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Abstract 
Abnormal protein-membrane attachment is involved in deregulated cellular pathways and in disease. Therefore, the 

possibility to modulate protein-membrane interactions represents a new promising therapeutic strategy for peripheral 

membrane proteins that have been considered so far undruggable. A major obstacle in this drug design strategy is that 

the membrane binding domains of peripheral membrane proteins are usually not known. The development of fast and 

efficient algorithms predicting the protein-membrane interface would shed light into the accessibility of membrane-protein 

interfaces by drug-like molecules. Herein, we describe an ensemble machine learning methodology and algorithm for 

predicting membrane-penetrating amino acids. We utilize available experimental data in the literature for training 21 

machine learning classifiers and a voting classifier. Evaluation of the ensemble classifier accuracy produced a macro-

averaged F1 score = 0.92 and an MCC = 0.84 for predicting correctly membrane-penetrating amino acids on unknown 

proteins of an independent test set. The python code for predicting protein-membrane interfaces of peripheral membrane 

proteins is available at https://github.com/zoecournia/DREAMM. 

 

Introduction  

Membrane proteins are topologically divided in transmem-
brane proteins that are permanently attached in the interior 
of the membrane, peripheral membrane proteins that asso-
ciate non-covalently with the surface of the membrane, and 
lipid-anchored proteins that attach to the membrane with a 
covalent bond [1]. Peripheral membrane proteins are essen-
tial in cellular processes such as transporting substances 
across the cell membrane, activating proteins and enzymes, 
regulating signal transduction, and other functions [1, 2]. 
Abnormal protein-membrane attachment due to mem-
brane-binding domain mutations and peripheral membrane 
protein over- or under activation are involved in deregu-
lated cellular pathways and in disease [1, 3-8]. Hence, the 
possibility to modulate protein-membrane interactions rep-
resents a promising therapeutic strategy for many disease 
indications and in particular for targeting membrane pro-
teins that have been considered undruggable such as the 
membrane-anchored KRAS protein, which is implicated in 
over 30% of cancer types [9, 10], α-synuclein, which is a 
main pathological hallmark of Parkinson’s disease [11, 12], 
and lipid kinases such as PI3Kα, which is the most fre-
quently mutated kinase and present in a variety of tumors 
[13] with one of its hotspot mutations, H1047R, acting on 
altering the protein’s association with the cell membrane 
[14-17].  

The feasibility of targeting protein-membrane interfaces 
is supported by the fact that peripheral membrane proteins 
contain a membrane-binding domain with cavities that 
could be potentially targeted by small molecules [18, 19]. 
The literature reports the feasibility of targeting the protein-

membrane interface indicating that therapeutic targets 
binding transiently to the membrane can be targeted with 
small molecules, and that inhibitors of protein-membrane 
interactions may be identified [18, 20-25]. However, these 
examples are only limited compared to the overall drug de-
sign efforts of the community indicating that the accessibil-
ity of protein-membrane interfaces by small molecules has 
been so far unexplored possibly due to the complexity of 
the interface, the limited protein-membrane structural in-
formation, and the absence of tools and workflows to auto-
mate the drug design process at the protein-membrane in-
terface. Moreover, protein-membrane interaction sites of 
peripheral membrane proteins are commonly undiscov-
ered; hence, the first step into modulating the protein-mem-
brane interface is their identification.  

Several efforts towards the design of tools that detect pro-
tein-membrane regions, domains, and lipid-binding sites 
have appeared [26-29]; however, these are mainly applied 
to directly to 1D protein sequences without considering the 
protein structural information and in many cases the web 
links are outdated [26-28]. To our knowledge, only two 
methodologies, which predict these interaction sites from 
the 3D protein structure, are currently publically available: 
the Positioning of Proteins in Membrane (PPM) [30, 31] 
and the Membrane Optimal Docking Area (MODA) [32]. 
PPM combines an anisotropic solvent representation of the 
lipid bilayer, an all atom representation of a solute, and a 
universal solvation model, calculating rotational and trans-
lational positions of transmembrane and peripheral mem-
brane proteins in membranes [30, 31]. MODA is based on 
the protein-protein interface predictor PIER [33], which 
builds a set of evenly distributed points at 5 Å from one 
another and from the protein surface, defining each patch 
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as the set of all protein surface atoms. Then, it calculates a 
score based on atom solvent-accessible surface area 
(SASA) and atom type specific weights, and transfers the 
patch membrane propensity scores to surface amino acids, 
thereby predicting which amino acids contact the cell mem-
branes. 

Herein, we present an automated prediction algorithm us-
ing ensemble machine learning, which identifies mem-
brane-binding interfaces with high accuracy (macro-aver-
aged F1 score = 0.92 and an MCC = 0.84) taking as input 
the 3D peripheral membrane protein coordinates and 
demonstrates better accuracy than existing methods. 

Methods 

Data Preparation 

To construct the dataset, we use 54 peripheral membrane 
proteins with known 3D structures and experimentally 
known membrane-penetrating amino acids, retrieved from 
extensive literature search. For the dataset generation, pro-
tein structures were prepared by deleting unwanted chains 
and co-crystallized solvent atoms, adding missing side 
chain atoms, and converting non-standard amino acids to 
their standard equivalents using HTMD [34]. In case of 
NMR-resolved structures, the first model of the NMR en-
semble was kept. Then, the dataset was split in a training 
set (~85% of the dataset, Table S1) and a test set (~15% of 
the dataset, Table S2). Finally, a dataset of 12.805 amino 
acids consisting of the training set samples and a dataset of 
2.177 amino acids consisting of the test set were assembled. 
These samples were labeled in two classes, the membrane-
penetrating and the non-penetrating amino acids, leading to 
a highly imbalanced binary classification problem (super-
vised learning), where the membrane-penetrating amino 
acids comprise ~1.3% of the total samples in the training 
set. The feature extraction, and feature and data selection 
processes are explained in detail in the SI.  

The most important features were expressing hydropho-
bicity and solvent exposure, but also: evolutionary conser-
vation, secondary structure (coil loop or not), flexibility 
(squared fluctuations calculated with the Gaussian network 
model, probably associated with the flexible coil loops), di-
hedral angles (which again might be associated with the 
secondary structure), and Transferable Atom Equivalent 
(TAE) descriptors [35] (which are molecular properties re-
lated to electron density distribution) were determined  to 
be critical for the accuracy of the results (more information 
in the SI, in Figure S1, and in Table S3). To balance the two 
classes several techniques were utilized leading to six dif-
ferent balanced datasets (see SI for more information and 
Figure S2).  

Furthermore, a second test set of 11 peripheral membrane 
proteins with known 3D structures and experimentally 
known membrane-penetrating regions (not amino acids) 
was assembled. As no specific amino acids were experi-
mentally tested, these proteins were assessed qualitatively 
as a second test set. 

Finally, to ensure that the predictions are unbiased, the 
percentage of identical amino acids of the pairwise se-
quence alignment was calculated for all sequence pairs of 
the dataset, revealing high percentage identity values (more 
than 40%) for proteins in the training set, but not in the test 
sets, ensuring that the predictions in the test sets are unbi-
ased (more information in the SI and Tables S4 and S5). 

Ensemble machine learning methodology 

For each one of the six training sets, 21 machine learning 

classifiers were trained: 19 from the scikit-learn Python 

package [36], the LightGBM classifier [37], and the 

XGBoost classifier [38]. The hyper-parameters of these 

classifiers were optimized to discover the best hyper-pa-

rameters that fit the  data for each classifier (Table S6) [39, 

40]. Specifically, for every training set and for every clas-

sifier the randomized search cross-validation technique was 

performed using 5 folds in a wide range of hyper-parameter 

values, training hundreds of thousands models (Table S6). 

Subsequently, iteratively exhaustive searches were per-

formed (grid search cross-validation with 5 folds) in a small 

range of hyper-parameter values in the vicinity of the best 

hyper-parameter space determined from the randomized 

search cross-validation, which led to a set of optimal hyper-

parameters. Notably, in the over- and under-sampled da-

tasets, over- and under-sampling was performed in each 

fold separately to avoid information leak in the validation 

fold. 
To assess the performance of the classifier models for 

both the randomized and grid search cross-validation pro-
cedures, the macro-averaged harmonic mean of the preci-
sion and recall, F1 score, was chosen as a metric. Recall 
expresses the amount of correct predicted true positives 
(Eq. 1), while precision expresses the predicted true posi-
tives that are actually true (Eq. 2). The general formula of 
F score is derived based on a positive real variable β, where 
β determines the importance of recall over precision (Eq. 
3). When β = 1 (F1 score), recall and precision are weighted 
equally (Eq. 4), when β < 1 more weight is given in preci-
sion and when β > 1 recall is favored.  

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
  (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (2) 

𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
      (3) 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (4) 

For more information about the hyper-parameter tuning 
process and the performance metrics please refer to the SI. 

Subsequently, the resulting predictions of the aforemen-
tioned classifiers were imputed as input to a meta-classifi-
ers (second-level classifier). The voting classifier, which 
classifies a sample based on the majority voting of the first-
level classifiers [41], and the stacking classifier, which 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.06.28.450157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450157
http://creativecommons.org/licenses/by-nc-nd/4.0/


Predicting protein-membrane interfaces 

trains a classifier on the output of the first-level classifiers 
in order to compute the final prediction [42], were em-
ployed using the Python library mlxtend [43]. In both meta-
classifiers, all possible combinations of the first-level clas-
sifiers were examined to discover the best classifier combi-
nation. Every classifier combination was tested using the 
independent test set with known protein-membrane amino 
acids (Table S2) to measure the combination with the best 
performance. Subsequently, considering that not every 
amino acids in the dataset was experimentally tested, re-
sulting in membrane-penetrating amino acids marked as 
non-penetrating, the best models were manually inspected 
in order to assess their false positives, and the final model 
was chosen based on F2 score (see Results). A schematic 
representation of the above procedure is illustrated in 
Figure 1. 

Results 

The first-level classifiers providing the most accurate re-
sults were those trained in the initial dataset using weights. 
For these classifiers and initial dataset, several second-level 
classifiers exhibited better performance than the individual 
classifiers in terms of F1 score, precision/recall area under 
the curve (PR AUC), Matthews correlation coefficient 
(MCC), and other metric scores. The Receiver Operating 
Characteristics (ROC) AUC, which is regularly used in lit-
erature, was not considered as it may be misleading for 
highly imbalanced classification problems such as our case 
(see the SI) [44, 45]. Then, results from the top second-level 
classifiers were subject to manual inspection and the best 
was selected according to the F2 score to emphasize on re-
call. Although, seemingly, it is natural to prioritize on pre-
cision as in our case false positives are more critical than 
false negatives, manual inspection of the false positive re-
sults of the top second-level meta-classifiers indicated that 

these could actually be true positive membrane-penetrating 
amino acids as they are adjacent to amino acids that are 
membrane-penetrating or aligned with them to adjacent 
loops (see below). Finally, the best performing second-
level classifier was the voting classifier for a combination 
consisting of five classifiers, the linear discriminant analy-
sis, the logistic regression, the linear support vector classi-
fier, the decision tree classifier, and the light gradient 
boosting machine. Various metric scores of the 21 first-
level classifiers and the chosen second-level classifier for 
the initial dataset using weights can be viewed in Table S7. 

The test set predictions can be viewed in Figure 2 and 
Table S8, where ~2/3 of the false positive amino acids are 
in fact correct predictions as they are located in the protein-
membrane interface adjacent to true positives or on adja-
cent loops. For example, in retinoid isomerohydrolase, 
amino acid F262 is in a 4 Å distance from the experimen-
tally confirmed membrane-penetrating amino acids; for the 
glycolipid transfer protein, amino acids I143 and Y153 are 
next to and aligned with W142. In other examples, i.e. the 
cholesterol-regulated Start protein 4, amino acid M196 alt-
hough it is located in different loop, it is aligned with L124, 
as well as for the phosphatidylinositol transfer protein beta 
isoform, where M74 is in a different loop but aligned with 
the experimentally-confirmed membrane-penetrating 
amino acids W202 and W203; for the PH domain of the 
ceramide transfer protein, I37 and W40 are next to W33 
and Y36, and F81 is aligned with them in an adjacent loop. 
Considering that these predictions are in fact located at the 
protein-membrane interface, they can be considered as true 
positives and the macro-averaged F1 score increases from 
0.86 to 0.92 and MCC from 0.71 to 0.84. 

Moreover, the ensemble classifier was applied in the test 
set keeping all amino acid types. To reduce false positive 
non-hydrophobic amino acids, only those amino acids with 
center of mass (COM) distance of 14 Å from at least one of 
the predicted hydrophobic amino acids were kept (Table 
S9). 

Furthermore, the performance of the classifier was com-
pared to two computational tools that predict protein-mem-
brane interfaces from 3D structures, the PPM web-server 
[46], which additionally predicts the orientation of proteins 
in membranes, and the MODA web-server [32], in the test 
set without performing data selection (Table S9). Gener-
ally, the predictions of every tool was fairly accurate in pre-
dicting the protein-membrane regions with our classifier 
outperforming them in some cases. Specifically, for the ret-
inoid isomerohydrolase homodimer, PPM falsely predicted 
the orientation (probably affected by the missing chains) 
and placed the protein in an orientation in which only one 
monomer was in contact with the membrane instead of 
both, while our classifier and MODA correctly predicted 
the protein-membrane regions in both chains, but with a 
few false positive predictions for MODA (Figure S3). For 
the VSTx1 toxin, every tool predicted the protein-mem-
brane region but falsely predicted W25. Moreover, our 
classifier falsely predicted as membrane-penetrating the 
amino acids near the N- and C-terminus and MODA falsely 
predicted the beta sheet on the opposite side of the protein-

Figure 1. For each of the six datasets, we optimized the hyper-

parameter space of 21 classifiers using 5-fold cross-validation on 

the training set. The predictions of the models with the best F1 

score from these classifiers were provided as input to meta-clas-

sifiers. Given the F2 score on the test set the best meta-classifier 

was kept as the final predictor. 
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membrane interface and the C-terminus region (Figure S4). 
For cytotoxin 2, all tools performed the same with a few 
false positives for our classifier and MODA in the 41-46 
region (Figure S5). Similarly, for sphingomyelinase C all 
tools recognized the experimentally-verified membrane-
penetrating amino acids W284 and F285, with PPM and 
MODA recognizing amino acids in distant loops that are 
aligned with the experimentally-verified protein-mem-
brane region suggesting a multiregional interaction with the 

membrane, which is probably true, according to the pro-
posed membrane binding model (Figure S6). For the gly-
colipid transfer protein, our classifier and MODA provided 
similar results correctly identifying the membrane-pene-
trating α-helix, with MODA falsely predicting the C-termi-
nus and our classifier amino acid Y81 to be membrane-pen-
etrating amino acids. PPM also suggested the insertion of 
the membrane-penetrating α-helix, but with the addition of 
the P40-P44 region (Figure S7). Likewise for the choles-
terol-regulated Start protein 4, all tools predicted correctly 

Figure 2. Proteins of the test set. The experimental membrane-penetrating amino acids predicted from the ensemble clas-sifier are de-

picted in red, the experimental membrane-penetrating amino acids not predicted from the classifier are depicted in green, and the 

amino acids predicted from the classifier that have not been experimentally-verified are depicted in purple. 

Figure 3. The predictions of the ensemble classifier for proteins with known protein-membrane interface regions. The membrane-

penetrating amino acids predicted from the classifier are depicted in red, and the experimental membrane-penetrating regions are denoted 

with red circles. 
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the experimentally-verified amino acid L124 with our clas-
sifier and PPM additionally predicting the 196-200 region, 
MODA falsely predicting the C-terminus, and our classifier 
falsely predicting amino acid W91 (Figure S8). Finally, for 
the PH domain of the ceramide transfer protein and the 
phosphatidylinositol transfer protein beta isoform, the out-
come was similar and correct for all tools (Figures S9-S10). 

The performance of the ensemble classifier was tested 
with additional protein use cases with known membrane-
penetrating regions (second test set, Figure 3), and the re-
sults were compared with PPM and MODA (Table S10). 
For the cases of cholesterol oxidase, cytochrome P450 3A4, 
monoglyceride lipase MGLL, L-amino acid deaminase, 
and intestinal fatty acid binding protein, all tools correctly 
identified the protein-membrane regions (Figures S11, S12, 
S14, S19, and S20). For the 9-cis-epoxycarotenoid dioxy-
genase 1, chloroplastic, all tools predicted the protein-
membrane regions, with the exception of our classifier, 
which predicted the insertion of one of the two parallel am-
phipathic helices, instead of both (Figure S13). Similarly, 
for the dihydroorotate dehydrogenase, all tools predicted 
the protein-membrane regions, with our classifier falsely 
identifying the amino acid W362 and MODA the region 
245-247 (Figure S15). For phosphatase PTEN, our classi-
fier successfully identified the protein-membrane region 
263-269 of the C2 domain and the region around the L42 
amino acid of phosphatase in the same membrane plane. 
MODA also identified the same phosphatase region, how-
ever it falsely identified the opposite side of the C2 domain 
as a protein-membrane region. PPM also falsely identified 
the opposite side of the C2 domain suggesting an orienta-
tion, which is opposite to the actual membrane orientation 
(Figure S16). For (S)-mandelate dehydrogenase, the pro-
tein-membrane region was correctly identified by all tools, 
but our classifier and MODA also identified amino acids 
53-56 to be membrane-penetrating (Figure S17); these 
amino acids are actually at the protein-protein interaction 
interface in the homotetramer of (S)-mandelate dehydro-
genase and are not misclassified if we perform the predic-
tions in the homotetramer biological assembly (Figure 

S18). For the phosphatidylinositol 4,5-bisphosphate 3-ki-
nase alpha (PI3Kα), all tools predicted amino acids 232-
233 as a protein-membrane interface, which is not in agree-
ment with the experimental results, but is in fact the region 
where PI3Kα binds to K-RAS (Ras binding domain). Ad-
ditionally, our classifier and MODA successfully identified 
the p110α 863-872 and the iSH2 512-525 regions, but 
falsely identified the 498-508 region, which links the C2 
domain with the helical domain (Figure S21). The mem-
brane orientation resulting from PPM is different from the 
one proposed through mutagenesis experiments [14]. Fi-
nally, for the phosphatidylcholine transfer protein, all tools 
provided the same results identifying the experimentally 
proven membrane-interacting region 184-193 and an adja-
cent loop, while MODA additionally predicted loop 147-
148 to be membrane binding, which is in the same plane 
with the other two membrane binding regions (Figure S22). 

Furthermore, the ensemble classifier was applied in the 
full structure of prothrombin (PDB: 5EDM [47]) and the 
results of identified membrane-protein interfaces were 
compared with PPM and MODA (Figure 4). All tools pre-
dicted the GLA domain 3-5 region as a membrane contact-
ing region, which is natural for the classifier because the 
GLA domain of prothrombin was in the training set. Addi-
tionally, the classifier predicted the amino acids Y93, 
W398, and V458 and MODA predicted the amino acids 
Y93, Y377, R379, and R484, suggesting an orientation par-
allel to the actual membrane orientation, opposed to the 
perpendicular suggested by PPM. Y93 is a key prothrombin 
amino acid, which is essential for stabilizing the closed 
form and protects the active site pocket of the protease do-
main [48]. In the prothrombin closed form (PDB: 6BJR 
[48]), Y93 inserts its aromatic side chain into the binding 
pocket of the protease domain engaging W547 (W533 of 
5EDM) and forms pi-pi interactions (Figure S23). The re-
sults provided by our classifier and MODA suggest that 
Y93 penetrates into the membrane, further indicating that 
when prothrombin engages the membrane the open form is 
favored with Y93 anchoring the membrane and opening the 
active site.  

Figure 4. Comparison of the predictions provided from our classifier, PPM, and MODA for the open form of the pro-thrombin protein. 

Our classifier and MODA propose a parallel to the membrane orientation, suggesting the in-sertion of Y93 to the membrane, which in 

turn opens the active site of the protease domain (Figure S23). 
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Finally, the ensemble classifier was also tested for the 
prediction of the protein-membrane interfaces of nine 
transmembrane enzymes described in Ref [49], which in-
clude a soluble domain performing extracellular catalysis. 
In agreement with experimental results, our classifier pre-
dicted numerous amino acids that lie in the hydrophobic li-
pid bilayer core, along with membrane-interacting extracel-
lular amino acids (Figure S24). 

 

Discussion and Conclusions 

Drug design of protein-membrane interfaces for peripheral 
membrane proteins has been so far neglected due to the 
complexity of the interface and the lack of a suitable work-
flows and simulation technology capable of implementing 
this drug design strategy. Furthermore, protein-membrane 
interaction regions of peripheral membrane proteins are 
commonly unknown, and only a few rational methodolo-
gies exist that predict these regions from the 3D protein 
structure. To assist in protein-membrane interface recogni-
tion, a novel ensemble machine learning classifier is de-
scribed trained in experimental data retrieved from exten-
sive literature search. 

The ensemble classifier results are accurate in predicting 
correctly the membrane-penetrating amino acids in the test 
set, providing with a macro-averaged F1 score = 0.92 and 
an MCC = 0.84. Additionally, in a different independent 
dataset with experimentally known protein-membrane re-
gions, our classifier correctly identified membrane-pene-
trating amino acids in these regions with a few false posi-
tive predictions. In addition, comparative results demon-
strated that our classifier performed similarly, and in some 
cases better, than the only two available web-servers that 
predict protein-membrane interaction sites from the 3D 
protein structure, PPM and MODA. Moreover, our classi-
fier successfully predicted the membrane-penetrating 
amino acids and the amino acids that lie in the hydrophobic 
core of the lipid bilayer in transmembrane proteins contain-
ing a soluble catalytic domain. 

The features used in this study have a significant impact 
on the performance of the ensemble classifier. The fact that 
except from the hydrophobicity and the solvent exposure, 
other features—such us evolutionary conservation, second-
ary structure, flexibility, dihedral angles, and TAE de-
scriptors—are important in our model decision-making 
process, offers novel physicochemical insights in the way 
that peripheral membrane proteins attach to the membrane. 

Commonly, during development of computational tools 
several obstacles may emerge. In this case the first obstacle 
was the low number of the peripheral membrane proteins 
with experimentally known membrane-penetrating amino 
acids described in literature. The second and more crucial 
constraint was the small number of amino acids that were 
tested experimentally resulting in membrane-penetrating 
amino acids being marked as non-penetrating, which in 
turn resulted in misinforming the classifiers during the 
training process and rendering the selection of the best en-
semble classifier strenuous. Moreover, based on the fact 
that membrane-penetrating amino acids are labeled as non-

penetrating, the performance metrics (e.g. F scores) do not 
reflect the actual accuracy of the ensemble classifier, which 
is higher, and therefore, a direct numerical comparison of 
our classifier, PPM, and MODA results is not possible. 

Manual inspection of false positive results revealed that 
several amino acids were located near the N- or C-terminus, 
or near missing loops, probably because the area is more 
solvent exposed. Intriguingly, other amino acids falsely 
predicted as membrane-penetrating are found to be impli-
cated in protein-protein interactions. For example, in the 
case of (S)-mandelate dehydrogenase our model correctly 
classifies membrane-penetrating amino acids in the homo-
tetramer form, while in the homodimer form we find that 
amino acids that are implicated in protein-protein interac-
tions are also classified as membrane-penetrating. Hence, it 
is advisable to use the complex protein structure if it is 
available. The assumption that protein-membrane interac-
tions are similar to protein-protein interactions was also de-
duced by [32], who adapted their protein-protein interac-
tion interface prediction PIER algorithm [33] in MODA.  

Also, it should be noted that the predictions depend on 
structural information, therefore, in the case where in the 
3D protein structure the membrane-penetrating amino acids 
are in the bulk of the protein and a conformational change 
is necessary to face them towards the membrane, or the pro-
tein is intrinsically disordered, the ensemble classifier 
would not be able to predict them. Furthermore, it should 
be noted that neither our model, nor PPM or MODA are 
suitable tools for classifying if a protein is a peripheral 
membrane protein or not. A sequence-/evolutionary-based 
deep learning classifier would be more appropriate for this 
purpose [50]. Also, with the recent advancements in protein 
structure predictions, i.e., AlphaFold2 [51] and Ro-
seTTAFold [52], the structure of unresolved proteins can 
be predicted with high accuracy, but in many cases, these 
models fail to fold the N- or C- terminus, or various protein 
segments. It is recommended to remove these regions, i.e., 
amino acids with confidence score (pLDDT) less than 70, 
before applying our model, since these unfolded regions are 
going to affect the prediction accuracy. 

In the future, we plan to devise methods that orient pe-
ripheral membrane proteins in the membrane. Such an ap-
proach could include (1) placing the protein in a model 
membrane in all possible orientations based on the ensem-
ble classifier predictions, (2) measuring the protein-mem-
brane interface energy with an energy function specific for 
this purpose, and (3) retain the protein-membrane orienta-
tion with the lowest energy. When an appropriate method 
to define the membrane-protein orientation is devised, de-
signing a web-database with our model predictions, similar 
to PPM and OPM [46] could also be envisaged. 

Moreover, modifying the labeling system by dissecting 
the structures by a well-defined plane into membrane pen-
etrating and not penetrating parts, or by labeling any amino 
acid from a specific distance from the experimentally 
known membrane penetrating amino acids as a true label 
warrants further investigation. Such a consideration would 
improve the class imbalance problem, although a defined 
plane and distance may be subjective to generate. 
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Predicting protein-membrane interfaces 

Finally, it is noteworthy to mention that the membrane-
penetrating amino acids are in many cases significant for 
the allosteric control of binding sites similar to prothrombin 
case. It is suggested that in the protein-membrane interfaces 
a binding pocket exists [18, 20-25]. We strongly believe 
that these binding pockets could act allosterically being 
connected with the active site and could be able to modulate 
the open/closed form equilibrium [17, 53] or even block 
protein function by disrupting the protein-membrane inter-
actions. 

Key points 

 A dataset of peripheral membrane proteins with exper-
imentally known membrane-penetrating amino acids 
was assembled. 

 An ensemble machine learning classifier was trained 
utilizing thermodynamic, topographic, and property-
based features. 

 The ensemble machine learning classifier displayed a 
macro-averaged F1 score = 0.92 and an MCC = 0.84 in 
identifying membrane-penetrating amino acids. 

 The python code is publically available for usage at 
https://github.com/zoecournia/DREAMM. 
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