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Fig. 4. Response pattern overlap. Average spike frequency (over 20 trials) for Chip (A,B,C) and simulation (D,E,F) in response to three different odors. The odors were
presented for 2s (for information on the experimental protocol please refer to Figure. 1 B). All panels display the overlap between the different odor representations either on PN
level (A,D), KC (B,E) and non-population-sparse KC in a condition with only SFA enabled (C,F). Overlap indicates a low ability to differentiate between odors.

designs will be able to compensate for these drifts by using
proper temperature compensated bias generator circuits [102].

Mechanisms and function of population sparseness. Popula-
tion sparseness at the KC level has been demonstrated for a
number of species in the adult stage (see Introduction). Our
model suggests that sparse coding at the KC level is already
implemented in the Drosophila larva. Different mechanisms
have been suggested for the generation of population sparse-
ness. A fundamental anatomical basis for a sparse code is
the sparse and divergent connectivity between PNs and a
much larger population of KCs [36, 51]. Each KC receives
input from only a few PNs and thus establishes a projection
from a lower into a higher dimensional space, ideally suited
to generate distinct activity patterns that foster associative
memory formation. Additionally, there is evidence for a low
excitability of the individual KCs that require collective input
from several PNs to be activated [35, 36, 88]. Connectivity
in our model is based on the exact numbers from electron
microscopic reconstructions of neurons and synapses in one
individual brain [61]. We did not attempt to adjust excitability
of KCs or PN::KC connection strength for optimal population
sparseness.

Feedback inhibition has repeatedly been suggested to under-
lie population sparseness in several animals, including the fly
larva [103]. Empirical evidence has been provided in particular
in bees [93, 104] and adult flies [46, 81]. Several modeling stud-
ies have used feedback inhibition to support a sparse KC pop-
ulation code in larger adult KC populations [24, 26, 27, 105].
Indeed, our study shows that inhibitory feedback from the
single APL neuron effectively implements a sparse code in the
small population of 72 KCs (Fig. 3A). We chose to model the
APL as a spiking neuron that receives input solely from KCs
and inhibits KCs in a closed loop. This decision was based on
experimental evidence indicating a clear polarity of the APL
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with input in the MB lobes and pre-synaptic densities in the
calyx, presumably onto the KC dendrites [62]. Whether the
APL neuron generates sodium action potentials, however, is
not clear in the larva [103] and has been challenged in the
adult [46]. In addition, inhibitory feedback connections within
the mushroom body have been implicated in learning through
inhibitory plasticity in bees and flies, thereby modulating the
sparse KC population code [46, 104, 105].

As a third factor, lateral inhibition within the Drosophila
antennal lobe has been shown to increase population sparseness
at the KC level [90, 106] and in a model thereof [51]. This
model study showed a strong effect of lateral inhibition on
population sparseness in a network tuned to the anatomy
of the adult fly. In the present larval model we found a
supportive effect. With lateral inhibition alone the model
reached Spop  0:6. The interplay of feedback inhibition and
lateral inhibition boosted population sparseness to Spop ~ 0:8
(Fig. 3A). This observation is different from our previous
results in a network simulation modelled after the adult fly [27]
where lateral inhibition in the AL was sufficient to implement
a high population sparseness and APL feedback inhibition had
a mainly supporting effect. The fact that lateral inhibition
is less effective in the larval than in the adult Drosophila
model [51] is thus likely due to the one-to-one connectivity
between the 21 ORNs and 21 PNs in the larva, which requires
very strong excitatory synapses. This specific configuration
establishes a dominant feed-forward component in the larval
olfactory pathway (Fig. 1A).

Sparse stimulus representation across the neuronal pop-
ulation supports minimal overlap of and correlation across
stimulus-specific spatial response patterns [33, 51, 81, 107, 108],
which in turn benefits associative memory formation and in-
creases memory capacity [46, 49, 52, 68]. We confirmed an
increased inter-stimulus distance in the KC coding space on
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the chip and in the simulation when all sparseness mechanisms
take effect.

Mechanisms and function of temporal sparseness. Temporal
sparseness in the insect MB has been physiologically described
in various species. It is expressed in a highly phasic stimulus
response that typically consists of only a single or very few
spikes and that is temporally locked to stimulus onset or to a
fast transient increase in stimulus amplitude while the tonic
stimulus response is almost absent [35, 53, 57]. In our model
we implemented two mechanisms that can support temporal
sparseness, inhibitory feedback via the spiking APL neuron and
SFA. Our analysis in Fig. 3B showed that inhibitory feedback
has the strongest effect, confirming experimental [109, 110]
and modeling results [24, 26, 27, 111]. Cellular adaptation
(SFA) showed a smaller but supporting effect in our network,
which is partially in line with our previous models of the adult
fly [27, 51, 109] in which we showed that SFA alone can suffice
to generate high temporal sparseness.

Importantly, cellular adaptation has additional effects on
stimulus coding that are not analyzed here. Being a self-
inhibiting mechanism it reduces overall spiking activity, con-
tributing to the low spontaneous and response response rates
in the KC population that has been repeatedly documented
in various insect species [35, 53, 57]. Moreover, SFA leads to
a regularization of the neuron’s spike output and a reduction
of the trial-to-trial variability, effectively improving response
reliability [109, 112]. Finally, SFA introduces a short-term
stimulus memory expressed in the conductance state of the
excited neuron population, which decays with the SFA time
constant [51].

Temporal sparseness was influenced strongly by SFA in
the KCs and by recurrent feedback inhibition. It usually
shows as longer inter-spike-intervals both in physiological data
[35, 53, 93] as well as in modeling results [27, 51, 109]. Besides
the prolongation of the inter-spike-intervals over the entire
duration of the experiment, SFA also caused the commonly
observed odor onset effect [35, 53, 57, 93, 110] in ORNs and
KCs. In our data this effect was somewhat concealed in the
KCs by the overall small number of spike responses. This is
a tribute to the biological plausibility with respect to data
collected from adult Drosophila, where the KC rarely show
spikes at baseline [57] and a very sparse odor response pat-
tern [57, 95]. Due to the SFA in the ORN population that
was active in all experimental conditions there was a good
degree of temporal sparseness in the LN-only condition as well
(especially on the chip). Again we chose to accept this effect
as a baseline level of sparseness to compare other conditions
against. In both implementations the expected effects of SFA
in the KCs could be observed.

We have previously argued that the major functional role
of temporal sparseness is the rapid and reliable stimulus en-
coding in a temporally dynamic environment [27, 109]. Indeed,
temporal dynamics is high in the natural olfactory environ-
ment and depends on air movement and on animal speed, the
latter being particularly high in flying insects. As a result,
adult insects during flight or locomotion may encounter a
rapid on-off stimulus scenario when passing through a thin
odor filament [113-117]. It remains an open question whether
the SFA mechanism is at all present in the KCs during larval
stages and electrophysiological approaches to neural coding in
the larva is scarce. Representation of high temporal stimulus

dynamics is likely of minor importance for the larva as its loco-
motion is slow and the natural environment suitable for larval
development such as e.g. a rotten fruit likely provides little
olfactory dynamics. However, larva do perform chemotaxis
and thus are able to sample olfactory gradients.

Outlook. Our current research extends the present model to-
wards a plastic spiking network model of the larva that can
perform associative learning and reward prediction [118] in-
spired by recent modelling approaches in the adult [119, 120].
Together with biologically realistic modeling of individual
larva locomotion and chemotactic behavior [16] this will allow
to reproduce behavioral [121-125] and optophysiological ob-
servations [62, 126, 127] and to generate testable hypothesis
at the physiological and behavioral level. In the future this
may inspire modeling virtual larvae exploring and adapting
to their virtual environment in a closed loop scenario and the
implementation of such mini brains on compact and low-power
neuromorphic hardware for the spiking control of autonomous
robots [7, 27, 128, 129].
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