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Abstract 

The hippocampus is an essential hub for episodic memory processing. However, how human 

hippocampal single neurons code multi-feature associations remains unknown. Here, we 

provide evidence that individual neurons code discrete memory episodes, which we term 

Episode Specific Neurons (ESNs). These ESNs do not reflect the coding of a particular feature 

in the episode (i.e., concept or time). Instead, they code for the conjunction of the different 

elements that make up the episode.  

 

Main text 

Episodic memory refers to our ability to reinstate the what, where and when of past 

experiences (Tulving, 2002). It is undisputed that the hippocampus has an integral role in 

episodic memory processing (Lisman et al., 2017; Marr, 1971; Squire, 1992), but how it 

codes episodic memories remains controversial. Concept cells in the hippocampus fire in 

response to specific invariant features independent of the context. One prevailing idea is 

that the diverse elements that make up an episode are coded by the simultaneous activity of 

multiple of these concept cells (Quiroga, 2020). Alternatively, single units in the 

hippocampus might sparsely encode a specific set of features within an individual episode 

that act as pointers to cortical modules during memory reinstatement (Teyler & DiScenna, 

1986). Unlike concept neurons, these Episode Specific Neurons (ESNs) would fire in response 

to a conjunctive code and not in response to individual content features (such as a specific 

face or a specific place). Despite simulations pointing towards their existence (Bowman & 

Wyble, 2007), to this day there is no evidence for such a sparse conjunctive code in humans. 

In search of an answer to this issue, we leveraged intracranial microwire recordings to 

investigate the firing patterns of single neurons in the human hippocampus. We analyzed 

recordings from 16 participants (7 female; age mean = 36.125 years, from 26-53 years) 

implanted with stereotactic Behnke-Fried depth electrodes in the hippocampus while they 

performed a memory association task (Figure 1a). 

We hypothesized a firing rate reinstatement in a significant number of hippocampal single 

neurons that code for the conjunctive features present within a specific episode. As control 

analyses, we investigated whether this firing activity can be explained by a firing response to 

specific invariant features as occurs in ‘concept cells’ (CC; Quiroga et al., 2005), or by a time 

preference, as occurs in ‘time cells’ (TC; Reddy et al. 2020; Umbach et al., 2020). 

For every single neuron, we determined the firing rate during each correctly remembered 

episode at encoding and retrieval. We then z-scored the firing rate across all encoding and 

retrieval episodes independently. We measure episode-specific firing reinstatement as the 

product of the standardized firing rates at encoding and retrieval (Figure 1b). 
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Figure 1. Experiment procedure, analysis outline, and results. (a) Outline of the experiment procedure. During 

encoding, participants imagined an episode involving an animal cue and two associate images (two faces, two 

places or a place and a face) and rated its plausibility. During recall, participants were asked to retrieve the 

associated images when cued with the animal cue. The experiment was self-paced and every episode was 

learned and tested only once. Following each encoding block of roughly 20 episodes, participants performed a 

short distractor task. The pink areas represent the time windows used for subsequent analyses. (b) A schematic 
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for identifying Episode Specific Neurons (ESNs) is shown. The diagram shows the z-scored firing rate on the y-

axis for ten simulated episodes on the x-axis color-coded for encoding and retrieval (purple and orange, 

respectively). The transparent bars encompassing encoding and retrieval indicate the product of encoding and 

retrieval firing rates, which is used as the measure of episode-specific reinstatement. The dotted red line shows 

the threshold (derived from a shuffling procedure, see Methods). (c) The pie chart depicts the number of ESNs 

that show significant firing reinstatement to at least one episode when excluding putative CC activity (dark 

blue) and the number of single units that showed no firing reinstatement (green). (d) The number of ESNs as 

expected by chance (permutation test) and the empirical number of ESNs when excluding potential CC tuned to 

the animal cue (n = 147; p < 0.001). 

Using a shuffling procedure, we generated a distribution of reinstatement values expected 

by chance. A neuron was considered an ESN if (i) the empirical reinstatement value 

exceeded the 99th-percentile of the shuffled distribution for at least one episode and (ii) if 

the standardized firing rate for encoding and retrieval of that episode each exceeded 1.645 

(≙ pright-tailed < 0.05; Figure 1b). This approach revealed that a significant number of 

hippocampal neurons were ESNs (160 out of 625 single units ≙ 25.6%; p < 0.001; 

permutation test). Two example ESNs are shown in Figure 2. Most ESNs reinstated one 

episode (136 out of 160 ESNs ≙ 85.00%), while the rest reinstated between two and four 

episodes.  

To rule out that ESNs are firing in response to a stimulus category (such as faces or places) or 

a specific face or place, we repeated the ESN identification analysis, but only included ESNs 

that showed reinstatement in at least one episode with two face associate images and at 

least one episode with two place associate images. Such neurons would be very unlikely to 

code for a specific concept because the stimulus material in these episodes does not 

overlap. Again, we found a significant number of ESNs (6 out of 625 single units ≙ 0.96%; p = 

0.0097). It is important to note, that this is a very conservative analysis, as only a few ESNs 

reinstate two or more episodes (24 out of 160 ESNs ≙ 15%). 

However, the above-described ESNs could still reflect the firing of cells tuned to the image of 

the animal cue, which is trial-unique and presented during encoding and retrieval. To 

address this issue, we repeated the initial ESN identification analysis but excluded single 

units that showed a significant increase in firing during encoding between 300ms and 

1000ms after cue onset. This approach has traditionally been used to identify putative 

concept neurons (Quiroga et al., 2005; see Methods). We still identified a significant number 

of ESNs using this restriction (147 out of 625 single units ≙ 23.52%; p < 0.001; permutation 

test; Figure 1d). The low firing rate during the first two seconds of encoding makes it unlikely 

that ESNs are concept cells tuned to an animal cue (see Figure 3a). There is a tendency that 

spike waveshapes of ESNs are wider than those of other single units (unpaired t-test; p = 

0.0529; Figure S3a), suggesting that ESNs might belong to a subcategory of neurons that is 

structurally different from other single units. However, there is no significant difference in 

the spike height or Fano factor between ESNs and other single units (unpaired t-tests; all p 

values > 0.1; Figure S3b and S4). All further analyses based on ESN classification use this ESN 

definition that excludes putative CC. 
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Figure 2. Firing patterns for two example Episode Specific Neurons. (a) Spike raster plot. Each line indicates a 

spike. On the x-axis is time and on the y-axis episodes. Color-coded in purple for encoding and orange for 

retrieval. The transparency is adjusted according to the reinstatement values in that specific episode. (b) 

Reinstatement values and the animal cues with the respective associate images for reinstated episodes 

(indicated by the black arrow) (c) Spike density plot for reinstated episodes. Please note that the experiment is 

self-paced and episode length varies. (d) 2D histogram of the waveshape of that particular single unit (Niediek 

et al., 2016). (e-h) same as (a-d) but for a different example ESN. 
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Figure 3. Firing rate of ESNs during reinstated (purple) and non-reinstated (green) episodes. (a) Firing rate of 

ESNs from cue onset until five seconds later during memory encoding. The red line marks time points where 

the firing rate during reinstated episodes (n =171) significantly exceeds the firing rate during non-reinstated 

episodes (n =7,528; cluster permutation test; Maris & Oostenveld, 2007). (b) Same as (a) but for memory 

retrieval. The shaded areas indicate the SEM. 

Recent studies in humans show that hippocampal neurons code specific time points 

invariant across repetitions which are referred to as time cells (Reddy et al. 2020, Umbach et 

al., 2020). We investigated whether our dataset contains such time cells (TC) using a similar 

method as employed by Umbach et al. (2020), once normalizing encoding block length and 

once without this normalization (see Methods). Of all recorded cells 15 (normalized) and 10 

(non-normalized) fulfilled the criteria of TCs, which is below chance level (p values > 0.5; 

permutation test). Critically, there was no significant overlap between single units that 

behave like TCs and ESNs (p values > 0.7; permutation test) indicating that ESNs cannot be 

construed as TCs. 

In conclusion, we find single neurons in the hippocampus that show firing reinstatement in 

response to a specific conjunctive code representing a unique episode. These Episode 

Specific Neurons do not fire in response to individual concepts (concept cells) or to specific, 

re-occurring time points (time cells).  We propose that during memory formation an 

assembly of ESNs acts as a pointer that initially binds the features of an episode together, in 

line with the indexing theory (Bowman & Wyble, 2007; Teyler & DiScenna, 1986). 

Reactivation of this pointer allows ESNs to reinstate the episodic memory previously 

encoded. Importantly, because ESNs reinstate unique episodes, they contain a time and 

content component. However, rather than reflecting the underlying coding mechanism, this 

time and content aspect necessarily emerges from the conjunctive code of an episode that is 

unique in content and time.  
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Methods 

Experimental procedure 
During the encoding phase of the experiment the participant associated a cue with two other 
stimuli. For each episode, the cue was a new picture of an animal. The stimuli could be pictures 
of either places, faces or both. Every picture was only shown once. Two seconds after the 
animal cue was presented, the associate stimuli were shown, while the animal cue remained 
on the screen. The participant was asked to create a vivid imaginary story involving the cue 
and the two stimuli. This part of the experiment was self-paced. The task continued once the 
participant rated the plausibility of the imaginary story (plausible/implausible). 
After the encoding phase, the participant performed a distractor task to rule out working 
memory effects. During the distractor task, participants had to indicate whether a random 
number (up to two digits) that appeared serially on the screen was odd or even. After each 
response, the participant received feedback indicating a correct or incorrect response. This 
task consisted of 15 trials.  
During the retrieval phase, all cues from the previous encoding phase were presented 
sequentially in pseudorandom order.  Each animal cue was presented for two seconds and 
subjects were tasked to retrieve the corresponding images. The participant was then asked 
how many associated images they remembered (none, one, two). Participants had as much 
time to respond as they required. If the participant indicated that they remembered one or 
two images, they then had to select two pictures from an array of four pictures (two targets 
and two distractors). 
The experiment ended after the retrieval phase if the total runtime exceeded 40 minutes, or 

the patient asked to abort the experiment. Otherwise, the experiment continued with the 

next encoding block. The encoding block initially consisted of 20 episodes but could be 

adjusted depending on the cognitive abilities of the patient. If the hit rate fell below 66.25%, 

fewer episodes were shown for the next block and vice versa if the hit rate surpassed 

73.75%. 

The patients performed the memory task on a laptop computer (Toshiba Tecra W50; 60 Hz 

refresh rate), while either seated in a chair next to their bed or their hospital bed. 

 

Participants 

Eight patients were recorded in the Queen Elizabeth Hospital Birmingham (Birmingham, UK) 

(4 female; mean age: 36.25 years, from 26-49 years) and eight patients in the 

Universitätsklinikum Erlangen (Erlangen, Germany) (3 female; mean age: 36 years, from 26-

53 years) (see Table S1). 

 

Ethical approval 

Ethical approval was granted by the National Health Service Health Research Authority 

(15/WM/0219) and the Ethik-Kommission of the Friedrich-Alexander Universität Erlangen-

Nürnberg (142_12 B). 

 
Behavioural analysis  
For our analyses, we considered an episode a hit if the participant correctly identified both 
stimuli. We considered an episode a miss if the participant either indicated not to remember 
any stimuli or did not remember both stimuli correctly. Participants correctly recalled on 
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average 68.15% (SE = 2.61%) episodes (see Table S1). This is substantially more than would be 
expected by chance (16.7%). 
 
Statistical analysis 
All statistical analyses were conducted using MATLAB R2020b on a computer running on 
Windows 10 Enterprise. The significance threshold for all statistical tests was set at 0.05. All 
permutation tests were implemented with N = 10,000 random draws. 
 
Co-Registering 
For each patient, a pre-operational T1-weighted MRI scan was co-registered with a post-
operational scan and normalized in MNI space using SPM12. Each macro-electrode was 
localized either within the hippocampus or outside it through visual inspection. Only activity 
from microwires in Behnke-Fried electrodes that were assigned to the hippocampus was 
analyzed in the current study. 
 
Recording System and Electrodes 
Patients were implanted with one to eight (see Table S1 for an overview) depth electrodes of 
the Behnke Fried type with microwire bundles (Ad-Tech Medical Instrument Corporation, 
USA) to localize epileptic foci. The electrode location was determined by clinical need. These 
single-use electrodes are made from platinum, have a diameter of 1.3mm and allow for 
simultaneous macro- and microcontact recordings. Platinum has a high impedance for lower 
frequency and a low impedance for higher frequency bands. As such it is suitable to pick up 
local action potentials. The micro contacts extended radially past the endpoint of the macro 
depth electrode, and each contained eight high-impedance microwires (40-micron diameter) 
and one low-impedance microwire that is typically used for referencing. 
The electrodes were connected to an ATLAS system (Neuralynx Inc, USA) consisting of CHET-
10-A pre-amplifiers and a Digital Lynx NX amplifier and recorded with a sampling rate of either 
32,000 Hz (Location: Birmingham) or 32,768 Hz (Location: Erlangen). Upon acquisition, an 
analogue bandpass filter from 0.1 Hz to 9,000 Hz was applied. 
 
Spike detection and spike sorting 
In the following paragraph, we will outline the process used to filter the raw data, detect spike 
timestamps, extract features of the waveshape and cluster spike waveshapes into putative 
single neurons using the wave_clus toolbox. For a more in-depth description of the wave_clus 
algorithm, the reader is referred to Chaure, Rey and Quiroga (2018).  
The unfiltered signal included both the local field potential and the action potentials of 
individual neurons. Action potentials are characterized by a very steep and transient 
amplitude in the signal. To extract these spikes, we first applied zero-phase filtering using a 
second-order bandpass elliptic filter in the range of 300-3000 Hz. The resulting signal 
contained the information of the so-called spike-band. 
Next, we segmented the continuous filtered data into epochs of five minutes. Segmenting the 
continuous data into smaller epochs had the advantage that noise in the signal did not 
increase the detection threshold for the whole recording and instead was limited to the 
segment in which it occurred (Chaure et al., 2018). 
Spike detection was performed separately for positive and negative deflections. Once a spike 
was identified, 64 data points around the spike maximum were extracted. This corresponds 
to a 2ms window at a sampling rate of 32000 Hz. The spike peak was aligned to the 20th 
sampling point. To avoid misalignment of the spike, the waveshape was first upsampled to 
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320 data points using cubic spline-interpolated waveforms and then downsampled again 
(Chaure et al., 2018). 
Based on the extracted spike waveform, features were computed using a four-scale 
multiresolution decomposition with a Haar wavelet. This results in 64-wavelet coefficients for 
each spike. The 10 most significant coefficients were identified using a Lilliefors test and used 
for the clustering procedure (Chaure et al., 2018).  
Nonparametric clustering in the feature space was performed using superparamagnetic 
clustering (SPC). SPC grouped spike waves into clusters based on nearest-neighbour 
interactions (Blatt et al., 1996). Template-matching in Euclidian space was performed to assign 
unclassified waveforms to one of the identified clusters. The resulting clustering solution was 
then manually inspected and further optimized by rejecting artefact clusters, splitting clusters 
that represent multi-unit activity and merging clusters that likely stem from the same neural 
source. See Figure S3 to S5 for an overview of the spike width, spike height, the Fano factor 
and the firing rate separately for ESNs and all other single units. 
 
Identification of Episode Specific Neurons (ESNs) 

For every single unit, we determined the number of spikes within each correctly 

remembered episode. During encoding, spikes from the onset of the associate images (two 

seconds after the cue onset i.e., when the whole information of the episode was present) 

until the end of the episode were considered. During the retrieval phase, spikes from cue 

onset until the time point at which participants indicated how many images they 

remembered were considered. We chose this time window because an episode could be 

reinstated following cue presentation, while after the response patients were presented 

with an array of images that could have potentially induced single unit firing. Because the 

experiment was self-paced and longer episodes trivially contained more spikes, the firing 

rate (in hertz) was computed for each episode and single unit. In the next step, we z-scored 

this firing rate per single unit within all encoding episodes and retrieval episodes 

independently. We then multiplied this standardized firing rate for encoding and retrieval 

episodes elementwise to gain an indicator for the reinstatement of firing (Figure 1b).  

To estimate a threshold at which episode-specific firing reinstatement occurs on a single unit 

level, we permuted the order of the encoding episodes and recomputed the elementwise 

product of the shuffled episode series. We repeated this permutation step 10,000 times and 

stored all output values. The 99th percentile of these pooled values was then used as a 

threshold for firing reinstatement. As an additional constraint, z-scored firing during 

encoding and retrieval each had to exceed 1.645 (≙ pright-tailed < 0.05) to make sure the 

elementwise product was not predominantly driven by a high firing rate in one of the two 

phases alone (i.e., either encoding or retrieval). This procedure is allowing us to threshold, 

but we do not have family-wise error corrected statistical significance at the single unit level. 

Furthermore, we assume that single units fire independently. 

In a second step, we calculated whether the number of ESNs (as identified in the above 

procedure) was above chance level. We did this by randomly choosing one of the 

permutations calculated in the first step for every single unit and checked whether it would 

be classified as an ESN under the same criteria outlined above. This approach is similar to a 

set-level effect in SPM (Penny et al., 2011). Note that for the shuffled data as well only 

correctly remembered episodes were used, hence lower values for shuffled data cannot be 

due to memory failure. This process was repeated 10,000 times and the total number of 
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single units which would be classified as an ESN in every single iteration of this process was 

used to build a distribution against which we compared our empirically discovered number 

of ESNs. 

 

Identification of putative Concept Cells 

We repeated the analysis under Identification of Episode Specific Neurons (ESNs) using a 

more conservative definition of ESN to exclude units coding for a specific face/place or faces 

and places in general. Here, firing had to exceed the threshold for at least one episode in 

which two places were used as associate stimuli and at least one episode in which two faces 

were used as associate stimuli. This definition seeks to ensure that ESN firing did not merely 

reflect firing to a specific concept (e.g., a certain category of faces) or specific stimulus, as 

these concepts and stimuli were orthogonal between episodes in which two places were 

used as associate stimuli and the episodes in which two faces were used as associate stimuli. 

To ensure concept neurons tuned to the animal cue were not falsely interpreted as ESN 

activity, we repeated the analysis outlined in Identification of Episode Specific Neurons again 

but excluded ESNs that showed a significant firing increase in response to the animal cue. 

Putative concept cells tuned to the animal cue were defined by the number of spikes 

between 300 and 1,000ms after cue onset during reinstated encoding episodes. Baseline 

activity was derived from the average number of spikes between 1,000 and 300ms before all 

cue onsets. We considered an ESN a putative concept neuron if the median number of spikes 

during the activity period of all reinstated trials was (1) at least two and (2) exceeded the 

mean spike number during the baseline plus five standard deviations (see Quiroga et al., 

2005). 

 

Firing-rate spike convolution 

To produce the visualisations in Figure 3, we extracted spikes from one second before the 

cue onset until five seconds after cue onset for each episode. Binary spike times were 

convolved with a 251ms gaussian kernel (width factor: 2.5) to create a time-resolved signal 

of spike activity. We computed the average firing rate over time for all episodes (ep) during 

the baseline (BL) period 1,000ms preceding the animal cue (𝑥𝐵𝐿). We then z-scored the 

spike activity during the episode (𝑥𝑒𝑝,𝑡) using the standard deviation (𝑠𝑡𝑑(𝑥𝐵𝐿)) and mean 

(𝑥𝐵𝐿) across all pre-cue baseline periods (see equation (1)). To account for instances where 

no spiking activity occurred during the baseline period, 0.1 (see Ison et al., 2015) was added 

to the standard deviation (𝑠𝑡𝑑(𝑥𝐵𝐿)). Episodes were then split into reinstated and non-

reinstated episodes. Firing rates for each episode type (reinstated/non-reinstated) were 

then averaged over ESNs. 

 

𝑧𝑒𝑝,𝑡 =
𝑥𝑒𝑝,𝑡−𝑥𝐵𝐿

𝑠𝑡𝑑(𝑥𝐵𝐿)+0.1
     (1) 

 

 

Identification of Time Cells 

We defined the beginning of an encoding block as the most salient event. Based on Umbach 

and colleagues (Umbach et al., 2020), we then extracted all spikes within each block and 

convolved them with a 251ms gaussian kernel (width factor: 2.5). This created a block 
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number x time points matrix. For our first analysis, we cut each encoding block into 40 

equally sized bins, thereby normalizing block duration. We then used a Kruskal-Wallis test to 

determine whether any of the 40 bins significantly differed from each other.  

We then performed a circular shifting permutation test to calculate whether we found a 

significant number of Time Cells. This is done by shifting a random number of values from 

the beginning of the vector to the end. This shifting was imposed on each block separately 

and repeated N = 10,000 times for every single unit.  

In a second test, the block length was determined by the longest block and shorter blocks 

were filled up with NaN values. This resulted in no normalization of time between blocks. 

The rest of the procedure is the same as described in the above paragraph.  

 

Resource Availability 

Data and analysis code will be made publicly available upon publication. 
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