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Abstract 
Motivation: Abnormal protein-membrane attachment is involved in deregulated cellular pathways and 
in disease. Therefore, the possibility to modulate protein-membrane interactions represents a new 
promising therapeutic strategy for peripheral membrane proteins that have been considered so far 
undruggable. A major obstacle in this drug design strategy is that the membrane binding domains of 
peripheral membrane proteins are usually not known. The development of fast and efficient algorithms 
predicting the protein-membrane interface would shed light into the accessibility of membrane-protein 
interfaces by drug-like molecules. 
Results: Herein, we describe an ensemble machine learning methodology and algorithm for predicting 
membrane-penetrating residues. We utilize available experimental data in the literature for training 21 
machine learning classifiers and a voting classifier. Evaluation of the ensemble classifier accuracy pro-
duced a macro-averaged F1 score = 0.92 and an MCC = 0.84 for predicting correctly membrane-pen-
etrating residues on unknown proteins of an independent test set. 
Availability and implementation: The python code for predicting protein-membrane interfaces of pe-
ripheral membrane proteins is available at https://github.com/zoecournia/DREAMM. 
Contact: zcournia@bioacademy.gr  
Supplementary information: Supplementary data are available. 

 

1 Introduction  
Membrane proteins are topologically divided in transmembrane proteins 
that are permanently attached in the interior of the membrane, peripheral 
membrane proteins that associate non-covalently with the surface of the 
membrane, and lipid-anchored proteins that attach to the membrane with 
a covalent bond (Boes et al., 2021). Peripheral membrane proteins are es-
sential in cellular processes such as transporting substances across the cell 
membrane, activating proteins and enzymes, regulating signal transduc-
tion, and other functions (Boes et al., 2021; Monje-Galvan and Klauda, 
2016). Abnormal protein-membrane attachment due to membrane-binding 
domain mutations and peripheral membrane protein over- or under activa-
tion are involved in deregulated cellular pathways and in disease (Boes et 
al., 2021; Costeira-Paulo et al., 2018; Hobbs et al., 2016; Lashuel et al., 
2013; Mirsaeidi et al., 2016; Mirza and Zahid, 2018; Segers et al., 2007). 
Hence, the possibility to modulate protein-membrane interactions repre-
sents a promising therapeutic strategy for many disease indications and in 
particular for targeting membrane proteins that have been considered 
undruggable such as the membrane-anchored KRAS protein, which is im-
plicated in over 30% of cancer types (Cox et al., 2014; Kessler et al., 
2019), α-synuclein, which is a main pathological hallmark of Parkinson’s 
disease (de Oliveira and Silva, 2019; Hijaz and Volpicelli-Daley, 2020), 
and lipid kinases such as PI3Kα, which is the most frequently mutated 
kinase and present in a variety of tumors (Yang et al., 2019) with one of 
its hotspot mutations, H1047R, acting on altering the protein’s association 

with the cell membrane (Cournia and Chatzigoulas, 2020; Gabelli et al., 
2010; Gkeka et al., 2014; Gkeka et al., 2015). 

The feasibility of targeting protein-membrane interfaces is supported 
by the fact that peripheral membrane proteins contain a membrane-bind-
ing domain with cavities that could be potentially targeted by small mole-
cules (Segers et al., 2007; Sudhahar et al., 2008). The literature reports the 
feasibility of targeting the protein-membrane interface indicating that ther-
apeutic targets binding transiently to the membrane can be targeted with 
small molecules, and that inhibitors of protein-membrane interactions may 
be identified (Chen et al., 2015; Li and Buck, 2020; Liu et al., 2010; 
Nawrotek et al., 2019; Nicolaes et al., 2014; Segers et al., 2007; Spiegel 
et al., 2004). However, these examples are only limited compared to the 
overall drug design efforts of the community indicating that the accessi-
bility of protein-membrane interfaces by small molecules has been so far 
unexplored possibly due to the complexity of the interface, the limited 
protein-membrane structural information, and the absence of tools and 
workflows to automate the drug design process at the protein-membrane 
interface. Moreover, protein-membrane interaction sites of peripheral 
membrane proteins are commonly undiscovered; hence, the first step into 
modulating the protein-membrane interface is their identification.  

Several efforts towards the design of tools that detect protein-mem-
brane regions, domains, and lipid-binding sites have appeared (Bhardwaj 
et al., 2006; Nastou et al., 2016; Scott et al., 2006; Sharikov et al., 2008); 
however, these are mainly applied to directly to 1D protein sequences 
without considering the protein structural information and in many cases 
the web links are outdated (Bhardwaj et al., 2006; Scott et al., 2006; 
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Sharikov et al., 2008). To our knowledge, only two methodologies, which 
predict these interaction sites from the 3D protein structure, are currently 
publically available: the Positioning of Proteins in Membrane (PPM) 
(Lomize et al., 2006; Lomize et al., 2011) and the Membrane Optimal 
Docking Area (MODA) (Kufareva et al., 2014). PPM combines an aniso-
tropic solvent representation of the lipid bilayer, an all atom representation 
of a solute, and a universal solvation model, calculating rotational and 
translational positions of transmembrane and peripheral membrane pro-
teins in membranes (Lomize et al., 2006; Lomize et al., 2011). MODA is 
based on the protein-protein interface predictor PIER (Kufareva et al., 
2007), which builds a set of evenly distributed points at 5 Å from one 
another and from the protein surface, defining each patch as the set of all 
protein surface atoms. Then, it calculates a score based on atom solvent-
accessible surface area (SASA) and atom type specific weights, and trans-
fers the patch membrane propensity scores to surface residues, thereby 
predicting which residues contact the cell membranes. 

Herein, we present an automated prediction algorithm using ensemble 
machine learning, which identifies membrane-binding interfaces with 
high accuracy (macro-averaged F1 score = 0.92 and an MCC = 0.84) tak-
ing as input the 3D peripheral membrane protein coordinates and demon-
strates better accuracy than existing methods. 

2 Methods 

2.1 Data Preparation 

To construct the dataset, we use 54 peripheral membrane with known 3D 
structures and experimentally known membrane-penetrating residues, re-
trieved from extensive literature search. For the dataset generation, protein 
structures were prepared by deleting unwanted chains and co-crystallized 
solvent atoms, adding missing side chain atoms, and converting non-
standard amino acids to their standard equivalents using HTMD (Doerr et 
al., 2016). In case of NMR-resolved structures, the first model of the NMR 
ensemble was kept. Then, the dataset was split in a training set (~85% of 
the dataset, Table S1) and a test set (~15% of the dataset, Table S2). Fi-
nally, a dataset of 12.805 residues consisting of the training set samples 
and a dataset of 2.177 residues consisting of the test set were assembled. 
These samples were labeled in two categories, the membrane-penetrating 
and the non-penetrating residues, leading to a highly imbalanced classifi-
cation problem (supervised learning), where the membrane-penetrating 
residues comprise ~1.3% of the total samples in the training set, which is 
addressed in section 2.4. 

2.2 Feature extraction 

Lipid interfaces of proteins possess specific chemical and topological 
properties, i.e., amphipathic alpha-helices flanked by a flexible hinge or 
loop regions, being solvent-exposed or containing cationic patches around 
aromatic and aliphatic regions that anchor to the negatively-charged bi-
layers (Johnson and Cornell, 1999; Whited and Johs, 2015), which are 
regularly found in the inner leaflet of the plasma membrane (Lemmon, 
2008). Therefore, two driving forces for protein-membrane association 
need to be considered: a) long range electrostatic interactions that drive 
protein-membrane proximity, b) hydrophobic interactions that facilitate 
protein anchoring to the hydrophobic fatty acid tails of the lipid bilayer 
(Cho and Stahelin, 2005; Whited and Johs, 2015).  

Firstly, the ProtDCal tool was facilitated, which calculates 2788 ther-
modynamic, topographic, and property-based features (Ruiz-Blanco et al., 

2015), and then, based on the protein-membrane interactions, physico-
chemical and biochemical features of the aforementioned membrane-as-
sociated properties were generated for each protein residue in the training 
set by employing computational methods in Python as described below. 
Protein-membrane regions mainly consist of amphipathic alpha-helices or 
hydrophobic loops, therefore, the Define Secondary Structure of Proteins 
(DSSP) program was utilized to define the secondary structure (Kabsch 
and Sander, 1983), parsing the PDB files with the Python package Biopy-
thon (Cock et al., 2009; Hamelryck and Manderick, 2003). Additionally, 
DSSP measures geometrical properties, for example, backbone torsion an-
gles, which were also kept as features. One-hot encoding, a technique that 
transforms each unique value in a categorical feature into a new binary 
feature, was applied on the amino acid and the secondary structure features 
to transform them from categorical to numerical features. Alongside the 
secondary structure, the solvent exposure is a significant property of the 
membrane-penetrating amino acids. The FreeSASA tool was utilized for 
the calculation of the SASA (Mitternacht, 2016), and the MSMS tool for 
calculating the residue and Cα depths (Sanner et al., 1996). One advantage 
of FreeSASA lies in the separation of residue SASA into polar and non-
polar SASA. Non-polar SASA combines solvent exposure with hydropho-
bicity, which is necessary for forming hydrophobic interactions with the 
inner leaflet of the plasma membrane. Therefore, the Wimley-White 
whole-residue interface and octanol hydrophobicity scales were addition-
ally utilized as features (Wimley et al., 1996; Wimley and White, 1996). 
To consider electrostatic interactions, PDB2PQR was utilized to calculate 
residue charges and protonation states using default parameters (Dolinsky 
et al., 2007; Dolinsky et al., 2004), and MDAnalysis for reading the re-
sulting PQR file (Michaud-Agrawal et al., 2011). 

Moreover, additional properties (features), which could potentially be 
connected to the protein-membrane association, were sought. The se-
quence profiling tool HHblits was applied in order to calculate the conser-
vation score (Remmert et al., 2011), through HTMD (Doerr et al., 2016), 
searching the Uniclust30 database (Mirdita et al., 2017). To consider res-
idue flexibility, the ProDy package was used to calculate squared fluctua-
tions utilizing two different Elastic Network Models, the Gaussian Net-
work Model and the Anisotropic Network Model (Bakan et al., 2014; 
Bakan et al., 2011). Finally, the feature space was enriched with the resi-
due radius of gyration, which was calculated with MDAnalysis (Michaud-
Agrawal et al., 2011), the number of each amino acid type of neighboring 
amino acids, and their total number in a Cα – Cα distance of 7 Å.  

To consider the surrounding amino acid properties of each residue, the 
mean values of the aforementioned features were calculated, for each res-
idue and the residues at a 7 Å distance from the protein α carbon atoms 
(Cα – Cα). In this way, the 3D space is taken into consideration ensuring 
that the information of the surrounding residues is included in the feature 
space, for example, the mean hydrophobicity and charge from the neigh-
boring residues, and the number of nearby lysine, arginine, and histidine 
residues, leading to 2880 features in total. 

2.3 Feature and data selection 

Training machine learning algorithms in datasets with redundant samples 
and features is computationally inefficient. Discarding redundant infor-
mation is essential to reducing the data size and hence the computational 
effort as in this case the training set consists of 12,805 samples (residues) 
and 2,880 features. To reduce the sample size, and especially the  sample 
size of the majority class, the solvent inaccessible residues of the proteins 
were removed because only interfacial residues penetrate the membrane, 
using a cutoff of 2.5 Å for the residue depth feature produced by MSMS 
(Sanner et al., 1996), leading to 8,720 samples. Moreover, only residues 
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that penetrate the hydrocarbon core of the membrane were retained, ac-
cording to the octanol-interface scale (White, 2003), which is derived from 
the experimentally determined Wimley-White whole-residue interface 
and octanol hydrophobicity scales (Wimley et al., 1996; Wimley and 
White, 1996), leaving out the A, S, N, G, E, D, K, R, and H amino acids, 
further reducing the sample size of the majority class. The C and Q amino 
acids were also removed, as only a few cases were present in the mem-
brane-penetrating category. In the end, the training set was reduced to 
3010 samples, reducing the required computational time to process the 
dataset. Moreover, the imbalanced classes problem was attenuated be-
cause the sample size of the majority class was reduced significantly, with 
the membrane-penetrating residues consisting the ~5.5% of the total sam-
ples. 

Subsequently, features with zero standard deviation (all feature values 
are the same) were discarded in order to remove redundant features, fur-
ther reducing the dataset to 2252 features. The Pearson pairwise correla-
tion was measured leaving out features with more than 95% correlation; 
this led to 883 features. Utilizing two different tree-based machine learn-
ing algorithms, the extremely randomized trees method (Geurts et al., 
2006), using the scikit-learn Python package (Pedregosa et al., 2011) and 
the leaf-wise gradient boosting decision tree algorithm LightGBM (Ke et 
al., 2017), features that where less important than the 1% of the total fea-
ture importance in both algorithms were removed leading to a total of 727 
features. The hyper-parameter space for these classifiers was fine-tuned 
by combining the randomized and grid search 5-fold cross validation ap-
proaches as explained in the “Ensemble machine learning methodology” 
section. As anticipated, the most important features were expressing hy-
drophobicity and solvent exposure (Figure S1, Table S3). 

2.4 Imbalanced classes problem 

Reducing the data sample size improved the imbalanced classes problem 
but the increase of the membrane-penetrating class to almost five-fold still 
produced imbalanced classes. When the size of one class outnumbers the 
size of the other, machine learning algorithms will under-predict the infre-
quent class. To balance the two classes three techniques were utilized. The 
first one is to use weights on the samples, emphasizing the minority sam-
ples. The second is to over-sample the minority class using algorithms that 
generate synthetic samples based on the feature values of the minority 
class samples until both classes consist of equal number of samples. Fi-
nally, the third technique is to under-sample the majority class with sample 
selection methods until again both classes have equal number of samples. 
Notably, for a number of machine learning algorithms using weights is 
similar to over-sampling the minority class with duplicate samples. From 
the initial training set of 3,010 samples, two training sets of 5,686 samples 
using two different over-sampled techniques, two training sets of 334 sam-
ples using two different under-sampled techniques, and one more training 
set of 4,287 samples using a combination of over- and under-sampling 
methods were produced utilizing the imbalanced-learn Python toolbox 
(Lemaitre et al., 2017). Using this procedure, six different training sets 
were produced: the initial training set using weights, two training sets us-
ing over-sampled techniques, two training sets using under-sampled tech-
niques, and one training set using a combination of over- and under-sam-
pling methods. 

The first over-sampled training set was generated utilizing the Synthetic 
Minority Over-sampling Technique (SMOTE) technique, which synthe-
sizes artificial new minority instances between existing real minority in-
stances (Chawla et al., 2002). The second over-sampled training set uti-
lizing the Adaptive Synthetic (ADASYN) sampling algorithm is similar 

to SMOTE but attempts to infer which points in the minority class would 
be the most difficult for a model to learn and attempts to place a higher 
ratio of synthetic data close to these points (He et al., 2008). For the under-
sampled training sets, the first one was generated using the Condensed 
Nearest Neighbor (CNN) method, which iteratively uses the 1 nearest 
neighbor rule to decide if a sample should be removed or not (Hart, 1968) 
and the second one was based on the Instance Hardness Threshold (IHT), 
which is a technique where a machine learning algorithm is trained on the 
training set and removes the samples with the lowest probabilities (Smith 
et al., 2014). For the IHT method the scikit-learn gradient boosting classi-
fier (Friedman, 2001) was utilized to estimate the instance hardness of the 
samples. Because over-sampling using SMOTE may lead to generation of 
noisy samples, a sixth training set was built, where SMOTE was followed 
by the Edited Nearest Neighbors undersampling method (SMOTEENN), 
which applies a nearest-neighbors algorithm to clean the training set 
(Tomek, 1976). By removing samples which do not agree enough with 
their neighborhood (the majority of the 5 closest neighbors belong to an-
other class) the outliers that were generated from SMOTE were removed. 
These six training sets can be visualized in Figure S2 reduced to two di-
mensions. 

2.5 Ensemble machine learning methodology 

For each one of the six training sets, 21 machine learning classifiers were 

trained: 19 from the scikit-learn Python package (Pedregosa et al., 2011), 

the LightGBM classifier (Ke et al., 2017), and the XGBoost classifier 

(Chen and Guestrin, 2016). The hyper-parameters of these classifiers were 

optimized to discover the best parameters that fit the  data for each classi-

fier (Bergstra and Bengio, 2012; Claesen and De Moor, 2015). Specifi-

cally, for every training set and for every classifier the randomized search 

cross-validation technique was performed using 5 folds in a wide range of 

parameter values, training hundreds of thousands models. Subsequently, 

iteratively exhaustive searches were performed (grid search cross-valida-

tion with 5 folds) in a small range of parameter values in the vicinity of 

the best parameter space determined from the randomized search cross-

validation, which led to a set of optimal parameters. Notably, in the over- 

and under-sampled datasets, over- and under-sampling was performed in 

each fold separately to avoid information leak in the validation fold. 

To assess the performance of the classifier models for both the random-
ized and grid search cross-validation procedures, the macro-averaged har-
monic mean of the precision and recall, F1 score, was chosen as a metric. 
Recall expresses the amount of correct predicted true positives (Eq. 1), 
while precision expresses the predicted true positives that are actually true 
(Eq. 2). The general formula of F score is derived based on a positive real 
variable β, where β determines the importance of recall over precision (Eq. 
3). When β = 1 (F1 score), recall and precision are weighted equally (Eq. 
4), when β < 1 more weight is given in precision and when β > 1 recall is 
favored. 
 
𝑟𝑒𝑐𝑎𝑙𝑙 =

 

   
 (1)  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

 

  
  (2) 

 

𝐹 = (1 + 𝛽 )
∗

( ∗ )
     (3) 𝐹 = 2 ∗

∗
   (4) 

 

Subsequently, for each training set the resulting predictions of the 
aforementioned classifiers were imputed as input to a meta-classifiers 
(second-level classifier). The voting classifier, which classifies a sample 
based on the majority voting of the first-level classifiers (Littlestone and 
Warmuth, 1994), and the stacking classifier, which trains a classifier on 
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the output of the first-level classifiers in order to compute the final predic-
tion (Wolpert, 1992), were employed using the Python library mlxtend 
(Raschka, 2018). In both meta-classifiers, all possible combinations of the 
first-level classifiers were examined to discover the best classifier combi-
nation. Every classifier combination was tested using the independent test 
set with known protein-membrane residues (Table S2) to measure the 
combination with the best performance. Subsequently, considering that 
not every residue in the dataset was experimentally tested, resulting in 
membrane-penetrating residues marked as non-penetrating, the best mod-
els were manually inspected in order to assess their false positives, and the 
final model was chosen based on F2 score (see Results). Finally, the fea-
tures were again inspected resulting in 167 redundant features that do not 
affect the behavior of the newly developed ensemble classifier and leading 
to 560 features, which accelerated the feature extraction process. A sche-
matic representation of the above procedure is illustrated in Figure 1. 

3 Results 
The first-level classifiers providing the most accurate results were those 
trained in the initial dataset using weights. For these classifiers and initial 
dataset, several second-level classifiers exhibited better performance than 
the individual classifiers in terms of F1 score, precision/recall area under 
the curve (PR AUC), Matthews correlation coefficient (MCC), and other 
metric scores. The Receiver Operating Characteristics (ROC) AUC, which 
is regularly used in literature, was not considered as it may be misleading 
for highly imbalanced classification problems such as our case (Davis and 
Goadrich, 2006; Saito and Rehmsmeier, 2015). Then, results from the top 
second-level classifiers were subject to manual inspection and the best was 
selected according to the F2 score to emphasize on recall. Although, seem-
ingly, it is natural to prioritize on precision as in our case false positives 
are more critical than false negatives, manual inspection of the false posi-
tive results of the top second-level meta-classifiers indicated that these 
could actually be true positive membrane-penetrating residues as they are 
adjacent to amino acid residues that are membrane-penetrating or aligned 
with them to adjacent loops (see below). Finally, the best performing sec-
ond-level classifier was the voting classifier for a combination consisting 
of five classifiers, the linear discriminant analysis, the logistic regression, 
the linear support vector classifier, the decision tree classifier, and the light 

gradient boosting machine. Various metric scores of the 21 first-level clas-
sifiers and the chosen second-level classifier for the initial dataset using 
weights can be viewed in Table S4. 

The test set predictions can be viewed in Figure 2 and Table S5, where 
~2/3 of the false positive residues are in fact correct predictions as they 
are located in the protein-membrane interface adjacent to true positives or 
on adjacent loops. For example, in retinoid isomerohydrolase, residue 
F262 is in a 4 Å distance from the experimentally confirmed membrane-
penetrating residues; for the glycolipid transfer protein, residues I143 and 
Y153 are next to and aligned with W142. In other examples, i.e. the cho-
lesterol-regulated Start protein 4, residue M196 although it is located in 
different loop, it is aligned with L124, as well as for the phosphatidylino-
sitol transfer protein beta isoform, where M74 is in a different loop but 
aligned with the experimentally-confirmed membrane-penetrating resi-
dues W202 and W203; for the PH domain of the ceramide transfer protein, 
I37 and W40 are next to W33 and Y36, and F81 is aligned with them in 
an adjacent loop. Considering that these predictions are in fact located at 
the protein-membrane interface, they can be considered as true positives 
and the macro-averaged F1 score increases from 0.86 to 0.92 and MCC 
from 0.71 to 0.84. 

Moreover, the ensemble classifier was applied in the test set keeping all 
residue types. To reduce false positive non-hydrophobic amino acids, only 
those residues with center of mass (COM) distance of 14 Å from at least 
one of the predicted hydrophobic amino acids were kept (Table S6). 

Furthermore, the performance of the classifier was compared to two 
computational tools that predict protein-membrane interfaces from 3D 
structures, the PPM web-server (Lomize et al., 2012), which additionally 
predicts the orientation of proteins in membranes, and the MODA web-
server (Kufareva et al., 2014), in the test set without performing data se-
lection (Table S6). Generally, the predictions of every tool was fairly ac-
curate in predicting the protein-membrane regions with our classifier out-
performing them in some cases. Specifically, for the retinoid isomerohy-
drolase homodimer, PPM falsely predicted the orientation (probably af-
fected by the missing chains) and placed the protein in an orientation in 
which only one monomer was in contact with the membrane instead of 
both, while our classifier and MODA correctly predicted the protein-mem-
brane regions in both chains (Figure S3). For the VSTx1 toxin, every tool 
predicted the protein-membrane region but falsely predicted W25. More-
over, our classifier falsely predicted as membrane-penetrating the residues 
near the N- and C-terminal and MODA falsely predicted the beta sheet on 
the opposite side of the protein-membrane interface and the C-terminal 
region (Figure S4). For cytotoxin 2, all tools performed the same with a 
few false positives for our classifier and MODA in the 41-46 region (Fig-
ure S5). Similarly, for sphingomyelinase C all tools recognized the exper-
imentally-verified membrane-penetrating residues W284 and F285, with 
PPM and MODA recognizing residues in distant loops that are aligned 
with the experimentally-verified protein-membrane region suggesting a 
multiregional interaction with the membrane, which is probably true, ac-
cording to the proposed membrane binding model (Figure S6). For the 
glycolipid transfer protein, our classifier and MODA provided similar re-
sults correctly identifying the membrane-penetrating α-helix, with MODA 
falsely predicting the C-terminus and our classifier residue Y81 to be 
membrane-penetrating residues. PPM also suggested the insertion of the 
membrane-penetrating α-helix, but with the addition of the P40-P44 re-
gion (Figure S7). Likewise for the cholesterol-regulated Start protein 4, all 
tools predicted correctly the experimentally-verified residue L124 with 
our classifier and PPM additionally predicting the 196-200 region, MODA 
falsely predicting the C-terminus, and our classifier falsely predicting res-
idue W91 (Figure S8). Finally, for the PH domain of the ceramide transfer 

Fig. 1. For each of the six datasets, we optimized the hyper-parameter space of 21 classi-
fiers using 5-fold cross-validation on the training set. The predictions of the models with 
the best F1 score from these classifiers were provided as input to meta-classifiers. Given 
the F2 score on the test set the best meta-classifier was kept as the final predictor. 
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protein and the phosphatidylinositol transfer protein beta isoform, the out-
come was similar and correct for all tools (Figures S9-S10). 

The performance of the ensemble classifier was tested with additional 
protein use cases with known membrane-penetrating regions (Figure 3), 
and the results were compared with PPM and MODA (Table S7). For the 
cases of cholesterol oxidase, cytochrome P450 3A4, monoglyceride lipase 
MGLL, L-amino acid deaminase, and intestinal fatty acid binding protein, 
all tools correctly identified the protein-membrane regions (Figures S11, 
S12, S14, S19, and S20). For the 9-cis-epoxycarotenoid dioxygenase 1, 
chloroplastic, all tools predicted the protein-membrane regions, with the 
exception of our classifier, which predicted the insertion of one of the two 
parallel amphipathic helices, instead of both (Figure S13). Similarly, for 

the dihydroorotate dehydrogenase, all tools predicted the protein-mem-
brane regions, with our classifier falsely identifying the residue W362 and 
MODA the region 245-247 (Figure S15). For phosphatase PTEN, our clas-
sifier successfully identified the protein-membrane region 263-269 of the 
C2 domain and the region around the L42 residue of phosphatase in the 
same membrane plane. MODA also identified the same phosphatase re-
gion, however it falsely identified the opposite side of the C2 domain as a 
protein-membrane region. PPM also falsely identified the opposite side of 
the C2 domain suggesting an orientation, which is opposite to the actual 
membrane orientation (Figure S16). For (S)-mandelate dehydrogenase, 
the protein-membrane region was correctly identified by all tools, but our 
classifier and MODA also identified amino acids 53-56 to be membrane-

Fig 3. The predictions of the ensemble classifier for proteins with known protein-membrane interface regions. The membrane-penetrating residues predicted from the classifier are de-
picted in red, and the experimental membrane-penetrating regions are denoted with red circles. 

Fig. 2. Proteins of the test set. The experimental membrane-penetrating residues predicted from the ensemble classifier are depicted in red, the experimental membrane-penetrating resi-
dues not predicted from the classifier are depicted in green, and the residues predicted from the classifier that have not been experimentally-verified are depicted in purple. 
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penetrating (Figure S17); these residues are actually at the protein-protein 
interaction interface in the homotetramer of (S)-mandelate dehydrogenase 
and are not misclassified if we perform the predictions in the homo-
tetramer biological assembly (Figure S18). For the phosphatidylinositol 
4,5-bisphosphate 3-kinase alpha (PI3Kα), all tools predicted residues 232-
233 as a protein-membrane interface, which is not in agreement with the 
experimental results, but is in fact the region where PI3Kα binds to K-
RAS (Ras binding domain). Additionally, our classifier and MODA suc-
cessfully identified the p110α 863-872 and the iSH2 512-525 regions, but 
falsely identified the 498-508 region, which links the C2 domain with the 
helical domain (Figure S21). The membrane orientation resulting from 
PPM is different from the one proposed through mutagenesis experiments 
(Gabelli et al., 2010). Finally, for the phosphatidylcholine transfer protein, 
all tools provided the same results identifying the experimentally proven 
region 184-193 and an adjacent loop, while MODA additionally predicted 
loop 147-148 to be membrane binding, which is in the same plane with 
the other two membrane binding regions (Figure S22). 

Furthermore, the ensemble classifier was applied in the full structure of 
prothrombin (PDB: 5EDM (Pozzi et al., 2016)), comparing the results of 
identified membrane-protein interfaces with PPM and MODA (Figure 4). 
All tools predicted the GLA domain 3-5 region as a membrane contacting 
region, which is natural for the classifier as the GLA domain of prothrom-
bin was in the training set. Additionally, the classifier predicted the resi-
dues Y93, W398, and V458 and MODA predicted the residues Y93, 
Y377, R379, and R484, suggesting an orientation parallel to the actual 
membrane orientation, opposed to the perpendicular suggested by PPM. 
Y93 is a key prothrombin residue, which is essential for stabilizing the 
closed form and protects the active site pocket of the protease domain 
(Chinnaraj et al., 2018). In the prothrombin closed form (PDB: 6BJR 
(Chinnaraj et al., 2018)), Y93 inserts its aromatic side chain into the bind-
ing pocket of the protease domain engaging W547 (W533 of 5EDM) and 
forms pi-pi interactions (Figure S23). The results provided by our classi-
fier and MODA suggest that Y93 penetrates into the membrane, further 
indicating that when prothrombin engages the membrane the open form is 
favored with Y93 anchoring the membrane and opening the active site.  

Finally, the ensemble classifier was also tested for the prediction of the 
protein-membrane interfaces of nine transmembrane enzymes described 
in Ref (Dufrisne et al., 2017), which include a soluble domain performing 
extracellular catalysis. In agreement with experimental results, our classi-
fier predicted numerous residues that lie in the hydrophobic lipid bilayer 
core, along with membrane-interacting extracellular residues (Figure 
S24). 

4 Discussion 
Drug design of protein-membrane interfaces for peripheral membrane pro-
teins has been so far neglected due to the complexity of the interface and 
the lack of a suitable workflows and simulation technology capable of im-
plementing this drug design strategy. Furthermore, protein-membrane in-
teraction regions of peripheral membrane proteins are commonly un-
known, and only a few rational methodologies exist that predict these re-
gions from the 3D protein structure. To assist in protein-membrane inter-
face recognition, a novel ensemble machine learning classifier is described 
trained in experimental data retrieved from extensive literature search. 

The ensemble classifier results are accurate in predicting correctly the 
membrane-penetrating residues in the test set, providing with a macro-av-
eraged F1 score = 0.92 and an MCC = 0.84. Additionally, in a different 
independent dataset with experimentally known protein-membrane re-
gions, our classifier correctly identified membrane-penetrating residues in 
these regions with a few false positive predictions. In addition, compara-
tive results demonstrated that our classifier performed similarly, and in 
some cases better, than the only two available web-servers that predict 
protein-membrane interaction sites from the 3D protein structure, PPM 
and MODA. Moreover, our classifier successfully predicted the mem-
brane-penetrating residues and the residues that lie in the hydrophobic 
core of the lipid bilayer in transmembrane proteins containing a soluble 
catalytic domain. 

Commonly, during development of computational tools several obsta-
cles may emerge. In this case the first was the low number of the peripheral 
membrane proteins with experimentally known membrane-penetrating 
residues described in literature. The second and more crucial was the small 
number of residues that were tested experimentally in many of these pro-
teins resulting in membrane-penetrating residues marked as non-penetrat-
ing, which in turn resulted in confusing the classifiers during the training 
process and making the selection of the best ensemble classifier strenuous. 
Moreover, the performance metrics, e.g. F scores, do not reflect the actual 
accuracy of the ensemble classifier, which is higher, and subsequently, a 
numerical comparison of our classifier, PPM, and MODA results is infea-
sible, and can be only assessed visually. 

Manual inspection of false positive results revealed that several amino 
acids were located near the N- or C-termini, or near missing loops, prob-
ably because the area is more solvent exposed. Intriguingly, residues 
falsely predicted as membrane-penetrating are found to be implicated in 
protein-protein interactions. The assumption that protein-membrane inter-
actions are similar to protein-protein interactions was also deduced by 
(Kufareva et al., 2014), who adapted their protein-protein interaction in-
terface prediction PIER algorithm (Kufareva et al., 2007) in MODA. It 

Fig 4. Comparison of the predictions provided from our classifier, PPM, and MODA for the open form of the prothrombin protein. Our classifier and MODA propose a 
parallel to the membrane orientation, suggesting the insertion of Y93 to the membrane, which in turn opens the active site of the protease domain (Figure S23). 
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should be noted that the current implementation predictions depend on 
structural information, therefore, in the case where in the 3D protein struc-
ture the membrane-penetrating residues are in the bulk of the protein and 
a conformational change is necessary to face them towards the membrane, 
or the protein is intrinsically disordered, the ensemble classifier would not 
be able to predict them. 

Finally, it is noteworthy to mention that the membrane-penetrating res-
idues are in many cases significant for the allosteric control of binding 
sites similar to prothrombin case. It is suggested that in the protein-mem-
brane interfaces a binding pocket exists (Chen et al., 2015; Li and Buck, 
2020; Liu et al., 2010; Nawrotek et al., 2019; Nicolaes et al., 2014; Segers 
et al., 2007; Spiegel et al., 2004). We strongly believe that these binding 
pockets could act allosterically being connected with the active site and 
could be able to modulate the open/closed form equilibrium (Chatzigoulas 
and Cournia, 2021; Cournia and Chatzigoulas, 2020) or even block protein 
function by disrupting the protein-membrane interactions. 
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