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Abstract	

The	 development	 of	 scanners	 with	 ultra-high	 gradients,	 spearheaded	 by	 the	 Human	

Connectome	Project,	has	led	to	dramatic	improvements	in	the	spatial,	angular,	and	diffusion	

resolution	that	is	feasible	for	in	vivo	diffusion	MRI	acquisitions.	The	improved	quality	of	the	

data	can	be	exploited	to	achieve	higher	accuracy	in	the	inference	of	both	microstructural	and	

macrostructural	anatomy.	However,	such	high-quality	data	can	only	be	acquired	on	a	handful	

of	 Connectom	 MRI	 scanners	 worldwide,	 while	 remaining	 prohibitive	 in	 clinical	 settings	

because	of	the	constraints	imposed	by	hardware	and	scanning	time.	In	this	study,	we	first	

update	 the	classical	protocols	 for	 tractography-based,	manual	annotation	of	major	white-

matter	 pathways,	 to	 adapt	 them	 to	 the	 much	 greater	 volume	 and	 variability	 of	 the	

streamlines	that	can	be	produced	from	today’s	state-of-the-art	diffusion	MRI	data.	We	then	

use	 these	 protocols	 to	 annotate	 42	major	 pathways	manually	 in	 data	 from	 a	 Connectom	

scanner.	Finally,	we	show	that,	when	we	use	these	manually	annotated	pathways	as	training	

data	 for	 global	 probabilistic	 tractography	 with	 anatomical	 neighborhood	 priors,	 we	 can	

perform	highly	accurate,	automated	reconstruction	of	the	same	pathways	in	much	lower-

quality,	more	widely	available	diffusion	MRI	data.	The	outcomes	of	this	work	include	both	a	

new,	comprehensive	atlas	of	WM	pathways	from	Connectom	data,	and	an	updated	version	

of	our	tractography	toolbox,	TRActs	Constrained	by	UnderLying	Anatomy	(TRACULA),	which	

is	trained	on	data	from	this	atlas.	Both	the	atlas	and	TRACULA	are	distributed	publicly	as	

part	of	FreeSurfer.	We	present	the	first	comprehensive	comparison	of	TRACULA	to	the	more	

conventional,	multi-region-of-interest	 approach	 to	 automated	 tractography,	 and	 the	 first	

demonstration	of	training	TRACULA	on	high-quality,	Connectom	data	to	benefit	studies	that	

use	more	modest	acquisition	protocols.	

	

Keywords:	 Diffusion	 MRI;	 Tractography;	 White	 matter	 pathways;	 Neuroanatomy;	

Anatomical	priors.	
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1. Introduction 1	

Diffusion	MRI	(dMRI)	tractography	allows	us	to	investigate	the	connectional	anatomy	of	the	2	

human	brain	in	vivo	and	non-invasively.	One	of	its	applications	is	the	delineation	of	white-3	

matter	 (WM)	 bundles	 that	 are	 known	 from	 the	 anatomical	 literature,	 with	 the	 goal	 of	4	

studying	 their	 macro-	 and	 micro-structural	 properties	 in	 both	 healthy	 and	 clinical	5	

populations.	6	

Different	 methods	 have	 been	 proposed	 for	 extracting	 these	 bundles	 from	 whole-brain	7	

tractograms.	The	majority	of	these	methods	follow	the	multi-region	of	interest	(multi-ROI)	8	

approach.	Multi-ROI	methods	 can	 be	manual	 or	 automated.	 In	 the	 former	 case,	 ROIs	 are	9	

hand-drawn	in	individual	dMRI	space	by	an	operator	(Catani	and	Thiebaut	de	Schotten	2008;	10	

Wakana	et	al.	2007;	Thiebaut	de	Schotten	et	al.	2011).	For	each	WM	bundle	of	interest,	a	set	11	

of	a	priori	rules	define	which	ROIs	the	bundle	does	or	does	not	go	through.	The	rules	are	12	

applied	to	tractography	streamlines	obtained	from	each	individual’s	dMRI	data,	and	the	ROIs	13	

are	refined	manually	 to	obtain	bundles	 that	match	 the	anatomical	 literature	as	closely	as	14	

possible.	This	manual	procedure	is	tailored	to	each	individual	subject,	and	therefore	has	the	15	

potential	 to	 achieve	 high	 anatomical	 accuracy,	 to	 the	 extent	 that	 the	 initial	 streamlines	16	

obtained	 from	 the	 subject’s	 dMRI	 data	 are	 accurate.	 However,	 it	 is	 time-intensive	 and	17	

requires	 extensive	 prior	 anatomical	 knowledge	 on	 the	 part	 of	 the	 operator,	 limiting	18	

reproducibility	and	applicability	to	 large	datasets	(Rheault	et	al.	2020).	Automated	multi-19	

ROI	methods	follow	a	similar	approach,	but	derive	the	ROIs	either	from	atlases	(Clayden	et	20	

al.	2009;	Yeatman	et	al.	2012;	Groot	et	al.	2013;	W.	Zhang	et	al.	2008)	or	from	automated,	21	

subject-specific,	anatomical	segmentations	(Wassermann	et	al.	2013).	This	is	faster	than	the	22	

manual	 approach	 and	 not	 operator-dependent.	 However,	 methods	 that	 rely	 on	 accurate	23	

registration	 of	 each	 individual	 to	 an	 atlas	 may	 be	 sensitive	 to	 individual	 anatomical	24	

variability.	 Importantly,	 both	 manual	 and	 automated	 multi-ROI	 methods	 are	 applied	 to	25	

tractography	streamlines	as	a	post-processing	step.	As	a	result,	their	accuracy	is	intrinsically	26	

limited	by	 the	quality	of	 those	streamlines,	and	 therefore	by	 the	quality	of	 the	 individual	27	

dMRI	 data.	 An	 alternative	 family	 of	 bundle	 segmentation	 methods	 relies	 on	 clustering	28	

algorithms,	which	group	whole-brain	tractography	streamlines	into	clusters	based	on	their	29	
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similarity	(O’Donnell	et	al.	2007;	Visser	et	al.	2011;	Garyfallidis	et	al.	2012;	Ros	et	al.	2013;	30	

Siless	et	al.	2018).	Each	cluster	of	streamlines	can	then	be	labeled	as	a	specific	WM	bundle,	31	

either	 based	 on	 its	 similarity	 to	 manually	 labeled	 bundles,	 or	 based	 on	 multi-ROI	 rules	32	

(Wasserman	et	al.	2010;	Guevara	et	al.	2012;	Garyfallidis	et	al.	2018;	F.	Zhang	et	al.	2018).	33	

All	of	 the	above	methods	perform	post	hoc	 classification	of	 tractography	streamlines.	 If	a	34	

subject’s	 tractogram	 does	 not	 contain	 any	 streamlines	 from	 a	 certain	WM	 bundle,	 these	35	

methods	 will	 not	 be	 able	 to	 recover	 this	 bundle.	 Previous	 studies	 have	 shown	 that	 the	36	

precision	and	reliability	of	tractography	are	largely	influenced	by	image	quality	and	hence	37	

by	the	acquisition	protocol	(Jbabdi	and	Johansen-Berg	2011;	Vos	et	al.	2012;	Calabrese	et	al.	38	

2014;	C.	Maffei,	 Sarubbo,	and	 Jovicich	2019).	The	 technical	advances	spearheaded	by	 the	39	

Human	Connectome	Project	(HCP)	led	to	MRI	systems	with	ultra-high	gradients,	which	can	40	

achieve	high	diffusion	weighting	(b-value)	without	 loss	of	signal-to-noise	ratio,	as	well	as	41	

accelerated	MRI	sequences	that	enable	high	angular	and	spatial	resolution	(Setsompop	et	al.	42	

2013).	However,	dMRI	data	acquired	in	clinical	settings	typically	have	much	lower	quality,	43	

due	 to	 MRI	 hardware	 limitations	 and	 scan	 time	 constraints.	 This	 limits	 the	 accuracy	 of	44	

tractography,	especially	in	bundles	that	are	challenging	because	of	their	anatomical	location,	45	

size	or	shape.	The	multi-ROI	methods	described	above	cannot	address	this.	Even	if	the	ROIs	46	

are	 defined	 on	 an	 atlas	 obtained	 from	 high-quality	 data,	 they	 cannot	 improve	 the	47	

reconstruction	of	WM	bundles	in	individual	data	collected	with	poorer	signal-to-noise	ratio,	48	

spatial	or	angular	resolution.	49	

In	this	study	we	demonstrate	how	WM	bundles	labeled	manually	in	high-quality	data	can	be	50	

used	to	ensure	accurate,	automated	reconstruction	of	the	same	bundles	in	routine-quality	51	

data.	First,	we	describe	a	protocol	for	the	manual	dissection	of	42	WM	bundles	from	high-52	

quality,	high-b	data	collected	on	a	Connectom	scanner	by	the	HCP.	These	data	allow	us	to	53	

generate	a	much	more	detailed	and	accurate	definition	of	the	major	bundles	of	the	human	54	

brain	 than	 what	 would	 be	 possible	 from	 routine-quality	 data.	 Our	 virtual	 dissection	55	

protocols	are	more	detailed	than	previously	proposed	ones	(Wakana	et	al.	2007),	to	handle	56	

the	much	greater	volume	and	variability	of	the	streamlines	produced	by	today’s	state-of-the-57	

art	data	acquisition,	orientation	modeling,	and	tractography	methods.	58	
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Second,	we	use	these	manually	dissected	WM	bundles	as	a	new	training	dataset	for	TRACULA	59	

(TRActs	Constrained	by	UnderLying	Anatomy)	(Yendiki	et	al.	2011).	In	contrast	to	multi-ROI	60	

or	 clustering-based	 methods	 for	 bundle	 reconstruction,	 TRACULA	 does	 not	 operate	 on	61	

tractography	 streamlines	 as	 a	 post-processing	 step.	 Instead,	 it	 incorporates	 prior	62	

information	 on	WM	 anatomy	 in	 the	 tractography	 step	 itself.	 This	 is	 done	 via	 a	 Bayesian	63	

framework	for	global	tractography	that	incorporates	prior	probabilities	on	the	anatomical	64	

neighborhood	of	WM	bundles.	Here	we	demonstrate	that,	when	these	prior	probabilities	are	65	

computed	from	high-quality	training	data,	TRACULA	can	reconstruct	the	same	bundles	 in	66	

routine-quality	 data	 with	 high	 anatomical	 accuracy.	 Specifically,	 we	 train	 TRACULA	 on	67	

bundles	labeled	manually	from	HCP	data	with	a	maximum	b-value	of	10,000	𝑠/𝑚𝑚!,	and	use	68	

it	to	reconstruct	the	same	42	bundles	from	data	acquired	with	a	b-value	of	1,000	𝑠/𝑚𝑚!.	We	69	

compare	these	reconstructions	to	those	obtained	by	an	automated	multi-ROI	approach.	We	70	

show	that	TRACULA	achieves	overall	higher	accuracy	and	reliability.	71	

The	contribution	of	this	work	is	twofold:	(i)	an	updated	set	of	protocols	for	manual	dissection	72	

of	 42	 WM	 bundles	 that	 are	 appropriate	 for	 tractograms	 obtained	 from	 state-of-the-art	73	

Connectom	data	and	(ii)	a	demonstration	of	automated	tractography	that	can	achieve	a	form	74	

of	 “quality	 transfer”	 from	Connectom	data	 to	more	routine,	clinical-quality	data.	Both	 the	75	

manually	labeled	tracts,	and	the	refactored	version	of	TRACULA	that	uses	them	as	training	76	

data,	are	included	in	FreeSurfer	7.2	(https://github.com/freesurfer/freesurfer/tree/fs-7.2-77	

beta).	 Extensive	 documentation	 and	 tutorials	 are	 available	 on	 the	 FreeSurfer	 wiki	78	

(https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula).	 Visualizations	 of	 the	 42	 manually	79	

annotated	WM	bundles,	as	well	as	along-tract	profiles	of	microstructural	measures	on	these	80	

bundles,	are	available	at:	https://dmri.mgh.harvard.edu/tract-atlas/.	81	

2. Methods 82	

2.1 Overview 83	

We	used	state-of-the-art	tractography	techniques	on	the	bmax=10,000	𝑠/𝑚𝑚!	HCP	data	to	84	

produce	high-quality,	whole-brain	tractograms.	We	applied	a	manual,	multi-ROI	approach	to	85	

delineate	 a	 set	 of	 42	WM	 bundles	 from	 these	 tractograms.	 We	 then	 used	 the	 manually	86	

annotations	to	inform	two	methods	(TRACULA	and	multi-ROI)	for	reconstructing	the	same	87	
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bundles	automatically	from	the	b=1,000	𝑠/𝑚𝑚!	data	of	the	same	subjects.	We	quantified	the	88	

accuracy	of	each	method	by	computing	the	distance	of	the	bundles	that	were	reconstructed	89	

automatically	on	the	b=1,000	𝑠/𝑚𝑚!	data	from	those	that	were	annotated	manually	on	the	90	

bmax=10,000	𝑠/𝑚𝑚!		data	of	the	same	subject.	We	also	assessed	the	test-retest	reliability	of	91	

along-tract	 microstructural	 measures	 obtained	 from	 the	 automatically	 reconstructed	92	

bundles,	either	with	TRACULA	or	with	the	multi-ROI	method.	Finally,	we	used	this	updated	93	

version	 of	 TRACULA	 to	 study	 associations	 between	 WM	 microstructure	 and	94	

psychopathology	in	a	larger,	independent	dataset.	95	

2.2 Data 96	

The	manual	annotation	used	diffusion	and	structural	MRI	data	of	16	healthy	adult	subjects	97	

provided	 by	 the	 MGH-USC	 HCP.	 The	 dMRI	 data	 include	 512	 diffusion-weighted	 (DW)	98	

volumes	 (b-values= 1,000/3,000/5,000/10,000	 𝑠/𝑚𝑚!)	 and	 40	 non-DW	 volumes	 (b=0)	99	

with	1.5	𝑚𝑚	isotropic	spatial	resolution	(Fan	et	al.	2015).	The	structural	(T1-weighted)	data	100	

were	acquired	with	a	multi-echo	magnetization-prepared	rapid	acquisition	gradient	echo	101	

(MEMPRAGE)	sequence	at	1	𝑚𝑚	isotropic	resolution.		102	

2.3 Image analysis 103	

2.3.1 Structural MRI 104	

Cortical	parcellations	and	subcortical	segmentations	were	obtained	for	each	subject	using	105	

FreeSurfer	(Dale,	Fischl,	and	Sereno	1999;	Fischl,	Sereno,	and	Dale	1999,	Fischl	et	al.	2002;	106	

Fischl	et	al.	2004).	Segmentations	of	 the	thalamic	nuclei	and	hypothalamic	subunits	were	107	

also	obtained	for	each	subject	(Iglesias	et	al.	2015,	2018).		108	

2.3.2 Diffusion MRI.  109	

Diffusion	data	were	denoised	(Veraart	et	al.	2016)	and	corrected	for	gradient	nonlinearity	110	

distortions	 (Glasser	et	al.,	2013;	 Jovicich	et	al.,	2006).	Data	were	 then	corrected	 for	head	111	

motion	and	eddy-current	artifacts	using	eddy	in	FSL	6.0.3	(Andersson	et	al.	2016a,	Andersson	112	

et	al.	2016b).	For	each	subject,	we	obtained	whole-brain	probabilistic	tractograms	using	two	113	

methods:	 constrained	 spherical	deconvolution	 (CSD)	 (Tax	et	 al.	 2014)	on	 the	𝑏 = 10,000	114	

𝑠/𝑚𝑚!	shell	only	(step-size:	0.5	𝑚𝑚,	angle-threshold:	30∘,	10	seeds/voxel	in	white	matter	115	
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mask)	 in	 DIPY	 (Garyfallidis	 et	 al.	 2014)	 and	 multi-shell	 multi-tissue	 CSD	 (MSMT-CSD)	116	

(Jeurissen	 et	 al.	 2014)	 on	 all	 four	 shells	 (step-size:	 0.75	𝑚𝑚,	 angle-threshold:	 45∘,	 50	117	

seeds/voxel	in	white	matter	mask)	in	MRtrix3	(Tournier	et	al.	2012).	We	used	partial	volume	118	

masks	of	WM,	gray	matter	(GM),	and	cerebrospinal	fluid	(CSF)	to	constrain	the	tractography	119	

results	(e.g.,	ensure	that	streamlines	terminate	at	the	GM-WM	interface)	(Smith	et	al.	2012).	120	

We	chose	these	two	streamline	tractography	approaches	empirically,	after	testing	several	121	

state-of-the-art,	publicly	available	methods,	as	they	yielded	sharp	orientation	distribution	122	

functions	in	fiber-crossing	regions	and	in	regions	with	partial	voluming,	respectively.	123	

2.4 Manual labeling in high-quality data 124	

We	dissected	42	WM	pathways	manually	in	Trackvis	(v.0.6.1;	http://www.trackvis.org).	For	125	

each	tract,	we	defined	a	combination	of	 inclusion	and	exclusion	ROIs	in	the	space	of	each	126	

individual	 subject.	 We	 derived	 protocols	 for	 the	 placement	 of	 these	 ROIs	 based	 on	 the	127	

anatomical	literature,	as	detailed	in	the	following	sections.	Streamlines	from	an	individual’s	128	

whole-brain	 tractogram	 (described	 in	 the	previous	 section)	were	 retained	 if	 they	passed	129	

through	all	inclusion	ROIs	and	discarded	if	they	passed	through	any	of	the	exclusion	ROIs	130	

defined	for	a	specific	bundle.	Any	FreeSurfer	cortical	ROIs	that	were	used	for	the	manual	131	

dissection	came	from	the	Desikan-Killiany	parcellation	(Desikan	et	al.	2006)	and	were	grown	132	

5	𝑚𝑚	into	the	WM,	along	the	normal	vector	of	the	cortical	surface.	The	FreeSurfer	corpus	133	

callosum	(CC)	ROIs,	wherever	used,	came	from	the	subcortical	segmentation	and	covered	134	

only	the	section	of	the	CC	between	the	two	hemispheres,	along	the	midline.	All	projection	135	

and	association	pathways	were	dissected	in	the	left	and	right	hemisphere,	denoted	in	the	136	

following	as	LH	and	RH,	respectively.	Each	pathway	was	labeled	by	a	single	rater	and	then	137	

checked	by	CM	for	correctness	and	consistency	with	neighboring	pathways.		138	

2.4.1 Commissural pathways.  139	

The	manual	labeling	protocol	for	these	pathways	is	illustrated	in	Fig.	1.	140	

The	Anterior	Commissure	(AC).	The	AC	was	defined	as	a	fiber	bundle	running	transversely	141	

between	 the	 anterior	 part	 of	 the	 bilateral	 temporal	 lobes	 and	 situated	 below	 the	 fornix	142	

medially	 and	 the	 uncinate	 fascicle	 laterally	 (J.	 Schmahmann	 and	Pandya	2006).	We	used	143	

color-coded	fractional	anisotropy	(FA)	maps	to	draw	a	first	inclusion	ROI	around	the	left-144	
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right	oriented	region	in	front	of	the	anterior	columns	of	the	fornix	(sagittal	view).	Although	145	

it	has	been	suggested	that	 the	AC	also	 includes	posterior	projections	to	the	occipital	 lobe	146	

(Turner,	Mishkin,	and	Knapp	1979),	we	decided	to	include	only	the	anterior	limb	of	the	AC	147	

terminating	in	the	WM	of	the	temporal	poles,	as	this	is	what	is	most	commonly	referred	to	148	

as	the	AC	(Catani	and	Mesulam	2008;	Lawes	et	al.	2008).	Two	more	inclusion	ROIs	were	thus	149	

drawn	to	encompass	the	WM	of	the	temporal	pole	in	each	hemisphere.	A	coronal	ROI	was	150	

used	to	exclude	the	posterior	projections,	and	two	sagittal	ROIs	were	used	to	exclude	the	151	

most	lateral	fibers	of	the	AC	adjacent	to	the	external	capsule.	152	

The	Corpus	Callosum	(CC).	153	

Genu:	 	The	 FreeSurfer	 segmentation	 label	 of	 the	mid-anterior	 CC	was	 used	 to	 select	 the	154	

streamlines	of	the	genu.	A	second	and	third	ROI	including	medial	and	lateral	regions	of	the	155	

frontal	lobe	were	used	to	include	only	frontal	projections	in	both	hemispheres	and	discard	156	

spurious	streamlines.	157	

Rostrum:	 The	 FreeSurfer	 segmentation	 label	 of	 the	 anterior	 CC	 was	 used	 to	 select	 the	158	

streamlines	of	the	rostrum.	A	second	and	third	ROI	were	used	to	include	only	streamlines	159	

terminating	in	the	orbital	regions	of	the	frontal	cortex	in	each	hemisphere.	160	

Splenium:	 The	 splenium	 was	 defined	 as	 connecting	 parietal	 and	 occipital	 cortices.	161	

Streamlines	projecting	to	the	temporal	lobe	were	not	included.	The	FreeSurfer	regions	of	the	162	

posterior	and	mid-posterior	CC	were	used	to	select	the	streamlines	of	the	splenium.	A	second	163	

and	third	ROI	encompassing	the	occipital	and	parietal	WM	were	used	to	 include	only	the	164	

streamlines	projecting	posteriorly	in	each	hemisphere.	165	

Body:	The	inclusion	ROIs	of	the	genu,	rostrum,	and	splenium	in	the	frontal	and	occipital	WM	166	

were	used	as	exclusion	ROIs,	to	isolate	the	body	of	the	CC	from	all	other	streamlines	crossing	167	

the	FreeSurfer	midline	CC	labels.	Given	the	topographic	organization	of	the	CC,	we	further	168	

subdivided	the	body	into	5	sections,	based	on	the	cortical	terminations	of	the	streamlines.	169	

The	temporal	section	(BODY-T)	included	terminations	in	the	FreeSurfer	regions:	superior	170	

temporal,	 middle	 temporal,	 inferior	 temporal,	 transverse	 temporal,	 and	 banks	 of	 the	171	

superior	temporal	sulcus.	The	parietal	section	(BODY-P)	included	terminations	in	regions:	172	

superior	 parietal,	 supramarginal,	 and	 precuneus.	 The	 central	 section	 (BODY-C)	 included	173	

terminations	in	regions:	precentral,	postcentral,	and	paracentral.	Subdividing	the	remaining	174	

(prefrontal	 and	 premotor)	 terminations	 of	 the	 body	 required	 subdividing	 the	 superior	175	
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frontal	parcellation	label,	which	is	large	and	spans	both	of	those	termination	areas.	We	used	176	

a	 boundary	 from	 a	 previously	 proposed,	 publicly	 available	 parcellation	 scheme,	 which	177	

translated	 anatomical	 definitions	 of	 cytoarchitectonic	 regions	 of	 the	 frontal	 cortex	 from	178	

Petrides	et	al.	2012	 to	 the	 fsaverage	cortical	 surface	 (Tang	et	al.	2019).	We	mapped	 that	179	

parcellation	 from	 the	 fsaverage	 surface	 to	 the	 individual	 surface	 of	 each	 training	 subject	180	

using	the	inverse	of	the	FreeSurfer	spherical	morph.	We	used	the	boundary	that	separated	181	

areas	6,	8,	and	44	from	areas	9,	46,	and	45	in	that	parcellation	to	subdivide	the	individual	182	

superior	frontal	label	from	FreeSurfer	into	a	caudal	and	a	rostral	parcel.	We	then	defined	a	183	

premotor	section	of	the	body	of	the	CC	(BODY-PM)	that	included	terminations	in	the	caudal	184	

subdivision	of	 the	 superior	 frontal	 label	 or	 in	 the	FreeSurfer	 caudal	middle	 frontal	 label.	185	

Finally,	 we	 defined	 a	 prefrontal	 section	 of	 the	 body	 of	 the	 CC	 (BODY-PF)	 that	 included	186	

terminations	 in	 the	 rostral	 subdivision	 of	 the	 superior	 frontal	 label	 or	 in	 the	 FreeSurfer	187	

rostral	middle	frontal	label.		188	

The	 Fornix	 (FX).	 The	 FX	 was	 defined	 as	 streamlines	 surrounding	 the	 thalamus,	 directly	189	

adjacent	to	the	medial	half	of	its	superior	and	posterior	surfaces	(Pascalau	et	al.	2018)	and	190	

connecting	the	hippocampal	formation	(specifically	CA1,	CA3,	and	fimbria)	with	the	anterior	191	

thalamic	nuclei,	the	mammillary	bodies,	the	medial	septal	nucleus,	and	the	basal	forebrain	192	

(Poletti	and	Creswell	1977;	Christiansen	et	al.	2017).	A	first	inclusion	ROI	was	placed	on	the	193	

coronal	plane,	inferior	to	the	body	of	the	CC,	to	outline	the	fornix	body.	A	second	inclusion	194	

ROI	was	then	placed	inferior	and	lateral	to	the	hippocampus,	where	the	fornix	terminates.	195	

The	subnuclei	of	 the	hippocampus	(CA1,	CA3,	 fimbria)	(Iglesias	et	al.	2015)	were	used	to	196	

confirm	the	correct	terminations	of	the	fornix.	The	tract	was	refined	by	placing	two	more	197	

inclusion	ROIs	anterior	to	the	splenium	of	CC	on	a	coronal	slice	to	encompass	each	respective	198	

crus	 of	 the	 fornix.	 One	 exclusion	 ROI	 was	 then	 placed	 posterior	 to	 the	 crus	 to	 discard	199	

spurious	streamlines.	200	
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	201	

Fig.	1.	Manual	labeling:	commissural	pathways.	The	figure	shows	the	manual	labeling	protocols	for	202	
the	commissural	pathways	in	one	representative	subject.	 Inclusion	ROIs	are	shown	in	blue,	exclusion	203	
ROIs	in	orange.	Tracts	are	shown	on	color-coded	FA	maps.	CC:	Corpus	callosum.	It	is	subdivided	into	the	204	
rostrum,	genu,	splenium,	and	body.	The	body	is	further	subdivided	into	prefrontal	(BODY-PF),	premotor	205	
(BODY-PM),	central	(BODY-C),	temporal	(BODY-T),	and	parietal	(BODY-P)	components.	MCP:	middle	206	
cerebellar	peduncle.	FX:	fornix.	AC:	anterior	commissure.		207	

2.4.2 Projection pathways 208	

The	manual	labeling	protocol	for	these	pathways	is	illustrated	in	Fig.	2.	209	

The	Acoustic	Radiation	(AR).	The	AR	was	defined	as	fibers	originating	in	posterior	thalamus,	210	

where	the	medial	geniculate	nucleus	(MGN)	is	 located,	and	terminating	on	the	transverse	211	
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temporal	gyrus	of	Heschl	(HG)	in	the	posterior	portion	of	the	superior	temporal	gyrus	(STG)	212	

(Bürgel	 et	 al.	 2006;	Rademacher,	Bürgel,	 and	Zilles	2002;	Chiara	Maffei	 et	 al.	 2018).	The	213	

FreeSurfer	segmentation	label	of	the	entire	thalamus	was	used	as	a	first	inclusion	ROI,	and	a	214	

second	 inclusion	 ROI	 was	manually	 drawn	 to	 encompass	 the	 GM	 and	WM	 of	 the	 HG	 as	215	

previously	described	(C.	Maffei,	Sarubbo,	and	Jovicich	2019).	216	

The	Anterior	Thalamic	Radiation	 (ATR).	 The	ATR	was	defined	as	 fibers	originating	 in	 the	217	

anterior	 and	medial	 thalamus,	 passing	 through	 the	 anterior	 limb	 of	 the	 internal	 capsule	218	

(ALIC),	 and	 connecting	 to	 the	 prefrontal	 cortex	 (Wakana	 et	 al.	 2007).	 The	 Freesurfer	219	

segmentation	 label	 of	 the	 entire	 thalamus	was	 used	 as	 the	 first	 inclusion	 ROI.	 A	 second	220	

inclusion	ROI	was	drawn	on	a	coronal	slice	to	encompass	the	prefrontal	WM	of	the	superior	221	

and	middle	frontal	gyrus.	A	third	inclusion	ROI	was	drawn	on	the	ALIC	on	a	coronal	slice.	An	222	

exclusion	ROI	was	placed	on	the	midline	(sagittal	plane)	to	remove	streamlines	crossing	to	223	

the	contralateral	hemisphere	through	the	CC.	224	

The	 Cortico-Spinal	 Tract	 (CST).	The	 CST	was	 defined	 as	 streamlines	 passing	 through	 the	225	

midbrain,	the	medulla	oblongata,	and	the	internal	capsule	(first,	second,	third	inclusion	ROI,	226	

respectively).	We	retained	its	terminations	in	the	precentral	and	postcentral	gyri,	as	well	as	227	

the	posterior	third	of	the	superior	frontal	gyrus,	corresponding	to	the	supplementary	motor	228	

area	 (SMA)	 (Chenot	 et	 al.	 2019).	 Two	 coronal	 exclusion	 ROIs	 were	 placed	 to	 discard	229	

streamlines	projecting	too	anteriorly	or	posteriorly:	one	posterior	to	the	postcentral	sulcus,	230	

and	one	anterior	to	the	SMA.	Additional	exclusion	ROIs	were	drawn	on	the	midline	(sagittal	231	

plane)	and	the	tegmental	tract	(axial	plane).	232	

The	Optic	Radiation	(OR).	The	OR	was	defined	as	connecting	the	thalamus	and	the	occipital	233	

cortex	 (Kammen	 et	 al.	 2016;	 Sarubbo	 et	 al.	 2015).	 The	whole	 thalamus	 as	 segmented	 in	234	

FreeSurfer	was	used	as	a	first	inclusion	ROI.	A	second	inclusion	ROI	(coronal	plane)	was	used	235	

to	encompass	the	WM	of	the	occipital	 lobe.	An	exclusion	ROI	(coronal	plane)	was	used	to	236	

discard	the	posterior	projections	of	the	CC.	Another	exclusion	ROI	was	drawn	on	the	axial	237	

plane	to	discard	streamlines	projecting	too	superiorly.	238	
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	239	

Fig.	2.	Manual	labeling:	projection	pathways.	The	figure	shows	the	manual	labeling	protocols	for	the	240	
projection	pathways	in	one	representative	subject.	Inclusion	ROIs	are	shown	in	blue,	exclusion	ROIs	in	241	
orange.	 Tracts	 are	 shown	 on	 color-coded	 FA	 maps.	 OR:	 optic	 radiation.	 ATR:	 anterior	 thalamic	242	
radiation.	 CST:	 cortico-spinal	 tract.	 AR:	 acoustic	 radiation.	 a)	 zoom-in	 showing	 ROI	 on	 the	 lateral	243	
geniculate	nucleus	of	the	thalamus.	b)	zoom-in	showing	ROI	on	Heschl’s	gyrus.		244	

2.4.3 Association pathways  245	

The	manual	labeling	protocol	for	these	pathways	is	illustrated	in	Fig.	3.	246	

The	 Arcuate	 Fasciculus	 (AF).	 The	 AF	was	 defined	 as	 the	 long,	 direct	 connections	 arching	247	

around	the	Sylvian	fissure	and	connecting	temporal	(inferior,	middle,	and	superior	temporal	248	

gyri)	 and	 frontal	 regions	 (Catani,	 Jones,	 and	 Ffytche	 2005;	 Lawes	 et	 al.	 2008;	 J.	 D.	249	

Schmahmann	et	al.	2007;	Makris	et	al.	2005;	Fernández-Miranda	et	al.	2015).	A	first	inclusion	250	

ROI	was	drawn	on	3	consecutive	axial	slices	at	the	level	of	the	main	body	of	the	CC	(medial	251	

boundary:	 line	between	arcuate	and	corona	radiata;	 lateral	boundary:	postcentral	sulcus;	252	

anterior	boundary:	precentral	 sulcus;	posterior	boundary:	 intraparietal	 sulcus).	A	second	253	

inclusion	ROI	was	 placed	 on	 a	 coronal	 slice	 at	 the	 level	 of	 the	 precentral	 sulcus	 (medial	254	

boundary:	lateral	ventricle;	lateral/ventral/dorsal	boundary:	GM	around	Sylvian	fissure	and	255	

parietal	lobe	sulci)	(Catani	and	Mesulam	2008).	One	exclusion	ROI	was	drawn	on	a	sagittal	256	

slice	 just	 lateral	 to	the	corona	radiata,	 to	remove	erroneously	crossing	streamlines	to	the	257	

contralateral	hemisphere.	Two	additional	exclusion	ROIs	were	placed	superior	and	posterior	258	

to	the	AF	to	remove	spurious	streamlines.	259	
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The	Cingulum	Bundle	(CB).	The	CB	was	defined	as	a	long	associative	bundle	running	in	the	260	

WM	adjacent	to	the	cingulate	gyrus	(CG),	arching	around	the	splenium	of	the	CC	at	the	level	261	

of	the	cingulate	isthmus,	and	terminating	at	the	parahippocampal	gyrus	(J.	Schmahmann	and	262	

Pandya	2006;	Lawes	et	al.	2008).	To	 isolate	 the	CB	streamlines,	a	 first	ROI	was	drawn	to	263	

include	the	anterior-posterior	oriented	regions	superior	to	the	CC	as	identified	on	coronal	264	

color-coded	FA	maps.	We	then	subdivided	the	CB	in	two	sub-bundles	(Wakana	et	al.	2007;	265	

Jones,	Knösche,	and	Turner	2013):	a	dorsal	component	running	in	the	CG	(CBD)	and	a	ventral	266	

component	running	in	the	parahippocampal	gyrus	(CBV).	We	defined	the	CBD	as	connecting	267	

the	 anterior	 CG	 and	 the	 superior	 frontal	 gyrus	 (SFG)	 with	 parietal	 WM	 superior	 to	 the	268	

splenium	 of	 the	 CC,	 and	 the	 CBV	 as	 connecting	 these	 superior	 regions	 with	 the	269	

parahipopcampal	 gyrus.	 One	 exclusion	 ROI	was	 placed	 on	 one	 axial	 slice	 inferior	 to	 the	270	

splenium	of	the	CC	to	exclude	ventral	streamlines	from	the	CBD	(Fig.	3a),	and	one	on	one	271	

axial	slice	inferior	and	posterior	to	the	splenium	of	the	CC	for	the	CBV.	272	

The	Extreme	Capsule	(EmC).	The	EmC	was	defined	as	streamlines	connecting	the	frontal	and	273	

temporal	regions,	and	located	lateral	to	the	uncinate	fasciculus	(UF)	(Heide	et	al	2013).	A	274	

first	 hand-drawn	 inclusion	 ROI	 was	 placed	 in	 the	 SFG	 to	 encompass	 most	 of	 the	 WM	275	

Brodmann’s	areas	9	and	10	(Mars	et	al.	2016;	Makris	et	al.	2009).	This	ROI	was	placed	on	the	276	

sagittal	 plane	 to	make	 sure	 to	 distinguish	 EmC	 streamlines	 projecting	 laterally	 from	 UF	277	

streamlines	projecting	 anteriorly	 (see	below	 for	UF	dissection	protocol).	 A	 second	hand-278	

drawn	inclusion	ROI	was	placed	in	the	MTG.	An	exclusion	ROI	was	located	on	the	coronal	279	

plane	posterior	to	the	STG.	A	large	exclusion	ROI	was	placed	along	the	midline	of	the	brain.		280	

The	Frontal	Aslant	Tract	(FAT).	The	FAT	was	defined	as	streamlines	connecting	the	posterior	281	

inferior	frontal	gyrus	(IFG),	pars	opercularis,	and	medial	aspects	of	the	SFG,	namely	the	pre-282	

SMA	 and	 SMA	 (J.	 Schmahmann	 and	 Pandya	 2006;	 Dick	 et	 al.	 2019;	 Lawes	 et	 al.	 2008).	283	

Exclusion	ROIs	were	placed	on	a	coronal	slice	posterior	to	the	SMA	and	anterior	to	the	pre-284	

SMA,	on	the	sagittal	plane	to	exclude	streamlines	entering	the	CC,	and	on	the	axial	plane	to	285	

exclude	artefactual	streamlines	projecting	inferior.	286	
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	287	

Fig.	3.	Manual	labeling:	association	pathways.	The	figure	shows	the	manual	labeling	protocols	for	288	
the	association	pathways	in	one	representative	subject.	Inclusion	ROIs	are	shown	in	blue,	exclusion	ROIs	289	
in	orange.	Tracts	are	shown	on	color-coded	FA	maps.	AF:	arcuate	fasciculus.	ILF:	inferior	longitudinal	290	
fasciculus.	MLF:	middle	 longitudinal	 fasciculus.	 FAT:	 frontal	 aslant	 tract.	 SLF:	 superior	 longitudinal	291	
fasciculus.	 UF:	 uncinate	 fasciculus.	 EmC:	 extreme	 capsule.	 CBD/CBV:	 dorsal	 and	 ventral	 part	 of	 the	292	
cingulum	bundle.	a)	inclusion	and	exclusion	ROIs	for	the	CBD.	293	
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The	 Inferior	Longitudinal	Fasciculus	 (ILF).	The	 ILF	was	defined	as	 streamlines	 connecting	294	

superior,	middle,	inferior	occipital	gyri,	and	the	fusiform	and	lingual	gyri	to	the	inferior	and	295	

middle	temporal	gyri	and	the	temporal	pole	(Latini	et	al.	2017).	A	first	 inclusion	ROI	was	296	

placed	on	a	coronal	slice,	at	the	level	of	the	precentral	sulcus,	to	outline	the	temporal	lobe,	297	

excluding	the	superior	temporal	sulcus.	A	second	inclusion	ROI	was	placed	posterior	to	the	298	

CBD	 on	 a	 coronal	 slice	 to	 encompass	 the	 occipital	 WM.	 One	 exclusion	 ROI	 was	 placed	299	

superiorly	(axial	plane)	to	discard	parietal	connections,	and	one	medially	to	the	ILF	(sagittal	300	

plane)	to	discard	spurious	streamlines.	301	

The	Middle	Longitudinal	Fasciculus	(MLF).	The	MLF	was	defined	as	streamlines	connecting	302	

the	superior	and	middle	anterior	temporal	gyri	and	the	temporal	pole	with	the	superior	and	303	

inferior	 parietal	 cortex,	 coursing	 medial	 to	 the	 AF	 and	 superior	 to	 the	 ILF	 (Menjot	 De	304	

Champfleur	et	al.	2013;	N.	Makris	et	al.	2013;	J.	Schmahmann	and	Pandya	2006;	Maldonado	305	

et	al.	2013).	A	first	inclusion	ROI	was	placed	on	a	coronal	slice	at	the	level	of	the	precentral	306	

sulcus,	to	outline	the	superior	temporal	lobe.	A	second	inclusion	ROI	was	placed	posterior	to	307	

the	CBD	on	a	coronal	slice	to	include	both	the	superior	and	inferior	parietal	WM.	An	exclusion	308	

ROI	 was	 placed	 on	 the	 axial	 plane	 at	 the	 level	 of	 the	 parieto-occipital	 sulcus	 to	 discard	309	

streamlines	going	into	the	occipital	lobe.	310	

The	 Superior	 Longitudinal	 Fasciculus	 (SLF).	We	 dissected	 three	 SLF	 branches	 following	311	

definitions	from	the	anatomical	literature	(J.	D.	Schmahmann	et	al.	2007;	Hecht	et	al.	2015;	312	

Howells	et	al.	2018).	SLF1:	We	placed	one	inclusion	ROI	in	the	superior	frontal	gyrus	and	one	313	

encompassing	the	WM	posterior	to	the	posterior	central	gyrus	and	dorsal	to	the	cingulate	314	

sulcus.	SLF2:	We	placed	one	inclusion	ROI	in	the	caudal	part	of	the	middle	frontal	gyrus	and	315	

one	in	the	WM	of	the	inferior	parietal	lobe	(Thiebaut	de	Schotten	et	al.	2011;	Makris	et	al.	316	

2009).	SLF3:	We	placed	one	inclusion	ROI	in	the	posterior	inferior	frontal	gyrus	and	one	in	317	

the	anterior	supramarginal	gyrus	(J.	D.	Schmahmann	et	al.	2007;	Hecht	et	al.	2015;	Howells	318	

et	al.	2018).	For	all	three	bundles,	we	used	mid-sagittal	and	temporal	exclusion	ROIs.	319	

The	Uncinate	Fasciculus	 (UF).	The	UF	was	defined	as	 streamlines	 connecting	 the	anterior	320	

temporal	 pole	 and	 anterior	 middle	 temporal	 gyrus	 (MTG)	 with	 the	 medial	 and	 orbital	321	

prefrontal	 cortex	 (J.	 Schmahmann	 and	 Pandya	 2006;	 Catani	 and	 Mesulam	 2008).	 These	322	

streamlines	were	identified	as	medial	and	inferior	to	the	EmC.	The	first	inclusion	ROI	was	323	
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drawn	on	four	consecutive	coronal	slices	in	the	temporal	lobe,	to	encompass	the	WM	of	the	324	

MTG	 and	 temporal	 pole.	 A	 second	 inclusion	 ROI	 was	 drawn	 in	 the	 frontal	 lobe	 on	 four	325	

consecutive	coronal	slices	on	the	WM	of	the	medial	orbito-frontal	cortex.	The	subgenual	WM	326	

was	considered	the	upper	limit	of	this	ROI.	Exclusion	ROIs	were	placed	on	the	mid-sagittal	327	

slice	between	the	two	hemispheres	and	directly	posterior	to	the	stem	of	the	UF	to	exclude	328	

erroneous	streamlines.	We	ensured	that	the	relative	position	of	the	UF	with	respect	to	the	329	

EmC	was	accurate	in	each	subject	by	labeling	these	two	tracts	jointly.	330	

2.5 Automated reconstruction in routine-quality data 331	

The	 bundles	 that	 were	 labeled	 manually	 in	 the	 bmax	 =10,000	 𝑠/𝑚𝑚!	 data,	 were	 also	332	

reconstructed	automatically	 in	the	b=1000	𝑠/𝑚𝑚!	data	of	the	same	subjects	(Fig.	4).	The	333	

b=1000	 𝑠/𝑚𝑚!	 shell	 comprised	 64	 out	 of	 the	 512	 DW	 volumes.	 We	 compared	 two	334	

approaches	to	automated	reconstruction:	(i)	TRACULA,	where	we	used	the	manually	labeled	335	

bundles	from	the	bmax	=	10,000	𝑠/𝑚𝑚!	data	to	compute	prior	probabilities	on	the	anatomical	336	

neighborhood	 of	 each	 bundle	 and	 incorporated	 them	 in	 a	 Bayesian	 framework	 global	337	

probabilistic	tractography,	and	(ii)	Multi-ROI,	where	we	used	the	group-averaged	ROIs	and	338	

inclusion/exclusion	 rules	 from	 the	 manual	 labeling	 as	 post-hoc	 constraints	 for	 local	339	

probabilistic	tractography.	We	evaluated	both	approaches	in	a	leave-one-out	scheme,	where	340	

the	 automated	 reconstruction	 in	 each	 subject	 used	 the	manually	 labeled	 bundles	 or	 the	341	

labeling	ROIs	from	the	other	15	subjects.	342	

2.5.1 TRACULA 343	

Training	data:	The	manual	labeling	procedure	of	section	2.4	produced	a	total	of	2.29	million	344	

streamlines	over	all	42	bundles	and	16	training	subjects,	covering	82%	of	all	cerebral	and	345	

cerebellar	WM	voxels.	(In	comparison,	 the	manually	 labeled	training	set	used	in	previous	346	

versions	of	our	software	included	a	total	of	0.15	million	streamlines	from	18	bundles,	which	347	

had	been	labeled	in	much	lower-quality	data	and	covered	18%	of	WM	voxels.)	This	required	348	

us	to	refactor	the	TRACULA	code	base	extensively	to	be	able	to	handle	a	much	larger	training	349	

set	 than	 before.	 In	 this	 new,	 refactored	 version,	 many	 of	 the	 operations	 involved	 in	350	

computing	the	anatomical	neighborhood	priors,	which	were	previously	computed	on	the	fly,	351	

are	now	precomputed	and	stored	with	the	publicly	distributed	training	data.	352	
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	353	

Fig.	 4.	 Overview	 of	 tractography	 methods.	 From	 the	 four-shell	 MGH-USC	 HCP	 data,	 the	354	
b=10,000	𝑠/𝑚𝑚!	 and	 b=1000	 𝑠/𝑚𝑚!	 shells	 were	 extracted.	 Orientations	 were	 reconstructed	 with	355	
constrained	spherical	deconvolution	(CSD)	from	the	b=10,000𝑠/𝑚𝑚!	shell	and	with	multi-shell	multi-356	
tissue	CSD	(MSMT-CSD)	 from	all	 four	shells.	Streamline	tractography	was	performed	with	these	two	357	
approaches	and	used	to	annotate	42	tracts	manually	in	16	subjects.	The	lower	shell	(b=1000	𝑠/𝑚𝑚!,	358	
64	directions)	was	used	to	reconstruct	the	same	tracts	automatically,	with	TRACULA	or	with	a	multi-359	
ROI	 approach.	 For	 TRACULA,	 anatomical	 priors	 for	 each	 subject	 were	 obtained	 from	 the	 other	 15	360	
subjects	and	global	probabilistic	tractography	was	performed.	For	the	multi-ROI	approach,	inclusion	361	
and	exclusion	masks	were	obtained	from	summing	the	manually	defined	ROIs	of	the	other	15	subjects	in	362	
template	space.	Local	probabilistic	 tractography	was	constrained	by	 these	ROIs.	The	same	ball-and-363	
stick	(BS)	diffusion	model	was	used	for	both	TRACULA	and	the	multi-ROI	approach.	364	

In	addition,	the	densest	of	the	manually	labeled	bundles,	e.g.,	most	subdivisions	of	the	CC,	365	

included	a	large	number	of	streamlines	with	very	similar	anatomical	neighbors.	As	a	result,	366	

we	 could	 use	 a	 subset	 of	 these	 streamlines	 without	 affecting	 the	 computation	 of	 the	367	

anatomical	priors.	Therefore,	for	any	WM	bundle	that	included	more	than	20,000	training	368	

streamlines,	 we	 reduced	 that	 number	 to	 20,000	 to	 speed	 up	 this	 computation.	We	 first	369	

removed	 outlier	 streamlines,	 which	 can	 be	 difficult	 to	 remove	 manually	 one	 by	 one,	370	

particularly	for	very	dense	bundles.	Outliers	were	detected	by	mapping	the	end	points	of	the	371	

streamlines	to	a	common	template	space	(see	below	for	more	information	on	registration),	372	

summing	the	endpoints	over	all	subjects,	and	clustering	them.	Small	clusters	of	endpoints	373	
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were	 tagged	 as	 outliers	 and	 any	 individual	 streamlines	 that	 terminated	 in	 those	 outlier	374	

clusters	were	removed.	If	the	total	number	of	streamlines	in	a	bundle	was	still	above	20,000,	375	

it	was	reduced	further	by	random	subsampling	of	the	streamlines.	Note	that	this	reduced	set	376	

of	streamlines	was	used	to	train	TRACULA,	but	the	complete	set	of	2.29	million	streamlines	377	

was	used	as	the	“ground	truth”	to	evaluate	the	accuracy	of	the	automated	reconstruction.	378	

Anatomical	neighborhood	priors:	For	each	subject,	we	used	the	42	manually	defined	bundles	379	

from	each	of	the	other	15	subjects	as	the	training	set.	The	mathematical	formulation	has	been	380	

described	elsewhere	(Yendiki	et	al.	2011;	Yendiki	et	al.	2016).	Briefly,	this	approach	models	381	

a	WM	 pathway	 as	 a	 cubic	 spline,	 which	 is	 initialized	with	 the	median	 streamline	 of	 the	382	

training	 set.	 A	 random	 sampling	 algorithm	 is	 used	 to	 draw	 samples	 from	 the	 posterior	383	

probability	distribution	of	the	pathway	by	perturbing	the	control	points	of	the	spline.	The	384	

posterior	 probability	 is	 decomposed	 into	 the	 likelihood	 of	 the	 pathway	 given	 the	 DW	385	

volumes	and	the	prior	probability	of	the	pathway.	The	likelihood	term	fits	the	shape	of	the	386	

spline	to	the	diffusion	orientations	in	the	voxels	that	the	spline	goes	through.	As	previously,	387	

diffusion	orientations	were	obtained	by	fitting	the	ball-and-stick	model	(Behrens	et	al.	2003)	388	

to	the	subject’s	DW	volumes.	This	model	does	not	require	a	sophisticated	dMRI	acquisition;	389	

it	can	be	used	on	data	collected	with	low	b-values	and	with	as	few	as	30	directions	(Behrens	390	

et	al.	2007).		391	

The	 prior	 probability	 term	 in	 TRACULA	 fits	 the	 shape	 of	 a	 pathway	 to	 its	 anatomical	392	

neighborhood,	 given	 the	 manually	 labeled	 examples	 of	 this	 pathway	 from	 the	 training	393	

subjects	 and	 the	 anatomical	 segmentation	 volumes	 of	 both	 test	 and	 training	 subjects.	394	

Specifically,	 the	 training	 streamlines	 are	used	 to	 compute	 the	prior	probability	 that	 each	395	

label	of	 the	anatomical	segmentation	 is	 the	 j-th	neighbor	of	 the	pathway	at	 the	 i-th	point	396	

along	the	trajectory	of	the	pathway.	Here	i	indexes	equispaced	points	(3	mm	apart)	along	the	397	

pathway	and	j	indexes	the	nearest	neighboring	segmentation	labels	in	different	directions	398	

(left,	right,	anterior,	posterior,	etc.)	The	anatomical	labels	were	extracted	from	the	subject’s	399	

T1-weighted	scan	using	FreeSurfer.		400	

Structural	 segmentation:	 In	 this	work,	we	 used	 an	 anatomical	 segmentation	 volume	 that	401	

combined	the	labels	of	the	Desikan-Killiany	cortical	parcellation	(Desikan	et	al.	2006)	with	402	

the	standard	FreeSurfer	subcortical	segmentation	(Fischl	et	al.	2002).	However,	we	replaced	403	
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the	 thalamus	 label	 of	 the	 latter	 with	 the	 subject’s	 thalamic	 nuclei	 segmentation	 labels	404	

(Iglesias	 et	 al.	 2015,	 2018).	 This	 replacement	 was	 done	 to	 avoid	 oversegmenting	 the	405	

thalamus	into	WM	voxels,	and	to	provide	additional	specificity	on	the	anatomical	neighbors	406	

of	tracts	that	terminate	in	or	travel	around	the	thalamus.	Computing	the	prior	probabilities	407	

on	 the	 anatomical	 neighbors	 of	 the	 tracts	 requires	 that	 each	 (training	 or	 test)	 subject’s	408	

anatomical	segmentation	be	transformed	to	the	subject’s	individual	dMRI	space.	This	within-409	

subject,	 dMRI-to-T1	 alignment	 was	 performed	 by	 a	 boundary-based,	 affine	 registration	410	

method	(Greve	and	Fischl	2009).	411	

Template	 construction:	Although	 finding	 the	 anatomical	 neighbors	 of	 a	 tract	 is	 a	 within-412	

subject	 operation,	 it	 is	 important	 to	 ensure	 that	 all	 subjects’	 brains	 have	 the	 same	413	

orientation,	so	that	the	relative	positions	of	neighboring	structures	(which	structure	is	to	the	414	

left/anterior/etc.	 of	 which	 tract)	 is	 equivalent	 for	 all	 subjects.	 For	 this	 purpose,	 and	 for	415	

mapping	 the	median	 of	 the	 training	 streamlines	 to	 the	 test	 subject	 during	 initialization,	416	

subjects	must	 be	mapped	 onto	 a	 template	 brain.	Here	we	 constructed	 a	 template	 by	 co-417	

registering	the	FA	maps	of	all	35	subjects	in	the	MGH-USC	HCP	data	set	(Fan	et	al.	2015)	with	418	

symmetric	normalization	(SyN;	Avants	et	al.	2008),	as	implemented	in	ANTs	(Avants	et	al.	419	

2011).	An	affine	 initial	registration	was	 followed	by	4	 iterations	of	nonlinear	registration	420	

with	the	b-spline	SyN	transform	model,	a	cross-correlation	similarity	metric	with	a	radius	of	421	

2,	and	a	4-level	multi-resolution	scheme	with	100/70/50/50	sub-iterations	per	level.	Each	422	

test	 subject’s	 FA	 map	 was	 aligned	 to	 the	 template	 with	 the	 default	 sequence	 of	423	

rigid/affine/deformable	SyN	registration	followed	in	ANTs.	Although	we	are	introducing	this	424	

nonlinear	registration	approach	to	TRACULA	in	the	interest	of	generality,	it	is	important	to	425	

note	that	the	purpose	for	which	TRACULA	performs	subject-to-template	registration	(to	find	426	

within-subject	anatomical	neighbors	in	a	consistent	set	of	directions)	does	not	require	exact	427	

voxel-wise,	inter-subject	alignment.	We	demonstrate	this	here	by	comparing	this	nonlinear	428	

registration	approach	to	the	one	that	was	used	by	default	in	previous	versions	of	TRACULA,	429	

i.e.,	affine	registration	of	each	subject’s	T1	image	to	the	1	𝑚𝑚	MNI-152	template	with	FSL’s	430	

FLIRT	(Jenkinson	et	al.	2002).		431	

Choice	 of	 control	 points:	 The	 number	 of	 control	 points	 of	 the	 cubic	 spline,	 which	 are	432	

perturbed	at	each	iteration	of	the	random	sampling	algorithm	to	draw	new	sample	paths,	433	

was	 chosen	 according	 to	 the	 average	 length	 of	 the	 training	 streamlines	 for	 each	 bundle.	434	
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Specifically,	we	chose	the	number	of	control	points	to	be	5	for	the	genu	of	the	CC,	and	we	435	

then	set	the	number	of	control	points	for	all	other	bundles	proportionally	to	their	 length.	436	

This	 ranged	 from	 4	 control	 points	 for	 the	 ATR	 to	 12	 control	 points	 for	 the	 temporal	437	

component	of	the	body	of	the	CC.	438	

Along-tract	analysis:	Pointwise	assessment	of	streamline	tractography	attributes	(PASTA)	is	439	

a	 type	 of	 analysis	where	 an	 along-tract	 profile	 of	 a	microstructural	measure	 (e.g.,	 FA)	 is	440	

generated	by	averaging	the	values	of	the	measure	at	different	cross-sections	of	a	tract	(Jones	441	

et	 al.	 2005).	 For	 each	of	 the	42	bundles,	we	generated	a	 reference	 streamline	 for	PASTA	442	

analyses,	to	ensure	that	all	subjects	are	sampled	at	the	same	number	of	cross-sections	along	443	

a	 given	 bundle.	 The	 reference	 streamline	 was	 the	 mean	 of	 the	 manually	 annotated	444	

streamlines	in	template	space.	After	the	bundles	of	an	individual	subject	were	reconstructed	445	

automatically	with	TRACULA,	the	reference	streamlines	were	mapped	from	the	template	to	446	

the	individual.	We	generated	along-tract	profiles	of	microstructural	measures	by	projecting	447	

the	value	of	each	measure	from	every	point	on	every	automatically	reconstructed	streamline	448	

to	its	nearest	point	on	the	reference	streamline.	Values	projected	to	the	same	point	on	the	449	

reference	 streamline	 were	 then	 averaged,	 to	 generate	 an	 along-tract,	 1D	 profile	 of	 the	450	

microstructural	measure.	451	

2.5.2 Multi-ROI 452	

For	comparison,	we	also	reconstructed	each	subject’s	bundles	with	a	commonly	used	multi-453	

ROI	approach,	which	maps	a	 set	of	ROIs	 from	a	 template	 to	an	 individual	 subject’s	dMRI	454	

space	 and	 combines	 them	 with	 a	 set	 of	 deterministic	 inclusion	 and	 exclusion	 rules	 to	455	

constrain	the	output	of	local	probabilistic	tractography	(Groot	et	al.	2013;	Warrington	et	al.	456	

2020).	For	each	subject,	we	used	the	ROIs	that	we	had	drawn	for	the	manual	labeling	of	the	457	

bundles	in	the	other	15	subjects.	We	aligned	the	subjects	to	the	FMRIB-58	FA	template	using	458	

FSL’s	FNIRT,	and	then	used	the	resulting	nonlinear	warp	to	transform	the	ROIs	to	template	459	

space.	We	summed	the	corresponding	ROIs	of	the	15	subjects,	and	thresholded	their	sum	to	460	

ensure	that	it	had	a	size	similar	to	that	of	the	individual	ROIs.	(Empirically	this	was	done	by	461	

applying	a	 lower	threshold	equal	to	30%	of	the	number	of	subjects).	The	group-averaged	462	

and	thresholded	ROIs	were	then	mapped	to	the	test	subject	using	the	inverse	of	the	subject-463	

to-template	registration.	For	each	pathway,	 the	automated	multi-ROI	protocol	used	 these	464	
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ROIs	as	inclusion	masks.	For	the	bundles	that	were	included	in	previously	published	multi-465	

ROI	protocols	(Warrington	et	al.	2020),	we	used	the	previously	proposed	exclusion	masks	466	

and	augmented	 them	as	needed	with	 the	group-averaged	exclusion	masks	 from	our	own	467	

manual	dissections.	Local	probabilistic	tractography	was	performed	using	FSL’s	probtrackX	468	

(Behrens	et	al.	2007)	in	symmetrical	mode	(seeding	from	both	inclusion	masks)	with	default	469	

parameters	(5000	number	of	samples,	200	steps	per	sample,	0.5	𝑚𝑚	step-length)	and	the	470	

same	ball-and-stick	model	as	in	the	previous	section	(Behrens	et	al.	2003).	We	implemented	471	

along-tract	 (PASTA)	 analyses	 for	 the	 multi-ROI	 approach,	 using	 the	 same	 reference	472	

streamlines	as	for	TRACULA,	in	the	manner	described	in	section	2.5.1	above.	473	

2.5.3 Accuracy of automated reconstruction 474	

We	 assessed	 the	 accuracy	 of	 the	 TRACULA	 and	 multi-ROI	 automated	 reconstruction	 by	475	

comparing	the	tracts	reconstructed	automatically	in	the	b=1000	𝑠/𝑚𝑚!,	64-direction	data	476	

to	those	labeled	manually	in	the	bmax=10,000	𝑠/𝑚𝑚!,	512-direction	data	of	the	same	subject.	477	

We	 quantified	 the	 reconstruction	 error	 by	 computing	 the	 modified	 Hausdorff	 distance	478	

(MHD;	Dubuisson	and	Jain,	1994)	between	the	automatically	reconstructed	and	manually	479	

labeled	pathways.	The	MHD	between	two	set	of	points	S	and	T	is	defined	as	the	minimum	480	

distance	between	a	point	in	one	set	and	any	point	in	the	other	set,	averaged	over	all	points	481	

in	the	two	sets:	482	

𝑀𝐻𝐷(𝑆, 𝑇) =
1
|𝑆|7𝑚𝑖𝑛#$%𝑑(𝑠, 𝑡)

&$'

+
1
|𝑇|7𝑚𝑖𝑛&$'𝑑(𝑡, 𝑠)

#$%

	483	

where	d(×,×)	is	the	Euclidean	distance	between	a	pair	points	from	the	two	sets,	and	|×|	is	the	484	

size	of	 a	 set.	Greater	MHD	 indicates	 greater	deviation	of	 the	 automatically	 reconstructed	485	

tract	from	the	one	labeled	manually	in	the	same	subject,	and	hence	lower	accuracy	of	the	486	

automated	reconstruction.		487	

In	previous	work,	we	reported	MHD	of	tracts	reconstructed	with	TRACULA	using	our	older	488	

training	sets	for	adult	brains	(Yendiki	et	al.	2011)	or	infant	brains	(Zöllei	et	al.	2019),	after	489	

thresholding	the	voxel	visitation	maps	of	the	automatically	reconstructed	tracts	at	a	single	490	

threshold	(20%	of	the	maximum,	which	is	the	default	visualization	threshold	in	TRACULA).	491	

However,	for	the	purpose	of	a	comparison	between	TRACULA	and	the	multi-ROI	approach,	492	
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a	single	threshold	would	not	be	informative.	The	global	tractography	used	in	TRACULA	adds	493	

an	entire	end-to-end	path	 to	 the	voxel	visitation	map	at	each	 iteration,	whereas	 the	 local	494	

tractography	used	 in	 the	multi-ROI	 approach	 adds	 a	 single	 voxel	 at	 every	 iteration.	As	 a	495	

result,	 thresholding	 at	 the	 same	 percentage	 of	 the	 peak	 value	 does	 not	 yield	 equivalent	496	

results	between	the	two	methods.	For	 this	reason,	 in	 the	experiments	presented	here	we	497	

performed	a	more	comprehensive	evaluation	of	reconstruction	error,	where	we	increased	498	

the	threshold	gradually	from	0%	to	90%	for	both	methods,	and	computed	their	MHD	at	each	499	

threshold.		500	

In	addition,	for	each	bundle	and	at	each	threshold,	we	computed	the	true-positive	rate	(TPR),	501	

which	quantifies	the	proportion	of	the	manually	labeled	streamlines	that	overlap	with	the	502	

automatically	reconstructed	bundle:	503	

𝑇𝑃𝑅 = ?7 𝑛(𝛿(
)

(*+
A ?7 𝑛(

)

(*+
AB ,	504	

where	ni	the	number	of	manually	labeled	streamlines	that	go	through	the	 i-th	voxel,	δi	an	505	

indicator	function	that	is	equal	to	1	if	the	automatically	reconstructed	bundle	goes	through	506	

the	 i-th	voxel	and	0	otherwise,	 and	N	 the	number	of	voxels	 in	a	brain	volume.	Each	 true	507	

positive	voxel	(δi	=	1)	is	weighed	by	the	number	of	manually	labeled	streamlines	ni	that	go	508	

through	 that	 voxel,	 to	 account	 for	 the	 fact	 that	 the	manually	 labeled	bundles	 themselves	509	

contain	noisy	tractography	streamlines.	Thus,	a	true	positive	should	be	rewarded	more	if	it	510	

occurs	in	a	voxel	that	overlaps	with	a	large	number	of	the	manually	labeled	streamlines.	511	

In	a	conventional	receiver	operating	characteristic	(ROC)	analysis,	the	TPR	is	plotted	against	512	

the	 false-positive	 rate	 (FPR),	 which	 quantifies	 the	 proportion	 of	 the	 automatically	513	

reconstructed	bundle	that	does	not	overlap	with	the	manually	labeled	one:		514	

𝐹𝑃𝑅 = ?7 (1 − 𝜁()𝛿(
)

(*+
A ?7 (1 − 𝜁()

)

(*+
AB ,	515	

where	ζi	an	indicator	function	that	is	equal	to	1	if	the	manually	labeled	bundle	goes	through	516	

the	i-th	voxel	and	0	otherwise.	It	is	important	to	note,	however,	that	the	FPR	penalizes	all	517	

false	positive	voxels	equally,	no	matter	how	far	away	from	the	manually	labeled	bundle	they	518	

occur.	Thus	the	MHD,	which	measures	the	distance	between	the	automatically	reconstructed	519	

and	manually	labeled	bundles,	is	a	more	informative	metric	of	reconstruction	errors.	520	
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The	 goal	 of	 these	 experiments	 was	 to	 investigate	 how	 close	 automated	 tractography	 in	521	

routine-quality	data	could	come	to	manually	annotated	tractography	 in	high-quality	data,	522	

hence	the	“ground	truth”	was	obtained	from	the	manually	labeled,	multi-ROI	tractography	523	

of	 section	 2.4.	 However,	 there	 were	 cases	 where	 even	 the	 full	 bmax=10,000	𝑠/𝑚𝑚!	 data	524	

yielded	 only	 a	 few	 streamlines	 for	 a	 certain	 manually	 labeled	 bundle.	 In	 those	 cases,	525	

measuring	the	accuracy	of	the	automated	reconstructions	by	comparison	to	the	manually	526	

labeled	 bundle	 could	 underestimate	 the	 accuracy	 of	 the	 automated	 reconstruction.	 We	527	

identified	such	cases	as	manually	labeled	bundles	whose	volume	was	less	than	1/3	of	the	528	

median	volume	of	the	same	bundle	across	the	16	training	subjects.	They	were	one	case	each	529	

of	the	LH-CBD,	LH-AR,	and	CC-BODY-T,	and	two	cases	of	the	AC.	We	excluded	these	cases	530	

when	computing	the	metrics	described	above,	but	including	them	would	not	change	any	of	531	

our	conclusions.		532	

2.5.4 Test-retest reliability of automated reconstruction 533	

We	divided	the	64	diffusion	directions	of	the	b=1000	𝑠/𝑚𝑚!	shell	 into	two	subsets,	each	534	

containing	32	directions	that	were	approximately	uniformly	distributed	over	the	sphere.	We	535	

applied	the	automated	reconstruction	methods	described	in	2.5.1	and	2.5.2	to	each	of	the	536	

subsets,	 and	we	computed	 the	accuracy	metrics	of	2.5.3.	This	 allowed	us	 to	assess	 if	 the	537	

results	from	the	two	methods	were	reproducible	between	the	test	and	retest	scans,	and	how	538	

robust	the	methods	were	to	even	lower	angular	resolution.		539	

2.5.5 Test-retest reliability of along-tract measures 540	

For	 the	 bundles	 reconstructed	 from	 each	 of	 the	 two	 32-direction	 datasets,	 either	 with	541	

TRACULA	 or	 with	 the	 multi-ROI	 method,	 we	 extracted	 PASTA	 profiles	 of	 FA	 and	542	

mean/radial/axial	diffusivity	(MD/RD/AD).	We	assessed	the	test-retest	reliability	of	these	543	

profiles	by	computing	the	symmetrized	percent	change	(SPC)	between	the	profiles	obtained	544	

by	the	same	method	from	the	two	32-direction	datasets:	545	

𝑆𝑃𝐶 = ?7 (𝑥( − 𝑦()
,

(*+
A ?7 (𝑥( + 𝑦()/2

,

(*+
AB ,	546	
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where	 𝑥( 	and	 𝑦( 	the	 i-th	 along-tract	 data	 point	 of	 a	 microstructural	 measure	547	

(FA/MD/RD/AD)	from	the	two	32-direction	datasets.	The	total	number	of	data	points,	M,	548	

equals	the	number	of	cross-sections	along	a	tract	times	the	number	of	subjects.	549	

We	computed	the	test-retest	reliability,	as	quantified	by	SPC,	at	a	fixed	level	of	sensitivity	for	550	

both	reconstruction	methods.	For	the	multi-ROI	method,	we	set	the	threshold	for	the	voxel	551	

visitation	maps	to	1%	of	the	maximum	value.	At	that	threshold,	the	multi-ROI	method	had	a	552	

sensitivity	of	about	0.6.	We	then	set	the	threshold	for	TRACULA	(10%)	to	achieve	the	same	553	

sensitivity.	554	

2.5.6 Evaluation on a larger dataset 555	

As	a	final	evaluation,	we	show	preliminary	results	from	assessing	the	ability	of	TRACULA	to	556	

detect	subtle	microstructural	effects	in	a	larger	dataset.	We	used	data	from	204	adolescents	557	

scanned	for	the	Boston	Adolescent	Neuroimaging	of	Depression	and	Anxiety	(BANDA)	study,	558	

a	 Connectomes	 Related	 to	 Human	 Disease	 (CRHD)	 project.	 The	 study	 cohort	 had	 been	559	

recruited	 to	 probe	 the	 full	 continuum	of	 depressed	 and	 anxious	 symptoms	 and	 their	 co-560	

morbidity,	and	thus	allow	transdiagnostic	investigations	of	brain-behavior	relationships.	It	561	

included	138	participants	with	depression	 and/or	 anxiety	 disorders	 (age	 15.50±0.83,	 95	562	

female)	and	66	controls	(age	15.17±0.83	years,	36	female).	Details	on	the	clinical	assessment	563	

and	imaging	protocol	are	provided	elsewhere	(Hubbard	et	al.	2020;	Siless	et	al.	2020).		564	

Here	we	 used	 the	 T1-weighted	 images	 (. 8	𝑚𝑚	 isotropic	 resolution)	 to	 obtain	 structural	565	

segmentations	 with	 FreeSurfer;	 and	 the	 lower	 shell	 of	 the	 dMRI	 data	 (1.5	𝑚𝑚	 isotropic	566	

resolution,	b=1500	𝑠/𝑚𝑚!,	93	diffusion	weighted	volumes	collected	with	two	phase-encode	567	

directions	each,	and	28	non-diffusion	weighted	volumes)	to	reconstruct	WM	pathways	with	568	

TRACULA.	The	dMRI	data	were	pre-processed	with	FSL’s	topup	(Andersson	et	al.	2003)	and	569	

eddy	 (Andersson	 &	 Sotiropoulos	 2016)	 to	 mitigate	 susceptibility	 and	 eddy-current	570	

distortions.	We	reconstructed	the	following	pathways	with	TRACULA:	all	subdivisions	of	the	571	

CC,	and	bilateral	ATR,	CBD,	CBV,	EmC,	FX,	SLF1,	SLF2,	SLF3,	UF.	We	studied	these	pathways	572	

as	they	have	been	previously	reported	to	be	affected	in	patients	with	depression	or	anxiety	573	

(Bracht	et	al.,	2015;	Greenberg	et	al.,	2021;	Henderson	et	al.,	2013;	LeWinn	et	al.,	2014;	Liao	574	

et	 al.,	 2014).	 We	 tested	 the	 along-tract	 FA	 values	 for	 associations	 with	 three	 clinical	575	

variables:	 the	 total	 score	 from	 the	Mood	 and	Feelings	Questionnaire	 (MFQ;	Angold	 et	 al.	576	
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1995)	 and	 the	 depression	 and	 general	 anxiety	 subscale	 scores	 from	 the	 Revised	 Child	577	

Anxiety	and	Depression	Scale	(RCADS;	de	Ross	et	al.	2000).	We	excluded	two	participants	578	

out	of	the	full	cohort	of	206	due	to	missing	clinical	scores.	579	

For	each	clinical	score,	we	fit	a	general	linear	model	(GLM)	with	the	along-tract	FA	value	as	580	

the	dependent	variable,	and	sex,	age,	and	clinical	 score	as	 the	 independent	variables.	We	581	

tested	two	contrasts	for	statistical	significance:	the	average	slope	of	FA	vs.	clinical	score,	and	582	

the	difference	of	slopes	between	female	and	male	participants.	We	used	FreeSurfer	statistical	583	

analysis	tools,	adapted	for	1D	data;	specifically,	we	fit	a	GLM	at	each	point	along	each	tract	584	

with	 mri_glmfit,	 and	 performed	 simulation-based,	 cluster-wise	 correction	 for	 multiple	585	

comparisons	with	mri_glmfit-sim	(Hagler	et	al.	2006;	Greve	and	Fischl	2018).	The	cluster-586	

forming	threshold	and	the	cluster-wise	threshold	for	statistical	significance	were	both	set	to	587	

p=0.05,	 and	1000	simulations	were	performed.	After	 statistical	 testing,	we	visualized	 the	588	

along-tract	 p-values	 by	 projecting	 them	 onto	 a	 randomly	 selected	 subset	 of	 the	 training	589	

streamlines	in	template	space.	590	

3. Results 591	

3.1 Manually labeled dataset 592	

Fig.	5	shows	the	42	manually	labeled	pathways.	The	full	set	includes	2.29	million	annotated	593	

streamlines.	 In	 individual	dMRI	space,	 they	cover	82%	of	all	 cerebral	and	cerebellar	WM	594	

voxels	across	the	16	subjects.	For	Fig.	5,	the	streamlines	were	mapped	to	template	space	and	595	

aggregated	across	all	16	training	subjects.	In	template	space,	98%	of	cerebral	and	cerebellar	596	

WM	voxels	(defined	by	majority	voting	of	the	anatomical	segmentations	of	the	16	subjects)	597	

overlap	with	the	streamlines	of	at	least	one	subject.	Thus,	although	the	42	pathways	that	we	598	

have	 labeled	 here	 do	 not	 represent	 all	 brain	 connections,	 they	 provide	 extensive	 WM	599	

coverage.		600	
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	601	

Fig.	5.	Manually	labeled	dataset.	Manually	labeled	streamlines	from	each	of	the	42	WM	bundles	are	602	
shown	aggregated	over	all	16	training	subjects.	Manual	annotation	was	performed	on	each	subject’s	603	
individual	 dMRI	 data	 as	 described	 in	 section	 2.4.	 Streamlines	 are	 displayed	 here	 in	1	𝑚𝑚	MNI-152	604	
template	space.	605	
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Fig.	6	shows	the	coverage	of	the	cortical	surface	by	the	terminations	of	the	manually	labeled	606	

streamlines.	For	this	figure,	the	number	of	streamline	end	points	per	voxel	were	summed	607	

along	 the	normal	of	 the	 surface,	within	3mm	 from	 the	WM-GM	 junction.	They	were	 then	608	

mapped	 from	 each	 individual’s	 surface	 to	 the	 fsaverage	 surface	 using	 the	 FreeSurfer	609	

spherical	 morph.	 The	 total	 numbers	 of	 streamlines	 across	 the	 16	 subjects	 were	 then	610	

obtained	 at	 each	 vertex.	 No	 smoothing	 was	 applied	 in	 the	 volume	 or	 on	 the	 surface	 to	611	

produce	these	maps.	The	terminations	of	the	manually	labeled	streamlines	cover	89%	of	the	612	

cortical	surface	on	the	left	hemisphere	and	88%	on	the	right	hemisphere.	613	

	614	

Fig.	6.	Cortical	terminations	of	manually	labeled	streamlines.	Total	number	of	the	streamlines	in	615	
the	 manually	 labeled	 set	 that	 terminate	 within	 3	𝑚𝑚	 of	 each	 vertex	 on	 the	 WM-GM	 boundary	 in	616	
fsaverage	space.	617	

Fig.	7	shows	the	FA	template	that	we	constructed	from	the	35	MGH-USC	HCP	subjects	and	618	

that	we	used	as	the	target	for	inter-subject	registration	with	ANTs.	The	figure	also	shows	the	619	

mean	of	the	manually	annotated	streamlines	from	each	of	the	42	WM	bundles.	We	used	these	620	

mean	streamlines	as	the	reference	streamlines	for	PASTA	analysis.	621	
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	622	

Fig.	7.	Template	and	reference	streamlines.	The	template	that	we	constructed	from	the	FA	maps	of	623	
all	35	MGH-USC	subjects	is	shown	in	sagittal	(left)	and	axial	(right)	view.	The	mean	of	the	manually	624	
annotated	 streamlines	 from	 each	 of	 the	 42	 bundles	 is	 also	 shown.	 These	 serve	 as	 the	 reference	625	
streamlines	where	microstructural	measures	are	projected	for	PASTA	analyses.	626	

3.2 Comparison of automatically reconstructed and manually labeled pathways 627	

Fig.	8	shows	the	accuracy	measures	of	section	2.5.3,	computed	over	all	42	pathways	and	16	628	

subjects	in	the	leave-one-out	experiments.	Results	are	shown	for	the	64-direction,	b=1000	629	

𝑠/𝑚𝑚!	data	with	TRACULA	(red)	and	the	multi-ROI	method	(black);	and	for	two	sets	of	32-630	

direction,	b=1000	𝑠/𝑚𝑚!	 data	with	TRACULA	(yellow,	green)	and	 the	multi-ROI	method	631	

(blue,	purple).	The	plot	on	the	left	shows	the	sensitivity	(TPR)	as	a	function	of	1-specificity	632	

(FPR).	The	plot	on	the	right	shows	the	reconstruction	error	(MHD	in	mm)	as	a	function	of	633	

sensitivity.	 Mean	 MHD	 is	 shown	 with	 standard	 error	 bars.	 Each	 point	 along	 the	 curves	634	

represents	a	different	threshold	applied	to	the	probability	distributions	estimated	by	each	635	

method.	The	point	of	highest	sensitivity	is	the	one	achieved	by	unthresholded	distributions.	636	

The	highest	sensitivity	achieved	by	TRACULA	across	all	42	pathways	was	89%,	indicating	637	

high	 coverage	 of	 the	 “ground-truth”	 pathways,	 i.e.,	 the	 ones	 obtained	 from	 the	 manual	638	

labeling	 of	 the	 512-direction,	 bmax=10,000	𝑠/𝑚𝑚!	 data.	 At	 that	 sensitivity,	 the	639	

reconstruction	error	(MHD)	was	3.5	mm	for	TRACULA	on	the	64-direction	data.	Compared	640	

to	that,	the	reconstruction	error	at	the	same	sensitivity	level	was	4.2	mm	(20%	higher)	for	641	

TRACULA	on	both	sets	of	32-direction	data,	7.6	mm	(118%	higher)	for	the	multi-ROI	method	642	

on	the	64-direction	data,	and	10.6/10.4	mm	(203/197%	higher)	for	the	multi-ROI	method	643	

on	 the	 two	 sets	 of	 32-direction	 data.	 For	 both	 reconstruction	 methods,	 the	 overall	644	

performance	metrics	were	highly	reproducible	between	the	two	sets	of	32-direction	data.	645	

This	 is	 illustrated	by	 the	overlap	of	 the	 green	and	yellow	curves	 (for	TRACULA)	 and	 the	646	
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overlap	 of	 the	 blue	 and	 purple	 curves	 (for	 the	 multi-ROI	 method).	 For	 both	 methods,	647	

performance	was	somewhat	lower	on	the	32-direction	data	than	the	64-direction	data.	The	648	

multi-ROI	method	exhibited	a	greater	deterioration	as	a	result	of	decreasing	the	number	of	649	

directions	from	64	to	32.	650	

 651	

Fig.	8.	Overall	accuracy	of	automated	reconstruction.	For	each	reconstruction	method	(TRACULA,	652	
multi-ROI),	results	are	shown	for	64	directions	and	for	2	sets	of	32	directions.	Measures	were	computed	653	
across	all	 42	pathways	and	16	manually	 labeled	 subjects.	 Each	point	along	 the	 curves	 represents	a	654	
different	 threshold	 applied	 to	 the	 estimated	 probability	 distributions.	 Left:	 Sensitivity	 (TPR)	 vs.	 1-655	
specificity	 (FPR).	Right:	 Reconstruction	 error	 (MHD	 in	 mm)	 vs.	 sensitivity.	 Horizontal	 dashed	 line:	656	
minimum	MHD	achieved	by	the	multi-ROI	method	on	the	64-direction	data.	Red	star:	Maximum	TPR	657	
achieved	by	TRACULA	at	the	same	MHD	level.	658	

Figs.	9-11	show	plots	of	the	reconstruction	error	(MHD)	vs.	sensitivity	(TPR)	separately	for	659	

each	 of	 the	 42	 pathways.	 There	 was	 some	 variability	 across	 pathways	 in	 terms	 of	 the	660	

difference	in	performance	between	reconstruction	methods,	the	extent	to	which	lowering	661	

the	 number	 of	 directions	 from	 64	 to	 32	 affected	 their	 performance,	 or	 the	 level	 of	662	

reproducibility	 between	 the	 two	 sets	 of	 32	 directions.	 However,	 the	 general	 patterns	663	

observed	 from	 the	 overall	 performance	 plot	 of	 Fig.	 8	 could	 also	 be	 observed	 from	 the	664	

individual	pathway	plots	of	Figs.	9-11.	665	
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 666	
Fig.	 9.	 Accuracy	 of	 automated	 reconstruction	 by	 pathway.	 For	 each	 reconstruction	 method	667	
(TRACULA,	multi-ROI),	results	are	shown	for	64	directions	and	for	2	sets	of	32	directions.	Each	point	668	
along	the	curves	represents	a	different	threshold	applied	to	the	estimated	probability	distributions.	Left:	669	
Sensitivity	 (TPR)	 vs.	 1-specificity	 (FPR).	 Right:	 Reconstruction	 error	 (MHD	 in	 mm)	 vs.	 sensitivity.	670	
Horizontal	dashed	line:	minimum	MHD	achieved	by	the	multi-ROI	method	on	the	64-direction	data.	Red	671	
star:	Maximum	TPR	achieved	by	TRACULA	at	the	same	MHD	level.	672	
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 673	
Fig.	10.	Accuracy	of	automated	reconstruction	by	pathway	(continued).	For	each	reconstruction	674	
method	(TRACULA,	multi-ROI),	results	are	shown	for	64	directions	and	for	2	sets	of	32	directions.	Each	675	
point	 along	 the	 curves	 represents	 a	 different	 threshold	 applied	 to	 the	 estimated	 probability	676	
distributions.	Left:	Sensitivity	(TPR)	vs.	1-specificity	(FPR).	Right:	Reconstruction	error	(MHD	in	mm)	677	
vs.	 sensitivity.	Horizontal	 dashed	 line:	minimum	MHD	achieved	by	 the	multi-ROI	method	on	 the	64-678	
direction	data.	Red	star:	Maximum	TPR	achieved	by	TRACULA	at	the	same	MHD	level.	679	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.06.28.450265doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450265
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

 680	
Fig.	11.	Accuracy	of	automated	reconstruction	by	pathway	(continued).	For	each	reconstruction	681	
method	(TRACULA,	multi-ROI),	results	are	shown	for	64	directions	and	for	2	sets	of	32	directions.	Each	682	
point	 along	 the	 curves	 represents	 a	 different	 threshold	 applied	 to	 the	 estimated	 probability	683	
distributions.	Left:	Sensitivity	(TPR)	vs.	1-specificity	(FPR).	Right:	Reconstruction	error	(MHD	in	mm)	684	
vs.	 sensitivity.	Horizontal	 dashed	 line:	minimum	MHD	achieved	by	 the	multi-ROI	method	on	 the	64-685	
direction	data.	Red	star:	Maximum	TPR	achieved	by	TRACULA	at	the	same	MHD	level.	686	
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In	the	plots	of	reconstruction	error	(MHD)	vs.	sensitivity	(TPR)	from	Figs.	8-11,	a	horizontal	687	

dashed	line	indicates	the	minimum	MHD	that	can	be	achieved	by	the	multi-ROI	method	on	688	

the	64-direction	data,	i.e.,	the	minimum	MHD	along	the	black	curve.	The	portion	of	the	red	689	

curve	 that	 lies	below	 the	dashed	 line	 represents	 the	 range	of	 operating	points	 for	which	690	

TRACULA	achieved	a	reconstruction	error	equal	or	less	than	the	minimum	achieved	by	the	691	

multi-ROI	method.	 The	 red	 star	 indicates	 the	maximum	 sensitivity	 that	 TRACULA	 could	692	

achieve	while	staying	below	that	level	of	reconstruction	error.	Fig.	12	shows	the	sensitivity	693	

(TPR)	values	at	these	operating	points.	The	gray	bars	show	the	sensitivity	of	the	multi-ROI	694	

method	at	the	threshold	where	it	achieves	its	minimum	reconstruction	error.	The	red	bars	695	

show	 the	 maximum	 sensitivity	 that	 TRACULA	 could	 achieve	 while	 maintaining	 a	696	

reconstruction	 error	 equal	 or	 less	 than	 the	 minimum	 error	 achieved	 by	 the	 multi-ROI	697	

method	(i.e.,	the	sensitivity	of	TRACULA	at	the	points	marked	by	red	stars	in	Figs.	8-11).	698	

 699	
Fig.	12.	Maximum	sensitivity	at	the	same	level	of	reconstruction	error.	For	each	of	42	pathways	700	
(and	across	all	pathways	on	the	far	right),	the	plot	shows	the	sensitivity	(TPR)	that	the	multi-ROI	method	701	
achieves	when	its	threshold	is	chosen	to	minimize	the	reconstruction	error	(MHD),	and	the	maximum	702	
sensitivity	that	TRACULA	can	achieve	while	maintaining	the	same	or	lower	reconstruction	error.	703	

Fig.	13	shows	the	minimum	reconstruction	error,	as	quantified	by	the	MHD	in	mm,	achieved	704	

by	the	multi-ROI	method	and	TRACULA	for	each	pathway.	The	x=y	line	 is	shown	in	black	705	

dots.	The	data	points	fall	mostly	above	the	x=y	line,	indicating	that	the	minimum	error	was	706	

smaller	for	TRACULA	than	the	multi-ROI	method.	Note	that	these	errors	do	not	correspond	707	

to	matched	thresholds	or	matched	sensitivity	levels	between	the	two	methods.	They	are	the	708	

minimum	errors	that	each	method	could	achieve	across	all	thresholds	and	thus	sensitivity	709	
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levels.	Figs.	8-11	show	that,	when	compared	at	matched	levels	of	sensitivity,	TRACULA	could	710	

achieve	overall	lower	reconstruction	errors.	711	

 712	

Fig.	 13.	 Minimum	 reconstruction	 error.	 For	 each	 of	 42	 pathways,	 the	 plot	 shows	 the	 minimum	713	
reconstruction	error	(MHD	in	mm)	that	can	be	achieved	by	TRACULA	(x-axis)	and	the	multi-ROI	method	714	
(y-axis).	The	pathways	are	color-coded	based	on	their	type	(commissural,	projection,	or	association).	715	

Fig.	14	shows	that	the	performance	of	TRACULA	is	independent	of	the	method	that	it	uses	716	

for	inter-subject	registration.		The	plots	show	results	from	automated	reconstruction	on	the	717	

64-direction	data	with	three	methods:	TRACULA	or	the	multi-ROI	method	with	nonlinear	718	

inter-subject	 registration	 (same	 as	 in	 Fig.	 8),	 and	 TRACULA	 with	 affine	 inter-subject	719	

registration.	As	seen	in	the	plots,	performance	is	indistinguishable	between	TRACULA	with	720	

the	two	registration	approaches.	This	is	because	the	anatomical	priors	in	TRACULA	do	not	721	

encode	information	about	the	absolute	coordinates	of	the	pathways	in	template	space.	They	722	

only	 encode	 information	 about	 the	 relative	 positions	 (left,	 right,	 anterior,	 etc.)	 of	 the	723	

pathways	with	respect	to	their	surrounding	anatomical	structures.	724	

	725	
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Fig.	14.	Robustness	to	inter-subject	registration.	Results	are	shown	for	reconstruction	on	the	64-726	
direction	data	using	either	TRACULA	or	the	multi-ROI	method	with	nonlinear	inter-subject	registration	727	
(same	as	in	Fig.	8),	as	well	as	TRACULA	with	affine	inter-subject	registration.	Measures	were	computed	728	
across	all	 42	pathways	and	16	manually	 labeled	 subjects.	 Each	point	along	 the	 curves	 represents	a	729	
different	 threshold	 applied	 to	 the	 estimated	 probability	 distributions.	 Left:	 Sensitivity	 (TPR)	 vs.	 1-730	
specificity	 (FPR).	Right:	 Reconstruction	 error	 (MHD	 in	 mm)	 vs.	 sensitivity.	 Horizontal	 dashed	 line:	731	
minimum	MHD	achieved	by	the	multi-ROI	method	on	the	64-direction	data.	Red	star:	Maximum	TPR	732	
achieved	by	TRACULA	at	the	same	MHD	level.	733	

3.3 Test-retest reliability of along-tract measures 734	

Fig.	15	shows	the	SPC	of	along-tract	FA	values	between	the	two	32-direction	datasets,	for	735	

TRACULA	and	the	multi-ROI	method,	at	a	sensitivity	level	of	0.6.	An	analysis	of	variance	with	736	

factors	of	bundle	(42	levels)	and	reconstruction	method	(2	levels)	showed	a	significant	effect	737	

of	 both	 bundle	 (p=2.9e-04)	 and	 reconstruction	method	 (p=3.9e-08).	 Very	 similar	 results	738	

were	obtained	for	MD	(bundle:	p=4.3e-03;	reconstruction	method:	p=6.7e-08),	RD	(bundle:	739	

p=4.3e-03;	reconstruction	method:	p=5.1e-08),	and	AD	(bundle:	p=7.8e-03;	reconstruction	740	

method:	p=5.4e-08).		741	

	742	

Fig.	15.	Test-retest	reliability	of	along-tract	FA.	The	plots	show	the	test-retest	error	of	along-743	

tract	(PASTA)	FA	values,	as	quantified	by	the	SPC	between	along-tract	FA	obtained	from	two	744	

32-direction	 data	 sets,	with	 the	multi-ROI	method	 (gray)	 or	with	TRACULA	 (red).	 For	 both	745	

methods,	pathway	probability	maps	were	thresholded	to	achieve	a	sensitivity	of	0.6.	746	

These	results	reflect	both	the	reliability	of	automated	tractography	and	the	reliability	of	the	747	

microstructural	 measures	 themselves.	 For	 example,	 the	 two	 bundles	 where	 along-tract	748	
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FA/MD/RD/AD	had	their	lowest	reliability	(AC	and	FX)	were	the	ones	where	these	tensor-749	

based	measures	 would	 be	 the	most	 prone	 to	 partial	 voluming	 due	 to	 proximity	 to	 CSF.	750	

Microstructural	measures	extracted	from	models	other	the	tensor	may	be	more	reliable	than	751	

these	overall.	Here,	however,	our	main	interest	was	in	the	comparison	of	reliability	between	752	

the	 two	 reconstruction	methods.	 The	median	 test-retest	 error	 across	 all	 42	bundles	was	753	

4.3%	(FA),	2.6%	(MD),	5.7%	(RD),	3.2%	(AD)	for	TRACULA;	and	15.7%	(FA),	12.4%	(MD),	754	

17.0%	(RD),	12.9%	(AD)	for	the	multi-ROI	method.					755	

3.4 Evaluation on a larger dataset 756	

Fig.	16	shows	findings	from	the	statistical	analysis	of	along-tract	FA	in	the	204	subjects	of	757	

the	BANDA	cohort.	The	top	row	shows	the	WM	bundles	where	the	average	slope	of	along-758	

tract	FA	vs.	clinical	score	was	statistically	significant.	We	found	a	negative	slope	of	FA	vs.	759	

clinical	score	in	the	LH-SLF1,	for	all	three	clinical	scores	(MFQ,	RCADS-Dep,	RCADS-GenAnx).	760	

The	bottom	row	shows	the	bundles	where	the	difference	in	slopes	between	female	and	male	761	

participants	was	statistically	significant.	We	found	greater	slopes	in	females	than	males	for	762	

MFQ	 vs.	 FA	 in	 the	 CC-BODY-PM;	 RCADS-Dep	 vs.	 FA	 in	 the	 CC-BODY-PM,	 RH-SLF1;	 and	763	

RCADS-GenAnx	vs.	FA	in	the	RH-EMC,	RH-FX,	RH-CBD,	LH-CBD,	RH-ATR.		764	

	765	

Fig.	 16.	Associations	of	 along-tract	 FA	with	 clinical	 scores	 in	 the	BANDA	cohort.	Each	 column	766	
shows	results	from	a	different	clinical	score	(MFQ,	RCADS-Dep,	RCADS-Gen-Anx).	Each	row	shows	results	767	
from	a	different	contrast	(top:	average	slope	of	FA	vs.	clinical	score;	bottom:	difference	in	slopes	of	FA	768	
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vs.	clinical	scores	between	female	and	male	participants).	Pathways	were	reconstructed	automatically	769	
with	TRACULA.	For	display,	along-tract	p-values	were	mapped	onto	a	randomly	selected	subset	of	the	770	
training	streamlines	in	template	space.	771	

4. Discussion 772	

In	this	work	we	present	a	new	set	of	protocols	for	manual	labeling	of	42	major	WM	pathways	773	

using	probabilistic	tractography	on	high-quality	(bmax=10,000	𝑠/𝑚𝑚!,	512-direction)	dMRI	774	

data	 from	 a	 Connectom	 scanner.	 We	 also	 demonstrate	 that	 these	 manually	 annotated	775	

pathways	can	be	used	as	training	data	to	reconstruct	the	same	pathways	automatically	from	776	

routine-quality	 (b=1000	𝑠/𝑚𝑚!,	 64-direction)	 dMRI	 data	 with	 high	 sensitivity	 and	 high	777	

reliability.	778	

4.1 Manual labeling 779	

The	widely	used	protocols	for	manual	labeling	of	WM	pathways	were	introduced	at	a	time	780	

when	tractograms	were	typically	obtained	by	running	deterministic	tensor	tractography	on	781	

dMRI	data	with	 low	b-values	and	low	angular	resolution	(Wakana	et	al.	2007;	Catani	and	782	

Thiebaut	de	Schotten	2008).	These	protocols	were	a	 critical	 step	 towards	applying	dMRI	783	

tractography	 to	 population	 studies.	 They	 introduced	 the	 concept	 of	 the	 multi-ROI	 tract	784	

dissection,	 which	 was	 also	 the	 first	 method	 used	 for	 automated	 tract-of-interest	785	

reconstruction	(W.	Zhang	et	al.	2008;	Clayden	et	al.	2009).	786	

Since	then,	the	acquisition	technologies	adopted	and	advanced	by	the	HCP	led	to	a	dramatic	787	

improvement	in	the	quality	of	in	vivo	dMRI	data.	The	higher	spatial	and	angular	resolution	788	

of	modern	dMRI	data,	coupled	with	the	use	of	probabilistic	tractography	and	crossing-fiber	789	

modeling	techniques,	yield	much	larger	and	more	complex	tractograms.	These	can	be	used	790	

for	a	more	detailed	and	accurate	definition	of	WM	pathways,	but	 they	also	contain	many	791	

more	noisy	streamlines	and	require	more	clean-up.	While	the	previously	proposed	manual	792	

annotation	protocols	are	an	excellent	starting	point,	they	need	to	be	updated	with	a	greater	793	

number	 of	 inclusion	 and	 exclusion	 ROIs.	 Furthermore,	 some	 pathways	 that	 were	 not	794	

typically	 included	 in	 older	 “virtual	 dissection”	 protocols,	 because	 they	 could	 not	 be	795	

reconstructed	 reliably	 with	 older	 data,	 can	 now	 be	 readily	 extracted	 from	 modern	796	

tractograms.	797	
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In	section	2.4,	we	presented	an	updated	set	of	protocols	that	we	deployed	to	label	42	WM	798	

pathways	manually	in	the	MGH-USC	HCP	data.	These	data,	which	could	only	be	acquired	with	799	

a	Connectom	scanner,	allowed	a	more	detailed	and	accurate	reconstruction	of	major	brain	800	

pathways,	as	they	had	been	described	in	anatomical	studies.	We	were	able	to	obtain	a	more	801	

comprehensive	delineation	of	the	termination	regions	of	these	pathways,	and	to	reconstruct	802	

bundles	or	portions	of	bundles	that	were	not	accessible	before,	like	the	acoustic	radiation	803	

(Maffei	 et	 al.	 2019),	 the	more	 lateral	 terminations	of	 the	CST	 in	 the	motor	 cortex,	 or	 the	804	

Meyer	loop	of	the	OR.	805	

However,	our	ability	to	reconstruct	certain	aspects	of	the	more	challenging	WM	bundles	is	806	

still	limited,	even	with	the	best	available	in	vivo	dMRI	data.	Here	we	discuss	some	examples	807	

of	 discrepancies	 between	 tractography	 on	 high-quality	 dMRI	 data	 and	 the	 anatomical	808	

literature	 because	 we	 believe	 that	 they	 can	 be	 useful	 benchmarks	 for	 developers	 of	809	

tractography	algorithms	and	useful	targets	for	future	investigation	with	ex	vivo	dMRI.	These	810	

examples	are	from	the	AC,	ATR,	CST,	FX,	UF,	and	SLFI.			811	

AC:	The	AC	is	a	thin,	long	compact	bundle	with	an	uncommon	C-shape	that	connects	the	two	812	

temporal	lobes	(J.	Schmahmann	and	Pandya	2006).	In	its	course,	the	AC	lies	in	the	proximity	813	

of	 the	putamen,	 caudate	nucleus,	 globus	pallidus,	 amygdaloidal	nuclei,	 and	 temporal	 and	814	

perirhinal	 cortex.	 The	 vicinity	 to	 these	 GM	 structures	 makes	 the	 AC	 sensitive	 to	 partial	815	

volume	effects,	which	can	severely	affect	 its	reconstruction,	especially	given	its	small	size	816	

(only	a	few	voxels	wide).	In	the	temporal	lobe,	the	AC	fibers	fan	out	towards	the	anterior	part	817	

of	the	temporal	pole,	where	they	merge	with	the	fibers	of	the	UF	and	FX	(Cavdar	et	al.	2020).	818	

This	configuration,	in	which	different	fiber	bundles	merge	and	intermingle,	is	hard	to	resolve	819	

with	tractography,	and	it	usually	results	in	favoring	the	reconstruction	of	the	bigger	bundles	820	

that	 intersect	with	the	AC.	While	we	could	reconstruct	the	AC	correctly	 in	most	of	 the	16	821	

subjects,	some	presented	only	a	 few	valid	streamlines,	and	 in	most	subjects	the	temporal	822	

terminations	were	sparse	and	noisy.	823	

ATR:	We	defined	the	ATR	as	cortico-thalamic	fibers	connecting	the	thalamus	to	the	frontal	824	

cortex.	We	recognize	that	this	definition	remains	vague	and	reflects	a	tractography-based	825	

characterization	of	this	bundle	more	than	an	anatomical	one	(Safadi	et	al.,	2018).	Because	of	826	

the	limitations	of	diffusion	tractography,	we	are	not	able	to	precisely	separate	these	fibers	827	
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from	the	fibers	projecting	from/to	the	brainstem,	and	we	therefore	recognize	the	possibility	828	

that	 some	 of	 the	 latter	 fibers	 are	 also	 included	 in	 the	 delineation	 of	 the	 ATR.	 We	 also	829	

observed	that	in	all	our	manual	dissections	it	was	difficult	to	obtain	the	most	dorsolateral	830	

projections	of	the	ATR.		831	

CST:	 In	 our	 protocol,	we	 selected	 only	 the	 CST	 projections	 terminating	 in	 the	 precentral	832	

gyrus,	 postcentral	 gyri,	 and	 the	 posterior	 third	 of	 the	 superior	 frontal	 gyrus	 (SMA),	 as	833	

described	previously	(Chenot	et	al.	2019).	We	are	aware	that	 the	CST	 includes	additional	834	

axonal	 projections	 to	 more	 frontal	 regions	 (Dum	 et	 al.,	 2002).	 However,	 these	 were	835	

represented	by	fewer	and	sparser	streamlines	in	our	tractography	data,	and	we	thus	decided	836	

to	not	include	them	in	the	present	atlas.	These	more	frontal	CST	projections	may	be	harder	837	

for	tractography	to	reconstruct	consistently	given	their	bending	and	fanning	geometry,	as	838	

opposed	 to	 the	more	 straightforward	CST	projections	 to	 the	motor	 regions.	 Future	work	839	

exploring	specific	regions	of	interest	for	tractography	seeding	(e.g.,	the	subthalamic	nucleus)	840	

might	help	improve	these	results.		841	

FX:	The	FX	 is	a	small	bundle	with	high	curvature	throughout	 its	extension.	 Its	 location	 in	842	

proximity	of	the	ventricles	makes	it	sensitive	to	partial	voluming	with	CSF	voxels	(Vos	et	al	843	

2011).	These	characteristics	have	made	this	bundle	extremely	challenging	for	tractography.	844	

To	alleviate	these	limitations,	we	deployed	a	MSMT	tractography	algorithm	(Jeurissen	et	al.	845	

2014),	 which	 helped	 reduce	 the	 partial	 volume	 effect.	 We	 also	 avoided	 the	 use	 of	846	

constraining	binary	masks	(WM,	GM,	CSF),	which	reduced	the	number	of	false	negatives	in	847	

the	reconstructions.	This	approach	allowed	us	to	reconstruct	the	entire	extent	of	the	FX	in	848	

most	of	the	subjects.	However,	despite	the	successful	reconstruction	of	this	bundle	in	most	849	

subjects,	a	few	reconstructions	showed	very	few	correct	streamlines,	and	not	all	the	subjects	850	

presented	terminations	extending	into	the	temporal	regions	anterior	to	the	hippocampus.		851	

UF:	The	UF	has	been	well-characterized	in	tractography	studies.	Although	tractography	is	852	

able	 to	 delineate	 the	 main	 trunk	 of	 the	 UF,	 it	 remains	 difficult	 to	 define	 its	 projections	853	

precisely	and	to	separate	them	from	those	of	the	EmC,	given	their	overlap.	In	our	protocol,	854	

we	aimed	specifically	at	distinguishing	these	two	projection	systems,	by	including	a	ROI	to	855	

separate	 the	medial	 projections	 of	 the	 UF	 from	 the	more	 lateral	 projections	 of	 the	 EmC	856	

(Heide	et	al	2013).	We	acknowledge	the	difficulty	of	completing	this	task	accurately,	as	in	857	
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most	subjects	 it	 led	 to	a	 reduced	amount	of	UF	streamlines	reaching	 the	superior	 frontal	858	

regions,	with	respect	to	those	reaching	the	medial	orbito-frontal	regions.		859	

SLF1:	The	exact	human	morphology	of	the	SLF1	remains	controversial,	and	its	tractography-860	

based	reconstruction	challenging,	with	inconsistent	results	(Wang	et	al.	2016).	Particularly,	861	

while	 the	 literature	 overall	 agrees	 on	 its	 posterior	 terminations	 in	 the	 superior	 parietal	862	

lobule	 and	 precuneus,	 it	 remains	 unclear	whether	 the	 anterior	 terminations	 of	 the	 SLF1	863	

extend	anteriorly	to	connect	regions	in	the	SFG	and	possibly	cingulate	cortex	(Howells	et	al.	864	

2018,	Thiebaut	de	Schotten	et	al.	2012,	Makris	et	al.	2005,	Kamali	et	al.	2014),	as	observed	865	

in	monkeys	(Schmahmann	et	al.	2006,	Thiebaut	de	Schotten	et	al.	2012),	or	whether	they	are	866	

constrained	to	the	rostral	part	of	the	supplementary	motor	area	(SMA)	and	pre-SMA	(Hecht	867	

et	al.	2015,	Wassermann	et	al.	2013,	Jang	et	al.	2012).	This	controversy	arises	from	the	fact	868	

that	some	previously	published	tractography	studies	could	not	reconstruct	the	most	anterior	869	

streamlines	of	the	SLF1	(Wassermann	et	al.	2013,	Jang	et	al.	2012).	While	this	might	reflect	870	

a	true	inter-species	difference,	it	might	also	be	a	tractography	error	due	to	the	location	of	871	

these	fibers.	They	lie	just	underneath	the	u-shaped	fibers	of	the	SFG,	in	very	close	proximity	872	

to	the	CB,	and	at	the	intersection	with	major	inferior-superior	projection	systems	(CST	and	873	

Corona	Radiata)	and	the	lateral	projections	of	the	CC.	For	the	virtual	dissection	of	the	SLFI	874	

we	adopted	a	protocol	similar	to	what	previously	described	by	Howell	et	al.	2008	and	we	875	

could	recover	the	most	frontal	projections	of	the	SLF1	in	most	of	the	subjects	(Howells	et	al.	876	

2018,	Thiebaut	de	 Schotten	 et	 al.	 2012).	However,	 even	 in	 these	high-quality	data,	 some	877	

subjects	showed	only	few	streamlines	in	this	most	frontal	region,	and	a	few	subjects	showed	878	

no	streamlines	at	all.	Future	studies	aimed	at	post-mortem	validation	of	the	anatomy	of	the	879	

frontal	 SLF1	will	 help	 elucidate	whether	 this	 is	 due	 to	 the	 anatomical	 configuration	 and	880	

anatomical	variability	of	this	pathway	or	due	to	limitations	of	in	vivo	dMRI	data	(Maffei	et	al.	881	

2020).	882	

4.2 Automated reconstruction 883	

We	compared	 two	ways	 in	which	our	manual	 annotation	protocol	 could	be	deployed	 for	884	

automated	 tractography:	 (i)	 Use	 the	 manually	 annotated	 streamlines	 to	 compute	 the	885	

anatomical	neighborhood	priors	in	TRACULA,	and	(ii)	Use	the	manually	defined	ROIs	as	post	886	

hoc	constraints	in	a	multi-ROI	method.	We	evaluated	the	accuracy	of	bundles	reconstructed	887	

automatically	with	each	approach,	by	comparing	them	to	the	manually	annotated	bundles	in	888	
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the	same	subject.	We	found	that	TRACULA	achieved	higher	sensitivity	(TPR)	for	the	same	889	

reconstruction	 error	 (MHD),	 both	 overall	 (Fig.	 8)	 and	 in	 individual	 bundles	 (Figs.	 9-11).	890	

When	comparing	the	multi-ROI	method	at	its	lowest	reconstruction	error	and	TRACULA	at	891	

the	 same	 reconstruction	 error,	 the	 sensitivity	 achieved	 by	 TRACULA	 was	 an	 order	 of	892	

magnitude	higher	(Fig.	12).	Performance	gains	with	TRACULA	were	similar	for	association,	893	

commissural,	and	projection	pathways	(Fig.	13).	Its	performance	was	invariant	to	the	inter-894	

subject	registration	method	(Fig.	14).	Finally,	when	compared	at	the	same	level	of	sensitivity,	895	

the	 test-retest	 reliability	 of	 along-tract	 profiles	 extracted	 from	microstructural	measures	896	

was	approximately	four	times	greater	for	TRACULA	than	the	multi-ROI	approach	(Fig.	15).	897	

These	 performance	 differences	 may	 seem	 surprising,	 especially	 given	 that	 TRACULA	 is	898	

sometimes	lumped	together	with	multi-ROI	methods	in	the	literature.	However,	they	can	be	899	

explained	by	 two	 fundamental	 algorithmic	differences.	First,	multi-ROI	methods	 typically	900	

use	 local	 tractography,	which	 is	prone	to	stopping	or	taking	the	wrong	turn	when	it	goes	901	

through	challenging	areas	with	complex	fiber	configurations.	The	role	of	the	ROIs	in	a	multi-902	

ROI	method	is	to	remove	these	erroneous	streamlines,	but	there	is	no	guarantee	that	any	903	

correct	 streamlines	 will	 be	 left.	 The	 global	 tractography	 used	 by	 TRACULA	 models	 the	904	

complete	trajectory	of	a	bundle	between	its	termination	regions	as	a	parametric	curve.	Thus,	905	

it	is	not	possible	for	the	paths	generated	by	TRACULA	to	stop	half-way	between	the	regions.		906	

The	other	key	algorithmic	difference	is	in	how	each	method	incorporates	prior	knowledge	907	

on	the	anatomy	of	the	pathways	of	interest.	Multi-ROI	methods	contain	information	about	a	908	

set	of	regions	that	the	pathway	goes	through,	in	template	space	coordinates.	These	regions	909	

are	 typically	 few	 (2-3),	 distant	 from	 each	 other,	 and	 deterministic.	 The	 anatomical	910	

neighborhood	priors	used	by	TRACULA	contain	detailed	probabilistic	information	on	how	911	

likely	the	pathway	is	to	go	through	or	next	to	each	of	the	labels	in	a	whole-brain	anatomical	912	

segmentation.	This	information	is	encoded	for	anatomical	neighbors	in	multiple	directions	913	

and	at	multiple	points	along	the	pathway.	These	anatomical	neighborhood	priors	implement	914	

the	 same	 idea	 as	 the	 “Markov	 priors”	 used	 in	 the	 FreeSurfer	 automated	 subcortical	915	

segmentation	and	cortical	parcellation	(Fischl	et	al.	2002;	Fischl	et	al.	2004).	The	difference	916	

is	that	TRACULA	uses	the	anatomical	neighborhood	priors	to	generate	streamlines,	not	to	917	

classify	voxels.	918	
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The	fact	that	TRACULA	relies	on	a	structural	segmentation	from	a	T1-weighted	scan	may	be	919	

viewed	as	a	limitation.	However,	we	have	previously	shown	that	TRACULA	is	robust	to	errors	920	

in	 the	boundaries	of	 the	 structural	 segmentation	 labels,	 or	 even	 to	using	 a	 segmentation	921	

mapped	 from	a	different	 subject	 (Zöllei	 et	 al.	2019).	That	 is	because	TRACULA	only	uses	922	

information	on	 the	 relative	position	of	WM	pathways	and	 structural	 segmentation	 labels	923	

(e.g.,	 how	 frequently	 is	 pathway	A	medial	 to	 structure	 B),	 and	 not	 on	 their	 exact	 spatial	924	

coordinates.	Furthermore,	we	have	recently	shown	that	it	is	possible	to	infer	the	full	set	of	925	

FreeSurfer	 segmentation	 and	 parcellation	 labels	 from	 a	 dMRI	 scan	 using	 deep	 learning	926	

(Ewert	 et	 al.	 2020).	 Thus,	 a	 low-quality	 or	 missing	 T1-weighted	 scan	 is	 not	 an	927	

insurmountable	problem.	928	

A	possible	limitation	of	this	study	is	that	we	did	not	compare	TRACULA	to	all	possible	multi-929	

ROI	methods.	However,	we	compared	it	to	the	manual	annotation,	which	represents	the	best-930	

case	scenario	of	multi-ROI	performance.	The	manually	annotated	bundles	were	generated	931	

from	 the	 bmax=10,000	 𝑠/𝑚𝑚!	 Connectom	 data,	 using	 state-of-the-art	 orientation	932	

reconstruction	 and	 probabilistic	 tractography	 techniques,	 augmented	 by	 painstaking	933	

manual	editing.	The	bundles	reconstructed	automatically	by	TRACULA	from	b=1,000	𝑠/𝑚𝑚!	934	

data	exhibited	high	sensitivity	and	low	reconstruction	error	with	respect	to	the	manually	935	

annotated	 bundles.	 In	 addition,	we	 compared	TRACULA	 to	 a	multi-ROI	method	 that	was	936	

automated	and	used	the	same	input	data	and	the	same	orientation	reconstruction	method	937	

as	TRACULA.	In	that	comparison,	TRACULA	exhibited	much	higher	accuracy	and	reliability.	938	

In	the	future,	it	is	possible	to	incorporate	orientation	reconstruction	methods	other	than	the	939	

ball-and-stick	model	in	TRACULA.	940	

Finally,	our	results	demonstrate	that	tract-of-interest	reconstruction,	where	the	task	 is	 to	941	

reconstruct	 certain	 well-known,	 anatomically	 defined	 bundles,	 does	 not	 require	 a	942	

sophisticated	 dMRI	 acquisition	 protocol.	 Our	 automated	 reconstructions	 from	 b=1,000	943	

𝑠/𝑚𝑚!,	64-direction	data	achieved	an	overall	sensitivity	of	89%	with	respect	to	the	manual	944	

annotations	 from	 bmax=10,000	 𝑠/𝑚𝑚!,	 512-direction	 data,	 for	 a	 reconstruction	 error	 of		945	

3.5	𝑚𝑚	for	TRACULA	and	4.2	𝑚𝑚	for	the	multi-ROI	method.	Therefore,	when	the	main	use	946	

of	 dMRI	 data	 in	 a	 study	 is	 to	 reconstruct	 tracts	 of	 interest	 and	 analyze	 microstructural	947	

measures	 along	 them,	 the	 sophistication	 of	 the	 dMRI	 acquisition	 protocol	 should	 be	948	

determined	by	the	microstructural	measures	and	not	by	the	tractography	itself.		949	
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5. Conclusion 950	

We	have	 illustrated	that	TRACULA	can	take	advantage	of	 limited-availability,	high-quality	951	

data	 that	 can	 only	 be	 acquired	 on	 a	 handful	 of	 Connectom	 scanners	 worldwide,	 to	952	

reconstruct	 white-matter	 bundles	 with	 high	 accuracy	 from	 more	 modest	 and	 widely	953	

available	 dMRI	 data.	 This	 allows	 the	 technological	 innovations	 of	 the	HCP	 to	 benefit	 the	954	

wider	community	that	does	not	have	access	to	Connectom-style	scanners.	Both	our	WM	tract	955	

atlas,	which	was	annotated	manually	from	Connectom	data,	and	the	software	tools	that	can	956	

use	 it	 to	 reconstruct	WM	 bundles	 in	 routine-quality	 data,	 are	 freely	 available	 as	 part	 of	957	

FreeSurfer	7.2.	958	
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