Chm-22 and Chm-1 include the same set of individuals, but
with only the subset of their genome sequence encoded on chromosome 22 and
chromosome 1, respectively, considered. Chm-22-SIM is an augmented version of the
Chm-22 data: it contains simulated descendants of the real individuals, created using a
recombination simulation program, PyAdmix [22] with the simulations performed
independently on the train and validation partitions of Chm-22. A total of 400

June 27, 2021

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

individuals per ancestry are generated in the training set and 50 in the validation set.
Both Chm-22 and Chm-22-SIM have 317,408 SNPs, while Chm-1 has 362,605 variants.
Originally, chromosome 1 sequences contained ~ 5 times more SNPs, but inspired by
linkage disequilibrium pruning recommendations in classical ADMIXTURE, we
uniformly down-sampled the sequences. While down-sampling is required for long
sequences using GPU compute (to avoid memory problems), the complete sequence can
be used when using CPU. Furthermore, even when down-sampling the sequence,
centroid estimates for all the SNPs can be recovered after training by simply computing
the weighted average of the training samples, using as weights the cluster assigments.

Dataset # Training samples # Validation samples # variants (SNPs)

Chm-1 2,072 444 362,605
Chm-22 2,072 444 317,408
Chm-22-STM 4,872 794 317,408

Table 1. Description of datasets used in experiments

Benchmark setup

ADMIXTURE models are optimized (both in training and projection mode) using 16
threads on an Intel Xeon 2.6GHz (x86_64), with 32 cores and 260GB of RAM. The
same architecture is used to train and run inference using Neural ADMIXTURE for the
CPU experiments. For the GPU experiments, all networks are trained on a NVIDIA
GeForce RTX 2080 Ti. The same type of graphics card is used to run inference on the
trained models.

All models are trained using K = 7 clusters. Classic ADMIXTURE models are
stopped after 20 iterations in training mode. In the projective analysis mode, the
software stops upon convergence (which typically happens at less than 15 iterations).
Unsupervised networks (including the pretrained Neural ADMIXTURE) are trained
using Adam [23] for 10 epochs, except for Chm-22-SIM dataset, where the networks are
trained for 20 epochs. The supervised network is optimized over 6 epochs. To run
inference on the validation data using the networks, a batch size of 200 sequences is used.
All Neural ADMIXTURE networks are trained using a learning rate of 10~% and a batch
size of 200. The regularization parameter,), is set to 10~2. During our experiments, we
observed that the value of A is correlated with the distribution of the assignments (with
A = 0 assignments are hard, while large values of A results in completely uniform
assignations). The networks are implemented using the PyTorch framework [24].

To quantitatively evaluate performance, we compute Ej\vzo on the validation data.
Inference is understood as running a projective analysis on the validation set in
ADMIXTURE, and performing a forward pass to obtain the @ estimates in Neural
ADMIXTURE. Furthermore, we use the Adjusted Mutual Information (AMI) [25]
between the ground-truth ancestries and the @ estimates of the validation data. The
AMI is defined as:

H(q:y) —E{H(q:y)} (6)
mean(H(q), H(y)) — E{H(q : y)}

where H(q) denotes the entropy of ¢ and H(q : ¢) denotes the mutual information
between ¢ and y. E{H(q : y)} can be calculated using the equation introduced in [26].
A score of one indicates perfect agreement between the assignments, and is the
maximum value this metric can accept. The AM I can be computed using the
SciKit-Learn [27] package. Note that the AMT is not defined for soft clustering

AMI(q,y) =

June 27, 2021

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

evaluation, so in order to compute it we assume that the population assigned to a
sample corresponds to the cluster to which the individuals most belong.
On the other hand, we also evaluate the soft clustering itself with a new metric, A, as

AQ.Y) = llQ” — ¥y, 7)

where @) are the cluster assignments matrix, Y the one-hot encoded ground truth
and N the number of samples. This is equivalent to computing the mean squared
difference between the covariance matrices of both the estimated and the target
population. In case the estimates @) completely agree with Y (up to permutation), then
A will be 0. The more the disagreement, the higher the value of A.

We are interested in these metrics (AMI and A) as they are more easily
interpretable than the loss function value itself. We are aware that these
pseudo-supervised metrics will not give us the true quality of the predictions of the
models, as some labels may not be accurate. However, assuming that most of the labels
are correct, it will allow us to quantitatively analyze the agreement between the
handcrafted labels and the model estimates, and therefore give us an estimation of the
quality of the predictions, which we will use to compare between the classical and the
neural approaches and draw the appropriate conclusions in case the difference among
these metrics is high.

Moreover, let T¢ be the execution time for classical ADMIXTURE (in either training
or projective analysis) and let Ty be the execution time for the corresponding Neural
ADMIXTURE. We define the speedup as the ratio between execution times, S = T .
When S > 1, Neural ADMIXTURE runs faster than ADMIXTURE, and otherwise 1f
S <1

Single-head results

Dataset Architecture ,C]AVT/O AT Ay AMIr AMIy Sr (GPU) S; (GPU)
Chm-1 Classic 7.506e8 11 2.5 .85 .81 1.00 1.00

Neural 7.674e8 2.1 .52 .89 .88 5.78 (83.3) 114 (563)
Classic 1.195e9 15 3.0 .90 .84 1.00 1.00

Chm-22-5IM - eural 1.203¢9 .84 .30 .94 .92 2.87 (40.9) 137 (642)
Classic 6.644e8 6.7 1.5 .83 .79 1.00 1.00

Neural 6.802¢8 2.4 .67 .88 .87 5.08(8L.3) 147 (635)

Chm-22 Neural (P) 6.621e8 6.0 1.5 .79 .78 - 140 (630)
Classic (S) 6.697e8 3.4e-7 .47 1.0 .88 1.00 1.00

Neural (S) 6.695e8 1.le-5 .26 1.0 .90 890 (11.2) 169 (735)

Table 2. Performance comparison of ADMIXTURE and Neural
ADMIXTURE. T and V sub-indices denote train and validation, respectively. (P)
and (S) distinguish pretrained and supervised modes, respectively, from unsupervised
mode. St denotes the training speedup and Sy is defined as inference speedup. These

two columns denote relative CPU speedups by default. Note that the pretrained version
of Neural ADMIXTURE does not include a training speedup as it makes no sense to
perform a direct training time comparison.

The results in Table 2] show that, when training on GPU, Neural ADMIXTURE is at
least an order of magnitude faster than ADMIXTURE, while achieving very competitive

June 27, 2021

10/19

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

results. Moreover, it is approximately two orders of magnitude faster in inference, both
on CPU and on GPU. In the supervised case the CPU version of Neural ADMIXTURE
is slower than ADMIXTURE. We believe this is due to overhead introduced by the
extra gradient computation on the added supervised loss term.

We also compare ADMIXTURE and Neural ADMIXTURE by visualizing their @
estimates and their respective SNP frequencies F'. Figure [3a] contains the prediction
over the training and validation data of the dataset Chm-22-SIM. The SNP frequencies
(that is, the entries in the F' matrix) from both models can be observed (projected onto
the first two principal components of the training data) in Figure Qualitatively,
Neural ADMIXTURE estimates tend to be more polarized, with many samples being
assigned only to a single population, while ADMIXTURE appears to be more
conservative. On this dataset ADMIXTURE does not differentiate Native Americans
(AMR) and East Asians (EAS), and instead partitions Africans (AFR) into two
different different ancestry clusters. Neural ADMIXTURE, however, is able to split
EAS and AMR populations. Qualitative examples of the Multi-head Neural
ADMIXTURE are shown in the Appendix.

Such qualitative results are on par with the AMI and A values in both train and
validation (Table , and supervised and unsupervised, indicating that the Neural
ADMIXTURE provides estimates which are closer to the ground truth labels as
compared to classic ADMIXTURE.

June 27, 2021 11

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Train Validation
AFR AMR EAS EUR OCE SAS WAS AFR AMR EAS EUR OCE SAS WAS

Classic
- 0

v e wNn =

Neural

(a) Visualization of @) estimates choosing K=7 clusters. Each vertical bar represents an
individual sample and bar color lengths represent the proportion of the sample’s ancestry
assigned to that colored cluster. Classical ADMIXTURE results shown in top row and Neural
ADMIXTURE results shown in bottom.

Ancestries

e African

- Native American

* East Asian
European
Oceanian

i . pec South Asian
V. : 2 West Asian
% e

A Frequencies projection
a ADMIXTURE
o Neural ADMIXTURE

(b) Training data projected onto its first two principal components along with the projected F
matrix (cluster centers) for both classical ADMIXTURE and Neural ADMIXTURE.

Fig 3. Results from running both ADMIXTURE and Neural
ADMIXTURE trained on Chm-22-SITM.

Multi-head results

The main advantage of the Multi-head Neural ADMIXTURE (MNA) architecture is
that it can perform simultaneous clustering and inference for multiple values of K
(number of ancestry clusters). Running many different values for K allows geneticists to
obtain a more complete picture of the variation within populations, and is
recommended practice. Figure [f| and [6] show examples of the output of MNA for
different clustering results under values of K ranging from 3 to 10.

In Figure [5a) (K=3) we can observe that EUR, WAS and SAS are combined within
the same cluster, while OCE and EAS are clustered together, and AFR has its own
cluster. These results reflect the genetic similarity between the respective groups due to
their Out-of-Africa migration patterns and subsequent gene flow.

After adding a new cluster (Figure OCE obtains its own cluster, reflecting the
ancient divergence of that population from the others. As more clusters are
incorporated, AMR and EAS obtain their own clusters and OCE is divided between a
component found predominantly in OCE and a component characteristic of EAS. The
latter likely reflects the later migration of Austronesian speakers from East Asia out
into the Pacific Islands, where they contributed their ancestry to the Oceanian

June 27, 2021

1219

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

inhabitants. A shared component between EUR, SAS and WAS is maintained,
independent of the cluster number K, which could be linked to early farmer expansions
out of West Asia and into both Europe and South Asia, following the birth of
agriculture, as well as to the much later expansion of the Indo-European language
family across all of these regions. Other genetic exchanges between these neighboring
regions doubtlessly played a role.

With a sufficiently high number of clusters (Figure a shared component between
WAS and some AFR populations appear, which might reflect North African gene flow.

Ancestries
African

[] Native American
East Asian
European
Oceanian

South Asian
West Asian

Frequency Projections
g K=3

AARAX
nn
[BE, I

a
o
o

(a) K € {3,4,5,6}.

Ancestries
African

o Native American
East Asian
European
Oceanian

South Asian

% e West Asian

5 Frequency Projections
a K=7

a K=8
o K=9
o K=10

(b) K €{7,8,9,10}.
Fig 4. Projected training data along with the decoders of Multi-head
Neural ADMIXTURE. Trained on Chm-22-SIM (K from 3 to 10).

June 27, 2021 13

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

o

(a) K =3.

W

(b) K = 4.

o

(c) K =5.

b o

(d) K =6.
Fig 5. Validation results from Multi-head Neural ADMIXTURE trained
on Chm-22-SIM. K from 3 to 6.

June 27, 2021 14

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

P

(a) K="1.

~ombwn S

(b) K =8,

PR

© B e b

(d) K = 10.
Fig 6. Validation results from Multi-head Neural ADMIXTURE trained
on Chm-22-SIM. K from 7 to 10.

Discussion

In this paper, we demonstrate that the unsupervised clustering algorithm ADMIXTURE
can be re-framed as an autoencoder. This novel framing, which we name Neural
ADMIXTURE, allows for the use of common optimization techniques such as SGD or

June 27, 2021 15

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Adam and provides rapid inference through the encoder, two orders of magnitude faster
than original ADMIXTURE algorithm. Furthermore, by adding more heads, multiple
estimates with different priors on the cluster number (K) can be performed
simultaneously, reducing overall compute time still further. This approach, combined
with the use of GPU compute, can enable rapid results on even large modern biobanks.

Acknowledgments

This work was supported in part by NIH grant 7TU01HGO009080.

References

1.

10.

11.

12.

13.

14.

15.

16.

Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of
current polygenic risk scores may exacerbate health disparities. Nature genetics.
2019;51(4):584-591.

. Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, McMahon AC, et al. A

standardized framework for representation of ancestry data in genomics studies, with
application to the NHGRI-EBI GWAS Catalog. Genome biology. 2018;19(1):1-10.

Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E. Tracing the
peopling of the world through genomics. Nature. 2017;541(7637):302-310.

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in
unrelated individuals. Genome research. 2009;19(9):1655-64. doi:10.1101/gr.094052.109.

Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual
ancestry estimation. BMC bioinformatics. 2011;12:246. doi:10.1186/1471-2105-12-246.

Tang H, Peng J, Wang P, Risch NJ. Estimation of individual admixture: analytical and
study design considerations. Genetic epidemiology. 2005;28(4):289-301.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using
multilocus genotype data. Genetics. 2000;155(2):945-59.

Joo W, Lee W, Park S, Moon IC. Dirichlet variational autoencoder. Pattern
Recognition. 2020;107:107514.

Keller SM, Samarin M, Torres FA, Wieser M, Roth V. Learning extremal
representations with deep archetypal analysis. International Journal of Computer Vision.
2021;129(4):805-820.

Ausmees K, Nettelblad C. A deep learning framework for characterization of genotype
data. bioRxiv. 2020;.

Montserrat DM, Bustamante C, Ioannidis A. LAI-Net: Local-Ancestry Inference With
Neural Networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE; 2020. p. 1314-1318.

Romero A, Carrier PL, Erraqabi A, Sylvain T, Auvolat A, Dejoie E, et al. Diet
networks: thin parameters for fat genomics. arXiv preprint arXiv:161109340. 2016;.
Battey CJ, Ralph PL, Kern AD. Predicting geographic location from genetic variation
with deep neural networks. ELife. 2020;9:e54507.

Lin CJ. Projected Gradient Methods for Nonnegative Matrix Factorization. Neural
Computation. 2007;19:2756-2779. doi:10.1162/nec0.2007.19.10.2756.

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics; 2010.

Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes mirror
geography within Europe. Nature. 2008;456(7218):98-101. doi:10.1038/nature07331.

June 27, 2021

16/|19

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS genetics.
2006;2(12):e190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal
components analysis corrects for stratification in genome-wide association studies.
Nature genetics. 2006;38(8):904-9.

1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature. 2015;526(7571):68.

Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons
genome diversity project: 300 genomes from 142 diverse populations. Nature.
2016;538(7624):201-206.

Bergstrom A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights
into human genetic variation and population history from 929 diverse genomes. Science.
2020;367(6484).

Kumar A, Montserrat DM, Bustamante C, Ioannidis A. XGMix: Local-Ancestry
Inference With Stacked XGBoost. bioRxiv. 2020;.

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Bengio Y, LeCun
Y, editors. 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings; 2015.Available from:
http://arxiv.org/abs/1412.6980.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach H, Larochelle
H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural
Information Processing Systems 32. Curran Associates, Inc.; 2019. p. 8024-8035.
Available from: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdfl

Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for chance. The Journal of Machine
Learning Research. 2010;11:2837-2854.

Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings comparison:
is a correction for chance necessary? In: Proceedings of the 26th Annual International
Conference on Machine Learning; 2009. p. 1073—-1080.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825-2830.

June 27, 2021

17/]19

http://arxiv.org/abs/1412.6980
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Appendix A: Results

The order of the labels in all figures are the same as in Figure

Chm-1 (unsupervised)

(a) Classical - Training. (b) Classical - Validation.

(¢) Neural - Training,. (d) Neural - Validation.
Fig 7. Q estimates on Chm-1 (unsupervised mode).

Chm-22 (unsupervised)

(a) Classical - Training. (b) Classical - Validation.

(¢) Neural - Training. (d) Neural - Validation.
Fig 8. Q estimates on Chm-22 (unsupervised mode).

June 27, 2021 18

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450081; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Chm-22 (pretrained)

i
i
:
!
H
5
13
H
i

(a) Classical - Training. (b) Classical - Validation.

(LTI

H

z

5

H

5

i

I
i

(c) Neural - Training. (d) Neural - Validation.
Fig 9. Q estimates on Chm-22 (pretrained mode).

Chm-22 (supervised)

(a) Classical - Training. (b) Classical - Validation.

(c) Neural - Training. (d) Neural - Validation.
Fig 10. Q estimates on Chm-22 (supervised mode).

June 27, 2021 19

https://doi.org/10.1101/2021.06.27.450081
http://creativecommons.org/licenses/by-nc/4.0/

