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ABSTRACT 

 

The pathophysiological changes that occur with the progression of Alzheimer’s disease (AD) 

are well known, but understanding the spatiotemporal heterogeneity of the brain is needed. 

Here, we investigated the spatially resolved transcriptome in a 5XFAD AD model of different 

ages to understand regional changes at the molecular level. We identified early alterations in 

the white matter (WM) of the AD model before the definite accumulation of amyloid plaques 

in the gray matter (GM). Changes in the early stage of the disease were involved primarily in 

glial cell activation in WM, whereas the changes were prominent in the later stage of pathology 

in GM. We confirmed that disease-associated microglia (DAM) and astrocyte (DAA) 

signatures also showed initial changes in WM and that activation spreads to GM. Trajectory 

inference using microglial gene sets revealed the subdivision of DAMs with different spatial 

patterns. Taken together, these results help to understand the spatiotemporal changes associated 

with reactive glial cells as a major pathophysiology of AD and provide information for 

diagnosis and prognosis based on spatiotemporal changes caused by amyloid accumulation in 

AD. 
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INTRODUCTION 

Advances in single-cell analysis have revealed the diversity of brain cells, and the 

dynamics of cellular changes in Alzheimer’s disease (AD) have been observed1-3. Single-

nucleus transcriptome analysis of patients with AD showed major changes characterized by 

myelination, inflammation, and neuronal survival2. In addition, single-cell analysis of AD 

models especially observed molecular changes in microglia and astrocytes. Microglia respond 

to β-amyloid (Aβ) plaques, and genetic changes in activated response microglia (ARM) are 

associated with AD risk genes4. Based on these genetic changes in microglia that are specific 

to AD, disease-associated microglia (DAM) are defined as a microglial subtype5,6. The 

alteration of specific subtypes of astrocytes in AD was also identified and defined as disease-

associated astrocytes (DAAs)7. Despite the identification of the cellular landscape according 

to AD pathophysiology in specific brain regions, the limitation is the loss of spatial information 

on cellular networks. Because of the diversity of cellular profiles according to brain regions8-

10, it is unclear in which brain regions the cellular changes identified in AD are distributed and 

how they change across brain regions as the disease progresses. 

Molecular changes in brain cells as AD pathology progresses should consider regional 

heterogeneity. According to recent studies, microglia are composed of various subtypes and 

show high plasticity depending on the surrounding environment8,11,12. In the AD model, white 

matter-associated microglia (WAM), a type of microglia specific only to the white matter (WM), 

play an important role in the clearance of myelin but do not exist near amyloid plaques13. 

However, the other subtypes of microglia are present and play different roles in gray matter 

(GM)13. In addition, macrophages exist in different subtypes depending on their location, such 

as the dura mater, subdural meninges, and choroid plexus14, and differential patterns of 
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astrocytes and neurons are observed according to the cortical layer15,16. These studies show that 

not only differences in cell subtypes but also functional differences according to brain regions 

such as GM and WM can be observed. Since brain cells have diversity and dynamics in inter- 

and intraregions, spatial information within neural circuits is important, and understanding the 

pathophysiology of AD requires spatiotemporal landscape studies at the molecular level 

throughout the brain. 

Here, we applied spatially resolved transcriptomic analysis in 5XFAD AD models of 

different ages to identify spatiotemporal patterns of disease progression. First, distinctive brain 

regions clustered by gene expression were identified, and then molecular changes were 

analyzed in early (3-month-old) and late (7-month-old) stage AD models. As a result, the 

analysis confirmed gene patterns that change according to disease progression in each brain 

region and initial molecular changes related to glial cell activation in WM before the changes 

in GM. In addition, the spatiotemporal trajectories of the microglia-related gene signature in 

the spot revealed distinctive activation patterns and found each major marker gene set. These 

results provide spatiotemporal molecular profiles in the pathophysiology of AD and distinctive 

activation patterns of microglia and astrocytes that change with AD progression. 
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RESULTS 

Distinctive gene expression patterns commonly found in the GM of AD by spatial 

transcriptome-based cluster analysis 

 Spatial transcriptomic data of the AD model of 5XFAD and age-matched wild-type 

(WT) mice were obtained at 3 and 7 months of age. Notably, a 7.5-month-old AD model 

showed amyloid plaque in GM, while the 2-month-old AD model did not. The 4-month-old 

AD model showed a small number of amyloid plaques in the thalamus and cortex 

(Supplementary Fig. 1a). In particular, as a result of confirming the amyloid deposition in the 

brain tissues of the AD model, which were the same as those for the spatial transcriptomic data, 

a small proportion of amyloid deposition was observed in the 3-month-old AD model, and 

amyloid plaques were also observed in the 7-month-old AD model (Supplementary Fig. 1b). 

A total of 12,247 spots containing 32,285 mRNA expression data points were clustered 

according to the expression patterns only (detailed methods are described in Materials and 

Methods). Accordingly, 15 different clusters were identified. These clusters corresponded to 

anatomical structures (Figure 1a). For example, cluster 6 represented the cerebral cortex 

including mainly outer layers, and cluster 3 represented the cerebral cortex including mainly 

inner layers. Cluster 4 included the hippocampus, and cluster 9 represented the striatum 

(Supplementary Table 1). The expression data of spots were represented by Uniform 

Manifold Approximation and Projection (UMAP) plots, a dimension reduction method for 

visualization17 (Figure 1b). Spots with different mice are also depicted (Figure 1c). Markers 

of each cluster were extracted and visualized with a heatmap (Supplementary Fig. 2). 

 The frequency of each cluster was represented to identify a specific cluster enriched in 

the AD models (Figure 1d). Cluster 7 was markedly increased in the thalamus of AD model at 

7 months. However, cluster 1, which represented the thalamus in other mice, was decreased in 
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the AD model at 7 months. This finding was also identified in Figure 1a, which shows a change 

in the thalamus to the gene expression pattern from cluster 1 to 7 in the AD model at 7 months. 

As clusters 1 and 7 represented the thalamus but were differentially found in the 7-month-old 

AD model, differentially expressed genes (DEGs) between these two clusters were analyzed 

(Figure 1e). The genes highly expressed in cluster 7 compared with cluster 1 included Ctsd, 

Gfap, Tyrobp, C1qb, Ctss, Serpina3n, Cst7, Ftl1, C1qc, C1qa, Trem2, and Hexb. These genes 

were associated with myeloid leukocyte activation, microglial activation, glial cell activation, 

and lysosome pathways according to gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analyses (Supplementary Fig. 3a). Relatively decreased 

expression in cluster 7 included mitochondrial genes such as mt-Cytb and mt-Co1. These genes 

were associated with ribonucleotide metabolic processes and ATP metabolic processes 

according to GO analysis (Supplementary Fig. 3b). Immunofluorescence (IF) images of the 

thalamus showed increased Iba1, GFAP, and Lamp1 expression, representing glial cell 

accumulation and lysosomal activity, in the thalamus of the AD model after 4 months 

(Supplementary Fig. 3c). 

We then analyzed DEGs in specific brain regions of the AD brain. First, genes 

differentially expressed in the cerebral cortex of AD, cluster 3, were identified (Figure 2a). 

UMAP showed spots according to the origin of the samples (Figure 2b). In cluster 3, 

differential gene expression was found mainly in the AD model at 7 months, while mice at 3 

months showed few differentially expressed genes (Figure 2c, Supplementary Fig. 4a). The 

genes highly expressed in the 7-month-old AD model included Gfap, Ftl1, Tyrobp, Ctsd, Cst7, 

Hexb, and C1qb, which were related to inflammation mediated by microglia and astrocytes 

(Figure 2c). These upregulated genes were similar to the markers related to cluster 7, included 

mainly in the thalamus of the 7-month-old AD model (Figure 2d). GO pathway analysis 
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revealed that upregulated genes in the cerebral cortex of the AD model at 7 months were 

associated with gliogenesis and neuroinflammation related to microglia and astrocytes (Figure 

2e). In addition, lysosome, apoptosis, and phagosome activity was enriched in the cerebral 

cortex of 7-month-old AD model. Genes downregulated in the AD model compared with WT 

included Pmch, Arf5, BC004004, Trbc2, and Arc. These genes were associated with 

Parkinson’s disease, amyotrophic lateral sclerosis, Alzheimer’s disease and oxidative 

phosphorylation in KEGG pathways (Supplementary Fig. 4b). Indeed, IF images showed 

increased activity of microglia, astrocytes, and lysosomal function in the cerebral cortex using 

antibodies against Iba1, GFAP, and Lamp1 from AD model older than 4 months 

(Supplementary Fig. 4c). We additionally tested DEGs in the AD brain according to the 

regions. Accordingly, the hippocampus (cluster 4), striatum (cluster 9), and outer cortex (cluster 

6) shared genes differentially expressed at 7 months (Figure 2f, Supplementary Fig. 5). The 

commonly upregulated genes in these GM regions of the 7-month-old AD model are 

represented in Figure 2f. 

 

Distinctive spatial pattern of DEGs within WM in early AD 

 Cluster 2, which included mainly WM, showed distinctive patterns in DEGs in AD 

(Figure 3a). A UMAP represented spots of cluster 2 (Figure 3b). In cluster 2, striking DEGs 

were identified in 3-month-old mice as well as 7-month-old mice (Figure 3c). At 3 months, the 

AD model showed that many genes were upregulated compared with the WT. These genes 

included Tmem242, Ctss, Hsd17b12, Mrpl51, Tial1, Gm10076, Cops4, Bloc1s1, Nr2f2, Llph, 

Mag, and Arpc1b. Additionally, many genes were downregulated compared with WT. These 

genes included Camkk1, Snd1, Metap1d, Itpa, Rab15, Bc1, Cyfip1, Fam3c, Nrd1, and Trak1. 

The upregulated genes in the WM of 3-month-old AD brains were associated with neuron 
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projection development, gliogenesis, and ensheathment of neurons (Figure 3d). qPCR analysis 

also showed that the mRNAs encoding Mag and MOG were significantly increased in the 3-

month-old AD model compared to the control and 7-month-old AD model (Supplementary 

Fig. 6a). KEGG pathways showed increased enrichment in ribosome, endocytosis, and MAPK 

signaling pathways. However, the decreased genes in the WM of the 3-month-old AD model 

were associated with synapse organization, regulation of membrane potential, and neuron death 

(Figure 3e). IF images with GFAP showed increased reactive astrocytes in the WM, internal 

capsule and corpus callosum of 4-month-old AD model. The lysosomal function shown by 

staining with anti-Lamp1 also showed the same pattern of change. Reactive microglia were 

gradually increased in the WM, while they were increased in 7.5-month-old AD model, and a 

few fluorescence activities were identified in the 4-month-old AD model (Supplementary Fig. 

6b). At 7 months, many DEGs were also identified in cluster 2. Increased expression was found 

in Ftl1, Ctsd, Apoe, C4b, Tyrobp, and Trem2, which were similar to upregulated genes in other 

clusters of GM, such as the cerebral cortex, thalamus, hippocampus and striatum. qPCR 

analysis revealed significant increases in Cst3, Trem2, and Tyrobp in both WM and GM at 7 

months in the AD model, and the upregulated expression of Apoe was identified only in WM 

(Supplementary Fig. 6a). At 7 months, enriched GO terms included microglial cell activation 

as well as ensheathment of neurons and myelination (Supplementary Fig. 7). Accordingly, 

genes differentially expressed in the WM of 3-month-old AD model were distinctive from 

others, particularly in the 7-month-old AD model identified in GM (cluster 3). However, genes 

differentially expressed in the WM of 7-month-old AD model included the common genes 

differentially expressed in the GM (Figure 3f). DEGs of each cluster are summarized in 

Supplementary Table 2. 
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Integrative analysis with the immunofluorescence image of Aβ 

As the 7-month-old AD model showed amyloid plaques on the IF image, we integrated 

this image with spatial transcriptomic data. The image was spatially registered with the H&E 

image of the AD brain at 7 months using nonlinear transformation (Supplementary Fig. 8a). 

Therefore, we obtained registered images of amyloid plaques that corresponded to spots of 

spatial transcriptomic data using adjacent slides of the same brain tissue used for sequencing. 

Molecular features spatially correlated with the amyloid plaque image patterns were estimated 

using the spatial gene expression patterns by deep learning of tissue images (SPADE) tool18. 

Briefly, the image patch corresponding to the spot was extracted to estimate image features 

derived by a convolutional neural network model, and then correlated genes were identified. 

The first principal component (‘ImageLatent_1’) of the CNN-derived image features was 

mapped (Figure 4a). The spatial distribution of ‘ImageLatent_1’ corresponded visually to the 

pattern of amyloid deposits, while other principal components were different from the degree 

of amyloid deposits (Supplementary Fig. 8b). The top 12 genes spatially correlated with 

‘ImageLatent_1’ are represented (Figure 4b). According to GO analysis, these genes 

represented the regulation of ion transport and myeloid leukocyte activation (Figure 4c). Genes 

associated with amyloid plaque image patterns (SPADE genes) partly overlapped with DEGs 

at 7 months in the cortex (Figure 4d). These genes, Thy1, Gfap, Tyrobp, Ctsd, Cst7, C1qb, 

Lyz2, Ctss, Hexb, Trem2, B2m, C1qa, Mpreg1, Ctsz, C1qc, Cd68, Grn, Laptm5, Hexa, and 

Serpina3n, were increased in 7-month-old AD model in the cortex and associated with amyloid 

plaque image patterns. 

 

Spatial distribution of DAM and DAA signatures  

Spatial transcriptomic data revealed that AD-related transcriptomic changes at 3 
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months involved mainly the WM, and then the features of reactive glial cells commonly 

extended to the cortex, thalamus, striatum and hippocampus. Thus, we analyzed disease-

associated activation signatures of microglia and astrocytes, major players in AD-related 

neuroinflammation, in terms of spatial and temporal patterns. Spatial patterns of activated 

microglia, represented by the DAM signature, were identified. A module score of the DAM 

signature (DAMscore) was calculated by using the expression values of Lpl, Cst7, Axl, Itgax, 

Spp1, Cd9, Ccl6, and Csf1 for each spot5,6 (Supplementary Fig. 9a). The qPCR results showed 

significantly increased Axl, Itgax, and Cst7 levels in both WM and GM in the 7-month-old AD 

model (Supplementary Fig. 9b). DAM scores of spots were represented by UMAP plots, 

which revealed spots with increased DAM scores in the 7-month-old AD model (Figure 5a). 

DAM scores of clusters were compared according to the mouse types (Figure 5b). In addition, 

the spatial distribution of DAM scores was represented (Figure 5c). Notably, these results 

showed that the DAM score was high in the WM of 3-month-old AD model (i.e., cluster 2). IF 

images with anti-Iba1 revealed that microglia in the internal capsule and corpus callosum were 

increased at 4 months in the AD model, and they were clearly increased in the cortex and 

thalamus at 7.5 months (Supplementary Fig. 9c). In addition, WT mice also showed relatively 

high DAM scores in brain regions such as the subdural area (cluster 8) and periventricular area 

(cluster 12) (Figure 5c, Supplementary Fig. 10), which suggested the heterogeneity of 

myeloid cells in the brain, identified as border-associated macrophages (BAMs) that 

substantially share gene sets of DAM14. 

We also analyzed the age-dependent spatial pattern of astrocytes activated only in AD, 

indicated by DAA signatures. The module score of the DAA signature (DAA score) was 

expressed in patterns of Ggta1, Gsn, Osmr, Vim, Serpina3n, Ctsb, and Gfap7. The DAA score 

increased at 3 months in the WM (i.e., cluster 2), and further increases were identified at 7 
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months in areas such as the thalamus and cortical cortex (i.e., clusters 1 and 3) (Figure 5d, e). 

Increased reactivity of astrocytes was observed, especially in the cortical cortex and thalamus 

at 7 months (Figure 5f). qPCR analysis revealed that Gfap and Serpina3n were significantly 

upregulated in both WM and GM in the 7-month-old AD model, while Vim showed a tendency 

of increased expression levels only in WM (Supplementary Fig. 11a). IF images of GFAP 

showed increased expression levels in the internal capsule and corpus callosum of a 4-month-

old AD model. At 7 months, in addition to WM, Gfap expression was increased in the thalamus 

and cortex (Supplementary Fig. 11b). Thus, similar changes in spatial patterns were identified 

for the pathological conditions of DAM and DAA. 

 

Spatiotemporal reactive microglial patterns identified by trajectory analysis 

 Genes related to reactive microglia and homeostatic microglia were selected to find 

spatiotemporal patterns of microglial signatures in the brain (the gene sets are summarized in 

Supplementary Table 3)5,6. Using these gene sets, trajectory of spots was inferred using 

Monocle 319. UMAP plots based on the microglial gene sets depicted heterogeneous 

distribution in terms of the clusters representing anatomical regions (Figure 6a). In addition, 

spots of 7-month-old AD showed a trend of clustering in the center of the UMAP plot compared 

with the spots of other brains (Figure 6b). Accordingly, the direction of the trajectory of 

microglial activation according to disease progression could be inferred. The expression of key 

genes in microglia is presented in UMAP plots (Supplementary Fig. 12). These plots revealed 

that the expression of activated microglial genes, including Trem2, Cst7, and Ccl6, was 

increased according to the trajectory. According to the distribution of activated microglial genes 

and brain samples, four different trajectories were defined based on trajectory analysis (Figure 

6c). 
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 The activated status of trajectory 1, increased pseudotime, was found in both WT and 

AD models despite different spatial distributions (Figure 6d). The activated status of trajectory 

1 was widely identified in most clusters of 7-month-old AD. However, 3-month-old AD brains 

showed an activated status of trajectory 1 in WM (Figure 6d. Supplementary Fig. 13). These 

results corresponded to previous results of early changes in WM. Notably, spots with an 

activated status of trajectory 1 were found in the hippocampus (cluster 4) and subdural area 

(cluster 8) in WT mice (Supplementary Fig. 13). In other words, trajectory 1 microglial 

activation was found in WT as well as AD, although AD showed spatially different patterns: 

WM at early stage (3 months) and the entire brain at late stage (7 months). Furthermore, 

activated status in WT identified in cluster 8 corresponded to relatively high DAM scores in 

our previous results (Supplementary Fig. 10). Gene expression according to the activated 

pattern of trajectory 1 is represented (Figure 6e). The activated status of trajectory 1 showed 

high Ccl6, Cst7, Cx3cr1, and Trem2 and low expression of Axl, Csf1, and Lpl. 

 The other activated status of trajectory 2 was found in AD, while WT showed early 

pseudotime status of trajectory 2 (Figure 7a). The spatial distribution of trajectory 2 was also 

different from the spatial distribution of trajectory 1. In WT and 3-month-old AD model, spots 

with early pseudotime status were diffusely distributed in the thalamus and cerebral cortex 

(Figure 7a). The distribution was not changed in the thalamo-cortical regions of 7-month-old 

AD model. However, spots on the thalamus and cerebral cortex showed late pseudotime status 

of trajectory 2. Trajectory 2 showed high Axl expression regardless of the pseudotime, which 

was different from trajectory 1. Other markers, such as increased Trem2 according to the 

pseudotime, were similar to the markers of trajectory 1 (Figure 7b). 

 The activated status of trajectory 3 was also associated with AD, while WT and 3-

month-old mice showed early status on trajectory 3 (Figure 7c). The spatial distribution was 
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different from other trajectories. The spots included in trajectory 3 were identified in the 

hippocampus and amygdala. The activated status of trajectory 3 was found in the cortical cortex 

and thalamus of a 7-month-old AD model. In addition, spatial spots related to trajectory 3 

pseudotime were identified in the striatum of early AD at 3 months (Figure 7c). Trajectory 3 

was characterized by high expression of Lpl regardless of the pseudotime, which was different 

from other trajectories (Figure 7d). Of note, the spatial distribution of Lpl was increased in the 

hippocampus of WT according to in situ hybridization (ISH) data from the Allen Brain Atlas 

as well as spatial transcriptomic data (Supplementary Fig. 14). 

 Another trajectory 4 showed sparse distribution in the cortex and thalamus (Figure 7e). 

The late phase was found in the cerebral cortex and thalamus of a 7-month-old AD model. 

Spots of trajectory 4 were also identified in the WM of 3-month-old AD model, although it was 

early pseudotime status. Trajectory 4 was characterized by high expression of Csf1 regardless 

of pseudotime (Figure 7f).   
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DISCUSSION 

We observed molecular features in the GM of AD models in the age-matched WT. The 

GM, including the cerebral cortex and hippocampus, showed a similar pattern of molecular 

changes. At 3 months, few molecular changes were observed, and there was a marked increase 

in reactive glial cell-related changes at 7 months. The dramatic activation of glial cells in the 

GM, an area where severe amyloid deposition occurs, demonstrated a close relationship with 

AD progression. Therefore, we concentrated on genes spatially associated with amyloid deposit 

patterns and investigated them by integrative analysis of the spatially resolved transcriptome 

and IF imaging. The top DEGs extracted by SPADE included genes related to glial activation, 

such as Cst7 and Ctsd, while a few genes, such as Prkcd, Rora, and Tcf712, were not 

significantly upregulated genes in the AD model. These genes were associated with the 

regulation of ion transport. The spatial association suggested the possibility of functional 

interaction between amyloid deposits and membrane potential. Amyloid aggregation on the 

cell membrane results in lipid bilayer disruption and cell leakage, which are potential 

mechanisms of toxicity20,21. Of note, Prkcd was recently identified as a cerebrospinal fluid 

biomarker related to neurodegeneration induced by beta-amyloid22. In addition, we identified 

20 genes that were correlated with amyloid deposit patterns and upregulated in GM at 7 months 

of AD. Among these genes, Serpina3n was different from the others and was involved mainly 

in microglial activation. Our results show that the expression level of Serpina3n gradually 

increased as AD pathology progressed dramatically in WM and GM. Serpina3n is commonly 

detected in astrocytes and activated oligodendrocytes and linked to increased amyloid 

accumulation, even though the mechanism is not clear23. According to a recent study, 

Serpina3n secreted by activated oligodendrocytes plays a role in promoting amyloid plaque 

deposition24. Furthermore, Serpina3n is a key marker of recently identified DAAs and is 
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spatially adjacent to amyloid plaques7. These results confirmed that upregulated genes in AD 

spatially associated with amyloid plaques were consistent with previously identified markers 

functionally related to A. Therefore, we suggest that changes in glial cells around amyloid 

plaques and changes in glial cells throughout the whole brain occur simultaneously. 

An interesting biological finding in the current study is the initial changes in WM in 

AD models before distinct changes in GM. The major alteration of DEGs in GM was confirmed 

in 7-month-old AD mice, which had pronounced amyloidosis. In the GM at 7 months of AD, 

the expression levels of genes involved in reactive glial cells and lysosome pathways were 

upregulated compared to the expression levels of genes involved in reactive glial cells at 3 

months (Figure 2). Of note, genes that were not significantly altered in GM but differently 

altered in WM were identified at 3 months. The early change before the upregulation of DEGs 

in GM could provide evidence of the role of WM changes independent of amyloid deposits in 

GM. This finding partly corresponds to the recent study with single nucleus RNA-seq analysis 

in 5XFAD mice, which identified a reactive oligodendrocyte population24. The study showed 

oligodendrocyte changes in 5XFAD mice, even in Trem2-/- 5XFAD mice, even though they 

suggested that oligodendrocytes were affected by amyloid deposits. Additionally, a previous 

study with a spatial transcriptome in APPNL-G-F mice suggested early alterations in a gene 

coexpression network related to myelin25. Our results suggested that WM changes functionally 

related to neuron projection and ensheathment of neurons were, at least, partly independent of 

amyloid plaques considering their early changes. Among the increased genes, Mag in WM was 

known as an inhibitor of axonal sprouting, which is critical for synapse formation 

(Supplementary Fig. 6a). This result provides evidence that myelin degradation may proceed 

first before pronounced amyloid accumulation. Furthermore, the WM of a 7-month-old AD 

model showed upregulation of genes related to reactive glial cells, as found in GM, such as 
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Trem2, Cst7, and Apoe (Figure 3c). Thus, the results implied sequential molecular changes in 

WM: early changes independent of amyloid plaques followed by Trem2-dependent 

inflammatory signatures at the late phase. 

In addition, AD-specific DAM and DAA signature analysis characterized the spatial 

distribution. Although the division of reactive glial cells into fixed categories is still 

controversial26, we used well-described activation markers to distinguish the reactive glial cells 

from homeostatic glial cells5,7. Our study showed that the signatures were increased exclusively 

in WM in the 3-month-old AD model. As pathology progressed, genes in disease-associated 

glial cells were upregulated in GM with more pronounced expression levels than in WM 

(Figure 5). This result is consistent with the finding of confirming the initially altered DEGs 

of WM in the 3-month AD model. Although the signatures are different from DAM, increased 

DAM in the WM at 3 months suggested Trem2-dependent microglial activation regardless of 

changes in GM. A recent report characterized white matter-associated microglia (WAMs) 

engaged in clearing myelin with single-cell RNA sequencing13. In an AD mouse model, WAMs 

displayed partial activation of the DAM gene signatures, allowing the identification of various 

aspects of DAM activity. WAMs, but no DAMs, appeared in 3-month-old APPNL-G-F mice, 

which could reveal that myelin degeneration starts earlier than amyloid pathology13. Similar to 

microglia, DAAs showed the same activation patterns, initially from the WM to the thalamus 

and cortex area. In summary, the WM-to-GM transition provides important information about 

the pathological changes in AD progression, but further studies are needed to determine 

whether this transition occurs dependently and how glial cells communicate in each region. 

 Spatiotemporal changes in microglial signatures as key players in neuroinflammation 

were analyzed using a trajectory model. In this analysis, we selected spots containing genes 

related to DAM as well as homeostatic microglia and analyzed genes from all cells in the spot, 
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including microglial signatures. Therefore, it is expected that not only changes in microglia but 

also the characteristics of the cells that change together were analyzed. As a result, the 

trajectory was divided into four distinct patterns (Figure 6c). The late phase of the distinctive 

trajectories reached a similar point associated with DAM genes. Trajectory 1 included both WT 

and AD despite different phase distributions of each group. However, trajectories 2 and 3 were 

found exclusively in the 7-month-old AD model. Trajectory 2 was associated with positive Axl 

expression, and trajectory 3 was associated with positive Lpl expression (Figure 7). Notably, 

Lpl expression was normally found in the hippocampus as an early phase of trajectory 3 

(Supplementary Fig. 14). Although spatiotemporal patterns could not directly reflect 

microglia themselves, they suggested spatially distinctive activation patterns of glial cells. 

Even with the same DAM-related genes, there were genes that existed exclusively in AD 

pathology and were even present in WT. Our results suggest that hippocampus and subdural 

area in AD and even white matter area in WT have activated microglial signatures but were 

limited to trajectory 1 (Supplementary Fig. 13). These areas showed that Axl and Lpl were 

negative, indicating that they differed from AD-specific activated status. With a similar result, 

Axl expression was relatively high in only the 7-month-old AD model compared to Itgax and 

Cst7, which showed a significant increase even at 3 months (Supplementary Fig. 9b), 

indicating that Axl may be expressed at the late stage of AD pathology. The microglia that 

expressed the DAM signature genes appeared to have diverse activation patterns. Thus, these 

different microglia are distributed in specific brain regions, which is expected to provide 

information about the effects in different brain regions of AD. These results provide insight 

into which microglial changes we should pay attention to molecular targets in AD. 

Overall, spatially resolved transcriptomic data from WT and AD mouse models of 

different ages showed spatiotemporally heterogeneous patterns of AD pathology. As cellular 
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changes in a small region of the brain could not represent changes in the whole brain, these 

results provide resources for AD-related transcriptomic changes in gross-scale coverage with 

high-resolution spatial resolution. 
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METHODS 

Mice 

Three-month- and 7-month-old male 5XFAD mice (Tg6799; on a C57/BL6-SJL 

background) containing five FAD mutations in human APP (the Swedish mutation, 

K670N/M671L; the Florida mutation, I716V; and the London mutation, V717I) and PS1 

(M146L/L286V) and wild-type mice were used for spatially resolved transcriptomic data and 

quantitative PCR. Male 5XFAD mice aged 2, 4, 7.5 and 12 months were used for IF imaging 

of tissue sections. All experimental protocols and animal usage were approved by the 

Institutional Animal Care and Use Committee at Seoul National University. 

 

Immunofluorescence imaging for tissue sections 

Paraffin-embedded brain tissues were sectioned at 4-μm thickness. Deparaffinization 

was achieved with xylenes and decreasing concentrations of ethanol. Tissue sections were 

subjected to antigen retrieval using citrate buffer, pH 6.0, at boiling temperature for 10 min. 

Following rinsing with TBS, sections were incubated in blocking buffer containing TBS with 

0.5% BSA for 1 h at room temperature. Slides were then incubated with primary antibody in 

blocking buffer overnight at 4 °C. The next day, slides were washed with TBS and then stained 

with Alexa Fluor secondary antibodies (Thermo Fisher Scientific). Sections were rinsed again 

and stained with DAPI (1:100; Invitrogen) before being cover-slipped with mounting medium. 

The primary antibodies used were rabbit Iba1 (1:200; Abcam), rabbit LAMP1 (1:50; Abcam), 

mouse β-Amyloid (6E10) (1:100; BioLegend), rabbit β-Amyloid (D54D2) XP (1:100; Cell 

Signaling Technology), mouse GFAP (1:200; Cell Signaling Technology), and rabbit dMBP 

(1:100; Sigma Aldrich). 
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Thioflavin S staining 

The paraffin-embedded sections were deparaffinized in xylene and rehydrated in ethanol 

solution. The hydrated brain sections were incubated in 1% thioflavin S solution for 5 minutes 

and washed with 70% ethanol and distilled water. For the images of stained slides, LEICA 

confocal microscopy SP8 was used.  

 

Microdissection of brain tissue and quantitative PCR (qPCR) 

Brains were collected and microdissected to obtain samples of the WM and the cortex 

(free of meninges and choroid plexus). RNA extraction was performed using TRIzol (Thermo 

Fisher) according to the manufacturers’ protocols. Reverse transcription of RNA was 

performed using a thermal cycler (Bio-Rad, T100). cDNA samples were diluted and mixed 

with SYBR green master mix (Takara) before loading as technical triplicates for qPCR on an 

Applied Biosystems 7500. Primers are specified in Supplementary Table 4. 

 

Spatially resolved transcriptomic data generation 

Prepared brain hemispheres were cryosectioned to thin (10 μm) coronal sections and 

processed the same day. First, mouse brain sections were sectioned and mounted onto slides on 

Visium Spatial Tissue Optimization slides (10x Genomics). The tissue permeabilization time 

was determined by the manufacturer’s protocols (VisiumSpatialTissueOptimization, 

https://support.10xgenomics.com/spatial-gene-expression/tissue-optimization). Accordingly, 

tissue was permeabilized for 12 min for Visium Spatial Gene Expression analysis. Before 

library preparation, tissue sections were methanol-fixed, hematoxylin and eosin (H&E)-stained 

and imaged on a TissueFAXS PLUS (TissueGenostics). The slides were merged into a picture 

of the whole brain using TissueFAXS imaging software. Sections were then permeabilized and 
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processed to obtain cDNA libraries. cDNA libraries were prepared according to the 

manufacturer’s protocol (VisiumSpatialGeneExpression, 

https://support.10xgenomics.com/spatial-gene-expression/library-prep). To verify the size of 

PCR-enriched fragments, we checked the template size distribution by running on an Agilent 

Technologies 2100 Bioanalyzer. The libraries were sequenced using HiSeqXten (Illumina) with 

a read length of 28 bp for read 1 (Spatial Barcode and UMI), 10 bp index read (i7 index), 10 

bp index read (i5 index), and 90 bp for read 2 (RNA read). 

 Raw FASTQ data and H&E images were processed by the Space Ranger v1.1.0 (10X 

Genomics) pipeline for the gene expression analysis of Visium spatial gene expression library 

data. Illumina base call files from the Illumina sequencing instrument were converted to 

FASTQ format for each sample using the ‘mkfastq’ command. Visium spatial expression 

libraries were analyzed with the ‘count’ command. Image alignment to predefined spots was 

performed by the fiducial alignment grid of the tissue image to determine the orientation and 

position of the input image. Sequencing reads were aligned to the mm10 reference genome 

(mm10-2020-A) using STAR (v2.5.1b) aligner. Gene expression profiling in each spot was 

performed with unique molecular identifier (UMI) and 10X barcode information. 

 

Spatial Transcriptomics Data Clustering 

The spots with gene expression data were analyzed with the Seurat package (ver 

3.1.2)27. Gene counts were normalized using ‘LogNormalize’ methods in Seurat v.3. The top 

highly variable genes (n= 2,000) were then identified using the ‘vst’ method in Seurat. The 

number of RNA counts for each spot and the frequency of mitochondrial gene counts were 

regressed out in the scaling process. Four spatial transcriptomic datasets were merged and 

rescaled. Principal component analysis was performed using the top highly variable genes. For 
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visualization, dimension reduction was performed using UMAP on the top 30 principal 

components. Graph-based clustering based on the Louvain community detection algorithm was 

performed. The resolution was set to 0.5. Markers for each cluster were identified by Wilcoxon 

rank sum tests for a given cluster vs. other clusters implemented in Seurat as a ‘FindAllMarkers’ 

function. The anatomical location of each cluster was visually identified by comparison with 

the Allen Mouse Brain Reference Atlas (https://mouse.brain-map.org/static/atlas). 

 

Differential gene expression analysis on clustering of spots 

MAST28 in the Seurat function was used to perform differential gene expression 

analysis. First, we identified differentially expressed genes between two specific clusters (for 

this study, cluster 7 vs. cluster 1, two clusters of thalamus). A gene was considered significant 

with false discovery rate (FDR)-adjusted P < 0.05 and log-fold change (logFC) > 0.3. Volcano 

plots were drawn by EnhancedVolcano function in R. In addition, differentially expressed 

genes were extracted from the comparison of AD and WT mice at 3 months and 7 months. The 

analysis was also performed using the MAST function after selecting a subset of specific 

clusters. The cutoff of significantly different genes was FDR-adjusted p < 0.05 and log FC > 

0.25. Gene ontology and KEGG pathway analyses were performed with clusterProfiler29, 

which supports statistical analysis and visualization of functional profiles for genes and gene 

clusters.  

 

Microglial and astrocytes signature scores 

Gene sets of microglia and DAM were selected for the matrices of spatial 

transcriptomic data to calculate the signature score. The score was calculated with the 

AddModuleScore function with default parameters in Seurat. DAMscore was visualized by the 
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SpatialFeaturePlot function for identifying spatial distribution patterns. In addition, gene sets 

of DAAs were selected to calculate the signature score. DAA scores were also visualized by 

the SpatialFeaturePlot function. 

 

Spatial coregistration of the immunofluorescence image 

The immunofluorescence image of amyloid plaque (6E10; mouse) obtained from a 7-

month-old AD model was spatially coregistered with the H&E image obtained before spatial 

transcriptomic data acquisition, i.e., Visium library generation. Notably, the 

immunofluorescence image of amyloid plaque was the adjacent slide of H&E image for the 

spatial trarnscriptomic data generation. The immunofluorescence image was resized to have a 

similar size of H&E images. Cropping and rotation were performed to approximately overlap 

both images. This process was performed by the scikit-image package (version 0.15.0). For 

image registration, both images were preprocessed by: 1) changing to grayscale, 2) masking 

with a pixelwise threshold to include the mouse brain, and 3) smoothing using a Gaussian filter 

(sigma value of 5). The transform function for the coregistration was estimated using the Dipy 

package (version 1.0.0). The image was linearly transformed by rigid and affine transformation. 

For the final coregistration, nonlinear warping was performed using 

SymmetricDiffeomorphicRegistration based on the Symmetric Normalization (SyN) 

algorithm30. After the estimation of transformation function, the immunofluorescence image 

was transformed for further analysis integrating image patterns and spatial transcriptomic data. 

 

Integrative analysis of the immunofluorescence image and spatial transcriptomic data 

Molecular features associated with tissue image patterns were extracted by the SPADE 

tool18. The coregistered amyloid plaque immunofluorescence image was used for the input of 
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SPADE. The CNN-derived image features (VGG-16 model) were extracted by 32 x 32 sized 

patches centered at the spots. For dimension reduction, principal components of image features 

were used. In this study, the first principal component represented the accumulation of amyloid 

plaques; thus, genes correlated with the first principal component of image patterns were 

identified. The top 100 genes according to the regression coefficient (logRC) were selected. 

Gene ontology analysis was performed with clusterProfiler. 

 

Spatiotemporal trajectory using pseudotime analysis 

A gene set with microglial signatures was selected to generate a matrix for spatially 

resolved gene expression data: Hexb, Cst3, Cx3cr1, Ctsd, Csf1r, Ctss, Sparc, Tmsb4x, P2ry12, 

C1qa, C1qb, Tmem119, Tyrobp, Ctsb, Apoe, B2m, Fth1, Lyz2, Trem2, Axl, Cst7, Ctsl, Lpl, Cd9, 

Csf1, Ccl6, Itgax,  and Timp25,6,31. Normalization and PCA were performed using the 

‘preprocess_cds’ function from Monocle version 3. The trajectory graph based on the 

microglial signature gene set was learned by the ‘learn_graph’ function from Monocle. The 

UMAP plots according to the trajectory were drawn with colors of the clusters using all genes 

analyzed with Seurat as well as mice. Subsequently, the spots were semiautomatically ordered 

according to the progression of microglia. The trajectory was automatically learned; however, 

the direction of order was determined by UMAP plot with mice (AD vs WT). As the spots of 

7-month-old AD mice were located at a specific portion, the center of the UMAP, the spots 

enriched in 7-month-old AD mice were regarded as ‘late-phase’ pseudotime. 

 Spatial mapping of pseudotime for each trajectory was performed by selecting the 

subset of spots included in the selected trajectory. Colors with pseudotime were mapped on the 

spots of specific locations and mapped using SpatialFeaturePlot from Seurat. 
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Statistics  

Differentially expressed genes were identified by the aforementioned methods. All P 

values reported in this study were two-sized and adjusted by false discovery rate. The statistical 

method incorporated in the specific software was used with a default parameter unless 

otherwise indicated. Plots in R were created either with the ggplot2 R package or Seurat 

modified by custom codes for data visualization. 
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FIGURES 
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Figure 1. Clusters of spots of spatially resolved transcriptomes in WT and AD models. (a) 

Fifteen clusters were identified according to transcriptomic data of 3- and 7-month-old WT and 

AD models. (b) A two-dimensional reduction map, UMAP, colored with clusters is depicted. 

Each dot represents transcriptomic data of each spot. (c) A UMAP colored with mouse types 

was depicted. (d) The frequency of spots of each cluster for different mice is represented. 

Notably, cluster 7 was especially more frequent in the 7-month-old AD model. (e) As clusters 

7 and 1 represented the thalamus while cluster 7 was dominantly found in the 7-month-old AD 

model, differentially expressed genes between the two clusters were identified. A volcano plot 

represents these differentially expressed genes. A positive log-fold change represented 

upregulated genes in cluster 7. (WT: wild type; AD: Alzheimer’s disease; 3M: 3-month-old; 

7M: 7-month-old) 
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Figure 2. Genes differentially expressed in the gray matter of the AD model. (a) As a cluster 

of the cerebral cortex, cluster 3 was selected to find differentially expressed genes in AD 

compared with WT. (b) UMAP represented spots of cluster 3 according to the origin of samples. 

(c) A volcano plot depicting differentially expressed genes of cluster 3 in the AD model 

compared with the WT at 7 months. (d) The upregulated genes in the 7-month-old AD model 

were similar to the markers of cluster 7, which occupied the thalamus of the 7-month-old AD 

model. (e) GO terms related to upregulated genes in cluster 3 of 7-month-old AD models are 

represented. (f) A Venn diagram representing the upregulated genes in the 7-month-old AD 

model for different clusters (clusters 3, 4, 6, and 9). There were 18 common upregulated genes 

in all these GM clusters.  
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Figure 3. Genes differentially expressed in the WM of the AD model as an early change. 

(a) Cluster 2 represents WM regardless of mouse type. (b) UMAP represents transcriptomic 

profiles of cluster 2 according to mouse type. (c) Many differentially expressed genes were 

identified in the AD model at 3 months and at 7 months. (d) As an early change in WM (i.e., 3-

month-old AD), upregulated genes were related to neuronal projection, gliogenesis, and axon 

ensheathment. (e) Downregulated genes in the 3-month-old AD model were related to synapse 

organization and membrane potential. (f) The upregulated genes of cluster 2 in the 3-month-

old AD were different from the upregulated genes of GM in the 7-month-old AD. However, 

the upregulated genes of cluster 2 in the 7-month-old AD shared those of GM.  
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Figure 4. SPADE analysis showed genes spatially associated with amyloid plaque images. 

(a) Anti-amyloid plaque IF image in a 7-month-old AD model used for sequencing was 

spatially registered to the histology image of the spatially resolved transcriptome. The latent 

image (‘ImageLatent1’) derived by the first principal component of deep learning-based 

features is represented (right). (b) Top 12 genes spatially associated with ‘ImageLatent1’, 

analyzed by SPADE analysis. (c) GO terms of the spatially associated genes are represented. 

(d) Among genes spatially associated with ‘ImageLatent1’, 20 genes were upregulated genes 

in cluster 3 of 7-month-old AD model. The spatial distribution of these genes is presented. 
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Figure 5. Spatial distribution of DAM and DAA signatures. (a) DAM score was represented 

by UMAP plots. (b) DAM scores of each cluster were compared and overall increased in 7-

month-old AD model. The DAM score was also increased in the 3-month-old AD model in 

cluster 2. (c) The spatial distribution of DAM score showed an increase in the GM of 7-month-

old AD and a relatively prominent increase in the WM of 3-month-old AD. (d) DAA score was 

represented by UMAP plots. (e) DAA score of each cluster were compared and overall 

increased in 7-month-old AD, dramatically in cluster 2. The DAA score was also increased in 

the 3-month-old AD model in cluster 2. (f) The spatial distribution of DAA score showed an 

increase in the 7-month-old AD model, particularly in the WM and thalamus regions and the 

slight increase in WM region in 3-month-old AD model.  
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Figure 6. Trajectory inference of microglial signatures of spots. (a) UMAP represents 

microglial signature-based distribution. Notably, clusters determined by the transcriptome were 

mixed. (b) UMAP of microglial signatures colored according to mouse type is presented. (c) 

Trajectory inference analyzed with Monocle3 showed four different trajectories of spots of 

microglial signatures. (d) The first trajectory was represented with spatial maps and colored by 

pseudotime. Notably, the direction of pseudotime was determined by the predominant spots of 

the 7-month-old AD model in the center portion of UMAP. (e) The expression of microglial 

signature genes according to the pseudotime of trajectory 1 is presented. Trem2, Ccl6, and Cst7 

were increased at the late phase of pseudotime, while Axl, Lpl, and Csf1 were negative until 

the late phase of pseudotime.  
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Figure 7. Trajectories of microglial signatures specific for AD. (a) Another trajectory, 

trajectory 2, was spatially mapped. The late phase of trajectory 2 was found only in the 7-

month-old AD model, particularly thalamo-cortical regions. (b) The expression of microglial 

signature genes according to the pseudotime of trajectory 2 is represented. Axl was highly 

expressed in trajectory 2 regardless of pseudotime. (c) Trajectory 3 was spatially mapped. This 

trajectory commonly included spots of the hippocampus. The late pseudotime of trajectory 3 

was found only in the 7-month-old AD model. (d) The expression of genes according to the 

pseudotime of trajectory 3. Notably, Lpl was highly expressed in trajectory 3 regardless of 

pseudotime. (e) Trajectory 4 showed sparse spots in the GM. The late pseudotime of this 

trajectory was found only in the 7-month-old AD. (f) Trajectory 4 was different from the other 

trajectories, as it had particularly high expression of Csf1 regardless of pseudotime.  
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