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Abstract 
Combining single-cell cytometry datasets increases the analytical flexibility and the statistical 
power of data analyses. However, in many cases the full potential of co-analyses is not reached 
due to technical variance between data from different experimental batches. Here, we present 
cyCombine, a method to robustly integrate cytometry data from different batches, experiments, 
or even different experimental techniques, such as CITE-seq, flow cytometry, and mass 
cytometry. We demonstrate that cyCombine maintains the biological variance and the structure 
of the data, while minimizing the technical variance between datasets. cyCombine does not 
require technical replicates across datasets, and computation time scales linearly with the number 
of cells, allowing for integration of massive datasets. Robust, accurate, and scalable integration 
of cytometry data enables integration of multiple datasets for primary data analyses and the 
validation of results using public datasets. 

Introduction 
Whether trying to elucidate mechanisms and pathways of diseased cells or characterizing the 
immune response against infectious diseases or cancer, there is an increasing demand for 
methods that enable broader and deeper single-cell profiling. Protein expression-based single-
cell cytometry has evolved immensely over the past decades. While flow cytometry remains a 
staple of both basic cell biology research and clinical diagnostics1, the introduction of mass 
cytometry (CyTOF) in 2009 increased the number of simultaneously measured markers to 452 as 
issues with signal spillover between reporter molecules and autofluorescence of cells were 
minimized3,4. More recently, spectral flow cytometry enables the measurement of 40 features or 
more without compromising throughput5. Sequence barcoding-based cytometry, such as CITE-
seq, has even further increased the number of markers to the hundreds by almost completely 
eliminating signal spillover6, and single-cell mass spectrometry is promising to increase feature 
counts even further7–9. 
 
Common to all these technologies is the desire to integrate data from different experiments, 
whether seeking to validate results using external datasets or aiming to increase the breadth 
and/or depth of the dataset used for a given study. This is rarely directly possible due to technical 
variance arising from data being generated with different antibody panels, reagent lots, or 
instruments; at different times; by different operators; etc.10. The resulting technical variance is 
commonly referred to as batch effects, and while many proposed methods offer means to alleviate 
the problem, robust, flexible, and accurate batch correction of single-cell cytometry data has 
remained a major unsolved challenge. 

Results 
The cyCombine batch correction module 
To overcome these challenges, we have developed the cyCombine method for integration of 
cytometry data. The main engine of the cyCombine batch correction module is the tried and true 
empirical Bayes method for removal of batch effects, ComBat11. ComBat was first introduced in 
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2007 as a tool to address batch effects in DNA microarray data, but the empirical Bayes model 
has since proven useful for different types of bulk expression data. However, ComBat is not 
directly applicable to single-cell data, as it is designed to detect and remove technical variance 
between samples from different batches, while preserving biological variance between samples 
belonging to homogeneous conditions. However, in single-cell cytometry data, each sample is 
often characterized by vast heterogeneity in the expression patterns of the different cell types, 
thus prohibiting explicit modelling of technical and biological variance between samples. 
 
In the cyCombine batch correction module, we address the intra-sample heterogeneity by 
considering each cell as its own sample and minimize the batch effects for groups of similar cells, 
one group at a time. The grouping of similar cells is done using a self-organizing map (SOM)12, 
with an 8x8 node grid. This means that the cells will initially be clustered into 64 categories. This 
will typically be enough to capture the diversity of peripheral blood mononuclear cells, but the grid 
size can be adjusted if less or greater heterogeneity is anticipated. In order to ensure that 
phenotypically similar cells cluster together across different batches, the expression of each 
marker is initially standardized within each batch. This is done either by transforming the 
expression values to Z-scores, which works well for fairly low-variance batches (e.g. data from 
different batches in an experiment), or ranks, which works well for high-variance batches (e.g. 
data stemming from different experiments or technologies). The transformed data are then used 
to cluster the cells using the SOM, and the node labels are assigned to the original expression 
value cells (Figure 1a). 
 
The cyCombine panel merging module 
To integrate data from experiments designed with multiple panels of antibodies for increased 
feature breadth, cyCombine includes a module for panel integration. This module is likewise 
based on SOM clustering of cells from the different panels using the overlapping markers, 
followed by probability-based imputation of missing channels by drawing expression values from 
multi-dimensional kernel density estimates calculated on the cells from the opposing panel 
(Figure 1b). The clustering and multidimensional draws ensure that co-expression patterns and 
frequencies of subtypes are maintained and only “true” cell types are imputed (see 
Supplementary Discussion). 
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Figure 1. a: Batch correction workflow. First, expression values are transformed in each batch to 
enable co-clustering of samples from all batches. After clustering, the transformed values are 
reverted to expression values and ComBat is applied to each cluster. b: Panel merging workflow. 
Clustering is performed on overlapping markers, and the missing values for each cell in a panel 
are imputed using probability draws from the co-clustered cells of the other panel. 
 
cyCombine enables large-scale integration of multi-batch, multi-panel cytometry data 
In order to demonstrate that cyCombine enables co-analysis of data from different experimental 
batches, we generated a CyTOF dataset consisting of 128 samples, run in 7 batches. The 
experiment contained two conditions: 20 healthy donor samples and 108 chronic lymphocytic 
leukemia (CLL) samples, collected from 56 patients at two different time points. Each sample was 
split in two and stained with two different antibody panels, overlapping by 15 markers and differing 
by 40 markers (Table 1). 
 
First, batch effects were minimized in each panel, after which batch effects of the 15 overlapping 
markers between the two panels were minimized (Figure 2a-b and Supplementary Figure 1). 
Then, the two panels were merged by imputing expression data from the non-overlapping 
markers. The integrated dataset consisted of 12,858,678 cells and the expression of 55 markers. 
The combined dataset was clustered based on a subset of 23 lineage markers using SOM12 and 
ConsensusCusterPlus13 to 45 meta-clusters, which were labeled manually, cleaned-up, and 
merged into a total of 29 clusters (Figure 2c and Supplementary Figure 2). The percentage of 
cells from each sample assigned to each cluster correlated very strongly (Pearson correlation 
coefficient = 0.9996) between cells derived from the two panels. For both of the two panels, the 
batch correction resulted in an earth mover's distance (EMD) reduction of 0.66. Biological 
variance was retained in both panels, as indicated by the median absolute deviation (MAD) score 
between pre and post batch correction samples being 0.02 for both panels. 
 
Within the 29 clusters we identified a range of T, NKT, myeloid, and NK cells populations (Figure 
2c and Supplementary Figure 3). Interestingly, we observed that the proportion of the T and 
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NKT cell compartment was increased in CLL patients (Figure 2d), as were circulating stem cells 
(as identified by CD34+ expression), especially closer to treatment (Figure 2e), suggesting 
marrow stress with higher disease burden. In keeping with previously published data14–16, we saw 
a decrease in naive CD8+ T cells, with corresponding increase in the CD8+ TEMRA population 
when comparing close-to-treatment CLL samples to HDs (Supplementary Figure 3). The use of 
HLA-DR in the staining further identified groups of CD8+ and CD4+ effector memory T cells that 
increased between CLL time point 1 and 2 with the CD4+ cluster being specifically enriched for 
PD-1 (Figure 2f-g and Supplementary Figure 3), similar to that reported by Elston et al. (2020)15. 
See also Supplementary Discussion. 
 

 
Figure 2. Integration and analysis of 128 CyTOF samples from 7 different batches and 2 different 
panels. a: UMAP-based on expression of the 12 overlapping lineage markers included in the final 
clustering for both panels 1 and 2 before any batch correction. Using ~100,000 cells with equal 
sampling from all batches. b: Same as in a, but after batch correction both within and between 
batches. c: UMAP for up to 2,000 cells from each of the 128 samples based on expression of the 
23 clustering markers after removal of B, CLL, and poor-quality cells. Generated after panel 
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merging, clustering, and filtering, detailed labels in Supplementary Figure 2. d-e: Boxplots 
comparing the cell type proportion of two overall cell types between three sample groups: HD, 
CLL time point 1 (T1), and CLL time point 2 (T2). False discovery rates (FDR) for the differential 
abundance testing are added to the comparisons yielding significant (FDR < 0.01) results. Please 
note the use of different y axes. f: Scatter plot for the proportion of HLA-DR+ EM CD4+ T cells in 
paired CLL T1 and T2 samples. FDR value from differential abundance testing within the T and 
NKT cell compartment. g: Density plots for PD-1 expression levels in the HLA-DR+ EM CD4+ T 
cell population (panel 1 cells only) for the three sample groups: HD, CLL T1, and CLL T2. 
 
cyCombine removes technical variance and maintains biological variance 
Another scenario where batch correction is necessary is for the integration of external datasets. 
This is relevant when validating findings in public datasets or when performing meta-analysis of 
multiple existing datasets. To demonstrate cyCombine’s capability to handle integration of data 
generated in different experimental setups, we integrated CyTOF samples from two different 
datasets. The two datasets were generated at different facilities, on different versions of the 
CyTOF instrument, with different panels of antibodies conjugated to different isotopes. Applying 
cyCombine reduced the EMD by 0.76, making the two datasets directly comparable, and with an 
MAD score of 0.04, indicating minimal loss of biological variance. As a testament to the 
robustness of cyCombine, the CLL samples being B cell depleted did not affect the batch 
correction, nor did the correction introduce B cells into the depleted batch (Figure 3). 
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Figure 3. cyCombine rank-based batch correction for an HD sample from the HIMC dataset and 
an HD and a CLL sample from panel 1 of the DFCI data. a: UMAP for all cells from the two 
datasets based on expression of the 12 overlapping markers used for manual gating before batch 
correction. Colored by dataset. b: Same as in a, but faceted by dataset and colored by manually 
assigned labels. c: EMD density plots for uncorrected and corrected data. The EMD reduction 
was 0.76 and the MAD score was 0.04. d: UMAP for all cells from the two datasets based on 
expression of the 12 overlapping markers used for manual gating after batch correction. Colored 
by manually assigned labels (assigned before correction). e-h: Same as in d-DFCI, but colored 
by expression of CD5, CD19, CD20, and CD197 before batch correction. 
 
When studying Figure 3, it is noticeable that a small cluster (0.5 %) appears in the DFCI set in 
the same UMAP position as the B cells from the HIMC set (11.9 %). We do not expect B cells in 
the DFCI set, so one could suspect that this means that B cells have been artificially introduced 
by cyCombine. However, when looking closer at these cells it becomes evident that their marker 
expression before correction is actually distinctly CLL cell-like, although with low CD19 expression 
explaining their presence after depletion. This fits with 82% of these cells originating from the CLL 
sample. While this observation makes biological sense, it highlights an important challenge when 
integrating cytometry: the breadth of the integrated dataset is limited by the overlapping markers 
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in the two panels. In this example, the CLL cells are mislabeled as myeloid due to lack of the CD5 
marker for CLL cells and corresponding lack of typical myeloid markers such as CD11b.  
 
cyCombine enables cross-platform data integration 
As cyCombine is agnostic to marker distributions, it enables integration of datasets generated on 
entirely different platforms. This can be highly useful in cases where different single-cell 
technologies have been applied to assess the same samples and one wishes to directly integrate 
the results. It is also possible to integrate data from different studies, even when the data was 
generated using different technologies. To demonstrate this feature, we applied cyCombine to 
three healthy donor PBMC samples generated by CyTOF (HIMC dataset), CITE-seq (Illumina 
dataset), and spectral flow cytometry (Park et al. dataset5), respectively. While the raw data from 
the three data types assume distinct groupings in UMAP space (Figure 4a), batch correction 
using cyCombine makes the data directly comparable (Figure 4b). The resulting EMD reduction 
was 0.69 (Figure 4c) and the MAD score 0.07, and clustering and subpopulation labeling of cells 
qualitatively indicates that data are comparable (Figure 4d). 
 

 
Figure 4. Cross-platform data integration. a: UMAP plot for uncorrected dataset consisting of 
6,776 cells from each of the CITE-seq, CyTOF, and spectral flow cytometry (SFC) datasets. b: 
UMAP for the cells of a after batch correction with cyCombine. c: Density plots for EMDs 
calculated per marker, per SOM node for each of the pairwise comparisons between platforms. 
The SOM nodes used were those derived from corrected data. d: The corrected UMAP faceted 
by technology and colored by manually assigned labels determined on each dataset separately 
before correction. 
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cyCombine scales linearly with the number of cells 
Another desirable application of cyCombine is for integration of very large cytometry datasets, 
e.g. from clinical trials or retrospective data from clinical diagnostics. Both the computation time 
and the memory requirements of cyCombine scale linearly with the number of cells and features, 
and, for example, the correction of 15 markers measured on 12,858,678 cells across 2 panels ran 
in 7 minutes on a standard laptop and required 10 GB of memory. This means that, while the 
memory requirements necessitate the use of a high performance computer, cyCombine can be 
applied to billions of cells in less than a day (for full runtime analysis see Supplementary Figure 
4 and Supplementary Discussion). 
 
cyCombine outperforms all existing methods 
Several tools for batch correction of both flow and mass cytometry data have been published. We 
tested the performance of all maintained, peer-reviewed tools: iMUBAC, CytoNorm, CytofRUV, 
and CytofBatchAdjust and compared their performance to cyCombine. To ensure a fair and broad 
comparison, we applied all tools to all the datasets used in the respective publications. As these 
tools have various limitations (e.g. designed to handle only one specific data type or condition, or 
designed to be dependent on technical replicates), each tool was tested only on datasets for 
which it was explicitly designed and tested by the authors. cyCombine was the only tool that could 
handle every single dataset in the test and showed superior performance for all of them when 
comparing the EMD reduction and MAD score (Figure 6a and 6b).  
 

 
Figure 6. Performance evaluation of cyCombine and other previously published tools. a: Heatmap 
showing the EMD reductions of the batch correction tools run on various datasets. A reduction of 
1 means a complete elimination of EMD, 0 means no change in EMD. The best-performing setting 
was selected for each tool. b: Heatmap showing the MAD scores of the batch correction tools run 
on various datasets. A score of 0 means a complete preservation of the biological variance of all 
markers in all batches. The best-performing setting was selected for each tool. In both a and b: * 
denotes that the tool is dependent on technical replicates, which is not available in the dataset. † 
denotes that the tool is only applied for healthy donor samples and utilizes subsampling. ‡ denotes 
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that the tool only corrects non-replicates and evaluations are performed on a subset of the full 
data. 

Discussion 
Deeper cytometric characterization of cell populations can have great implications, such as better 
diagnostics, development of novel therapeutics, and identification of important markers of 
immunity. However, a robust batch correction method is needed in order to fully realize the 
potential of single-cell cytometry. Correction of batch effects is often necessary to detect subtle 
biological variance in multi-batch experiments, and it is almost certainly a necessity for large-scale 
integration of data from different experiments.  
 
In cyCombine, we handle cellular heterogeneity by applying careful overclustering of the data 
using a SOM. Co-clustering of data from all batches is enabled by an intermediary transformation 
of the expression values. The subsequent batch correction is performed using an empirical Bayes 
model, designed to reduce technical noise, while maintaining the biological signal. While others 
have previously used the EMD as a metric to measure the reduction in technical variance, we 
additionally describe the use of the MAD for quantifying the conservation of biological variance, 
which is a feature that has been overlooked in the majority of previously published methods. 
 
Using these metrics, we demonstrate that cyCombine batch correction is quantifiably more 
accurate than existing tools, and through analysis of three different biologically relevant datasets, 
we highlight the high degree of flexibility and robustness of our method: cyCombine is 
independent of technical replicates across batches and makes no assumptions about homology 
of marker expression distributions. It is largely insensitive to sample and batch sizes, as it handles 
batch correction for as few as 8 cells in each SOM partition11. The SOM overclustering step 
ensures that both population abundances and cell phenotypes are retained, such that if batch 
effects are not present in a dataset, running the algorithm will not affect the expression values. 
 
The primary limitations of cyCombine are inherited from ComBat, namely that batches and 
experimental conditions cannot be confounded. This means that at least one condition from each 
batch must be present in at least one other batch. Additionally, it is important to note that batch 
correction is only possible for features present in all samples.  
 
Both the challenge and the possibilities presented here become no less relevant when both the 
rate of growth and heterogeneity of cytometry data increases as new technologies become more 
prevalent. cyCombine scales linearly with the number of cells, and we envision that cyCombine 
will catalyze an increase of large-scale analyses of cytometry data. Of particular interest are 
applications such as harmonization of clinical cytometry data, which may enable better application 
of machine learning algorithms for diagnostics, for example by enabling faster detection of 
minimal residual disease in hematological cancers. A range of use cases, including code and in-
depth discussions, are available in the cyCombine vignettes: https://biosurf.org/cyCombine. 
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Data availability 
CyTOF data will be made available on FlowRepository upon publication of this manuscript. 
 
Code availability 
The cyCombine R package is available on Github: https://github.com/biosurf/cyCombine/. Code 
to reproduce the analyses in this article is available at www.biosurf.org/cyCombine.  
 
Author contributions 
LRO and CBP conceived of the algorithm. CBP and SHD implemented the algorithm. CBP, LRO, 
MBB, MDL, and SHG designed the use cases. CBP, SHD, SHG, and LRO performed and 
interpreted the analyses. NP, LZR, TJK, JN, JAL, SHG, and CJW designed and generated the 
data for the chronic lymphocytic leukemia study. CBP, LRO, SHD, and SHG wrote the manuscript. 
All authors edited the manuscript. 

Methods 
The cyCombine package 
cyCombine was designed with protein expression-based cytometry data in mind, and the 
functions for data preparation are made to handle FCS files. cyCombine assumes that the data 
has already been pre-gated (i.e. beads, dead cells, doublets, debris, etc. have been removed). 
When using the built-in functions, the data will be ArcSinh-transformed with a cofactor of choice 
(recommended cofactors are 5 for CyTOF, 150 for flow cytometry, and 6,000 for spectral flow 
cytometry). For CyTOF data, if counts are randomized, de-randomization is recommended17. 
However, the modules of cyCombine are not limited to data in FCS format, but are designed to 
work on any expression matrix that can be represented in an R data.frame - including CITE-seq 
protein expression data etc. cyCombine contains functions for importing FCS files, detection and 
correction of batch effects, plotting, evaluating batch correction, as well as performing panel 
merging. All functions are described in detail in the reference manual and the use case vignettes 
(https://biosurf.org/cyCombine). 
 
The cyCombine batch correction module 
cyCombine’s batch correction module involves three separate steps: First, the expression of every 
marker is either Z-score normalized or converted to ranks, individually for each batch. Z-scoring 
is appropriate for similar datasets (e.g. multiple batches run on the same instrument with the same 
antibody clones and reporter molecules), whereas ranking tends to perform better for less similar 
datasets (e.g. data generated on different instruments, with different antibody-clones, different 
reporter molecules, or with different technologies). A self-organizing map (SOM)12 is applied to 
the full normalized dataset. The grid size of the SOM should reflect the expected heterogeneity 
and result in a slight overclustering of the data. In cyCombine, the grid size defaults to 8x8, 
partitioning cells into 64 clusters. Then, the SOM node labels are assigned to the original 
expression value cells, and a per cluster batch correction is applied using ComBat11. The batch 
correction step can be performed with or without the use of a non-batch cofactor, e.g. phenotype 
or sample treatment. The cyCombine approach consequently allows for complex study designs, 
where not all conditions may be present in each batch, and where technical replicates were not 
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included. It is possible to perform batch correction in studies with more than two conditions, and 
one may integrate different datasets with only one overlapping condition while accounting for this 
imbalance. The only requirement is that at least one condition from each batch is present in at 
least one other batch. 
 
Batch correction performance metrics 
In order to evaluate the performance of the methods, we primarily applied an approach based on 
the EMD strongly inspired by Van Gassen et al. (2020)18. The EMD has previously been 
suggested to be a good metric for comparing protein expression distributions18,19. Briefly, the EMD 
was used to compare the distribution of each marker within SOM nodes across batches. 
Generally, the SOM nodes were determined post-batch correction using 8x8 grids, and the labels 
were transferred to the uncorrected data so each cell had the same label in both the uncorrected 
and corrected data. For an in-depth discussion, see the performance benchmarking vignette at 
https://biosurf.org/cyCombine. The distributions were binned with bin size = 0.1, and the EMDs 
for every marker for each pairwise batch comparison were computed. These scores were 
determined for both the uncorrected and corrected data, removing those values where both had 
an EMD < 2. The EMD reduction is given as:  
 

𝐸𝑀𝐷!"#$%&'() =
∑ &𝐸𝑀𝐷*"+(!"! − 	𝐸𝑀𝐷,+&"!!)
)
'-.

∑ 𝐸𝑀𝐷*"+(!"!
)
'-.

 

 

Where n is the total number of comparisons (number of SOM nodes times the number of markers 
times the number of pairwise batch comparisons). Furthermore, we have developed a score that 
reflects the amount of variance removed during a batch correction process. The score is based 
on the median absolute deviation (MAD) and quantifies the variability of each marker in the 
dataset before and after correction. In practice, it is calculated very similarly to the EMD reduction: 
The MAD is calculated for the dataset after performing a SOM-based clustering, and is calculated 
per cluster, per marker, per batch. So, the MAD is calculated per batch, whereas the EMD 
calculations are performed for each pairwise batch-batch comparison. This means that the MAD 
score quantifies intra-batch effects of the correction, and the EMD reduction quantifies inter-batch 
effects. After calculating the MADs for both the corrected and uncorrected datasets, the MAD 
score is calculated as the median of the absolute difference in MAD per value: 
 

𝑀𝐴𝐷/%(!" = 𝑚𝑒𝑑𝑖𝑎𝑛'-.) &1𝑀𝐴𝐷*"+(!"! −𝑀𝐴𝐷,+&"!!1)	 

 

Where n is the total number of comparisons (number of SOM nodes times the number of markers 
times the number of batches). 
 
The cyCombine panel merging module 
cyCombine also contains two functions for marker imputation. One function is designed with panel 
merging in mind and imputes the expression values of non-overlapping markers across two 
datasets. It works by first doing a SOM-based (defaults to an 8x8 grid) clustering of the datasets 
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based on all of the overlapping markers. Then, for each cell in one of the datasets, the values for 
the missing markers are imputed by using the values from cells in the other dataset that fall within 
the same SOM node. The imputations are made by simulating a multi-dimensional kernel density 
estimate: Each cell’s missing values are imputed by randomly drawing a cell from the other 
dataset and adding a Gaussian error, which is based on a draw from a Normal distribution with 
mean 0 and standard deviation corresponding to the bandwidth of each marker. However, if there 
are less than 50 cells from the other dataset within the SOM node, the values for the missing 
channels are set to NA as imputation would be unreliable.  
 
The other function was made for salvaging a single channel within a dataset in selected batches. 
This can be useful in cases where one has a completely mis-stained marker in a single batch. It 
relies on the same principles, but instead of transferring information in one dataset to another, it 
utilizes intra-dataset batches. 
 
Chronic lymphocytic leukemia cohort 
Chronic lymphocytic leukemia (CLL) samples were obtained from the CLL Research Consortium 
(CRC) based at the University of California, San Diego, from patients who provided informed 
consent and as part of an institutional review board approved protocol. All samples were 
anonymized by the CRC. The dataset was generated at the Dana-Farber Cancer Institute (DFCI) 
and contained peripheral blood mononuclear cell (PBMC) samples from 20 healthy donors (5 
from DFCI and 15 from HemaCare) and samples from 56 patients with CLL. The latter were 
sampled at two distinct time points (T1 and T2), the mean time between T1 and T2 was 58.7 
months (sd = 47.4 months), and T2 was obtained close to first treatment (mean = 4.5 months, sd 
= 10.4 months) (Figure 4). For the 56 CLL patients, the mean age at diagnosis was 56.1 years 
(sd = 9.6 years), with healthy donors being age-matched (mean = 56.7 years, sd = 4.7 years). 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.28.450128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450128


 
Figure 4. Time from CLL diagnosis to treatment initiation (months) for 56 CLL patients. Timing of 
blood draws for the T1 and T2 timepoints included in this study are indicated. 
 
Immunophenotyping CLL cohort using mass cytometry 
All patient and control PBMC samples were thawed in RPMI-1640 media (ThermoFisher)  
supplemented with 10% heat-inactivated FBS, sodium heparin (20 UI/mL) and 25 units/mL 
benzonase nuclease (Life Technologies and Sigma-Aldrich). Samples were subjected to B cell 
depletion using EasySep Human CD19 positive selection kit II (Stem Cell Technologies) before 
resuspension in RMPI and 10% FBS. 

The samples were spun down and aspirated. 5 μM of cisplatin viability staining reagent (Fluidigm) 
was added for two minutes and then diluted with culture media. After centrifugation, Human 
TruStain FcX Fc receptor blocking reagent (BioLegend) was used at a 1:100 dilution final in cell 
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staining buffer (CSB) (PBS with 2.5 g/L bovine serum albumin and 100 mg/L of sodium azide, 
Sigma Aldrich) for 10 minutes followed by incubation with cell surface CyTOF antibody panels for 
30 minutes (Table 1). All CyTOF antibodies were obtained from the Harvard Medical Area CyTOF 
Antibody Resource and Core (Lederer Lab, Brigham and Women’s Hospital, Boston, MA). 

16% stock paraformaldehyde (ThermoFisher Scientific) dissolved in PBS was used at a final 
concentration of 4% formaldehyde for 10 minutes in order to fix the samples before 
permeabilization with the FoxP3/Transcription Factor Staining Buffer Set (ThermoFisher 
Scientific). The samples were incubated with SCN-EDTA coupled palladium 20-sample barcoding 
reagents (Fluidigm) for 15 minutes, washed 3X in CSB, and then combined into a single 20 PBMC 
sample for subsequent staining. Conjugated intracellular CyTOF antibodies (Table 1) diluted in 
the permeabilization buffer from the FoxP3/Transcription Factor Staining Buffer Set were added 
into each tube and incubated for 30 minutes. Cells were then fixed with 1.6% formaldehyde for 
10 minutes. 

The samples were processed in seven batches per antibody panel, each batch containing both 
control and patient samples. During sample processing, some samples were excluded due to 
dead cells or having too few cells to apply both panels. The final dataset has measurements for 
a total of 128 samples, all of which were included in the staining with panel 1, and 112 that were 
also stained with panel 2. The 20 healthy donors were all stained with both panels. The CLL 
samples stained with panel 1 consisted of 52 samples at T1 and 56 (all patients) at T2. For panel 
2, the numbers were 45 and 47, respectively. To identify single cell events, DNA was labeled for 
20 minutes with an 18.75 μM iridium intercalator solution prior to acquisition. Samples were 
subsequently washed and reconstituted in cell acquisition solution (CAS) in the presence of EQ 
Four Element Calibration beads (Fluidigm) at a final concentration of 1x106 cells/mL. Samples 
were acquired on a Helios CyTOF Mass Cytometer (Fluidigm). 

 
Table 1. CyTOF panels for the CLL dataset. * = Batch 7: did not use - had none left. † = Batches 
1-5: 1:200, batch 6: 1:400, batch 7: 1:200. Green background color denotes technical channels 
and yellow background indicates the 15 overlapping markers. 

Channel Panel 1 marker Panel 1 clone Panel 2 marker Panel 2 clone 
102Pd BC1   BC1   
104Pd BC2   BC2   
105Pd BC3   BC3   
106Pd BC4   BC4   
108Pd BC5   BC5   
110Pd BC6   BC6   
113In CD20 2H7 CD20 2H7 
115In CD3 UCHT1 CD3 UCHT1 
140Ce EQ Beads   EQ Beads   
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141Pr CD27 O323     
142Nd CD45RA HI100 CD45RA HI100 
143Nd CD279 (PD-1) EH12.2H7 CD1c L161 
144Nd CD5 UCHT2 CD5 UCHT2 
145Nd CD19 HIB19 CD19 HIB19 
146Nd CD14 M5E2 CD14 M5E2 
147Sm CD45RO UCHL1 HLA-DR L243 
148Nd Granzyme A CB9     
149Sm Granzyme K GM26E7 CD1d 51.1 
150Nd FCRL6 7B7 CD11c Bu15 
151Eu CD355 (CRTAM) Cr24.1 CD123 6H6 
152Sm CD152 (CTLA4) L3D10     
153Eu CD69 FN50 JAK1 413104 
154Sm CD33 WM53 CD33 WM53 
155Gd CD4 RPA-T4 CD4 RPA-T4 
156Gd CD337 (NCR3) P30-15     
157Gd     CD16 3G8 
158Gd CD8 RPA-T8 CD8 RPA-T8 
159Tb CD197 (CCR7) G043H7 CD197 (CCR7) G043H7 
160Gd     IFNG 4S.B3 
161Dy LAG-3 874501 CD74 LN2 
162Dy CD56 NCAM16.2 CD56 NCAM16.2 
163Dy CD137 (4-1BB) 4B4-1 DR3 (TRAMP) JD3 
164Dy CD161 (KLRB1) HP-3G10 CD161 (KLRB1) HP-3G10 
165Ho FoxP3 PCH101 FoxP3 PCH101 
166Er CD80 2D10 CD34 581 
167Er CD270 (HVEM) 122 IL23A HLT2736 
168Er CD275 (ICOSL, B7-H2)* 136726 SMAD2 376520 
169Tm CD134 (OX40) Ber-ACT35 CD11b M1/70 
170Er CD278 (ICOS) C398.4A     
171Yb CD127 RDR5 CD184 (CXCR4) 12G5 
172Yb KLRG1 2F1/KLRG1 TGFBR2 16H2L4 
173Yb CD25 M-A251 FCER1A AER-37 
174Yb  HLA-DR L243 TGFB1 TW4-2F8  
175Lu T-Bet 4B10 CD54 (ICAM1) HA58 
176Yb XCL1† Polyclonal XCL1† 109001 
191Ir DNA1   DNA1   
193Ir DNA2   DNA2   
195Pt Viability   Viability   
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209Bi     IL1RA 40007 

 
 
Analysis of CLL cohort mass cytometry data 
The raw FCS files were normalized to reduce signal deviation between samples over the course 
of multi-day batch acquisitions, utilizing the bead standard normalization method established by 
Finck et al.20 as implemented in the premessa R package21. The normalized files were then 
compensated with a panel-specific spillover matrix to subtract cross-contaminating signals, 
utilizing the CyTOF-based compensation method established by Chevrier et al.22 as implemented 
in CATALYST. These compensated files were then deconvoluted into individual sample files using 
a single-cell based debarcoding algorithm established by Zunder et al.23 available in premessa. 
This was followed by pre-gating to live intact singlet cells using FlowJo version 10 (Tree Star Inc). 

The pre-gated FCS files for each panel were read into R v. 4.0.024 using the cyCombine 
prepare_data function, using de-randomization and ArcSinh-transformation with cofactor = 5. The 
two panels consisted of a total of 6,027,290 and 6,831,388 cells. Subsequently, each panel was 
batch corrected using cyCombine with scaling and an 8x8 SOM grid using CLL/HD status as 
cofactor. After correction, all cells were clustered using an 8x8 SOM grid and the labels were 
transferred to the uncorrected data. The earth mover’s distance (EMD) was calculated for each 
marker comparing the batches and the EMD reductions and MAD scores between corrected and 
uncorrected data were determined for each panel. The data from the two panels was then co-
batch corrected using the 15 overlapping markers with scaling and an 8x8 SOM grid maintaining 
CLL/HD status as cofactor but using panel as batch. After co-correction, the 40 (19+21) non-
overlapping markers were imputed using an 8x8 SOM grid and the resulting datasets were 
combined to a single 55-marker dataset. 
 
The 55-marker data was then clustered using a 10x10 SOM grid12 and ConsensusClusterPlus13 
using 23 markers: CD3, CD4, CD8, CD45RA, CD45RO, CD197, CD127, CD25, CD5, CD19, 
CD20, CD56, CD16, CD33, CD14, HLA-DR, CD123, CD1c, CD1d, CD11c, CD11b, FCER1A, and 
CD34. The result was extracted for 45 meta-clusters, and each of these was manually annotated 
based on its marker expression. Four of the clusters were labeled as either B cells (CD19+ 
CD20+) or CLL cells (CD19-lo CD20-lo CD5+), but because these populations can be considered 
cells that escaped the applied depletion, we removed those clusters from downstream analysis. 
Furthermore, four clusters displayed abnormal expression patterns, e.g. lack of lineage markers. 
When considering the mean viability stain for the clusters, it was observed that these four clusters 
all fell within the top-six highest values. This, together with the abnormal expression patterns, 
indicated that these clusters were composed of poor-quality cells, which we also excluded from 
further analysis. Finally, we iteratively clustered and merged the remaining 37 clusters based on 
high expression similarity as previously described25, leaving a final set of 29 populations and 
10,719,711 cells to study. 
 
Differential abundance testing was carried out using an approach presented by Weber et al. 
(2019)26 (testDA_voom). Each test included individual FDR-correction for the populations 
included, but no correction was performed between tests. Instead, a FDR-threshold of 0.01 was 
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used for significance. When relevant, the paired nature of the data was considered by using 
random effects. For differential expression testing within clusters, we analyzed the cell originating 
from each panel separately, meaning that no imputed values were included. The methodology for 
differential expression testing was also derived from the work by Weber et al. (2019)26 
(testDS_limma), in which medians serve as the foundation of the tests. Only markers not used for 
clustering were included in testing. Again, paired-ness was considered when appropriate, and an 
FDR-threshold of 0.01 was used. 
 
HIMC healthy control sample 
A single healthy donor PBMC sample (Human Immune Monitoring Center (HIMC) healthy donor, 
ctrls-001, MATLAB-normalized) was downloaded from FlowRepository (ID: FR-FCM-ZYAJ) and 
pre-gated to live intact singlets in FlowJo version 10 (Tree Star Inc). The 174,601 cells were 
processed in R using cyCombine with de-randomization and ArcSinh-transformation with a 
cofactor = 5. For the integration with the CLL dataset, this was followed by manual gating to 10 
cell types based on the lineage markers, CD3, CD4, CD8, CD14, CD19, CD20, CD33, CD45RA, 
CD56, CD161, CD197, and HLA-DR. Unlabeled cells (n = 615) were discarded. For the three-
datatype integration, the pre-gating was followed by clustering to 20 meta-clusters using a 6x6 
SOM12 grid and ConsensusClusterPlus13 based on expression of 11 markers overlapping with the 
healthy donor spectral flow cytometry (SFC) and CITE-seq sets (CD3, CD4, CD8a, CD14, CD16, 
CD19, CD25, CD45RA, CD56, CD127, and PD-1). These clusters were annotated manually 
based on protein expression levels, and 8,932 cells were removed due to ambiguous expression 
patterns. 
 
Flow cytometry dataset 
The SFC dataset from Park et al.5 was downloaded from FlowRepository (ID: FR-FCM-Z2QV). 
The dataset consists of samples from 4 healthy donor PBMCs, which were frozen and thawed, 
stained with 40 different antibodies in one panel, and analyzed using a 5-laser full spectrum flow 
cytometer (Cytek Biosciences Aurora). 
 
Pre-processing was carried out in FlowJo version 10 (Tree Star Inc). The dataset was gated on 
lymphocytes, and singlets and non-debris were identified using forward and side-scatter. Dead 
cells were excluded using live/dead stains. Data from these gates were then exported in FCS 
format before further analysis in R: Using cyCombine, the data was loaded and transformed using 
ArcSinh with a cofactor = 6,000. A single sample (donor 303444) with 582,005 cells was selected 
and clustered to 20 meta-clusters using a 6x6 SOM12 grid and ConsensusClusterPlus13 based on 
expression of 11 markers overlapping with the healthy donor CyTOF and CITE-seq sets. The 
clusters were annotated manually based on protein expression levels, and 21,307 cells were 
removed due to ambiguous expression patterns. 
 
Sequence barcoding-based dataset 
The filtered feature/cell matrix from the “10k PBMCs from a Healthy Donor - Gene Expression 
and Cell Surface Protein” dataset was obtained from the 10X website 
(https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_protein_v3). This data was generated on the PBMCs of a 
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single healthy donor stained with TotalSeq-B antibodies. It was sequenced on an Illumina 
NovaSeq and processed by Cell Ranger v. 3.0.0. 
 
The TotalSeq expression matrix was processed in R using Seurat v. 4.0.027. First, cells were 
filtered to maintain only those expressing between 200 and 2800 genes, having less than 10,000 
detected RNA molecules and 20,000 detected protein molecules, and with a mitochondrial gene 
percentage below 10, leaving 6,949 cells for analysis. The protein portion of the data was 
normalized, scaled, and dimensionality reduced to the 11 markers overlapping with the CyTOF 
and SFC datasets, before applying Louvain clustering at a resolution of 0.2. The 12 resulting 
clusters were manually annotated based on the expression levels of the 11 clustering proteins. 
Two clusters were considered to be doublets and excluded from the downstream integration, 
leaving 6,776 cells. 
 
Integration of CLL and HIMC healthy donor sample 
For the integration with the HIMC healthy donor sample, two samples from the DFCI set (one CLL 
and one HD) from panel 1, batch 5 were selected (before any batch correction was applied) and 
manually gated to 10 cell types based on 12 lineage markers: CD3, CD4, CD8, CD14, CD19, 
CD20, CD33, CD45RA, CD56, CD161, CD197, and HLA-DR. Unlabeled cells (n = 4,353) were 
considered to be representative of the low-quality cells, and were discarded along with any cells 
labeled as B cells, since these were residual cells resulting from incomplete depletion. The HIMC 
sample was likewise gated to 10 populations using the same 12 lineage markers. This resulted in 
a total of 352,210 cells, with 17 overlapping markers between the datasets (CD3, CD4, CD8, 
CD14, CD19, CD20, CD25, CD27, CD33, CD45RA, CD56, CD127, CD161, CD197, HLA-DR, 
ICOS, and PD-1). Datasets were batch corrected using cyCombine with an 8x8 SOM grid with 
the rank normalization method (and average ties method). Each set was considered a batch, and 
the HD/CLL status was used as a cofactor. The result of the batch correction was evaluated with 
the EMD reduction and MAD score as well as visual inspection of UMAP plots comparing the 
location of each cell type (which was assigned separately) across datasets. 
 
Integration of cross-platform datasets 
The HIMC CyTOF sample, the SFC sample, and the CITE-seq data were batch corrected together 
following the pre-processing described in the section for each set. Before batch correction, each 
set was downsampled to 6,776 cells and to the 11 overlapping protein markers. This was followed 
by cyCombine batch correction with an 8x8 SOM grid with the rank normalization method (and 
average ties method). Each dataset was considered a batch and no cofactors were considered. 
The result of the batch correction was evaluated with the EMD reduction and MAD score as well 
as UMAP plots comparing the location of each cell type (which was assigned separately) across 
datasets. 
 
Benchmarking 
We compared the performance of the cyCombine batch correction module with four batch 
correction algorithms designed to work with mass cytometry data: CytoNorm18, CytofRUV28, 
iMUBAC29, and CytofBatchAdjust30. Other tools exist, both developed for flow and mass 
cytometry, including gaussNorm and fdaNorm31,32, which the authors state are no longer 
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supported, and the tools cydar33, BatchEffectRemoval34, BatchEffectRemoval201835, SAUCIE36, 
and swiftReg37, which are not included due to either not being peer-reviewed, not being 
maintained, requiring a license, or being designed to work only on very specific cases, such as 
harmonizing two technical replicates. We tested each included tool on the datasets from the 
original publications and the set of datasets from other publications deemed to be suitable by the 
authors of each tool; i.e. some tools require technical replicates and not all datasets include these. 
Furthermore, we only test each tool on datasets from platforms for which the use is demonstrated 
in the original publication. For tools with multiple tested settings, the setting with the best overall 
performance based on both the EMD reduction and MAD score was recorded. 
 
All five included tools were run on the CyTOF datasets originally presented in the CytoNorm and 
CytofRUV papers. We will refer to these two sets as the Van Gassen and the Trussart data, 
respectively. Additionally, we batch corrected six CyTOF datasets and one SFC set without 
technical replicates using cyCombine and iMUBAC. These datasets are the DFCI panel 1 and 
panel 2 sets, and five datasets presented in the iMUBAC article: Each of the three panels of the 
Krieg dataset, as well as a CyTOF and a SFC set originally generated for iMUBAC, which we 
refer to as OgishiCyTOF

 and OgishiSFC. An overview is presented in Table 2. All CyTOF datasets 
were ArcSinh-transformed with a cofactor = 5 for processing with all tools. 
 
Table 2. Datasets used for benchmarking study. * = Counting replicates as distinct samples. 

Dataset Instrument Samples Batches Conditions Cells 
(million) 

Markers FlowRepository 
ID 

Originally 
used for tool 

Van Gassen38 CyTOF2.0 40* 10 2 6.2 37 FR-FCM-Z247 CytoNorm18 

Trussart28 Helios 24* 2 2 8.6 31 FR-FCM-Z2L2 CytofRUV28 

Krieg139 Helios(2.1) 60 4 3 1.1 30 FR-FCM-ZY34 iMUBAC29 

Krieg239 Helios(2.1) 60 4 3 1.7 26 FR-FCM-ZY34 iMUBAC 

Krieg339 Helios(2.1) 60 4 3 0.3 25 FR-FCM-ZY34 iMUBAC 

OgishiCyTOF
29

 Helios 57* 7 3 12.4 38 FR-FCM-Z3YK iMUBAC 

OgishiSFC29 Aurora 14 2 3 9.7 18 FR-FCM-Z3YL iMUBAC 

DFCI1 Helios 128 7 2 6.0 36 TBA cyCombine 

DFCI2 Helios 112 7 2 6.8 34 TBA cyCombine 

 
The Van Gassen dataset18 consists of 40 samples from two healthy controls. They comprise 
unstimulated and stimulated samples each run 10 times (10 batches). 37 protein markers were 
measured. The Trussart dataset28 consists of 24 samples from nine healthy controls (HC) and 
three CLL patients, each run twice (two batches). 31 protein markers were measured. The FCS 
files were pre-processed with bead normalization and debarcoding according to the script from 
the CytofRUV supplementary files (using CATALYST). The Krieg1, Krieg2, and Krieg3 datasets39 
comprise 30, 26, and 25 markers, and each contain 60 samples. They were, according to the 
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original publication, processed as four experimental batches. Three conditions are considered: 
Healthy donors (n = 20), responders (n = 22), and non-responders (n = 18) to anti-PD-1 
immunotherapy. Each condition is included in each of the four batches. The dataset was pre-
processed according to the instructions in the iMUBAC article: DNA and viability intercalators 
were used to exclude dead cells, doublets, and debris with the prepSCE function from iMUBAC. 
The OgishiCyTOF dataset29 contains measurements on 38 protein markers and consists of 57 
samples in seven batches. A total of three conditions were included: Healthy (n = 50), MSMD (n 
= 5), and Salmonellosis (n = 2). Some of the healthy samples are biological replicates. The dataset 
was pre-processed according to the instructions in the iMUBAC article: DNA and viability 
intercalators were used to exclude dead cells, doublets, and debris. The OgishiSFC dataset29 
measured 18 protein markers across 14 samples in two batches. A total of three conditions were 
included: Healthy donors (n = 11) and two types of autoimmune disease (n = 1 and n = 2). The 
dataset was pre-processed according to the instructions in the iMUBAC article: The viability stain 
was used to exclude dead cells and logicle transformation was used. 
 
When running CytoNorm, we used FlowSOM clustering with a 10x10 grid and 25 final clusters 
(no downsampling). The batch effects were modelled using 101 quantiles. All protein markers 
were included. For the Van Gassen set, the 20 samples from healthy control 1 were used to model 
batch effects and the 20 samples from healthy control 2 were normalized. Evaluation of batch 
effect reduction was carried out using only the samples from healthy control 2. For the Trussart 
dataset, the CLL2 and HC1 samples were used as the technical replicates (training data). The 
remaining 20 samples were used as validation data and the evaluation of batch effect reduction 
was carried out using only the HC2-9, CLL1, and CLL3 samples. Corrected values were capped 
at 300 to avoid problems with very large values during evaluation. 
 
For running CytofRUV, we used clustering with 20 clusters on lineage markers only (24 for Van 
Gassen and 19 for Trussart). All markers were corrected at varying values of k = {5,10,15,20}. 
For the Van Gassen set, all healthy control 1 samples were used as technical replicates (two sets 
of 10 samples each). For the Trussart set, the CLL2 and HC1 samples were used as the technical 
replicates. All samples were included in the evaluation. 
 
For running CytofBatchAdjust, all files were renamed according to the tool requirements. For Van 
Gassen, PTLG021 was used as the reference batch and the unstimulated healthy control 1 
samples were used as anchors. We tested CytofBatchAdjust with method = {95p, SD, quantile}. 
For the Trussart set, HC1 was used as the anchor sample and RUV1b samples as reference 
batch. All markers were used for correction and all samples were used in evaluation. Corrected 
values were capped at 300 to avoid problems with very large values during evaluation. 
 
iMUBAC was run largely according to the details in the original article. For all datasets, only 
healthy donors were included in correction, and downsampling to 200,000 cells for each batch 
was applied for all datasets, except for the Krieg3 dataset, for which we downsampled to 50,000 
cells per batch, and the OgishiSFC set, for which 500,000 cells per batch were included. For the 
OgishiCyTOF set, only 47 local healthy donor samples were included as in the original publication 
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(travel/family controls excluded). All evaluations were based solely on the downsampled datasets 
using all markers. 
 
cyCombine was generally run on all available samples using the conditions stated in the 
presentation of each dataset. We ran cyCombine with norm_method = {scale, rank} on the full 
datasets with all markers. 
 
Runtime and memory requirements 
Several of the evaluated tools ran directly on FCS files; therefore, running these tools on a range 
of different sizes required storing downsampled versions of the original FCS files in new ones. 
This was done by loading the original FCS files, disregarding non-overlapping columns, sampling 
to the predefined sample-sizes, and storing the resulting data in respective folders. By storing the 
data this way, it was ensured that all tools were run on the same data at each data size. The 
runtime and memory usage were measured for each tool for every sample size using the UNIX 
command “time -v”. The “Maximum resident set size” and the “elapsed” parameters in the output 
defined the memory usage and runtime, respectively. The test was performed on 40 cores 
(although none of the tools are fully parallelized, some sub functions are) on an HPE Apollo 2000 
system with up to 192 GB PC4 2933 RAM. The “standard laptop” was a 2018 MacBook Pro with 
16 GB 2400 MHz DDR4 memory and a 2.6 GHz 6-Core Intel Core i7 processor. 
 
Plots 
UMAPs were generated using uwot v. 0.1.940. Plots were generated using ggridges v. 0.5.241 and 
ggplot2 v. 3.3.342, and patchwork v. 1.1.143 was used for combining plots. 
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