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Animal nervous systems are highly efficient in processing sensory
input. The neuromorphic computing paradigm aims at the hardware
implementation of similar mechanism to support novel solutions for
building brain-inspired computing systems. Here, we take inspira-
tion from sensory processing in the nervous system of the fruit fly
larva. With its strongly limited computational resources of <200 neu-
rons and <1.000 synapses the larval olfactory pathway employs fun-
damental computations to transform broadly tuned receptor input at
the periphery into an energy efficient sparse code in the central brain.
We show how this approach allows us to achieve sparse coding and
increased separability of stimulus patterns in a spiking neural net-
work, validated with both software simulation and hardware emula-
tion on mixed-signal real-time neuromorphic hardware. We verify
that feedback inhibition is the central motif to support sparseness
in the spatial domain, across the neuron population, while the com-
bination of spike frequency adaptation and feedback inhibition deter-
mines sparseness in the temporal domain. Our experiments demon-
strate that such small-sized, biologically realistic neural networks,
efficiently implemented on neuromorphic hardware, can achieve par-
allel processing and efficient encoding of sensory input at full tem-
poral resolution.

neuromorphic computing | neuromorphic hardware | spiking neural
network | insect olfaction | artificial intelligence

Introduction

Neuromorphic computing [1] is a novel paradigm that aims at
emulating the naturalistic, flexible structure of animal brains
on an analogous physical substrate with the potential to out-
perform von Neumann architectures in a range of real-world
tasks [2, 3]. It can inspire novel AI solutions [4–6] and may sup-
port control of autonomous agents by spiking neural networks
[7–9]. A major challenge for brain-inspired neuromorphic so-
lutions is the identification of computational principles and
circuit motifs in animal nervous systems that can be utilized
on neuromorphic hardware to exploit its benefits.

Drawing inspiration from neural computation in the ner-
vous systems of insects is particularly promising for developing
neuromorphic computing paradigms. With their compara-
tively small brains ranging from ≈ 10, 000 neurons in the fruit
fly larva to ≈ 1 million neurons in the honeybee, insects are
able to solve many formidable tasks such as the efficient recog-
nition of relevant objects in a complex environment [10, 11],
perceptual decision making [12–14], or the exploration of un-
known terrain and navigation [15–18]. They also show simple
cognitive abilities such as learning, or counting of objects
[19–23]. At the same time, their compact nervous systems
are optimized for energy efficient computation with limited
numbers of neurons and synapses, making them ideally suited
to meet current neuromorphic hardware limitations regarding

network size and topology. Spiking neural networks modelled
after the insect brain have been shown to support efficient sen-
sory processing [24], learning [7, 25], foraging and navigation
[26–28], and counting [27]. Model studies also include earlier
neuromorphic implementations of insect-inspired computation
[4, 5, 9, 29–32].

Sparse coding [33, 34] is a fundamental principle of sen-
sory processing, both in invertebrates [35–39] and vertebrates
[40–44]. By transforming dense stimulus encoding at the re-
ceptor periphery into sparse representations in central brain
areas, the sensory systems of animals achieve energy efficient
and reliable stimulus encoding [34, 45], which increases sep-
arability of items [46–49]. Sparse coding in neural systems
has two major components [38]. Population sparseness refers
to the representation of a stimulus across the entire popu-
lation of neurons, such that only few neurons are activated
by any specific stimulus and different stimuli activate largely
distinct sets of neurons. Re-coding from a dense peripheral
input to a sparse code in central brain areas supports stim-
ulus discriminability and associative memory formation by
projecting stimulus features into a higher dimensional space
[50–52]. Temporal sparseness indicates that an individual neu-
ron responds with only a few spikes to a specific stimulus
configuration [33, 53, 54] supporting the encoding of dynamic
changes in the sensory environment [41, 55] and memory recall
in dynamic input scenarios [27].

We are interested in the transformation of a densely coded
input into a sparse representation within an olfactory path-
way model of the Drosophila larva. As a common feature
across insect species, odor information is processed across
multiple network stages to generate a reliable sparse code of
odor identity in the mushroom body [35, 56, 57], a central
brain structure serving as a hub for multi-sensory integra-
tion, memory formation and memory recall [10, 58]. A shared
characteristic of the Drosphila larva brain and the here-used
real-time neuromorphic hardware system is their relatively
small network size. With this limited capacity, computational
efficiency and frugal use of the limited resources are a major
constraint. Implementing evolutionary-derived mechanisms
from the insect brain that allow for sparse, thus more efficient
stimulus encoding on the chip could help to broaden the scope
of its applications. In our network model we test the efficiency
of cellular mechanisms and network motifs in producing popu-
lation and temporal sparseness and test their implementation
on the mixed-signal neuromorphic hardware DYNAP-SE [59]
in comparison to a software simulation using the Python-based
spiking neural network simulator “Brian2” [60].
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Fig. 1. Neuromorphic spiking neural network approach. (A) Network model of the
Drosophila larva olfactory pathway including all neurons and connections implemented.
One-to-one feed-forward connections between olfactory receptor neurons (ORN, red)
and projection neurons (PN, dark blue)/local interneurons (LN, light blue) and from PN
to Kenyon cells (KC). Lateral inhibition from each LN to all PN and feedback inhibition
from the anterior paired lateral neuron (APL) to KCs. The number of neurons in each
population is declared in parenthesis. (B) Input pattern of the three artificial odors
used and time course of the odor stimulation protocol (excluding the warmup) with
odor onset at 2s and offset at 4s (lower panel). The odors are characterized by their
ORN activation profile and implemented with varying degree of similarity (overlap as
indicated by the shaded area).(C) Chip micro-photograph of the DYNAP-SE device.
The chip, fabricated using a standard 180 nm CMOS technology, comprises four cores
with 256 adaptive exponential integrate-and-fire neurons each. The inset shows a
zoom into an individual neuron with an analog neuron circuit, analog synapse circuits
and digital memory and communication blocks. The central part of the chip contains
the asynchronous routers for transmitting spikes between individual neurons and bias
generators with 12 bit current mode DACs for setting the network parameters.

Methods

Spiking neural network model. The architecture of the spiking
neural network model as shown in Fig. 1A uses the exact
numbers of neurons in each population and the reconstructed
connectivity for one hemisphere as published in the electron-
microscopic study of a single animal [61]. The network consists
of 21 olfactory receptor neurons (ORN) at the periphery, 21
projection neurons and 21 local interneurons (LN) in the anten-
nal lobe and 72 Kenyon cells (KC). In each brain hemisphere
there is exactly one anterior paired lateral neuron (APL). We
hypothesize that the APL receives input from most or all ma-
ture KCs [62] included in this network model. Due to technical
limitations of the DYNAP-SE chip with a maximum in-degree
of 64 synapses for one neuron we randomly chose 64 KCs that
provide input to the APL. This choice was fixed for the model,
both on the hardware network and in the software simulation.
We further hypothesize, based on evidence in the adult species,
that all ORNs and all KCs have a mechanism of cellular spike
frequency adaptation (SFA).

Implementation on the DYNAP-SE neuromorphic hardware.
The olfactory pathway model of the Drosophila larva was
implemented using the Dynamic Neuromorphic Asynchronous
Processor (DYNAP-SE) [59] (Fig. 1C). This processor is a
full-custom mixed-signal analog/digital VLSI chip, which com-
prises analog circuits that emulate neurons and synapses with
biologically plausible neural dynamics. Given the analog na-

ture of the circuits used, the synapses and neurons exhibit
parameter variability that is characteristic also of real neu-
rons. The analog circuits used, implement multiple aspects of
neural dynamics, such as spike-frequency adaptation (imple-
mented as a shunting inhibitory synapse), refractory periods,
exponentially decaying currents, voltage-gated excitation and
shunting inhibition [59, 63]. The silicon neurons circuits, sim-
ilar to their biological counterparts, produce spikes. In the
chip, these are stereotyped digital events which are routed
to target synapses by a dedicated Address Event Represen-
tation (AER) infrastructure [64, 65]. The conductance-based
synapses are current-mode circuits [63] that produce an EPSC
with biologically plausible dynamics, which are then injected
into the neurons leak compartment. This compartment acts as
a conductance block which decreases the input current as the
membrane potential increases. One of the inhibitory synapses
subtracts charge directly from the membrane capacitance and
provides a shunting inhibition mechanism [63]. All other synap-
tic currents are in turn summed together and integrated in
the post-synaptic neurons leak compartment.

The model (Fig. 1A) was initially developed in software and
the neural architecture was then mapped onto the mixed-signal
hardware by configuring the AER routers and programming
the chip digital memories to connect the silicon neurons via
their corresponding synapses. The parameters of the hard-
ware setup were fine-tuned using the on-chip bias generator,
starting from the estimates provided by the software simula-
tion. Computer-generated control stimuli, in the form of well
defined spike trains, were provided to the chip via a custom
FPGA (Field Programmable Gate Array) board. Each neuron
population was implemented on a single core, using in total
five cores and two chips. All the circuit biases of neurons be-
longing to different cores could be tuned independently. The
synapses from ORN to PN, PN to KC, and KC to APL were
designed as excitatory whereas the synapse from LN to PN
and APL to KC were implemented as inhibitory. SFA was
implemented in the ORN and KC neuron populations.

Three separate recordings were done, one for each of the
three odors (Fig. 1B). Within each of the three experiments all
six conditions (different sparseness mechanisms enabled) were
recorded always in the same order (LN+APL+SFA, LN+SFA,
LN, APL+SFA, LN+APL, SFA).

Computer simulation of the spiking neural network. The simu-
lations were implemented in the network simulator Brian2 [60]
and run on a X86 architecture on an Ubuntu 16.04.2 Server.
All neurons (Fig. 1A) were modeled as leaky integrate-and-fire
neurons with dynamic synapses. The membrane potential vI

obeys a fire-and-reset rule, being reset to the resting potential
whenever the spike threshold is reached. The reset is followed
by an absolute refractory period of 2ms, during which the
neuron does not integrate inputs (Table 1). The membrane
potential of a neuron in a particular neuron population (vORN,
vLN, vPN, vKC, vAPL) is governed by the respective equation

cm
d

dt
vO

i = gL(EL − vO
i ) + gInputO

i (EI − vO
i ) − IA

i [1]

cm
d

dt
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i = gL(EL − vL
i ) + gOL

i (EE − vL
i ) [2]
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d
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where ORNs (Eqn. 1) and KCs (Eqn. 4) are equipped
with an additional spike-triggered adaptation current IA with
dynamics

τA
d

dt
IA

i = −IA
i + τA∆IAxi(t) +

√
2τAδ2

I ξ(t). [6]

The neuron parameters can be found in (Table 1).

Spontaneous activity. The input to the ORNs in our network
model was modeled as stochastic point process realizations.
It mimicks the sum of spontaneous receptor activation and
odor driven activation of the ORNs. On the chip, each ORN
received a Poisson input with 5Hz baseline intensity. In
the simulation each ORN received excitatory synaptic input
modelled as a gamma process (shape parameter k= 3) with
5Hz baseline intensity. The spontaneous firing rate of larval
ORNs was previously measured in the range of 0.2 − 7.9Hz,
depending strongly on receptor type and odor identity [66, 67].
On the chip we measured a spontaneous ORN firing rate of
6.2 ± 3.0Hz. In the simulated model the average ORN baseline
activity was estimated as 6.0 ± 1.4Hz. Thus, ORNs on chip
and in the simulation exhibit a similar spontaneous activity
in the upper range of the empirical distribution.

Odor stimulation protocol. On the chip and in the computer
simulation we included a warm up time (1.5 s and 0.3 s, respec-
tively), which was excluded from the analyses. On the chip
this restored the baseline biases following odor application. In
the computer simulation this warm up period ensured that neu-
ronal membranes and conductances were more heterogeneous
at the beginning of the experiments.

We used a set of three different odors to study the effect
of odor similarity (Fig. 1B, upper panel). Fig 1B shows the
activation profile (point process intensities) and overlap of
all three odors across the 21 input channels. For each odor,
the profile indicates the ORN-type specific activation level,
mimicking the fact that each ORN expresses a genetically
different receptor type. Similarity of odors is represented in
the overlapping activation where odor 1 and odor 3 are distant
(zero overlap), while odor 2 is constructed to have the same
amount of overlap with the two other odors. The stimulation
protocol assumes a 2 s odor stimulus on top of the 5Hz baseline
input with an activation rate according to Fig. 1B.

Data Analysis.

Sparseness measure. Sparseness was quantified using a modified
version of the Treves–Rolls measure [68, 69]

S = 1 −
( 1

N

∑N

i=1 ai)2

1
N

∑N

i=1 a
2
i

[7]

where ai indicates either the spike count of neuron i (popula-
tion sparseness, Spop), or the binned (∆t = 20ms) population

Neuron Parameters

Capacitance C 100pF

Capacitance PN CPN 30pF

Capacitance LN CLN 50pF

Capacitance APL CAPL 200pF

Leak Conductance gL 5nS

Leak Conductance PN and LN gLP N 2.5nS

Leak Conductance APL gLAP L 5nS

Leak Potential EL -60mV

Leak Potential PN and LN ELP N -60mV

Leak Potential KC and APL ELKC -60mV

Threshold Potential VT -35mV

Threshold Potential PN and LN VT P N -30mV

Threshold Potential APL VT AP L -30mV

Resting Potential Vr -60mV

Resting Potential PN VrP N -60mV

Resting Potential KC VrKC -55mV

Resting Potential APL VrAP L -60mV

Refractory Time tau_ref 2ms

Synaptic Parameters

Excitatory Potential Ee 0mV

Inhibitory Potential Ei -75mV

Excitatory Time Constant tau_e 5ms

Inhibitory Time Constant tau _i 10ms

Synaptic Weights

Weight Input-ORN wORNinputORN 3nS

Weight ORN-PN wORNPN 30nS

Weight ORN-LN wORNLN 9nS

Weight LN-PN wLNPN 2

Weight PN-KC wPNKC 1nS

Weight KC-APL wKCAPL 50nS

Weight APL-KC wAPLKC 100nS

Adaptation Parameters

Adaptation Time Constant tau_Ia 1000ms

Adaptation Reversal Potential EIa -90mV

Table 1. Network simulation parameters.

spike count (temporal sparseness, Stmp) for the 2 s with odor
stimulation. S assumes values between zero and one, with
high values indicating sparse responses. Both measures were
averaged over 20 trials. To test the effect of excluding specific
sparseness mechanisms from the model the combined data from
all three odors was compared. To test for significance of the
effects of lateral inhibition and SFA, the condition with only
lateral inhibition enabled was compared with the condition
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with only SFA present (LN vs. SFA) using a t-test for related
samples. To test the effect of feedback inhibition via the APL,
the condition including all mechanisms (LN+APL+SFA) was
compared with LN+SFA. Tests were performed independently
for temporal and population sparseness.

Distance measure. To assess the differences in odor distance
between sparse and dense KC odor code we used the cosine
distance (Eqn. 8). Vectors a and b each represent the average
number of spikes evoked by all 72 KCs during the two sec-
ond odor presentation across 20 independent model instances.
Cosine distance between a and b was calculated as:

COS = 1 −
∑n

i=1 ai · bi√∑n

i=1 a
2
i ·

√∑n

i=1 b
2
i

[8]

Correlation across sparseness conditions. To test for qualitatively
similar effects of the different sparseness conditions on the
chip and simulation we correlated the results across the six
data points (sparseness conditions) between the chip and
the simulation. For significance testing we generated 100
random unique permutations of the means from the simu-
lation and correlated these 100 data series with that of the
chip (LN+APL+SFA,LN+APL,APL+SFA,LN+SFA,LN,SFA;
Fig. 3). The average of these 100 correlations was 0.07 (sd =
0.42) for Spop and 0.01 (sd = 0.52) for Stmp with Q0.75 = 0.37
and Q0.75 = 0.28. In both cases the distribution of correla-
tions was normal, established using D’Agostino-Pearson test
for normality. The average of these 100 correlations each was
used to evaluate the similarity of the effects on the chip and
in the simulation.

Results

The larval nervous system with its limited neural network size
and low complexity lends itself to the emulation on neuromor-
phic hardware. We analyzed a single hemisphere olfactory
network model of the first instar Drosophila larva with <200
neurons and <1000 synapses comparing an implementation
on the neuromorphic hardware DYNAP-SE [59] with a com-
puter simulation of the same network. We were particularly
interested in the contribution of different cellular and circuit
mechanisms to the transformation of a dense input pattern at
the periphery into a sparse odor representation in the MB.

Olfactory pathway model. Our spiking neural network model
comprises four computational layers (Fig. 1A). Its structure,
the size of the neuron populations and their connectivity are
based on the exact connectome of a single hemisphere as re-
constructed from electron-microscopic data of one individual
Drosophila larva by Eichler and colleagues [61]. Peripheral
processing is carried out by 21 olfactory receptor neurons, each
expressing a different olfactory receptor type [70]. ORNs make
one-to-one excitatory connections with 21 projection neurons
(PN) and with 21 local interneurons (LN) that together con-
stitute the antennal lobe. Each LN forms inhibitory synapses
onto all PNs, establishing lateral inhibition. The PNs make
divergent random connections with a total of 72 Kenyon cells
(KC), the primary cells of the mushroom body, where each KC
receives excitatory input from 1-6 PNs. A single GABAergic
anterior paired lateral neuron (APL) receives input from all of
the matured KCs [62]. All KCs with a well-developed dendrite
[61] fall into this category and those are the only ones included

in our circuit model. We therefore assume a dense convergent
connectivity with essentially all presynaptic KCs (in our case
64 out of 72 due to technical limitations on the chip, see Meth-
ods). We further implemented inhibitory feedback from the
APL onto all KCs [62]. Overall, this blueprint of the olfactory
network is highly similar to that in the adult fly albeit the
smaller neuron numbers and reduced anatomical complexity
(see Discussion). Each model instance implemented here uti-
lizes the exact same connectivities. We thus simulate a single
individual rather than an average animal.

Circuit motifs and cellular adaptation. Our network model uti-
lizes different cellular and circuit mechanisms that have been
suggested to support a sparse code in the insect mushroom
body. To this end, the network topology includes three rele-
vant motifs. First, the LN connectivity in the antennal lobe
constitutes lateral inhibition as a motif that generally enhances
neural contrast [33, 71] and that is implemented in the olfac-
tory system of virtually all insects [35, 72–77], as well as in
computational models thereof [24, 27, 51, 78]. Second, the
random connectivity from PNs to a larger number of KCs is
net divergent and sparse, expanding the dimensionality of the
coding space [50, 79, 80]. Third, our model includes inhibitory
feedback from the APL neuron onto all KCs. This has been
shown to directly affect KC populations sparseness in the adult
fly [46, 81] (see Discussion).

At the cellular level, all neurons in the network are mod-
eled as leaky integrate-and-fire neurons. ORNs and KCs are
equipped with a cellular SFA mechanism, a fundamental and
ubiquitous mechanism in spiking neurons [33, 82]. ORNs have
been shown to adapt during ongoing stimulation in vivo, both
in larval [83] and adult [84, 85] Drosophila. The exact nature
of the adaptation mechanism in the ORNs is still under inves-
tigation [84, 86, 87]. In KCs, a strong SFA conductance has
conclusively been demonstrated in the cockroach [88] and the
bee [89].

Dynamics of network response to odor stimulation. The re-
sponse dynamics across all network stages to a single constant
odor stimulation (Fig. 1B) with odor 1 is shown in Fig. 2A
(chip) and Fig. 2B (simulation). At stimulus onset, a subset
of all ORNs is activated according to the corresponding recep-
tor response profile (Fig. 1B, top). The ORN responses are
phasic-tonic as a result of SFA. The spike count histogram
averaged across the 21 neurons of the ORN population fits the
typical experimentally observed response profile observed in
adult Drosophila [84, 90]. In the larva, little is known about
stimulus adaptation in the ORNs [67]. The physical realiza-
tion of SFA on chip is different from the simulation, which
may partly explain the delayed response to odor onset- and
offset of some neurons and the initially slower increase of the
phasic response on the chip (Fig. 2A, see Discussion). The off-
response expressed in a prolonged silence of the odor-activated
ORNs in the simulation is an effect of SFA: The integrated
adaptation current that has reached a steady state during the
odor stimulation period now decays only slowly, acting in a
hyperpolarizing fashion and thus reducing spiking probability
[51] of the ORNs. This effect is barely visible and delayed on
the chip (see Discussion). At the level of the antennal lobe
both PNs (dark blue) and LNs (light blue) are excited only by
the ORNs and thus follow their phasic-tonic response behavior
and exhibit an inhibited off-response (Fig. 2), although neither
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Fig. 2. Dynamic network response. Network response to a stimulation with odor 1 for the chip (A) and the simulation (B). The odor was presented for 2s, preceded by a 2s
baseline and followed by 2s again without odor. Warmup times are excluded and only the time window between 1 and 5 seconds is shown here. Odor onset is at time=0 and
odor presence in the stimulation protocol is indicated by the shaded area throughout. Each dot denotes a single spike event of the respective neuron during an individual
exemplary experiment. The lower panel (A,B) for each neuron population displays the averaged population spike count (across 20 trials) with a bin width of 100ms.

neuron type is adaptive itself. The spatio-temporal response
pattern of the PNs and LNs resembles the typical response
pattern measured in vivo in adult flies and bees [73, 91, 92],
including a inhibitory off-response in many neurons [84, 93, 94].

The KCs show very little spiking during spontaneous ac-
tivity on the chip and in simulation. Only very few KCs
do respond to odor stimulation (population sparse response)
with only a single or few spikes (temporally sparse response).
Spontaneous activity and response properties match well the
in vivo situation as observed in various species [35, 53, 57].
The population spike count indicates a very brief population
response within the first 100ms, while the tonic KC response
remains only slightly above the spontaneous activity level (cf.
[53]. Finally, the single APL driven by the excitatory KC
population follows the brief phasic and weak tonic response of
the KCs.

Analysis of sparsening factors in space and time. We inves-
tigate the translation from the peripheral dense code in the
ORN and PN population into a central sparse code in the
KC population, disentangling the contribution of the three
fundamental biological mechanisms: cellular adaptation (SFA),
lateral inhibition in the AL, and feedback inhibition in the
MB. We systematically varied the composition of the three
mechanisms in our network, yielding five different conditions
(Fig. 3) in which either one or two mechanisms were deacti-
vated. SFA was only deactivated at the KC level and still
present in ORNs. We did not vary the PN-KC connectivity

pattern as this is identical to the anatomical pattern reported
for the individual animal that we used as a reference.

We first quantified population sparseness in the KC coding
space (Fig. 3A). In the control condition (LN+APL+SFA)
population sparseness was high with average values of Spop ≈
0.8 − 0.9 on the chip and in simulation, respectively (hatched
bars in Fig. 3A). On average 10.8 (±2.96) KCs responded
directly to an individual odor in the simulation and 9.95
(±2.08) on the chip. In adult Drosophila a range of 5 − 10%
activated KC have been reported [57, 95] and ≈ 11% in the
locust [35]. We find that APL is the single crucial mechanism
necessary for establishing a high population sparseness in
our model. All conditions that lack feedback inhibition show
strongly reduced values of Spop. Lateral inhibition can to some
degree recover sparseness on the chip and in the simulation.

We now consider temporal sparseness, which again reached
high values in the control condition on the order of Stmp ≈ 0.8
(hatched bars in Fig. 3B). Comparing the different conditions
we find that APL feedback inhibtion and SFA in the KCs
have a strong supporting effect for temporal sparseness. Any
condition that involves the APL reached similar high values for
Stmp. Without the APL, SFA can partially ensure temporal
sparseness on the chip and in the simulation.

Overall, we observed the same mechanistic effects on chip
and in the simulation for the different combinations of ac-
tivated and inactivated mechanisms (Fig. 3). The pattern
of sparseness values across all six conditions is highly and
significantly correlated between the chip and the simulation
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Fig. 3. Mechanisms underlying population and temporal sparseness. (A) Com-
parison of KC population sparseness between the chip and the simulation during 2s
with odor stimulation. The data is averaged over 20 experiments and three odors
(error bars denote standard deviations). Six experimental conditions were tested with
a different set of sparseness mechanisms enabled. The respective mechanisms are
listed below with LN (lateral inhibition via local interneurons), SFA (spike frequency
adaptation) and APL (feedback inhibition via the APL). E.g. ’LN+SFA’ denotes the
presence of SFA and lateral inhibition. (B) Temporal sparseness was computed for
the same set of conditions.

results, both for Spop (r = 0, 94) and Stmp (r = 0, 96) in com-
parison with the correlation of randomly permuted pattern of
sparseness values (see Methods) with maximum correlations
of 0.91 and 0.87 for Spop and Stmp across 100 permutations,
respectively.

Sparse representation supports stimulus separation. How
does the encoding of different odors at the KC level com-
pare between the sparse control condition and a non-sparse
condition? Feedback and lateral inhibition supported popu-
lation sparseness in the KC population. We thus compared
the control condition to the network in which both inhibitory
mechanisms were disabled by quantifying the pairwise distance
between KC stimulus response patterns for any two different
odors. Fig. 4 shows the response rates averaged over the 2 s
stimulus duration for the three different stimuli for both chip
Fig. 4A,B,C and simulation Fig. 4C,D,E. Only a fraction of
the KCs responded to any odor (Spop > 0.8, Fig. 3B,E) in
the sparse condition. However, when feedback and lateral
inhibition are disabled, essentially all KCs showed an odor
response to any of the three odors (Fig. 4C,F).

A similar result is obtained when looking at cosine distances
between KC odor representations. Independently of the odor
identities, average pairwise cosine distance was considerably
larger in the sparse condition (chip: 0.39(0.2); simulation:
0.85(0.06)) than in the non-sparse (SFA only) condition (chip:
0.07(0.02); simulation: 0.31(0.09)), indicating a similar effect
of population sparseness on odor discriminability on the chip
and in the simulation.

Discussion

In the present manuscript we addressed two major questions.
First, we asked whether the re-coding from a dense peripheral
olfactory code into a sparse central brain representation of
odors can be achieved in the small spiking neural network

model of Drosophila larva. To this end we tested the relevance
of three fundamental mechanisms:

• cellular adaptation

• lateral inhibition

• feedback inhibition

in establishing population and temporal sparseness. Second,
we explored the feasibility of applying this coding scheme
on real-time analogue neuromorphic hardware by comparing
hardware implementation with software simulation at the
relevant levels of stimulus encoding and processing.

Neuromorphic implementation versus computer simulation.
While the software uses identical parameters for all neurons
and synapses for any given population, there is considerable
heterogeneity across the physical hardware implementation,
in particular of conductances and capacities [4, 96, 97]). This
heterogeneity manifests e.g. in spiking thresholds, postsy-
naptic current amplitudes and time constants of the neuron
membrane, postsynaptic currents, and SFA currents. This
generally matches the biological heterogeneity.

Our results show that the on-chip implementation achieved
the transformation from dense to sparse coding in space and
time despite the parameter heterogeneity in the small neuron
populations. We obtained the same general results for our
network analyses on hardware and in simulation albeit with
small differences. These may arise from the fact that there is
no one-to-one correspondence of the biophysical neuron param-
eters in the software simulation (Table 1) and the set points
of the hardware electronic circuits. While parameter setting
is straight forward in the computer simulation, it requires
the adjustment of biasing currents on the chip. A particular
challenge was the adjustment of the SFA time constant on
the chip that required the post hoc estimate of the effective
adaptation time constant. In our simulations a difference in
the SFA effect becomes evident in the delayed SFA on- and
offset effects of the chip.

There are a number of advantages and disadvantages in
using the specific hardware solution tested here. The fact that
the DYNAP-SE [59] operates in real-time makes it suitable for
the spiking control of autonomous robots [98, 99] and renders
computational speed independent of network size. Even for
the small larval network considered here (exactly 136 neurons
and 833 synapses) simulations were several times slower than
real-time with 3.8 s simulation time per 1 s biological time at
a resolution of 0.1ms (single core CPU, 64 bit PC, Ubuntu
18.04.5). Simulation time can be sped up to meet real-time
demand even for large network sizes on specialized systems
[100, 101].

A challenge with the DYNAP-SE [59] board was the (ther-
mal) instability of the bias currents used to adjust parameters.
This lead to parameter drifts over the course of hours, which
made it necessary to complete a set of experiments within a
limited time range to ensure comparability of the results. Be-
fore the next set of experiments, biases had to be re-adjusted
(in particular for the adaptation circuit). Thus, each set of
experiments implied an individual model instance that may be
compared to an individual animal. Still, the variability across
model instances was only slightly larger on the chip than in
the simulation (Fig. 3). In addition, new neuromorphic circuit
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Fig. 4. Response pattern overlap. Average spike frequency (over 20 trials) for Chip (A,B,C) and simulation (D,E,F) in response to three different odors. The odors were
presented for 2s (for information on the experimental protocol please refer to Figure. 1 B). All panels display the overlap between the different odor representations either on PN
level (A,D), KC (B,E) and non-population-sparse KC in a condition with only SFA enabled (C,F). Overlap indicates a low ability to differentiate between odors.

designs will be able to compensate for these drifts by using
proper temperature compensated bias generator circuits [102].

Mechanisms and function of population sparseness. Popula-
tion sparseness at the KC level has been demonstrated for a
number of species in the adult stage (see Introduction). Our
model suggests that sparse coding at the KC level is already
implemented in the Drosophila larva. Different mechanisms
have been suggested for the generation of population sparse-
ness. A fundamental anatomical basis for a sparse code is
the sparse and divergent connectivity between PNs and a
much larger population of KCs [36, 51]. Each KC receives
input from only a few PNs and thus establishes a projection
from a lower into a higher dimensional space, ideally suited
to generate distinct activity patterns that foster associative
memory formation. Additionally, there is evidence for a low
excitability of the individual KCs that require collective input
from several PNs to be activated [35, 36, 88]. Connectivity
in our model is based on the exact numbers from electron
microscopic reconstructions of neurons and synapses in one
individual brain [61]. We did not attempt to adjust excitability
of KCs or PN::KC connection strength for optimal population
sparseness.

Feedback inhibition has repeatedly been suggested to under-
lie population sparseness in several animals, including the fly
larva [103]. Empirical evidence has been provided in particular
in bees [93, 104] and adult flies [46, 81]. Several modeling stud-
ies have used feedback inhibition to support a sparse KC pop-
ulation code in larger adult KC populations [24, 26, 27, 105].
Indeed, our study shows that inhibitory feedback from the
single APL neuron effectively implements a sparse code in the
small population of 72 KCs (Fig. 3A). We chose to model the
APL as a spiking neuron that receives input solely from KCs
and inhibits KCs in a closed loop. This decision was based on
experimental evidence indicating a clear polarity of the APL

with input in the MB lobes and pre-synaptic densities in the
calyx, presumably onto the KC dendrites [62]. Whether the
APL neuron generates sodium action potentials, however, is
not clear in the larva [103] and has been challenged in the
adult [46]. In addition, inhibitory feedback connections within
the mushroom body have been implicated in learning through
inhibitory plasticity in bees and flies, thereby modulating the
sparse KC population code [46, 104, 105].

As a third factor, lateral inhibition within the Drosophila
antennal lobe has been shown to increase population sparseness
at the KC level [90, 106] and in a model thereof [51]. This
model study showed a strong effect of lateral inhibition on
population sparseness in a network tuned to the anatomy
of the adult fly. In the present larval model we found a
supportive effect. With lateral inhibition alone the model
reached Spop ≈ 0.6. The interplay of feedback inhibition and
lateral inhibition boosted population sparseness to Spop ≈ 0.8
(Fig. 3A). This observation is different from our previous
results in a network simulation modelled after the adult fly [27]
where lateral inhibition in the AL was sufficient to implement
a high population sparseness and APL feedback inhibition had
a mainly supporting effect. The fact that lateral inhibition
is less effective in the larval than in the adult Drosophila
model [51] is thus likely due to the one-to-one connectivity
between the 21 ORNs and 21 PNs in the larva, which requires
very strong excitatory synapses. This specific configuration
establishes a dominant feed-forward component in the larval
olfactory pathway (Fig. 1A).

Sparse stimulus representation across the neuronal pop-
ulation supports minimal overlap of and correlation across
stimulus-specific spatial response patterns [33, 51, 81, 107, 108],
which in turn benefits associative memory formation and in-
creases memory capacity [46, 49, 52, 68]. We confirmed an
increased inter-stimulus distance in the KC coding space on
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the chip and in the simulation when all sparseness mechanisms
take effect.

Mechanisms and function of temporal sparseness. Temporal
sparseness in the insect MB has been physiologically described
in various species. It is expressed in a highly phasic stimulus
response that typically consists of only a single or very few
spikes and that is temporally locked to stimulus onset or to a
fast transient increase in stimulus amplitude while the tonic
stimulus response is almost absent [35, 53, 57]. In our model
we implemented two mechanisms that can support temporal
sparseness, inhibitory feedback via the spiking APL neuron and
SFA. Our analysis in Fig. 3B showed that inhibitory feedback
has the strongest effect, confirming experimental [109, 110]
and modeling results [24, 26, 27, 111]. Cellular adaptation
(SFA) showed a smaller but supporting effect in our network,
which is partially in line with our previous models of the adult
fly [27, 51, 109] in which we showed that SFA alone can suffice
to generate high temporal sparseness.

Importantly, cellular adaptation has additional effects on
stimulus coding that are not analyzed here. Being a self-
inhibiting mechanism it reduces overall spiking activity, con-
tributing to the low spontaneous and response response rates
in the KC population that has been repeatedly documented
in various insect species [35, 53, 57]. Moreover, SFA leads to
a regularization of the neuron’s spike output and a reduction
of the trial-to-trial variability, effectively improving response
reliability [109, 112]. Finally, SFA introduces a short-term
stimulus memory expressed in the conductance state of the
excited neuron population, which decays with the SFA time
constant [51].

Temporal sparseness was influenced strongly by SFA in
the KCs and by recurrent feedback inhibition. It usually
shows as longer inter-spike-intervals both in physiological data
[35, 53, 93] as well as in modeling results [27, 51, 109]. Besides
the prolongation of the inter-spike-intervals over the entire
duration of the experiment, SFA also caused the commonly
observed odor onset effect [35, 53, 57, 93, 110] in ORNs and
KCs. In our data this effect was somewhat concealed in the
KCs by the overall small number of spike responses. This is
a tribute to the biological plausibility with respect to data
collected from adult Drosophila, where the KC rarely show
spikes at baseline [57] and a very sparse odor response pat-
tern [57, 95]. Due to the SFA in the ORN population that
was active in all experimental conditions there was a good
degree of temporal sparseness in the LN-only condition as well
(especially on the chip). Again we chose to accept this effect
as a baseline level of sparseness to compare other conditions
against. In both implementations the expected effects of SFA
in the KCs could be observed.

We have previously argued that the major functional role
of temporal sparseness is the rapid and reliable stimulus en-
coding in a temporally dynamic environment [27, 109]. Indeed,
temporal dynamics is high in the natural olfactory environ-
ment and depends on air movement and on animal speed, the
latter being particularly high in flying insects. As a result,
adult insects during flight or locomotion may encounter a
rapid on-off stimulus scenario when passing through a thin
odor filament [113–117]. It remains an open question whether
the SFA mechanism is at all present in the KCs during larval
stages and electrophysiological approaches to neural coding in
the larva is scarce. Representation of high temporal stimulus

dynamics is likely of minor importance for the larva as its loco-
motion is slow and the natural environment suitable for larval
development such as e.g. a rotten fruit likely provides little
olfactory dynamics. However, larva do perform chemotaxis
and thus are able to sample olfactory gradients.

Outlook. Our current research extends the present model to-
wards a plastic spiking network model of the larva that can
perform associative learning and reward prediction [118] in-
spired by recent modelling approaches in the adult [119, 120].
Together with biologically realistic modeling of individual
larva locomotion and chemotactic behavior [16] this will allow
to reproduce behavioral [121–125] and optophysiological ob-
servations [62, 126, 127] and to generate testable hypothesis
at the physiological and behavioral level. In the future this
may inspire modeling virtual larvae exploring and adapting
to their virtual environment in a closed loop scenario and the
implementation of such mini brains on compact and low-power
neuromorphic hardware for the spiking control of autonomous
robots [7, 27, 128, 129].
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