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Abstract 

Color is a prime example of categorical perception, yet it is still unclear why and how color 

categories emerge. The key questions revolve around to what extent perceptual and 

linguistic processes determine categories. While prelinguistic infants and animals appear to 

treat color categorically, several recent attempts to model category formation have 

successfully utilized communicative concepts to predict color categories. Considering this 

apparent discrepancy, we take a different approach. Rather than modeling categories 

directly, we focus on the potential emergence of color categories as the result of acquiring 

basic visual skills. For this, we investigated whether color is represented categorically in a 

convolutional neural network (CNN) trained to recognize objects in natural images. We 

systematically trained novel output layers to the CNN for a color classification task, and 

found that clear borders arise between novel (non-training) colors that are largely invariant 

to the training colors. We confirmed these border locations by searching for the optimal 

border placement using an evolutionary algorithm that relies on the principle of categorical 

perception. Our findings also extend to stimuli with multiple, colored, words of varying color 

contrast, as well as colored objects with larger colored surfaces. These results provide 

strong evidence that color categorization can emerge with the development of object 

recognition. 

 

Significance statement  

The origin of color categories has been a controversial topic for a long time, the key 

question being to what extent perceptual and linguistic processes determine categories. 

Typically, this has been evaluated by modeling the shape of categories directly. Here, we 

take a very different approach and evaluate categorization in a neural network built for 

recognizing objects in natural scenes. Interestingly, the network appears to build a 

categorical representation of color as a side effect of learning to classify objects. This shows 

categorization may be driven by acquiring basic visual skills, particularly those pertaining to 

objects. 
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Introduction 

 

Color vision is a prime example of categorical perception, and, as such, has received 

considerable attention across several research domains (Harnad, 1987). Being dependent on 

both linguistic and perceptual processing has made it difficult to pinpoint the mechanisms 

responsible for the emergence of color categories, and why particular colors are grouped 

into categories the way they are. This has led to a protracted debate as to what extent 

categorization develops universally (independent of local language and culture) and to what 

extent it is relative to local communication (for an elaborate discussion on the Sapir-Whorf 

hypothesis see Kay, 2015; Kay & Kempton, 1984). Proponents of the universalist view have 

pointed toward the overlap in focal colors across different cultures (Regier, Kay, & Cook, 

2005). Furthermore, it appears that categories can emerge independent of language 

development: Pre-linguistic infants pay more attention to color changes crossing categorical 

borders than color changes within categories (e.g. Skelton, Catchpole, Abbott, Bosten, & 

Franklin, 2017) and several animal species respond to color categorically (Caves et al., 2018; 

Jones, Osorio, & Baddeley, 2001; Poralla & Neumeyer, 2006). Relativists (e.g. Davidoff, 

2001), however, point to the difficulty children have acquiring color names (Roberson, 

Davies, Davidoff, & Shapiro, 2004) and the case of a patient whose language impairments 

were associated with color sorting problems (Roberson, Davidoff, & Braisby, 1999). Also, 

while categorization has been found in birds and fish, researchers have failed to find 

categorization in some primates (e.g. baboons) and it has been argued that the 

methodology of other primate studies was biased towards finding categorical results (Fagot, 

Goldstein, Davidoff, & Pickering, 2006). Moreover, just as universalists point to the strong 

commonality among the development of color categories, proponents of the relativist view 

highlight differences (e.g. Roberson, Davidoff, & Davies, 2000; Roberson, Davidoff, Davies, & 

Shapiro, 2005). 

 

With the apparent contradictions in findings, in more recent years, the universalist versus 

relativist debate evolved from contrasting two extremes, to looking at how different factors 

contribute to the process of categorization (e.g. Kay & Regier, 2006; Steels & Belpaeme, 

2005). Importantly, recent advances have also started taking into account the varying utility 

of colors (e.g. Conway, Ratnasingam, Jara-Ettinger, Futrell, & Gibson, 2020; Gibson et al., 

2017; Zaslavsky, Kemp, Tishby, & Regier, 2019). One seminal finding is that, despite 

idiosyncrasies between cultures, overall, warm colors are communicated more efficiently 

than cool colors (Gibson et al., 2017). Subsequent papers have demonstrated that utilizing a 

perceptually uniform color space in combination with concepts from communication theory, 

such as an information bottleneck (Zaslavsky, Kemp, Regier, & Tishby, 2018) or rate 

distortion (Twomey, Roberts, Brainard, & Plotkin, 2020) can be powerful in modeling the 

shape of color categories. While the degree of importance for communication in shaping 

categories varies, many of these recent studies rely on communicative concepts when it 

comes to shaping color categories. Notably, a recent study where communicating deep 

neural networks played a discrimination game demonstrated that allowing continuous 

message passing made the emergent system more complex complex and decreased 

efficiency (Chaabouni, Kharitonov, Dupoux, & Baroni, 2021).  

 

While the modeling approaches incorporating communication principles have proven 

powerful in predicting categorization characteristics, the strong reliance on communication 
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does not address the existence of what appears to be categorical behavior for color in the 

above-mentioned pre-linguistic infants and various animals. Also, a recent case study shows 

that color naming can be impaired while color categorization remains intact, emphasizing 

that in humans the link between communication and categorization can be decoupled 

(Siuda-Krzywicka et al., 2019). Furthermore, the trend at looking at the ecological relevance 

of color in shaping categories has also extended to animal research where it was found that 

host birds use a single-threshold decision rule in rejecting parasite eggs rather than the 

dissimilarity in color to their own eggs (Hanley et al., 2017) and female zebra finches 

categorically perceive the orange to red spectrum of male beak color (Caves et al., 2018). 

These latter findings particularly emphasize that while taking into account the variation in 

usefulness over colors through communicative concepts may be powerful, it does not 

preclude the possibility that the same usefulness variations can play a role during the 

acquisition of basic visual skill and, that this, by itself, could result in a categorical 

representation of color.  

 

At the heart of these discussions lies the question of how and why color categories spread 

across perceptual color space, the way that they do. As described above, the possible causes 

range from visual perception being shaped based on the physical properties of the world all 

the way to the need for efficient communication about color. Focusing on color 

categorization as a potential emergent property of acquiring basic visual skills, here we 

show that a categorical representation of color can emerge automatically in a Convolutional 

Neural Network (CNN) trained to perform a basic object recognition task. With this, our 

approach is not to model specific color category data directly, nor to model specific brain 

processes. Rather, we research whether a categorical representation of color can emerge as 

a side effect of acquiring a different visual task. Previously, many studies on the 

representation of color in a CNN rely on physiological style approaches (Engilberge, Collins, 

& Susstrunk, 2017; Flachot et al., 2020; Flachot & Gegenfurtner, 2018; Rafegas & Vanrell, 

2018). Considering color categorization is likely a higher order process, we rely on classical 

principals from a long history of psychophysical studies to study the emergence of color 

categorization. 

 

 

Results 

Border Invariance. Perceptual research in non-human species requires indirect measures 

and match-to-sample tasks have successfully been utilized to study visual perception in 

numerous species for a long time (e.g. Kastak & Schusterman, 1994; Skinner, 1950). Training 

pigeons to match colors to one of three main color samples, subsequently allowed Wright 

and Cumming (1971) to introduce novel colors to determine where the borders between 

colors lay for the pigeon. Repeating the experiment with different training colors, they 

found crossover points to be similar across experiments, indicating a categorical perception 

of color. Here we use a similar approach to evaluate the color representation of a Resnet18 

CNN (He, Zhang, Ren, & Sun, 2016) that has been trained on the ImageNet task – 

categorizing objects occurring in natural images (Jia Deng et al., 2009). First (replacing the 

original output layer) a new classifier is trained on the network to classify stimuli containing 

a single word of a specific color (selected from narrow bands in the HSV color spectrum at 

maximum brightness and saturation, for stimulus examples see Figure 1A; the hue spectrum 
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with corresponding training bands is depicted in 1B). In a second step we evaluate the 

network using colors from the whole hue spectrum and inspect to what classes the colors 

are generalized. As shown in Figure 1C, colors from outside of the training bands are largely 

classified to the neighboring color bands. As a consequence, determining the borders 

between classes is straightforward (see Figure 1D). The important question in regard to 

categorization is what determines the locations of these borders? One option is that the 

borders are dependent on the positions of the training bands, meaning a shift in these 

bands should translate to a shift in borders. Alternatively, the borders between the colors 

stem from a categorical representation of color in the network. In this latter case we expect 

the borders to be (at least partially) invariant to shifts in the training bands. To investigate 

this, we repeated the above process many times while slightly shifting the training bands for 

each iteration. As we do not know how many categories to expect, we vary the number of 

output classes from 4 through 9 (note that of the 11 basic color terms, only 6 are present in 

the selected hue spectrum). The result for 6 output classes has been visualized in Figure 1E. 

As the training bands are gradually shifted (as indicated by the black lines in Figure 1E) we 

find that the borders between categories appear largely invariant to these shifts in training 

bands. 

 
Figure 1. A) Six stimulus samples corresponding to the primary and secondary colors. B) Hue spectrum 
from HSV color space (at maximum brightness and saturation). The colors for each class are selected 
from narrow, uniformly distributed, bands over the hue spectrum. Bands are indicated by the transparent 
rectangles. C) Results from an individual training iteration for the bands depicted in B. In each iteration the 
same ImageNet-trained Resnet-18 is used, but a novel classifier is trained to perform the color 
classification task with the number of output nodes corresponding to the number of training bands. Each 
pixel represents a classified sample, colored for the class it has been assigned to (based on the hue of the 
center of the training band). D) A one-dimensional color signal produced by taking the mode of each 
column in C. In this manner we obtain an overall prediction for each point on the spectrum and can 
determine where the borders between classes occur. E) Results for networks trained on 6 bands on the 
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hue spectrum. Each row represents the classification of a single network (as in D), trained on 6 bands, the 
center of which is marked by a black tick (appearing as black diagonal lines throughout the image). 

To determine whether the borders are consistent across the shifting training bands, we plot 

the transition count that indicates the co-occurrence of borders in Figure 2A (i.e., the 

number of times a border occurs in a specific location, while the bands are shifted). Note 

that while Figure 1E only displays the results for a network trained with 6 output nodes, the 

full result depends on borders found when training the network with 4, 5, 6, 7, 8 or 9 output 

nodes. As those results are collapsed, we see that the transition counts seem to form about 

7 to 8 discontinuities in the hue circle. Using a simple peak detection algorithm that relies on 

neighboring data points to find peaks, 7 peaks are found (red dots in Figure 2A). Utilizing 

those peaks, we divide the color in 7 different regions (Figure 2C), and averaging the colors 

in each region (weighing them based on the reciprocal of the transition count) results in 7 

colors that can be seen as representing each category. 

 
Figure 2. Border transitions in the color classifications. A) Summation of border transitions, calculated 
by counting the border transitions (as depicted in Figure 1D and E) for each point on the HSV hue 
spectrum (thin grey line). A smoothed signal (using a Gaussian kernel; blue thick line) is plotted to 
reduce the noise. Peaks in the signal (raw count) are found using a simple peak detection algorithm 
(argrelextrema from the scipy.signal library) and indicated in red. B) The peaks superimposed on the 
hue spectrum as vertical black dotted lines. C) Category prototypes for each color class obtained by 
averaging the color in between the two borders (using reciprocal weighing of the raw transition count 
in A. D) For each row (as in Figure 1E) the optimal cross correlation is found by comparing each row 
to every other row and shifting it to obtain the maximum correlation. In blue we plot the distribution of 
shifts for the when 7 output classes are used (as we appear to find 7 categories). For comparison we 
plot the result of a borderless situation (where borders shift with training bands) in purple and in green 
the result for a network trained from scratch on our 7 different color categories. 
 

Considering the degree of invariance is not constant over the different borders, the question 

becomes what we consider sufficient evidence for finding borders. Naturally, if the color 

representation would be strictly categorical, the result in Figure 1E would primarily show 

straight lines. On the other hand, if the network incorporated some form a continuous 

representation of color, we would expect borders to be shifting with the shifting color bands 

and diagonal transitions, following the diagonal of the training bands, would be most 

prominent. In the first case, the highest cross correlation between rows would be found by 
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keeping them in place as is. However, in the latter case, the maximum cross-correlation 

would be found by shifting the rows with respect to each other row. We can contrast the 

two cases by calculating, for each pair of rows, the lateral shift that produces the highest 

cross correlation and inspect the resulting distributions. If the borders are stable across the 

different training iterations, the distribution of such shifts to obtain the maximum cross 

correlations would be centered narrowly around zero. If the borders move along with the 

training colors, the distribution would be much wider. Simulations for these two particular 

cases are shown by the green and purple curve in Figure 2E, respectively. The histogram 

plotted in light blue shows the actual data, which more closely follow the green distribution, 

representing the categorical simulation. The difference is substantiated by a K-Sample 

Anderson-Darling test that is significantly different when comparing the found distribution 

with the resulting distribution for the continuous case (stat=7.1; p<0.001), but not when 

being compared to the categorical case (stat=0.8; p=0.15). 

 

We have elected to use the hue spectrum from the HSV color space as it includes multiple 

colors belonging to the basic color terms and because neighboring colors in HSV will be 

neighboring colors in the RGB space (in which our network was trained) at a constant 

distance. Varying the hue in the HSV space, however, does not only change the color of the 

word stimuli, but also their luminance. To ensure the current borders do not stem from a 

spurious correlation between color and luminance we have rerun the current experiment 

with different stimuli that include luminance distractors and a variable background 

luminance (see SI:Luminance Variation). While border locations are not a perfect one-to-one 

match with the current results, overall, they do seem similar and a categorical 

representation is again found. With the introduction of distractors and variation in 

background luminance the network can rely only on kernels coding purely for color and not 

a combination of color and luminance to perform the task. We also explored an alternative 

hue spectrum from a single plane of RGB color space. This led again to a categorical 

representation, albeit more noisy, presumably due to the reduction in chromatic contrast 

(see SI: Circular Color Spectrum). 

 

Evolutionary algorithm using principles of categorical perception. The generalization over 

neighboring colors and the borders between them are consistent with the notion that the 

network builds a categorical representation of color. Nevertheless, the lack of a broad 

understanding of CNNs in general and particularly their representation of color makes us 

wary to draw a definitive conclusion from only the first experiment. To evaluate whether 

the colors within the boundaries can indeed best be seen as belonging to categories we turn 

to the concept of categorical perception, where differences between colors within the same 

category are seen as smaller than differences between colors from different categories (e.g. 

Goldstone & Hendrickson, 2010). If the discontinuities we found indeed mark borders in a 

categorical representation of color, we expect that generalizing colors between 2 

discontinuities should be easier than generalizing colors that cross discontinuities. In 

humans, categorical perception is often studied using reaction time tasks (e.g. Paul Kay, 

Regier, Gilbert, & Ivry, 2009; Winawer et al., 2007; Witzel & Gegenfurtner, 2011), but a 

direct analogue of reaction times in neural networks is not available. There is however a 

different temporal performance measure available: the ability to evaluate how quickly a 

network can learn a task. If the boundaries found in the first experiment indeed resemble 

categorical borders, it should be faster for the network to learn to generalize colors within 
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two neighboring discontinuities to a specific class than to generalize colors crossing 

discontinuities. 

 

Specifically, in the current experiment we evaluate how well a set of borders fits the color 

representation of the network by evaluating how easily sets of 2 narrow training bands 

placed directly inside of these borders can be generalized to single classes. One 

straightforward way of evaluating the discontinuities found above would be to make direct 

comparisons based on their locations. However, this would either mean using biased 

comparisons based on the borders found above, or require an almost infinite number of 

comparisons to ensure we compare the found borders to every alternative. To avoid this, 

rather than using the previously found borders as a starting point, we developed a search 

algorithm that uses the principle of categorical perception to find the optimal set of borders 

for the network from scratch. The only information taken into account from the previous 

experiment is that approximately 7 borders were found: We employ an evolutionary 

algorithm that starts with 100 sets of 7 randomly initialized borders. Allowing the network 

to train for a limited number of epochs (the number of times the network sees every sample 

in the training set) we evaluate the fitness of each of the randomly initialized border sets. 

Using the fitness of each set, the best 10 performers are copied to the next generation 

(elitism) as well a set of 90 novel border instantiations. The latter instantiations are 

generated by randomly selecting parents from the previous generation (with a bias for 

better performing ones) and recombining their borders to create new border sets. By 

allowing this process to run for some 40 generations it converges to a specific set of borders 

with little variation between the top ten performers. As evolutionary algorithms are not 

guaranteed to converge to a global optimum, we ran the algorithm 12 times to ensure the 

results are consistent. In the current case the borders should be less variable, but still line 

up with the peaks of the invariant border experiment.  

 

Figure 3 shows where the evolutionary algorithm places the borders and we see a strong 

correspondence with the previously found borders (indicated by black vertical dotted lines). 

The only exception appears in the border between green and turquoise. However, note that 

this is also the region of color space where the transition count (as shown in 2A) did not 

show a sharp peak, as was the case for most other borders. Interestingly, this is also the 

border where the largest variability is observed for human observers (Hansen & 

Gegenfurtner, 2017; Figure 2E). The current results suggest that the best explanation for the 

discontinuities we observed in the first experiment are that they indeed represent 

categorical borders dividing the color space. The fact that color categorization emerges in a 

CNN trained for object recognition underscores that color categorization may be important 

to recognizing elements in our visual world (see Witzel & Gegenfurtner, 2018). This would 

also explain why there are strong universal tendencies in the development of color 

categories across cultures (e.g. Kay & Regier, 2003). Further exploring the origin of the 

borders, the results shown in SI: k-means clustering indicate that the distribution of colors in 

the ImageNet database within the hue spectrum we used might, in part, explain the 

borders, in line with earlier results by Yendrikhovskij (2001). 
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Figure 3. The evolutionary algorithm is repeated 12 times and we calculate the frequency of borders 
for in each of the top 10 border sets. The resulting frequencies are plotted in blue. Border location 
estimates from the invariant border experiment are plotted in the graph and on the hue spectrum in 
dotted black vertical lines for comparison. Ordering the borders in each solution from left to right 
allows us to derive an estimate for each border the evolutionary algorithm produces by taking the 
median for the first, second etc. values, respectively. We have plotted these medians as points, 
including a horizontal errorbar that indicates a standard deviation to demonstrate the variability for 
these values. As can be seen, the estimate for each column agrees closely to the estimate from the 
invariant border experiment. 
 

Complex color stimuli. The converging results from the above experiments provide a strong 

indication that the network represents colors categorically. Still, the stimuli used above 

deviate considerably from the ImageNet database. We, therefore, wanted to ensure that 

the found borders are directly connected to how the network deals with color. We proceed 

by investigating to what extent the borders generalize to tasks more similar to those the 

network was originally trained on and introduce a more complex set of stimuli that are 

comprised of multiple, colored, words on a randomly colored background to introduce 

contrast variations (see Figure 4A). Specifically, stimuli were comprised of 3 words colored 

based on the training specifications, as well as 2 additional words that were colored 

randomly. Finally, the background color is also randomly selected from the hue spectrum, 

however, at a lower brightness to ensure that there is sufficient contrast between words 

and background. 

 

The key question is not whether the network can perform this task, but whether the 

obtained categories are meaningful in light of more complex color images. Therefore, we 

trained novel output layers while iteratively shifting training bands from left to right within 

each category (in 10 steps). This allows us to evaluate performance as a function of the 

training band positions within the category. Two possible outcomes can be distinguished: 

On the one hand it is possible that for such complex stimuli the network deviates from the 

obtained categories and performance does not depend on where we select our training 

bands in the category. Alternatively, if the system can benefit from the categorical coding of 

color, we expect performance to be highest and the error rate to be lowest at the center of 

the categories, while the error rate should peak when the training bands align with the 

borders of the categories. In Figure 4 we see that this latter categorical representation is 

indeed what the network relies on: Overall, the network is able to perform the task 

reasonably well, but error rates are lowest towards the category centers, while increasing 
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towards the borders. As in the experiments above, there is a slight divergence at border 

between green and turquoise.  

 

 
Figure 4. Multi-colored stimuli classification performance. A) 7 example stimuli, each sampled 
from a different color band. Each stimulus consists of 3 equally colored (target) words of which the 
color is determined by the selected class. Subsequently, 2 randomly colored (distractor) words, also 
randomly positioned, were drawn on top. These words are randomly positioned in the image. Finally, 
the background for each image is chosen randomly from the spectrum, but with a reduced brightness 
of 50%. B) Error proportion as a function of hue. Separate output layers have been trained on color 
bands that are shifted from the left to the right border in 10 steps for each category at the same time. 
This means, that while one network is trained to classify words of colors sampled from a narrow range 
on the left side of each category, another network is trained to classify words of colors sampled from 
the right side of each category for each respective class. After training the performance is measured 
using novel samples on the hue spectrum that match the color bands the network is trained is. 
Subsequently, the resulting error rate is displayed in the colored line by combining the performance 
for all the networks (shaded grey region represents one standard deviation). In this manner we can 
see the error rate typically increases as it approaches a border.  
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Recognizing colored objects. The previous experiment extends our finding to more complex 

color stimuli. We chose word-stimuli because they are made up of a rich set of patterns with 

many orientations. One notable element missing in these word stimuli are the large surface 

areas that are typically found in objects. In this experiment we investigated whether the 

previously found categorical borders still guide classification when classifying objects that 

incorporate large uniform areas. For generating objects with larger uniformly colored areas 

we rely on the Google Doodle Dataset (Ha & Eck, 2017). This dataset includes thousands of 

examples of hand drawn objects, gathered from individual users. Because each drawing in 

the dataset is stored as a series of vectors it lends itself well to redraw the lines and fill the 

resulting shape with a uniform color (we plot some examples in Figure 5A). To further 

evaluate the usage of color categories in object recognition of the CNN we added one 

additional manipulation. So far, our experiments have aimed at looking on the reliance on 

color in isolation of potential other factors. However, with the introduction of objects of 

different shapes, a natural question is to what extent the network uses color or shape to 

classify the objects? To obtain a better insight into the interaction between these 

components we raised the number of classes from 7 to 14. This allows us to evaluate 

whether the network simply ignores the color categories when they are not the sole source 

of discrimination, or can use them in combination with shape features. 

 

We ran several iterations, selecting random permutations of 14 objects for the 14 training 

bands on the HSV hue spectrum (2 per category). In Figure 5B the 14 training bands are 

indicated using transparent, colored, bars, while the black dotted vertical lines again 

indicate category borders as obtained in the invariant border experiment. The proportion 

correct, plotted in the color of the hue for each object is measured over the whole hue 

spectrum (based on 100 permutations reassigning different objects to the colored bands) 

and the grey shaded area indicates one standard deviation. We observe that performance is 

consistently high within the category borders in which the training band falls, while in most 

cases there is a steep drop in performance outside of the category bounds. This means that 

on the one hand the network uses color to distinguish objects from those that are colored 

for different categories. At the same time, however, it appears that to discern two objects 

within a category, classification relies on the object shape. As such, the network appears to 

combine both color and shape information and, important to the current research question, 

the representation of color it relies on, closely follows the previously found category 

borders. 
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Figure 5. A) Samples of the google doodle dataset as colored by our simple coloring algorithm. B) 
Proportion correct as a function of hue. The 14 individual plots correspond to the 14 training bands 
that have been selected, 2 per category, 1 to the left of the category center, one to the right. The 
training bands are indicated by transparent rectangles on the spectrum, colored for the center of the 
band. The colored line represents the median proportion correct for the network on samples of the 
respective hue. Objects corresponding to each training band were randomized and the calculation 
was repeated 100 times. Per instance, 80 drawings of the respective object are filled with each color 
on the hue (in 100 steps) and proportion correct has been calculated for each instance and hue 
individually. Lines correspond to the median proportion correct over the 100 repetitions. The shaded 
grey area indicates the standard deviation over the 100 repetitions. 
 

Discussion 

 

A number of recent studies have focused on the development of categories by explicitly 

modeling color categorization. Here we have taken a different approach by evaluating 

whether color categorization could be a side effect of acquiring a basic visual skill. We found 

that color categorization is an emergent property of a Convolutional Neural Network (CNN) 

trained for object recognition. Importantly, our findings are able to unite much of the 

previous research on color categorization. First, they can explain why the emergence of 

color categories over cultures broadly follows a universal pattern. Second, the findings are 

in line with the notion that color categorization emerges in pre-linguistic infants and 

animals. Third, the findings are in line with recent reports showing a dissociation between 

color naming and color categorization. Fourth, while the findings may seem in contradiction 

to recent models relying strongly on communicative concepts, the varying communicative 

need these models rely on, likely correlates with the varying utility of colors to more basic 

visual tasks, particularly, those pertaining to objects. As such, the predictive power of these 

models may not rely on communication about colors per se, but on taking into account the 
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varying utility over colors. Therefore, it is likely that the implicit incorporation of color 

patterns useful during object recognition leads to a categorical representation of color in a 

CNN. 

 

Originally, categorization was theorized to be culturally dependent (e.g. Ray, 1952). 

However, in 1969 Berlin and Kay proposed that color categories across a wide range of 

languages could be described using 11 basic categories, as such putting forth that a 

universal process guides the development of categories across cultures. While this notion 

was first hypothesized based on visual inspection of collected categorization data, later, 

evidence was provided by demonstrating statistical regularities across cultures (Kay & 

Regier, 2003; Regier et al., 2005). The current findings can explain why the general 

development of categories is so similar across languages: If color categorization is a side 

effect of acquiring basic visual skills, given relatively similar circumstances across the globe, 

color categories are expected to shape in a similar fashion throughout many cultures. 

Naturally, this does not preclude local differences in the visual surroundings and 

communicative need from further shaping categories, however, the current findings do 

offer a potential cause for the broad similarities in color categories and their development.  

 

Measuring the full hue circle in pre-linguistic infants, Skelton and colleagues (2017) found 

that the typical novelty preference was dependent on categorical crossings. As such it 

appears that some form of categorical representation develops early on. However, it is 

unclear whether these categories are the direct basis for those that develop later in life. 

Four of the five categorical distinctions Skelton and colleagues found can be separated by 

the cardinal axis corresponding to the color representation in the retinogeniculate 

pathways, suggesting some of the categorical behavior may rely on the early representation 

of color (this issue has also been pointed out by, e.g. Lindsey et al., 2010; Witzel & 

Gegenfurtner, 2013). Also, color naming develops much later and children that have not yet 

acquired color names make recognition errors based on perceptual difference (Roberson et 

al., 2004). Similarly, it is unclear whether categorical representations of color in animals 

resemble those in humans. Nevertheless, recent findings have shown, that, as in humans, 

the utility of color may play an important role for the categorical color representation in 

animals (Caves et al., 2018; Hanley et al., 2017). As such, while the nature of the categorical 

representations in prelinguistic infants and animals is still somewhat unclear, the novel 

finding that a categorical perception emerges with the general acquisition of visual skills is in 

line with the current findings. 

 

Similar to the approach in animals, we relied on a match-to-sample task for studying color 

categories in a CNN. With this indirect approach, some limitations are similar to those in 

studies on animals. Importantly, however, there are also clear advantages to studying 

categorization in a CNN. We were able to repeat the match-to-sample task for a great 

number of training colors, without risking a bias over training sessions allowing for better 

estimates. Moreover, verifying the borders using the concept of categorical perception with 

an evolutionary algorithm is a computationally intensive task that cannot be 

straightforwardly applied to any living system, but is feasible for CNNs because of the speed 

at which an output layer can be retrained. Of course, compared to animal and infant models 

the CNN is the least convincing version of the adult visual system. Nevertheless, an 

important benefit is that as the access to activity of artificial neurons is complete it can be 
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exploited in future research: While neural networks are often described as black boxes, 

compared to biological systems, artificial neural activity is much more accessible, as one can 

easily probe the activation of all neurons. With this kind of access, a logical next step is to 

investigate how the obtained categories are coded in the CNN. In humans, coding of colors 

seems to become narrower and more variable beyond the LGN (Kiper, Fenstemaker, & 

Gegenfurtner, 1997; Lennie, Krauskopf, & Sclar, 1990) and colors belonging to the same 

category seem to be clustered together (Brouwer & Heeger, 2013). Zaidi and Conway (2019) 

suggested such narrowing may take place over areas (from V1 to IT) through operations 

equivalent to a logical AND or clustering. The CNN can serve as an important model for 

testing the viability of these concepts. 

 

Where the terms color categorization and color naming are often used synonymously, the 

subtle distinction between them is key to the debate on the emergence of color 

categorization. From a strong universalist point of view, a color name is no more than a 

label to categories that have developed perceptually. From the relativist point of view, the 

direction is reversed and it is the existence of a color term that dictates the existence of the 

respective category (e.g. Jraissati, 2014). A recent case study shows a dissociation between 

color naming and categorization. Patient RDS is able to categorize colors, but his color 

naming ability is impaired (Siuda-Krzywicka et al., 2019, 2020). The dissociation between the 

two, favor a view where categorization is a process that can exist independently of the 

linguistical labels. Interestingly, despite the problems in color naming, the link between 

objects and colors was preserved: patient RDS would often use this link to perform color 

naming tasks: “this is the color of blood; it must be red” (page 2473; Siuda-Krzywicka et al., 

2019). While it is possible to argue that our CNN does communicate (it assigns objects to a 

class), it is important to note that our network at no point is required to communicate about 

colors directly, but at best about objects. As such, the current finding effectively lines up 

with the notion that colors and their categories may be formed as part of a way to identify 

objects. 

 

The fact that the current categorical representation appears to emerge in the absence of 

color naming shows that explicit color naming is not a necessity for the development of 

categories. This may seem to stand in contrast to many of the recent studies that use 

communicative concepts as a means to model the shape of categories (Chaabouni et al., 

2021; Gibson et al., 2017; Twomey et al., 2020; Zaslavsky, Kemp, Tishby, & Regier, 2020). 

However, many of those studies derive their predictive power from combining these 

communicative concepts with the non-uniformities in the utility across colors. As such, the 

communicative concepts could just be a means to incorporate the variation in utility across 

colors. For instance, where it has been demonstrated that warmer colors are communicated 

more efficiently than cooler colors (Gibson et al., 2017), it has also been shown that objects 

are associated with warmer colors than backgrounds (Rosenthal et al., 2018). The latter 

emphasizes that the higher communicative need for warmer colors likely stems from their 

prevalence in objects. While we do not argue the process is devoid from communicative 

factors, the current results can unify the previous findings by showing that acquiring a skill 

like object recognition can lead to the emergence of a categorical representation of color. 
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Methods 

 

Invariant Border Experiment 

 

Software architecture and Stimuli 

The experiment utilizes a Resnet-18 as provided in the models module from the torchvision 

package (Marcel & Rodriguez, 2010). The network is initialized with the pretrained option 

on: weights are set based on having been trained on ImageNet (Jia Deng et al., 2009). After 

initializing the network, we replace the output layer for object recognition with a smaller 

output layer with anywhere from 4 to 9 output nodes. The weights to this novel 

(replacement) classification layer are randomly initialized.  

Stimulus images are generated using the Pillow package (Clark, 2015). Image size is the 

same as that used for the original ImageNet training (224x224 pixels). Each image contains 

the word “color” randomly positioned on a mid-grey background (font size 40, 

approximately 100 by 25 pixels, depending on font type). The color of the word is randomly 

(uniform) selected from the bands on the hue spectrum in HSV space. Color bands 

representing the individual classes are uniformly distributed over the hue space (see Figure 

1A for stimuli sampled from example bands in Figure 1B). Brightness and saturation are set 

to the maximum level. The HSV color for each pixel is converted to its equivalent in RGB 

space as the network has been trained using three input channels for red, green and blue, 

respectively. The font of the word is selected from 5 different fonts. 

 

Procedure 

For each number of output nodes (4 through 9), we initialize 150 versions of the network 

and train each on a slightly shifted set of training bands. The combined width of the training 

bands equals 20% of the total hue range. During network training we only allow the weights 

of the novel classifier to be updated, the weights of all preceding layers remain as they were 

trained on ImageNet. Each novel output layer is trained on a slightly shifted set of hue 

bands. Because we cannot determine the number of potential color categories a-priori, we 

vary the number of output classes from now 4 through 9. This results in training a newly 

initialized output layer for 150 (band shifts) times 6 (4 through 9 output classes) networks, 

making for a total of 900 training sessions. 500 samples are provided for each class and the 

network is trained for 5 epochs. During the training we keep track of the best network using 

50 separate validation samples per class (from the same training bands). After training the 

network to classify the colors from the training bands, each network is evaluated over the 

whole hue spectrum by providing the network with 60 samples for each step on the hue 

spectrum (divided into 100 steps). This results in 6000 classified samples for each of the 900 

trained networks. 

 

Analysis 

The 6000 test samples for each trained output layer are used to determine the border 

crossings. In Figure 1C we plot the classification of these 6000 samples for a single training 

iteration. To determine the best prediction, for each step on the hue spectrum (each 

column in Figure 1C), we take the mode. In this manner we transition to a one-dimensional 

representation of the network’s performance on the evaluation task, with the prediction for 

each hue. Importantly, this one-dimensional representation, as plotted in Figure 1D, is used 

to determine the border crossings: for each network we determine the borders by simply 
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picking the transition between predicted classes. Finally, we sum all the borders and from 

this we use a straightforward peak detection algorithm to find the local spots on the 

spectrum where the borders are most invariant to change. To determine how “categorical” 

the found border invariances are, we determine the maximum cross-correlation for each 

row, compared to every other row, by shifting one of the rows and finding the optimal shift 

by looking for the maximum cross correlation. To maintain the circular nature, rather than 

the ordinal colors, a semi sine wave conversion is applied to the predicted hues. By 

obtaining the shift for each row, with all other rows, we obtain a distribution of shifts, that 

can be compared to distributions representing a categorical result and continuous color 

result. The former is generated by training a Resnet-18 (from scratch) on the currently 

obtained categories and, subsequently, evaluating it in the same manner as we evaluated 

the Resnet-18 trained on ImageNet. The latter distribution is determined by calculating the 

optimal shift for the case where the borders between colors move in parallel to the shifting 

bands. 

 

Evolutionary Experiment 

  

Stimuli are the same as the previous experiment. We initialize 100 sets of 7 borders, each 

ordered from left to right (each representing a position on the hue spectrum). For each 

border set a Resnet-18 pre-trained on ImageNet is initiated and again the final fully 

connected layer is replaced. The stimuli for training the networks are generated via the 

same procedure as described in the Invariant Border Experiment, but now the hues for each 

class are selected from two narrow bands just inside of each set of neighboring borders (see 

Figure 6). Both band positions, as well as width, are relative to the two adjacent borders; 

The band starts slightly inside the border (with the closest edge located 5% from the border) 

and the band width is set to 10% of the total distance between the borders. We use two 

narrow bands at the ends of the potential category as this will mean that when the borders 

cross a categorical boundary the network will have to learn to generalize colors from 

different categories to single classes, while if the borders are located optimally, the 2 bands 

for each class will stem from 1 category each. We judge the fitness of a border set by 

evaluating how fast the network can learn the classes defined by the bands on the inside of 

two adjacent borders. Therefore, each network is trained for 3 epochs only, which is 

insufficient to reach peak performance, but allows us to evaluate which border set best fits 

the color representation of our Resnet: Border sets that align with the color representation 

of the network should allow the network to reach a higher performance quicker. 

 

 
Figure 6. A single set of 7 borders (indicated by vertical dashed lines; labelled B1 through B7). Each 
space in between two adjacent borders represents a class. Colors for the training samples for, for 
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example, Class 1 are randomly selected from one of the two bands, LB1 (Left Band for Class 1) and 
RB1 (Right Band for Class 1), on the inside of the borders of the class. Each of the two bands (not 
drawn to scale) comprises 10% of the space between; for class C1 this is the distance between first 
dotted vertical line (B1) and the second dotted vertical line (B2). Note that this means that the bands 
for class C3 for example are thinner than for Class 1. To ensure the training bands do not overlap at 
the borders, there is a gap (comprising 5% of the category space) between the border and the start of 
the band. 
 

After training the 100 networks, the border sets are sorted by the performance of their 

respective network. Note that while we base the ordering on the performance of the 

network, the network is assumed a constant factor and the performance is attributed to the 

border set that is used to generate the training set; Essentially the network is the fitness 

function for the border sets. Once the fitness of each border representation has been 

established, the sets can be ordered by fitness and we generate a new generation of border 

sets. Firstly, through the principle of elitism, the top 10 performers of the current 

generation are copied directly into the next generation. Additionally, a novel 90 border sets 

that are created by recombining border sets from the current generation. Specifically, to 

create a new set, we select two parent border sets and, first, combine any borders that 

occupy similar positions across the two sets: This is done by averaging borders that are less 

than 5% apart between the sets (we start by combining the closest borders and the 

threshold is lowered when many borders are within a 5% range). Secondly, from the 

resulting borders, 7 are randomly selected to create a new border set. In order to converge 

to the optimal border-set, the selection of the two parent sets is biased towards the better 

performing border instantiations in the current generation as follows: 55% of the parents 

are selected from the best 25 networks; 30% from the next 25 networks; and 15% of the 

borders are selected from the 25 networks thereafter. The bottom 25 networks (in terms of 

performance) do not participate in the creation of offspring. To ensure some exploration 

occurs, in the offspring, some borders are randomly shifted. Specifically, we randomly select 

2.5% of all borders and randomly shift them (random shift is normally distributed with an SD 

of 2.5% of the hue spectrum). The whole process is repeated 40 times. To allow for 

convergence after 30 generations random mutation is switched off. 

 

Multi-Color Experiment 

 

Software Architecture & Stimulus 

Again, the same Resnet18 trained on ImageNet is used as in the previous experiments. In 

the current version the ouput layer is replaced by one with 7 output classes, each matching 

a category. The stimuli were designed to include 2 factors that were absent previously. 

Firstly, we introduce multiple, colored elements in a single stimulus: Each stimulus class is 

still defined by a narrow color band on the hue spectrum, but we now draw 3 words into a 

224-by-224 pixel image (we will refer to these as the target words). On top of that we add 2 

additional words to the image of which the color is randomly selected from the hue 

spectrum (we will refer to these as the distractors). All words are colored using the HSV hue 

spectrum at maximum brightness and saturation. Secondly, we introduce variations in color 

contrast. For the categorical borders to be meaningful in classifying stimuli their utility 

should not be overly dependent on color contrast (whether a banana is sitting on a green or 

a brown table, the network should still be able to use yellow to identify the banana). 

Therefore, we introduce a variation in color contrast by randomly selecting the color of the 

background from the hue spectrum. To prevent words from blending into the background 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.28.450097doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450097


  

 17

we set the brightness of the background to 50%. Stimulus examples can be found in Figure 

4A. 

 

Procedure 

Each network is trained on colors stemming from 7 bands, each based on the borders found 

in the invariant border experiment. The bands, making up 10% of each category range, are 

shifted from the left category border to the right border in 10 steps, for each step a novel 

classifier is trained 15 times to obtain a reliable average. After being trained on the borders 

we evaluate performance for each network: The error rate for the color bands networks 

were trained on is obtained by evaluating those networks for ticks on the hue spectrum that 

fall in that range. Subsequently, we plot the error rates for the different networks as a 

single-colored line (see Figure 4B), to demonstrate how performance varies, depending on 

training bands. 

 

Objects Experiment 

 

Software architecture and Stimulus 

Stimuli are generated using the line drawings available from the google doodle dataset (Ha 

& Eck, 2017). The database contains hundreds of objects, we selected a subset based on 

two criteria. First, we selected objects that lend itself to a simple color filling algorithm. This 

mainly consisted of finding objects that had clear outer borders with large spaces on the 

inside. Secondly, we prioritized objects that were reasonably consistent in regard to shape. 

The drawings are created by many different users, and, therefore, the approach could vary 

significantly. For instance, a user could have chosen to just draw only a cat’s head 

prominently, or include its entire body. Of course, such variations are not unlike the 

variation encountered in the images the network has originally been trained on. However, 

we are only retraining the output layer of the network. The latter means that the network 

has to rely on previously trained kernels to classify the shape, and a high degree of variation 

may not be easy to code for. 

The drawing of the stimuli follows a simple procedure. Based on the drawn lines we create a 

color mask. This mask is created by determining for each pixel whether it is “enclosed” by 

lines. Enclosed, here, is defined by having a drawn line to its left (not necessarily directly 

adjacent), a draw line above it, to its right and below it. After the colored area is drawn, we 

draw, on top of it, the drawn lines at a thickness of 4 pixels. Example results of the process 

can be found in Figure 5A. 

 

Procedure 

The network is trained to classify a set of 14 objects (strawberry, apple, crab, dog, school 

bus, cow, dolphin, mushroom, bird, submarine, angel, sweater, sailboat, duck). For the 

training of the network, we selected 500 samples for each object from the google doodle 

dataset. We also selected another 50 samples per object to have a validation set to monitor 

the performance of the network throughout training. The fill color for all of these objects is 

randomly (uniformly) selected from a narrow band on the hue spectrum. Bands are selected 

to be non-overlapping and having 2 bands per category, one positioned right of the category 

center and the other left (each takes up 1/5 of the category bounds, one in the center of the 

right half and one in the center of the left half of the category). This results in 14 bands that 
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are not always evenly spaced, or uniformly distributed throughout the spectrum. The bands 

can be observed in Figure 5B. 

After having trained the network, we evaluate the network using a separate set of 80 

objects. Systematically changing the color of each of these 80 objects in 100 steps over the 

hue spectrum creates 8000 colored samples, that allow us to evaluate to what extent the 

object is classified based on its color. 
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