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Abstract	16 
No	 one	 likes	 to	 be	 wrong.	 Previous	 research	 has	 shown	 that	 participants	 may	17 
underweight	 information	 incompatible	 with	 previous	 choices,	 a	 phenomenon	 called	18 
confirmation	bias.	In	this	paper	we	argue	that	a	similar	bias	exists	in	the	way	information	19 
is	actively	sought.	We	investigate	how	choice	influences	information	gathering	using	a	20 
perceptual	 choice	 task	 and	 find	 that	 participants	 sample	 more	 information	 from	 a	21 
previously	 chosen	 alternative.	 Furthermore,	 the	 higher	 the	 confidence	 in	 the	 initial	22 
choice,	the	more	biased	information	sampling	becomes.	As	a	consequence,	when	faced	23 
with	the	possibility	of	revising	an	earlier	decision,	participants	are	more	likely	to	stick	24 
with	their	original	choice,	even	when	incorrect.	Critically,	we	show	that	agency	controls	25 
this	phenomenon.	The	effect	disappears	in	a	fixed	sampling	condition	where	presentation	26 
of	 evidence	 is	 controlled	 by	 the	 experimenter,	 suggesting	 that	 the	 way	 in	 which	27 
confirmatory	evidence	is	acquired	critically	impacts	the	decision	process.	These	results	28 
suggest	active	information	acquisition	plays	a	critical	role	in	the	propagation	of	strongly	29 
held	beliefs	over	time.	30 
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We	are	constantly	deciding	what	information	to	sample	to	guide	future	decisions.	This	is	40 
no	easy	feat,	as	there	is	a	vast	amount	of	information	available	in	the	world.	In	theory,	an	41 
agent	 should	 look	 for	 information	 to	 maximally	 reduce	 their	 uncertainty	 (Schulz	 &	42 
Gershman,	2019;	Schwartenbeck	et	al.,	2019;	Yang	et	al.,	2016).	There	is	some	evidence	43 
that	this	is	indeed	what	humans	do	(Kobayashi	&	Hsu,	2019;	Meyer	&	Shi,	1995;	Steyvers	44 
et	al.,	2009;	Wilson	et	al.,	2014),	but	a	range	of	other	drivers	of	information	search	have	45 
been	 identified	 that	make	 us	 deviate	 from	 the	 sampling	 behaviour	 of	 optimal	 agents	46 
(Eliaz	&	Schotter,	2007;	Gesiarz	et	al.,	2019;	Hunt	et	al.,	2016;	Kobayashi	et	al.,	2019;	47 
Rodriguez	Cabrero	et	al.,	2019;	Sharot,	2011;	van	Lieshout	et	al.,	2018;	Wang	&	Hayden,	48 
2019).		49 
	50 
Confirmation	bias	is	defined	as	the	tendency	of	agents	to	seek	out	or	overweight	evidence	51 
that	aligns	with	their	beliefs	while	avoiding	or	underweighting	evidence	that	contradicts	52 
them	(Hart	et	al.,	2009;	Lord	et	al.,	1979;	Nickerson,	1998;	Stroud,	2008;	Wason,	1960,	53 
1968).	This	effect	has	often	been	described	in	the	context	of	what	media	people	choose	54 
to	 consume	 (Bakshy	 et	 al.,	 2015;	 Bennett	 &	 Iyengar,	 2008;	 Pariser,	 2012).	 Recently,	55 
cognitive	scientists	have	realised	confirmation	bias	may	not	be	restricted	to	this	domain	56 
and	may	reveal	a	fundamental	property	of	the	way	in	which	the	brain	drives	information	57 
search.	 As	 such,	 researchers	 have	 started	 to	 investigate	 confirmation	 bias	 in	 simple	58 
perceptual	and	value-based	choice	tasks.	For	example,	sensitivity	to	new	information	has	59 
been	shown	 to	decrease	after	 choice	 (Bronfman	et	al.,	2015),	while	Talluri,	Urai	et	al.	60 
(2018)	have	shown	that	sensitivity	to	a	stimulus	is	increased	when	it	is	consistent	with	61 
the	stimulus	presented	before.	Furthermore,	 in	Palminteri	et	al.	 (2017)	 learning	rates	62 
were	found	to	be	higher	for	feedback	indicating	positive	obtained	outcomes	as	well	as	for	63 
negative	forgone	outcomes.	This	effect	has	been	replicated	in	recent	studies	that	suggest	64 
confirmation	bias	during	learning	might	be	adaptive	in	some	contexts	(Tarantola,	Folke	65 
et	al.,	2021;	Lefebvre	et	al.,	2020;	Salem-Garcia	et	al.,	2021).		66 
	67 
Most	 of	 the	 existing	 research	 on	 perceptual	 decision-making	 has	 focused	 on	 the	68 
weighting	 of	 incoming	 information	 during	 evidence	 accumulation	 or	 belief	 updating.	69 
Other	findings	suggest	that	agents	also	actively	search	for	confirmatory	evidence	(Hunt	70 
et	 al.,	 2016,	 2018;	 Tolcott	 et	 al.,	 1989;	Wason,	 1968),	 but	 none	 of	 these	 experiments	71 
investigated	the	effect	of	biased	 information	sampling	 in	simple,	perceptual	choice.	As	72 
most	 paradigms	 currently	 used	 to	 study	 confirmation	 bias	 do	 not	 explicitly	 focus	 on	73 
active	 information	 sampling	 performed	 by	 the	 agent,	 therefore	 it	 is	 unclear	 whether	74 
confirmation	bias	arises	from	evidence	underweighting,	biased	information	sampling,	or	75 
both.		76 
	77 
Another	important	aspect	of	confirmation	bias	is	how	it	modulates	and	is	modulated	by	78 
decision	confidence.	Confidence	is	known	to	play	an	important	role	in	guiding	decisions	79 
(Bogacz	 et	 al.,	 2010;	 Boldt	 et	 al.,	 2019;	 Folke	 et	 al.,	 2017;	 Rabbitt,	 1966;	 Yeung	 &	80 
Summerfield,	 2012).	 It	 is	 therefore	 likely	 it	 may	 also	 guide	 the	 information	 search	81 
preceding	choice	(Desender	et	al.,	2019).	In	fact,	Rollwage	et	al.	(2020)	recently	showed	82 
that	confidence	indeed	affects	a	neural	signal	of	confirmatory	evidence	integration.	By	83 
definition,	the	higher	confidence	is	in	a	choice,	the	stronger	the	decision-maker's	belief	is	84 
in	the	correctness	of	this	choice	(Fleming	&	Lau,	2014;	Pouget	et	al.,	2016).	Accordingly,	85 
we	predict	that	confirmation	bias	in	information	sampling	will	be	stronger	after	choices	86 
made	with	high	confidence.	87 
	88 
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We	used	two	perceptual	binary	forced	choice	tasks	with	two	choice	phases	separated	by	89 
a	free	sampling	phase	to	test	our	hypotheses	that	confirmation	bias	arises	from	biased	90 
information	 sampling,	 that	 this	 effect	 influences	 future	 choice	 and	 that	 confidence	91 
mediates	this	behavioural	tendency.	92 
	93 
	94 

Results	95 
	96 

Here	we	present	the	results	of	two	independent	experiments	we	conducted	to	test	our	97 
hypotheses.		98 
	99 

Experiment	1	100 
	101 
Participants	performed	a	perceptual	two-alternative	forced	choice	(2AFC)	task	(Figure	102 
1A),	 in	 which	 they	 were	 briefly	 presented	 with	 patches	 containing	 multiple	 dots.	103 
Participants	were	asked	to	judge	which	patch	contained	the	most	dots.	After	their	initial	104 
choice	(phase	1),	they	rated	their	confidence	that	they	were	correct.	Subsequently,	in	the	105 
second	phase	of	the	trial	(phase	2)	participants	could	freely	sample	(i.e.,	see)	each	dot	106 
patch	using	key	presses	to	switch	between	them	as	frequently	as	they	liked	for	4000ms.	107 
Participants	could	only	view	one	patch	at	a	time.	They	were	then	prompted	to	make	a	108 
second	choice	(phase	3),	in	which	they	could	either	confirm	their	initial	choice	or	change	109 
their	mind.	After	this	second	decision,	they	again	reported	their	degree	of	confidence.		110 
	111 
As	expected,	participants’	performance	was	highly	sensitive	to	the	amount	of	perceptual	112 
evidence	presented	in	a	given	trial	(i.e.	the	difference	in	the	amount	of	dots	in	the	left	and	113 
right	 patches;	 Fig	 1B).	 Participants	 were	 also	 more	 accurate	 in	 the	 second	 choice	114 
compared	 to	 the	 first	 choice,	 showing	 that	 they	 used	 the	 additional	 sampling	 time	115 
between	choice	phases	to	accumulate	additional	perceptual	evidence	that	allowed	them	116 
to	increase	accuracy	on	the	second	choice	(t27=8.74,	p<0.001).	117 
	118 
Our	main	hypothesis	was	that	participants	would	prefer	to	gather	perceptual	information	119 
that	was	likely	to	confirm	their	initial	decision.	Conversely,	we	expected	them	to	be	less	120 
likely	to	acquire	evidence	that	would	disconfirm	it.	To	perform	well	on	this	task,	an	agent	121 
would	 have	 to	 attend	 equally	 to	 the	 two	 patches,	 as	 the	 goal	 requires	 computing	 the	122 
difference	in	dots	between	the	two	patches.	Therefore,	any	imbalance	in	sampling	time	123 
would	not	necessarily	be	beneficial	to	completing	the	task.	However,	we	expected	that	in	124 
the	 free	 sampling	 phase	 (phase	 2)	 of	 the	 trial	 participants	 would	 spend	 more	 time	125 
viewing	 their	 chosen	 patch.	 In	 line	 with	 this	 hypothesis,	 during	 the	 sampling	 phase,	126 
participants	 spent	more	 time	viewing	 the	patch	 they	chose	 in	 the	 first	decision	phase	127 
relative	to	the	unchosen	alternative	(Figure	1C;	t27=7.28,	p<0.001).	128 
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Figure	1.	Task	design	and	participant	behaviour	for	experiment	1.	(A)	Task	structure.	Participants	had	to	131 
choose	which	of	two	dot	patches	contained	the	most	dots	(phase	1)	and	rate	their	confidence	in	this	choice.	132 
Then	participants	were	given	4000ms	to	view	the	dots	which	they	could	allocate	between	the	two	patches	133 
in	whichever	way	they	liked	(phase	2)	by	pressing	the	left	and	right	arrow	keys.	Finally,	participants	made	134 
a	second	choice	about	the	same	set	of	stimuli	and	rated	their	confidence	again	(phase	3).	(B)	Participants	135 
effectively	used	the	stimuli	to	make	correct	choices	and	improved	upon	their	performance	on	the	second	136 
choice.	This	psychometric	curve	is	plotting	the	probability	of	choosing	the	left	option	as	a	function	of	the	137 
evidence	difference	between	the	two	stimuli	for	each	of	the	two	choice	phases.	(C)	In	the	free	sampling	138 
phase	(phase	2)	participants	spent	more	time	viewing	the	stimulus	they	chose	on	the	preceding	choice	139 
phase	than	the	unchosen	option.	Data	points	represent	individual	participants.	140 
	141 
	142 
Confidence	in	a	choice	reflects	the	strength	of	the	participant’s	belief	that	their	choice	143 
was	correct.	Consequently,	we	hypothesised	that	participants’	preference	for	gathering	144 
confirmatory	evidence	for	a	given	choice	would	be	modulated	by	their	confidence	in	145 
that	choice.	As	such,	we	expected	choices	made	with	higher	confidence	would	lead	to	a	146 
stronger	sampling	bias	favouring	the	chosen	patch	over	the	unchosen	patch.	In	a	147 
hierarchical	regression	predicting	sampling	time	difference	between	the	two	patches,	148 
we	found	a	significant	interaction	between	choice	and	confidence,	such	that	the	higher	149 
the	degree	of	confidence	was	in	the	first	choice,	the	more	sampling	was	biased	in	favour	150 
of	that	choice	(Figure	2;	t26.96=5.26,	p<0.001;	see	supplemental	materials	S1).	We	also	151 
saw	a	significant	main	positive	effect	of	choice	on	sampling	time	difference,	such	that	a	152 
chosen	stimulus	was	likely	to	be	sampled	for	longer	during	the	sampling	phase	(Figure	153 
2B;	t26.96=9.64,	p<0.001)	as	shown	in	the	previous	section.	There	was	also	a	significant	154 
main	positive	effect	of	evidence	difference	on	sampling	time	difference,	whereby	the	155 
correct	stimulus	(containing	the	most	dots)	was	sampled	for	longer	(Figures	2B;	156 
t26.96=13.02,	p<0.001).		157 

	158 

	159 
Figure	 2.	 The	 effect	 of	 choice	 on	 sampling	 behaviour	 is	 mediated	 by	 confidence	 in	 experiment	 1.	160 
Participants	were	less	likely	to	change	their	mind	if	they	showed	a	strong	sampling	bias	for	their	initially	161 
chosen	 option	 in	 the	 sampling	 phase.	 (A)	 Sampling	 bias	 in	 favour	 of	 the	 chosen	 option	 increases	 as	 a	162 

B

A

Choice

Δ evidence

Confidence

Choice
 x Confidence

Increased confidence leads to more bias

- Experiment 1 - C

Sam
plin

g b
ias

у�H
YLG
HQ
FH

Con
fid

en
ce

Predicting sampling time 
difference

Predicting change of mind

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

function	of	confidence	in	the	initial	choice.	Confidence	and	sampling	bias	are	both	normalised	in	this	plot.	163 
(B)	There	is	a	significant	main	effect	of	choice	on	sampling	time	difference,	such	that	an	option	is	sampled	164 
for	 longer	 if	 it	was	chosen,	and	a	significant	 interaction	effect	of	Choice	x	Confidence,	such	that	options	165 
chosen	with	high	confidence	are	sampled	for	even	longer.	(C)	There	is	a	main	negative	effect	of	sampling	166 
bias	on	change	of	mind,	such	that	participants	were	less	likely	to	change	their	mind	in	the	second	decision	167 
phase	(phase	3)	the	more	they	sampled	their	initially	chosen	option	in	the	free	sampling	phase	(phase	2).	168 
(B-C)	Plotted	are	fixed-effect	coefficients	from	hierarchical	regression	models	predicting	the	sampling	time	169 
(how	long	each	patch	was	viewed	in	the	sampling	phase)	difference	between	the	left	and	right	stimuli.	Data	170 
points	represent	regression	coefficients	for	each	individual	participant.	171 

	172 
	173 

Our	choices	are	determined	by	the	evidence	we	have	gathered	before	making	a	decision.	174 
Therefore,	we	expected	that	biased	sampling	in	the	free	sampling	phase	(phase	2)	would	175 
impact	decisions	in	the	second	decision	phase	(phase	3).	Specifically,	we	hypothesised	176 
that	 the	more	 strongly	 participants	 preferred	 sampling	 their	 chosen	 patch,	 the	more	177 
likely	they	were	to	choose	it	again.	Using	a	multinomial	hierarchical	logistic	regression,	178 
we	found	that	bias	in	sampling	time	towards	the	previously	chosen	option	was	indeed	179 
predictive	of	future	choice.	In	other	words,	the	more	participants	sampled	a	previously	180 
chosen	option,	the	more	likely	they	were	to	choose	it	again	(Figure	2C;	z=-11.0,	p<0.001;	181 
see	S2).	Furthermore,	evidence	difference	and	confidence	were	significantly	negatively	182 
related	to	subsequent	changes	of	mind,	whereby	participants	were	less	likely	to	change	183 
their	mind	 if	 their	 initial	 choice	was	 correct	 and	 if	 it	was	made	with	 high	 confidence	184 
(Figure	2C;	main	effect	of	evidence	difference	–	z=-3.06,	p<0.01,	main	effect	of	confidence	185 
–	z=-10.12,	p<0.001).	186 
	187 
	188 

Experiment	2	189 
	190 
While	 the	 results	 from	 the	 first	 experiment	 showed	 an	 effect	 of	 biased	 sampling	 on	191 
subsequent	 choice,	 it	 was	 not	 clear	 whether	 this	 effect	 arises	 from	 biased	 evidence	192 
accumulation	 caused	 by	 differential	 exposure	 to	 the	 perceptual	 evidence,	 or	 if	 the	193 
sampling	choices	themselves	drive	the	effect.	In	other	words,	would	the	same	choice	bias	194 
appear	if	participants	were	passive	recipients	of	biased	sampling,	or	does	the	choice	bias	195 
require	that	participants	make	their	own	sampling	decisions?	196 
	197 
We	addressed	this	question	in	a	follow-up	eye-tracking	study	(Figure	3A)	in	which	we	198 
introduced	a	control	task,	a	‘fixed-viewing	condition’,	in	which	participants	did	the	same	199 
task,	but	did	not	have	the	possibility	to	freely	sample	the	patches	in	phase	2.	Instead,	the	200 
dot	patches	were	shown	for	a	set	amount	of	time.	In	one-third	of	trials,	the	patches	were	201 
shown	an	equal	amount	of	time;	in	two-thirds	of	trials,	one	patch	was	shown	three	times	202 
longer	than	the	other.	Each	participant	completed	two	sessions,	one	session	involved	free	203 
sampling,	 similar	 to	 Experiment	 1.	 The	 other	 involved	 a	 fixed-viewing	 control	 task.	204 
Session	order	was	pseudo-randomized	between	participants.	Furthermore,	presentation	205 
of	the	visual	stimuli	and	all	the	participants’	responses	were	gaze-contingent.	This	meant	206 
that	during	 the	 sampling	phase	 (phase	2),	 the	dot	patches	were	only	presented	when	207 
participants	fixated	inside	the	patch.	Furthermore,	we	hypothesised	that	sampling	bias	208 
might	be	stronger	when	more	time	to	sample	is	available.	Specifically,	we	expected	that	209 
participants	might	become	more	biased	in	their	sampling	throughout	the	sampling	phase	210 
as	they	gradually	become	more	confident	in	their	belief.	Therefore,	we	manipulated	the	211 
length	of	 phase	2	 to	be	 either	3000ms,	 5000ms,	 or	7000ms.	Again,	 participants	were	212 
sensitive	to	the	difficulty	of	the	given	trials	(Figure	3B)	and	were	more	accurate	on	the	213 
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second	choice	compared	to	the	first	choice	(t17=6.80,	p<0.001).	214 
	215 
We	 also	 replicated	 our	 main	 result	 in	 the	 free	 sampling	 condition	 showing	 that	216 
participants	 spent	more	 time	 viewing	 the	 patch	 they	 just	 chose	 (Figure	 3C;	 t17=3.52,	217 
p<0.01).	Furthermore,	the	size	of	this	sampling	time	bias	was	proportional	to	the	total	218 
amount	of	sampling	time	available	in	study	2	(Figure	S3.1),	suggesting	that	there	was	no	219 
particular	 period	 of	 time	within	 the	 sampling	 phase	where	 confirmatory	 information	220 
sampling	was	more	likely	contrary	to	our	expectation.	221 
	222 
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Figure	3.	Task	design	and	participant	behaviour	for	experiment	2.	(A)	Task	structure.	Participants	had	to	224 
choose	which	of	two	dot	patches	contained	the	most	dots	(phase	1)	and	rate	their	confidence	in	this	choice.	225 
Then	participants	were	given	3000ms,	5000ms,	or	7000ms	 to	view	 the	dots	which	 they	 could	allocate	226 
between	 the	 two	 patches	 in	whichever	way	 they	 liked	 (phase	 2)	 by	 looking	 inside	 the	 circles.	 Finally,	227 
participants	made	a	second	choice	about	the	same	set	of	stimuli	and	rated	their	confidence	again	(phase	3).	228 
(B)	Participants	effectively	used	the	stimuli	to	make	correct	choices	and	improved	upon	their	performance	229 
on	the	second	choice.	This	psychometric	curve	is	plotting	the	probability	of	choosing	the	left	option	as	a	230 
function	of	the	evidence	difference	between	the	two	stimuli	for	each	of	the	two	choice	phases.	(C)	In	the	231 
free	sampling	condition	during	the	sampling	phase	(phase	2)	participants	spent	more	time	viewing	the	232 
stimulus	 they	 chose	 on	 the	 preceding	 choice	 phase	 than	 the	 unchosen	 option.	 Data	 points	 represent	233 
individual	participants.	234 
	235 

236 
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This	new	experiment	also	replicated	the	mediating	effect	of	confidence	on	how	237 
sampling	bias	affects	subsequent	choice.	We	again	found	a	significant	interaction	238 
between	choice	and	confidence	(Figure	4A-B;	t16.97=4.29,	p<0.001;	see	supplemental	239 
materials	S1)	and	replicated	the	main	positive	effects	of	choice	and	evidence	difference	240 
on	sampling	time	difference	(Figure	4B;	main	effect	of	choice:	t16.97=2.90,	p<0.01;	main	241 
effect	of	evidence	difference:	t16.97=9.21,	p<0.001).	242 
	243 
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Figure	 4.	 The	 effect	 of	 choice	 on	 sampling	 behaviour	 is	 mediated	 by	 confidence	 in	 experiment	 2.	246 
Participants	were	less	likely	to	change	their	mind	if	they	showed	a	strong	sampling	bias	for	their	initially	247 
chosen	option	in	the	sampling	phase,	but	this	was	only	the	case	in	the	free	sampling	condition.	(A)	Sampling	248 
bias	in	favour	of	the	chosen	option	increases	as	a	function	of	confidence	in	the	initial	choice.	Confidence	249 
and	 sampling	 bias	 are	 both	 normalized	 in	 this	 plot.	 (B)	 There	 is	 a	 significant	main	 effect	 of	 choice	 on	250 
sampling	 time	 difference,	 such	 that	 an	 option	 is	 sampled	 for	 longer	 if	 it	was	 chosen,	 and	 a	 significant	251 
interaction	effect	of	Choice	x	Confidence,	such	that	options	chosen	with	high	confidence	are	sampled	for	252 
even	longer.	(C)	There	is	a	main	negative	effect	of	sampling	bias	on	change	of	mind,	such	that	participants	253 
were	less	likely	to	change	their	mind	in	the	second	decision	phase	(phase	3)	the	more	they	sampled	their	254 
initially	chosen	option	in	the	free	sampling	phase	(phase	2).	The	main	effect	of	sampling	bias	on	change	of	255 
mind	 disappears	 in	 the	 fixed	 sampling	 condition,	 which	 can	 be	 seen	 by	 the	 positive	 interaction	 term	256 
Sampling	bias	x	Fixed	sampling	which	entirely	offsets	 the	main	effect.	 	The	analysis	 includes	a	dummy	257 
variable	 ‘Fixed	Sampling’	coding	whether	the	trial	was	 in	the	 fixed-viewing	condition.	(B-C)	Plotted	are	258 
fixed-effect	coefficients	from	hierarchical	regression	models	predicting	the	sampling	time	(how	long	each	259 
patch	 was	 viewed	 in	 the	 sampling	 phase)	 difference	 between	 the	 left	 and	 right	 stimuli.	 Data	 points	260 
represent	 regression	 coefficients	 for	 each	 individual	 participant.	 (D)	 The	 probability	 that	 participants	261 
change	their	mind	on	the	second	choice	phase	is	more	likely	if	they	looked	more	at	the	unchosen	option	262 
during	 the	 sampling	 phase.	 The	 plot	 shows	 the	 probability	 that	 participants	 changed	 their	 mind	 as	 a	263 
function	of	the	time	spent	sampling	the	initially	chosen	option	during	phase	2.	The	lines	are	polynomial	fits	264 
to	the	data,	while	the	data	points	indicate	the	frequency	of	changes	of	mind	binned	by	sampling	bias.	Note	265 
that	actual	gaze	time	of	the	participants	is	plotted	here	for	both	task	conditions.	The	same	pattern	can	be	266 
seen	when	 instead	plotting	 the	 fixed	presentation	 times	of	 the	stimuli	 for	 the	 fixed	 task	condition	 (see	267 
Figure	S4.1).	268 
	269 
	270 
Similarly,	we	 replicated	 the	negative	 effect	 of	 sampling	bias	 on	 subsequent	 change	of	271 
mind	(Figure	4C;	z=-7.07,	p<0.001;	see	S1)	as	well	as	the	main	negative	effects	of	evidence	272 
difference	 and	 confidence	 on	 change	 of	 mind	 (Figure	 4C;	 main	 effect	 of	 evidence	273 
difference:	z=-2.71,	p<0.01;	main	effect	of	confidence:	z=-8.86,	p<0.001).		274 
	275 

Once	we	confirmed	all	the	main	findings	from	the	first	experiment	using	this	new	setup,	276 
we	were	able	to	test	our	main	hypothesis:	does	the	effect	of	sampling	bias	on	choice	we	277 
identified	 require	 the	 participant	 to	 actively	 choose	which	 information	 to	 sample?	 In	278 
other	 words,	 is	 the	 effect	 of	 confirmation	 bias	 on	 subsequent	 choice	 present	 when	279 
confirmatory	 evidence	 is	 passively	 presented	 to	 participants	 or	 does	 it	 require	 that	280 
confirmatory	 evidence	 is	 actively	 sought	 by	 the	 decision-maker?	 In	 the	 first	 case,	we	281 
would	expect	to	see	the	same	effect	in	the	fixed-viewing	condition	(in	which	asymmetric	282 
information	is	provided	by	the	experimenter)	as	in	the	free-sampling	condition.	In	the	283 
second	 case,	 we	 would	 expect	 that	 the	 effect	 of	 biased	 information	 sampling	 on	 the	284 
subsequent	choice	disappears	in	the	fixed-viewing	condition.		285 

	286 

In	line	with	the	second	prediction,	we	found	that	in	the	fixed-viewing	condition,	contrary	287 
to	the	free-sampling	condition	in	this	experiment	and	in	the	first	experiment,	the	amount	288 
of	 time	 spent	 viewing	 the	 patches	 in	 the	 sampling	 phase	 did	 not	 significantly	 affect	289 
subsequent	choice.	In	a	multinomial	hierarchical	logistic	regression	predicting	change	of	290 
mind	from	the	first	choice	phase	to	the	second	choice	phase	within	a	given	trial,	the	main	291 
effect	of	sampling	bias	on	change	of	mind	was	completely	offset	by	the	positive	effect	of	292 
the	interaction	term	between	sampling	bias	and	a	dummy	variable	that	was	set	to	1	if	a	293 
trial	was	in	the	fixed-viewing	condition	(Figures	4C-D;	z=7.24,	p<0.001;	see	supplemental	294 
materials	S2).	This	means	that	there	was	no	effect	of	sampling	bias	on	change	of	mind	in	295 
the	fixed-viewing	condition.	To	check	that	participants	were	engaging	in	this	version	of	296 
the	task,	we	looked	whether	the	number	of	saccades	made	within	each	patch	during	the	297 
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sampling	phase	was	similar	between	the	two	tasks.	We	found	that	the	number	of	saccades	298 
was	actually	higher	in	the	fixed-viewing	condition	than	in	the	main	experiment	(t17=-4.22,	299 
p<0.001),	 which	 means	 participants	 were	 indeed	 exploring	 the	 information	 in	 this	300 
condition.	This	confirms	that	active	information	sampling	by	the	participant	is	crucial	to	301 
the	effect	of	confirmation	bias	in	sampling	on	future	choices.	302 

	303 

To	further	investigate	how	attention,	when	freely	allocated,	shapes	the	accumulation	of	304 
evidence	and	choice	bias,	we	modelled	the	data	from	both	viewing	conditions	using	the	305 
Gaze-weighted	Linear	Accumulator	Model	(GLAM;	Molter	et	al.,	2019;	Sepulveda	et	al.,	306 
2020;	Thomas	et	al.,	2019).	GLAM	belongs	to	the	family	of	race	models	with	an	additional	307 
modulation	by	visual	attention	(Figure	5A).	It	is	an	approximation	of	a	widely	used	class	308 
of	models	–	the	attentional	Drift	Diffusion	Model	(aDDM;	Krajbich	et	al.,	2010;	Krajbich	309 
and	Rangel,	 2011)	 in	which	 the	 full	 dynamic	 sequence	 of	 fixations	 is	 replaced	 by	 the	310 
percentage	of	 time	 spent	 fixating	 the	 choice	 alternatives.	 	 Even-numbered	 trials	were	311 
used	to	 fit	 the	model	while	odd-numbered	trials	were	used	to	 test	 it.	See	 the	Methods	312 
section	for	further	details.	313 

	314 

GLAM	is	defined	by	four	free	parameters:	ν	(drift	term),	γ	(gaze	bias),	τ	(evidence	scaling),	315 
and	σ	(normally	distributed	noise	standard	deviation).		The	model	correctly	captured	the	316 
reaction	times	(RT)	and	choice	behaviour	of	the	participants	at	group-level	both	in	the	317 
free-sampling	(Figure	5B)	and	fixed-viewing	conditions	(Figure	5C).	More	specifically,	we	318 
found	that	the	model	predicted	faster	RTs	when	trial	difficulty	was	low	(|DDots|	is	high;	319 
Figures	5B-C,	top	left).	The	model	also	reproduced	overall	choice	behaviour	as	a	function	320 
of	 the	 number	 of	 dots	 in	 the	 patches	 (DDots	 =	 DotsLeft	 –	 DotsRight)	 in	 both	 conditions	321 
(Figures	5B-C,	top	right).	Furthermore,	we	found	gaze	allocation	(DGaze	=	gLeft	–	gRight)	322 
predicted	 the	probability	of	 choosing	 the	correct	patch	 in	 the	 free-sampling	condition	323 
(Figure	5C,	bottom	left).	However,	to	properly	test	how	predictive	gaze	allocation	is	of	324 
choice,	we	must	account	for	the	effect	of	evidence	(DDots)	on	choice.	As	such,	we	used	the	325 
gaze	influence	(GI)	measure	(Thomas	et	al.,	2019),	which	reflects	the	effect	of	gaze	on	326 
choice	after	accounting	 for	 the	effect	of	evidence	on	choice.	GI	 is	calculated	taking	the	327 
actual	choice	(0	or	1	for	right	or	left	choice,	respectively)	and	subtracting	the	probability	328 
of	choosing	the	left	item	as	predicted	by	a	logistic	regression	with	DDots	as	a	predictor	329 
estimated	from	behaviour.	The	averaged	residual	choice	probability	reflects	GI.	We	found	330 
GI	estimated	purely	from	participant’s	behaviour	was	higher	in	the	free-sampling	than	in	331 
the	 fixed-viewing	 condition	 (comparing	 average	 GI	 by	 participant,	 free-sampling	332 
condition:	Mean	=	0.148,	SD	=	0.169;	fixed-viewing	condition:	Mean	=	0.025,	SD	=	0.11;	333 
t17		=2.202,	p<0.05).	This	suggests	the	effect	of	visual	attention	on	choice	was	higher	in	334 
the	 free-sampling	condition.	 In	 line	with	 this,	 the	model	also	predicted	a	higher	GI	on	335 
corrected	 choice	probability	 in	 the	 free-sampling	 condition	 (comparing	average	GI	by	336 
individual	model	predictions,	free-sampling	condition:	Mean	=	0.112,	SD	=	0.106;	fixed-337 
viewing	condition:	Mean	=	0.041,	SD	=	0.055;	t17	=	2.205,	p<0.05;	Figures	5B-C,	bottom	338 
right).	339 

	340 

We	 then	 tested	 whether	 attention	 affected	 information	 integration	 more	 when	341 
information	was	 actively	 sought	 (i.e.	 the	 free-sampling	 condition)	 compared	 to	when	342 
information	was	given	to	the	participants	(i.e.	the	fixed-viewing	condition).	We	compared	343 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

the	parameters	obtained	from	the	individual	fit	in	the	free-sampling	and	fixed-viewing	344 
conditions	(Figure	5D).	We	found	a	significant	variation	in	the	gaze	bias	parameter	(Mean	345 
γ	Free=	0.81,	Mean	γ	Fixed=	0.96,	t17=	-3.268;	p<0.01),	indicating	a	higher	influence	of	gaze	346 
on	choice	in	the	free-sampling	condition.	Note	that	during	the	fixed-viewing	condition,	347 
the	 parameter	 γ	 ≈	 1	 indicates	 that	 almost	 no	 gaze	 bias	 was	 present	 on	 those	 trials.	348 
Conversely,	 there	was	no	 significant	 difference	 for	 the	 other	parameters	 between	 the	349 
conditions	(Mean	τFree	=1.44,	τFixed=1.11,	t17=1.17;	p=0.25,	n.s.;	Mean	σFree	=0.0077,	Mean	350 
σFixed=0.0076,	 t17=0.128;	 p=0.89,	 n.s.;	 νFree=8.07x10-5,	 νFixed=8.64x10-5,	 t17=-1.135;	 p	 =	351 
0.27,	n.s.).	These	results	suggest	that	gathering	information	actively	(i.e.	 free-sampling	352 
condition)	does	not	 affect	 the	overall	 speed	 at	which	 information	 is	 integrated,	 but	 it	353 
specifically	modulates	the	likelihood	of	choosing	the	gazed-at	option.	Finally,	to	test	that	354 
the	identified	effect	did	not	depend	on	a	less	variable	gaze	time	range	we	resampled	the	355 
data	from	the	free-sampling	condition	to	match	the	gaze	time	range	in	the	fixed-viewing	356 
condition,	and	fitted	the	GLAM	again.	We	replicated	our	finding	even	when	the	gaze	time	357 
range	 in	 the	 free-sampling	 condition	was	 reduced	 to	match	 that	 in	 the	 fixed-viewing	358 
condition	(Figure	S5.1).	For	more	in-depth	analyses	including	model	comparisons	please	359 
see	the	supplemental	materials	(S5).		360 

	361 

Finally,	we	explored	the	idea	that	a	sampling	bias	could	arise	from	the	use	of	previous	362 
choice	 as	 evidence	 in	 its	 own	 right,	in	 addition	 to	 previously	 acquired	 information.	363 
Formalizing	 this	 idea,	 we	 developed	 an	 economic	 model	 that	 makes	 behavioural	364 
predictions	aligned	with	our	findings	(S6).	In	this	model,	after	the	first	choice,	the	prior	365 
that	 feeds	 into	 the	 subsequent	 active	 sampling	 phase	 is	 not	 the	 belief	 after	 the	 first	366 
sampling	 phase,	 but	 rather	 it	 is	 a	 convex	 combination	 of	 this	with	 the	 belief	 that	 the	367 
individuals	 would	 hold	 if	 they	only	 knew	 of	 the	 previous	 choice.	 Subsequent	 active	368 
sampling	then	varies	as	a	strictly	increasing	function	of	this	prior.	As	a	result,	a	sampling	369 
bias	in	favour	of	the	initially	chosen	option	arises,	and	this	bias	varies	as	a	function	of	370 
confidence	 in	 the	 initial	 choice,	 as	 seen	 in	 our	 data.	 This	 economic	model	 provides	 a	371 
formal	 description	 of	 the	 behaviour	 we	 observed.	 At	 the	 same	 time,	 it	 suggests	 that	372 
seeking	for	confirmatory	evidence	might	not	arise	from	a	simple	low-level	heuristic,	but	373 
is	rooted	in	the	way	information	is	acquired	and	processed	(for	more	details,	see	S6).	374 
	375 

	376 
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	377 

Figure	5.	Gaze	impacted	evidence	accumulation	(for	the	2nd	choice)	more	strongly	in	the	free	than	378 
in	the	fixed	sampling	condition.	(A)	Free	and	fixed	sampling	condition	trials	were	fitted	separately	using	379 
a	 Gaze-weighted	 Linear	 Accumulator	 Model	 (GLAM).	 In	 this	 model	 there	 are	 two	 independent	380 
accumulators	for	each	option	(left	and	right)	and	the	decision	is	made	once	one	of	them	reaches	a	threshold.	381 
Accumulation	rate	was	modulated	by	gaze	times,	when	gaze	bias	parameter	is	lower	than	1	(γ	<1).		In	that	382 
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case,	the	accumulation	rate	will	be	discounted	depending	on	γ	and	the	relative	gaze	time	to	the	items,	within	383 
the	trials.	Gaze	information	from	the	free	sampling	trials,	and	presentation	times	from	the	fixed	sampling	384 
trials	were	used	to	fit	the	models.	The	panel	depicts	an	example	trial:	patch	sampling	during	phase	2	(left	385 
panel)	is	used	to	estimate	the	relative	gaze	for	that	trial	(central	panel),	and	the	resulting	accumulation	386 
process	 (right	 panel)	Notice	 GLAM	 ignores	 fixations	 dynamics	 and	 uses	 a	 constant	 accumulation	 term	387 
within	trial	(check	Methods	for	further	details).		The	model	predicted	the	behaviour	in	free	(B)	and	fixed	388 
(C)	sampling	conditions.	The	four	panels	present	four	relevant	behavioural	relationships	comparing	model	389 
predictions	and	overall	participant	behaviour:	(top	left)	response	time	was	faster	(shorter	RT)	when	the	390 
choice	was	easier	(i.e.	bigger	differences	in	the	number	of	dots	between	the	patches);	(top	right)	probability	391 
of	choosing	the	left	patch	increased	when	the	number	of	dots		was	higher	in	the	patch	at	the	left	side	(DDots	392 
=	 DotsLeft	 –	 DotsRight);	 (bottom	 left)	 the	 probability	 of	 choosing	 an	 alternative	 depended	 on	 the	 gaze	393 
difference	((DGaze	=	gLeft	–	gRight);	and	(bottom	right)	the	probability	of	choosing	an	item	that	was	fixated	394 
longer	than	the	other,	corrected	by	the	actual	evidence	DDots,	depicted	a	residual	effect	of	gaze	on	choice.	395 
Notice	that	in	the	free	condition,	the	model	predicted	an	effect	of	gaze	on	choice	in	a	higher	degree	than	in	396 
the	fixed	condition.	Solid	dots	depict	the	mean	of	the	data	across	participants	in	both	conditions.	Lighter	397 
dots	present	the	mean	value	for	each	participant	across	bins.	Solid	grey	lines	show	the	average	for	model	398 
simulations.	Data	z-scored/binned	for	visualisation.	(D)	GLAM	parameters	 fitted	at	participant	 level	 for	399 
free	 and	 fixed	 sampling	 conditions.	 Free	 sampling	 condition	 presented	 a	 higher	 gaze	 bias	 than	 fixed	400 
sampling,	while	no	significant	differences	were	found	for	the	other	parameters.	γ:	gaze	bias;	τ:	evidence	401 
scaling;	ν:	drift	term;	σ:	noise	standard	deviation.	**:	p<0.01	402 

	403 
	404 

Discussion	405 
	406 
In	 this	work	we	 have	 demonstrated	 that	 a	 form	 of	 confirmation	 bias	 exists	 in	 active	407 
information	sampling,	and	not	just	in	information	weighting	as	previously	shown.	Using	408 
two	novel	experiments	we	showed	that	this	effect	is	robust	for	simple	perceptual	choice.	409 
Critically	 we	 show	 that	 this	 sampling	 bias	 affects	 future	 choice.	 Furthermore,	 we	410 
demonstrated	that	this	effect	is	only	present	in	the	free-sampling	condition,	showing	that	411 
agency	is	essential	for	biased	sampling	to	have	an	effect	on	subsequent	choice.	412 
	413 
Preference	for	confirmatory	evidence	has	previously	mostly	been	studied	in	the	context	414 
of	 strongly	 held	 political,	 religious	 or	 lifestyle	 beliefs,	 and	not	 in	 perceptual	 decision-415 
making	(Bakshy	et	al.,	2015;	Hart	et	al.,	2009;	Lord	et	al.,	1979;	Nickerson,	1998;	Stroud,	416 
2008;	Wason,	1960,	1968).	Our	results,	together	with	the	recent	work	of	others	(Talluri,	417 
Urai	et	al.,	2018;	Palminteri	et	al.,	2017;	Lefebvre	et	al.,	2020),	show	that	confirmation	418 
bias	 in	 information	 search	 is	 present	 even	 in	 decisions	 where	 the	 beliefs	 formed	 by	419 
participants	are	not	meaningful	to	their	daily	lives.	This	suggests	that	confirmation	bias	420 
might	be	a	fundamental	property	of	information	sampling,	existing	irrespective	of	how	421 
important	the	belief	is	to	the	agent.		422 
	423 
Recent	findings	suggest	that	biases	in	information	sampling	might	arise	from	Pavlovian	424 
approach,	a	behavioural	strategy	that	favours	approaching	choice	alternatives	associated	425 
with	 reward	 (Hunt	 et	 al.,	 2016;	 Rutledge	 et	 al.,	 2015).	 Furthermore,	 the	 number	 of	426 
hypotheses	an	individual	can	consider	in	parallel	 is	 likely	to	be	limited	(Tweney	et	al.,	427 
1980).	 As	 such,	 it	 may	 be	 advantageous	 to	 first	 attempt	 to	 rule	 out	 the	 dominant	428 
hypothesis	before	going	on	to	sample	from	alternative	options.	In	this	vein,	the	sampling	429 
bias	we	see	could	be	the	solution	to	an	exploit-explore	dilemma	in	which	the	decision-430 
maker	must	decide	when	to	stop	‘exploiting’	a	particular	hypothesis	and	instead	‘explore’	431 
different	ones.	432 
	433 
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A	key	novel	feature	of	this	task	is	that	participants	were	able	to	freely	sample	information	434 
between	 choice	 phases,	 providing	 a	 direct	 read-out	 of	 confirmation	 bias	 in	 the	 active	435 
sampling	decisions	made	by	the	participants.	Previous	accounts	of	confirmation	bias	in	436 
perceptual	 choice	 have	 instead	 focused	 on	 altered	 weighting	 of	 passively	 viewed	437 
information	as	a	function	of	previous	choice	(Bronfman	et	al.,	2015;	Rollwage	et	al.,	2020;	438 
Talluri,	Urai	et	al.,	2018).	However,	from	these	findings	it	remained	unclear	to	what	extent	439 
this	 bias	 manifests	 in	 the	 processing	 of	 information	 compared	 to	 active	 sampling	 of	440 
information.	Our	findings	show	that	active	information	sampling	plays	a	key	role	in	the	441 
amplification	 of	 beliefs	 from	 one	 decision	 to	 the	 next,	 and	 that	 changes	 in	 evidence	442 
weighting	likely	only	account	for	part	of	observed	confirmation	bias	effects.		443 
	444 
We	show	that	confidence	modulated	the	confirmation	bias	effect,	such	that	choices	made	445 
with	higher	confidence,	led	to	increased	sampling	of	the	chosen	option	and	an	increased	446 
likelihood	of	choosing	the	same	option	again	in	the	second	choice	phase.	This	shows	that	447 
the	strength	with	which	a	belief	is	held	determines	the	size	of	the	confirmation	bias	in	448 
active	 information	 sampling.	 Confidence	 has	 previously	 been	 shown	 to	 affect	 the	449 
integration	 of	 confirmatory	 evidence	 as	 reflected	 in	MEG	 recordings	 of	 brain	 activity	450 
during	 evidence	 accumulation	 (Rollwage	 et	 al.,	 2020).	 Furthermore,	 recent	 work	 in	451 
economics	 and	 neuroscience	 have	 given	 theoretical	 and	 experimental	 proof	 of	 a	452 
relationship	 between	 overconfidence,	 and	 extreme	 political	 beliefs	 (Ortoleva	 &	453 
Snowberg,	2015;	Rollwage	et	al.,	2018).	Our	results	suggest	altered	information	sampling	454 
could	be	the	missing	link	between	these	two	phenomena.	Specifically,	given	that	we	have	455 
shown	 that	 increased	 confidence	 leads	 to	 increased	 confirmation	 bias,	 it	 follows	 that	456 
overconfidence	in	a	belief	would	lead	to	increased	sampling	of	confirmatory	evidence	in	457 
line	with	that	belief,	which	in	turn	would	lead	to	even	higher	confidence.	458 
	459 
We	also	show	that	it	is	not	sufficient	that	agents	freely	make	a	choice	for	that	choice	to	460 
bias	future	decisions.	We	do	not	see	an	effect	of	the	first	choice	on	subsequent	choices	461 
when	 the	 intermediate	 sampling	 phase	 is	 fixed	 by	 the	 experimenter,	 suggesting	 the	462 
integration	of	 information	 into	beliefs	 is	dependent	on	whether	 the	agent	has	actively	463 
chosen	to	sample	this	information.	In	other	words,	a	sense	of	agency	appears	to	impact	464 
the	 extent	 to	 which	 new	 information	 influences	 future	 choice	 (Hassall	 et	 al.,	 2019;	465 
Chambon	et	al.,	2020),	and	making	a	choice	may	not	necessarily	lead	to	confirmation	bias	466 
if	it	is	not	followed	by	active	decisions	to	sample	evidence	in	line	with	that	choice.	Our	467 
results	are	in	line	with	Chambon	et	al.	(2020),	in	which	confirmation	bias	in	learning	rates	468 
was	only	present	when	participants	were	able	to	freely	choose	between	stimuli	and	not	469 
when	 these	 choices	were	 fixed	by	 the	 experimenter.	 In	 their	 task,	 though,	 choice	 and	470 
information	gain	were	not	separated	by	design,	meaning	information	sampling	was	only	471 
possible	from	outcome	feedback	after	a	choice	was	made.	Our	results	expand	on	these	472 
findings,	 by	 showing	 that	 choice	 commitment	 also	 affects	 subsequent	 decisions	 to	473 
sample,	and	that	the	resulting	biased	sampling	influences	future	choices.	This	means	that	474 
active	 information	 sampling	 is	 likely	 to	 play	 a	 central	 role	 in	 the	 propagation	 of	475 
confirmation	bias	across	decisions,	as	seen	in	our	descriptive	economic	model	(S6).			476 
	477 
Additionally,	the	results	from	the	GLAM	model	show	that,	in	line	with	previous	studies	478 
(Krajbich	 et	 al.,	 2010;	Krajbich	&	Rangel,	 2010;	 Sepulveda	 et	 al.,	 2020;	Tavares	 et	 al.,	479 
2017;	Thomas	et	al.	2019),	a	specific	boost	in	the	accumulation	of	evidence	of	the	visually	480 
attended	 items	was	 found	 in	 the	 free	 sampling	condition.	Conversely,	 a	disconnection	481 
between	 an	 item’s	 sampling	 time	 and	 evidence	 accumulation	 was	 found	 in	 the	 fixed	482 
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condition	(i.e.	the	absence	of	gaze	bias	in	GLAM	implies	that	visual	fixations	did	not	affect	483 
evidence	integration	when	the	sampling	was	not	controlled	by	the	decision-maker).	One	484 
explanation	 for	 this	 result	 is	 that	 attentional	 allocation	 itself	 is	 directed	 towards	 the	485 
options	 that	 the	 participants	 reckon	 more	 relevant	 for	 the	 task	 to	 be	 performed	486 
(Sepulveda	et	al.,	2020).	In	our	experiment	the	goal	of	the	task	was	theoretically	identical	487 
for	 the	 first	 and	 second	 choice	 (i.e.	 to	 find	 the	 patch	 with	 more	 dots).	 However,	 in	488 
agreement	with	the	ideas	of	our	descriptive	economic	model,	it	could	be	that	participants	489 
perceived	the	goal	of	the	second	choice	to	be	slightly	different	from	the	goal	of	the	first:	490 
in	the	second	case	they	had	to	verify	whether	their	initial	choice	was	correct,	as	well	as	491 
finding	the	patch	with	the	most	dots.	This	immediately	bestowed	the	chosen	option	with	492 
higher	 relevance	 and	 then	 more	 attention	 (consequently	 boosting	 evidence	493 
accumulation).	 On	 the	 other	 hand,	 since	 in	 the	 fixed	 sampling	 condition	 participant’s	494 
attention	allocation	is	not	necessarily	associated	with	their	goals,	the	difference	in	display	495 
time	of	the	items	is	ignored	or	cannot	be	consistently	integrated	in	their	decision	process.	496 
An	alternative	hypothesis	is	that	gaze	allocation	itself	is	used	as	additional	evidence	in	497 
favour	of	a	choice	alternative	in	a	way	similar	to	previous	choice	as	in	our	descriptive	498 
model	 (S6).	This	would	mean	 that	when	an	agent	has	previously	attended	 to	a	choice	499 
alternative,	this	 is	used	as	evidence	in	 favour	of	that	option	in	and	of	 itself.	Therefore,	500 
when	gaze	allocation	is	not	under	the	agent’s	control,	as	in	the	fixed-viewing	condition,	it	501 
is	not	used	to	inform	choice.		502 
	503 
Our	 findings	 imply	 that	 agency	 plays	 a	 clear	 role	 in	 evidence	 accumulation,	 and	504 
consequently	in	confirmation	bias.	It	also	suggests	that	common	experimental	designs	in	505 
which	 information	 is	 provided	 by	 the	 experimenter	 and	 passively	 sampled	 by	 the	506 
participant	might	not	be	an	ecological	way	to	study	decision-making.	These	tasks	mask	507 
the	potentially	large	effect	of	active	information	search	on	belief	formation	and	choice.	508 
Pennycook	 et	 al.	 (2021)	 recently	 showed	 that	 people	 were	 less	 likely	 to	 share	 false	509 
information	 online	 if	 they	 had	 been	 asked	 to	 rate	 the	 accuracy	 of	 a	 headline	 just	510 
previously.	 It	 may	 therefore	 be	 possible	 to	 reduce	 confirmation	 bias	 in	 information	511 
search	 in	a	similar	way	by	priming	participants	 to	attend	more	 to	accuracy	 instead	of	512 
confirmatory	 evidence.	More	 complex	 behavioural	 tasks	 are	 required	 to	 improve	 our	513 
understanding	of	the	different	drivers	of	information	sampling	and	how	sampling	in	turn	514 
guides	future	choice	(Gottlieb	&	Oudeyer,	2018).	515 
	516 
To	 summarise	our	 findings,	we	observed	 that	participants	 sampled	more	 information	517 
from	 chosen	 options	 in	 a	 perceptual	 choice	 paradigm	 and	 that	 this	 sampling	 bias	518 
predicted	subsequent	choice.	Asymmetric	sampling	in	favour	of	the	chosen	alternative	519 
was	stronger	the	higher	participants’	confidence	in	this	choice.	Furthermore,	the	effect	of	520 
information	 on	 subsequent	 choice	 was	 only	 seen	 in	 a	 version	 of	 the	 task	 where	521 
participants	 could	 sample	 freely,	 suggesting	 agency	 plays	 an	 important	 role	 in	 the	522 
propagation	of	strongly	held	beliefs	over	time.	These	findings	suggest	that	confirmatory	523 
information	processing	might	stem	from	a	general	information	sampling	strategy	used	to	524 
seek	information	to	strengthen	prior	beliefs	rather	than	from	altered	weighting	during	525 
evidence	accumulation	only,	and	that	active	sampling	 is	essential	 to	this	effect.	Biased	526 
sampling	may	cause	a	continuous	cycle	of	belief	reinforcement	that	can	be	hard	to	break.	527 
Improving	our	understanding	of	this	phenomenon	can	help	us	better	explain	the	roots	of	528 
extreme	political,	religious	and	scientific	beliefs	in	our	society.	529 
	 	530 
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Methods	531 
	532 
Participants	533 
Experiment	1.	30	participants	took	part	in	this	study.	We	excluded	two	participants	from	534 
the	analysis,	because	they	gave	the	highest	possible	confidence	rating	on	more	than	75%	535 
of	 trials.	 Participants	 received	 a	 £10	 show-up	 fee	 in	 addition	 to	 a	 monetary	 reward	536 
between	 £0	 and	 £6,	 which	 could	 be	 gained	 in	 the	 task.	 Participants	 had	 normal	 or	537 
corrected-to-normal	vision,	and	no	psychiatric	or	neurological	disorders.	We	obtained	538 
written	 informed	consent	 from	all	participants	before	 the	study.	This	experiment	was	539 
approved	by	the	University	of	Cambridge	Psychology	Research	Ethics	Committee.		540 
	541 
Experiment	2.	23	participants	completed	this	experiment,	of	which	two	were	excluded	542 
from	the	analysis,	because	they	gave	the	highest	possible	confidence	rating	on	more	than	543 
75%	of	trials.	Another	three	participants	were	excluded	because	their	confidence	was	a	544 
poor	predictor	of	their	accuracy	in	the	task	(lower	than	two	standard	deviations	under	545 
the	 mean	 coefficient	 predicting	 accuracy	 in	 a	 logistic	 regression).	 Participants	 were	546 
reimbursed	£30	for	their	time	as	well	as	an	additional	amount	between	£0	and	£20	that	547 
could	be	gained	in	the	task.	Participants	had	normal	or	corrected-to-normal	vision,	and	548 
no	psychiatric	or	neurological	disorders.	We	obtained	written	informed	consent	from	all	549 
participants	 before	 the	 study.	 This	 experiment	 was	 approved	 by	 the	 University	 of	550 
Cambridge	Psychology	Research	Ethics	Committee.	551 
	552 
Behavioural	Task	553 
Experiment	1.	The	computer	task	used	in	this	study	consisted	of	200	trials.	Participants	554 
were	asked	 to	make	binary	choices	between	dot	patches	using	 the	arrow	keys	on	 the	555 
keyboard.	They	then	reported	their	confidence	 in	 this	decision	on	a	continuous	rating	556 
scale.	In	the	subsequent	sampling	phase,	participants	were	given	the	opportunity	to	look	557 
at	 the	 patches	 again	 for	 4000ms.	 By	 using	 the	 left	 and	 right	 arrow	 keys	 they	 could	558 
alternate	as	often	as	they	wanted	between	viewing	either	dot	patch	within	the	given	time.	559 
Afterwards,	participants	were	prompted	to	make	a	second	choice	for	the	same	pair	of	560 
patches	and	give	another	confidence	judgment.	Participants	were	constantly	reminded	of	561 
their	 initial	 choice	 by	 a	 green	 tick	 next	 to	 the	 chosen	 patch.	 Participants	 received	 no	562 
feedback	about	the	correctness	of	their	choice.	None	of	the	choices	made	or	confidence	563 
ratings	given	were	time-constrained.	One	of	the	patches	always	contained	50	dots,	and	564 
the	other	a	variable	amount	of	dots.	We	calibrated	the	dot	difference	between	the	two	565 
patches	 such	 that	 accuracy	 level	 within	 each	 participant	 was	 maintained	 at	 70%	566 
throughout	the	task	using	a	one-up	two-down	staircase	procedure	(Fleming	&	Lau,	2014)	567 
The	task	was	programmed	using	Python	2.7.10	and	PsychoPy	(Peirce,	2007).		568 
	569 
Experiment	2.	A	similar	task	was	used	in	the	second	experiment,	except	that	in	this	task	570 
participants’	 responses	were	 elicited	 through	 eye	movements.	 To	make	 a	 choice	 they	571 
looked	at	one	of	the	patches	and	to	rate	their	confidence	they	looked	at	a	position	inside	572 
a	rating	scale.	The	sampling	phase	between	the	two	choices	randomly	varied	in	this	task,	573 
and	was	either	3000,	5000,	or	7000ms.	This	was	not	cued	to	the	participants,	so	at	the	574 
start	 of	 a	 sampling	 phase	 they	 did	 not	 know	how	much	 time	 they	would	 be	 given	 to	575 
sample	the	patches.	Sampling	was	gaze-contingent	such	that	the	dots	were	only	visible	576 
when	the	participant	fixated	inside	a	patch	and	participants	could	only	see	one	patch	at	a	577 
time.	Furthermore,	we	introduced	a	control	condition	in	which	participants	were	not	free	578 
to	sample	the	circles	however	they	liked	during	the	sampling	phase.	Instead,	in	one-third	579 
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of	trials	the	patches	were	shown	for	an	equal	amount	of	time	each	and	in	two-thirds	of	580 
trials	one	patch	was	shown	three	times	longer	than	the	other	(50%	of	trials	the	left	was	581 
shown	longer,	50%	of	trials	the	right	was	shown	longer).	Participants	were	constantly	582 
reminded	of	their	initial	choice	by	the	circle	surrounding	the	chosen	patch	changing	color.	583 
The	first	experiment	conducted	using	this	task	was	a	behavioural	experiment	in	which	584 
participants	recorded	their	responses	using	the	arrow	keys	on	a	computer.	In	the	second	585 
experiment,	 participants	 responded	 using	 eye	 movements.	 In	 the	 second	 experient,	586 
participants	took	part	in	two	sessions,	each	consisting	of	189	trials.	In	one	session	they	587 
performed	the	main	task	and	in	the	other	the	control	condition	of	the	task.	The	order	of	588 
these	two	sessions	was	pseudo-random.	This	experiment	was	programmed	using	the	SR	589 
Research	Experiment	Builder	version	1.10.1630	(SR	Research	Experiment	Builder,	2017).		590 
	591 
Eye-tracking	592 
In	experiment	2,	we	recorded	eye	movements	at	a	rate	of	1,000Hz	using	an	EyeLink	1000	593 
Plus	eye-tracker.	Areas	of	Interest	(AI)	for	the	eye	tracking	analyses	were	pre-defined	as	594 
two	squares	centered	on	the	gaze-contingent	circles	in	the	experiment.	The	sides	of	the	595 
squares	were	the	same	as	the	diameter	of	the	gaze-contingent	circles.	For	each	decision	596 
period	 we	 derived	 the	 total	 dwell	 time	 in	 each	 AI	 from	 the	 eye-tracking	 data.	 The	597 
computer	used	in	this	experiment	had	a	screen	size	of	68.58	x	59.77cm	and	participants	598 
were	seated	60cm	away	from	the	screen.	599 
	600 
Analyses	601 
We	studied	the	effect	of	choice	on	the	time	spent	on	each	of	the	two	stimuli	using	paired	602 
sample	t-tests	on	the	mean	sampling	times	spent	on	each	stimulus	from	each	participant.	603 
Trials	with	the	shortest	sampling	phase	length	of	3000ms	in	experiment	2	were	excluded	604 
from	all	analyses,	because	it	became	apparent	that	this	time	was	too	short	for	participants	605 
to	be	able	to	saccade	to	each	circle	more	than	once.	606 
	607 
Hierarchical	models.	Hierarchical	 regression	models	were	conducted	using	 the	 lme4	608 
package	in	R	(Bates	et	al.,	2015;	Gelman	&	Hill,	2006).	We	computed	degrees	of	freedom	609 
and	 p-values	 with	 the	 Kenward-Roger	 approximation,	 using	 the	 package	 pbkrtest	610 
(Halekoh	&	Hojsgaard,	2014).	We	predicted	the	sampling	time	difference	between	the	611 
two	circles	using	a	hierarchical	linear	regression	model.	To	predict	choice	in	the	second	612 
choice	phase,	hierarchical	logistic	regressions	were	used	predicting	the	log	odds	ratio	of	613 
picking	the	left	circle	on	a	given	trial.	Confidence	and	sampling	time	were	z-scored	on	the	614 
participant	 level.	 For	 detailed	 results	 and	 model	 comparisons,	 see	 supplemental	615 
materials	S1-S2,	S7.	616 
	617 
Attentional	model	-	GLAM.	The	Gaze-weighted	Linear	Accumulator	Model	(Thomas	et	618 
al.,	2019;	Molter	et	al.,	2019)	is	part	of	the	family	of	linear	stochastic	race	models	in	which	619 
different	alternatives	(i;	left	or	right)	accumulate	evidence	(Ei)	until	a	decision	threshold	620 
is	reached	by	one	of	them,	determining	the	chosen	alternative.	The	accumulator	for	an	621 
individual	option	was	defined	by	the	expression:		622 
	623 
𝐸!(𝑡) 	= 	𝐸!(𝑡 − 1) 	+ 	𝜈𝑅! 	+ 	𝜖"		𝑤𝑖𝑡ℎ	𝜖" ∼ 𝑁(0, 𝜎)	𝑎𝑛𝑑	𝐸!(𝑡 = 0) = 0					(1)	624 
	625 
A	drift	term	(ν)	controlled	the	speed	of	relative	evidence	(Ri)	integration	and	noise	was	626 
integrated	with	normal	distribution	(zero-centered	and	with	standard	deviation,	σ).	Ri	627 
expressed	the	amount	of	evidence	that	was	accumulated	for	item	i	at	each	time	point	t.	628 
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This	was	calculated	as	follows.	We	denote	by	gi,	the	relative	gaze	term,	calculated	as	the	629 
proportion	of	time	that	participants	observed	item	i:		630 
	631 
	632 
𝑔! =

#$!	
#$"&#$#

					(2)	633 

	634 
with	 DT	 as	 the	 dwelling	 time	 for	 item	 i	 during	 an	 individual	 trial.	 Let	 ri	 denote	 the	635 
evidence	 (in	 this	 study	 evidence	 corresponded	 to	 number	 of	 dots	 presented	 for	 each	636 
option)	for	item	i.	We	can	then	define	the	average	absolute	evidence	for	each	item	(Ai)	637 
during	a	trial:	638 
	639 
𝐴! = 𝑔!𝑟! + (1 − 𝑔!)𝛾𝑟! 					(3)		640 
	641 
This	formulation	considers	a	multiplicative	effect	of	the	attentional	component	over	the	642 
evidence,	 capturing	 different	 rates	 of	 integration	when	 the	 participant	was	 observing	643 
item	i	or	not	(unbiased	and	biased	states,	respectively).	The	parameter	γ	was	the	gaze	644 
bias	 parameter:	 it	 controlled	 the	 weight	 that	 the	 attentional	 component	 had	 in	645 
determining	absolute	evidence.	When	γ	=	1,	accumulation	was	 the	same	 in	biased	and	646 
unbiased	states,	i.e.	gaze	did	not	affect	the	accumulation	of	evidence.	When	γ<1,	Ai	was	647 
discounted	for	the	biased	condition,	resulting	in	higher	probability	of	choosing	items	that	648 
had	been	gazed	at	longer.	When	γ<0,	the	model	assumed	a	leak	of	evidence	when	the	item	649 
was	not	fixated.	Therefore,	the	relative	evidence	of	item	i,	Ri*,	was	given	by:	650 
	651 
𝑅!∗ = 𝐴! −max()!

𝐴( = 𝐴! − 𝐴( 	 → 𝑅*!+,"∗ = −𝑅-./"∗ 						(4)	652 

	653 
Since	our	 experiment	 considers	 a	 binary	 choice,	while	 the	original	 formulation	of	 the	654 
model	(Thomas	et	al.,	2019)	proposed	for	more	than	two	alternatives,	Ri*	was	reduced	to	655 
subtract	the	average	absolute	evidence	of	the	other	item.	Therefore,	for	the	binary	case,	656 
Ri*	for	one	item	was	the	additive	inverse	of	the	other.	For	example,	if	the	left	item	had	the	657 
lower	evidence,	we	would	have	R*left<0	and	R*right>0.	The	difference	in	signals	captured	658 
by	 Ri*	 was	 scaled	 by	 a	 logistic	 transformation.	 The	 model	 assumed	 an	 adaptive	659 
representation	of	the	relative	decision	signals,	which	is	maximally	sensitive	to	marginal	660 
differences	in	absolute	decision	signals:		661 
	662 
𝑅! =

0
0&123	(567!

∗)
						(5)	663 

	664 
The	 temperature	 parameter	τ	of	 the	 logistic	 function	 controlled	 the	 sensitivity	 of	 the	665 
transformation.	Larger	values	of	τ	 indicate	 stronger	 sensitivity	 to	 small	differences	 in	666 
absolute	evidence	(Ai).	Given	that	Ri	represents	an	average	of	the	relative	evidence	across	667 
the	entire	trial,	the	drift	rate	in	Ei	can	be	assumed	to	be	constant,	which	enables	the	use	668 
of	an	analytical	solution	 for	 the	passage	of	 time	density	(for	details	see	Thomas	et	al.,	669 
2019,	Molter	et	al.,	2019).	Notice	that	unlike	the	aDDM	(Krajbich	et	al.,	2010),	GLAM	does	670 
not	deal	with	the	dynamics	of	attentional	allocation	process	in	choice.	In	summary,	the	671 
GLAM	model	considers	 four	 free	parameters:	ν	 (drift	 term),	γ	 (gaze	bias),	τ	 (evidence	672 
scaling),	and	σ	(normally	distributed	noise	standard	deviation).		673 
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The	model	fit	with	GLAM	was	implemented	at	a	participant	level	in	a	Bayesian	framework	674 
using	PyMC3	(Salvatier	et	al.,	2016).	Uniform	priors	were	used	for	all	the	parameters:	675 

v	∼	Uniform(1−6,0.01)	676 
γ	∼	Uniform(−1,1)	677 
σ	∼	Uniform(1−6,5)	678 
τ	∼	Uniform(0,5)	679 
	680 
We	 fitted	 the	 model	 for	 each	 individual	 participant	 and	 for	 free	 and	 fixed	 sampling	681 
conditions	 in	 experiment	 2	 separately.	 To	model	 participants’	 behaviour,	 we	 used	 as	682 
input	for	GLAM	the	reaction	times	(RT)	and	choices	obtained	from	phase	3,	and	relative	683 
gaze	 for	 left	 and	 right	 alternatives	 for	 each	 trial	 during	 sampling	 phase	 2.	 For	 fixed	684 
sampling	 trials	 the	 presentation	 times	 of	 the	 dot	 patches	 were	 used	 to	 calculate	 the	685 
relative	gaze	time.	For	both	conditions,	model	fit	was	performed	only	on	even-numbered	686 
trials	 using	 Markov-Chain-Monte-Carlo	 sampling,	 we	 used	 implementation	 for	 No-U-687 
Turn-Sampler	(NUTS),	four	chains	were	sampled,	1000	tuning	samples	were	used,	and	688 
2000	posterior	samples	were	used	to	estimate	the	model	parameters.	The	convergence	689 
was	diagnosed	using	the	Gelman-Rubin	statistic	(|𝑅@	–	1|<0.05)	for	the	four	parameters	690 
(ν,	 γ,	 σ,	 and	 τ).	 Considering	 all	 the	 individual	 models	 (18	 participants),	 we	 found	691 
divergences	 in	~16%	of	 the	 estimated	parameters.	We	 removed	 the	participants	 that	692 
presented	divergent	parameters	(4	participants)	to	check	whether	the	results	we	found	693 
were	driven	by	these	data.	The	significantly	higher	gaze	bias	in	free-viewing	condition	694 
was	maintained	 even	 after	 removing	 these	 participants	 (see	 supplemental	 materials,	695 
S5.4).	Model	comparison	was	performed	using	Watanabe-Akaike	Information	Criterion	696 
(WAIC)	scores	available	in	PyMC3,	calculated	for	each	individual	participant	fit.	697 
	698 
To	 check	 how	well	 the	model	 replicates	 the	 behavioural	 effects	 observed	 in	 the	 data	699 
(Palminteri	 et	 al.,	 2017),	 simulations	 for	 choice	 and	 RT	 were	 performed	 using	700 
participants’	odd	trials,	each	one	repeated	50	times.	For	each	trial,	number	of	dots	and	701 
relative	gaze	for	left	and	right	items	were	used	together	with	the	individually	fitted	GLAM	702 
parameters	to	simulate	the	trials.	Random	choice	and	RT	(within	a	range	of	the	minimum	703 
and	 maximum	 RT	 observed	 for	 each	 particular	 participant)	 were	 set	 for	 5%	 of	 the	704 
simulations,	replicating	the	contaminating	process	included	in	the	model	as	described	by	705 
Thomas	et	al.,	2019.		706 
	707 
	708 
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Supplemental	Material	895 
	896 
S1:	Hierarchical	regression	predicting	sampling	time	difference	897 
	898 
	899 
Hierarchical	Regression	Model	Predicting	Sampling	Time	Difference,	Experiment	900 
1	901 
	902 
Predictor	 Coefficient	 SE	 t-value	 p-value	
Intercept	 -0.27	 0.03	 -8.48	 <0.0001	
Choice	 0.51	 0.05	 9.64	 <0.0001	
Dot	Difference	 0.05	 0.004	 13.02	 <0.0001	
Confidence	 -0.08	 0.03	 -2.88	 0.007	
Choice	x	
Confidence	

0.19	 0.04	 5.26	 <0.0001	

	903 
This	 model	 was	 run	 using	 data	 from	 experiment	 1.	 Confidence	 was	 z-scored	 per	904 
participant.	 It	 shows	 that	 choice	 is	 a	 significant	predictor	of	 sampling	 time	difference	905 
between	the	chosen	and	unchosen	circles,	such	that	participants	were	likely	to	view	the	906 
circle	they	chose	for	a	longer	time	in	the	sampling	phase.	Furthermore,	the	interaction	907 
between	 choice	 and	 confidence	 was	 a	 significant	 predictor,	 signifying	 that	 the	 more	908 
confident	participants	were	in	their	choice,	the	more	biased	their	sampling	was	in	favour	909 
of	 that	 choice.	 Dot	 difference	 also	 significantly	 predicts	 sampling	 time:	 participants	910 
sampled	 the	 circle	 containing	 the	most	dots	 for	 longer.	Note	 that	 this	 variable	 shares	911 
some	variance	with	the	choice	variable.	912 
	913 
Hierarchical	Regression	Model	Predicting	Sampling	Time	Difference,	Experiment	914 
2	915 
	916 
Predictor	 Coefficient	 SE	 t-value	 p-value	
Intercept	 -0.15	 0.06	 -2.63	 0.017	
Choice	 0.30	 0.10	 2.90	 0.01	
Dot	Difference	 0.04	 0.005	 9.21	 <0.0001	
Confidence	 -0.09	 0.04	 -2.43	 0.03	
Choice	x	
Confidence	

0.21	 0.05	 4.29	 0.0005	

	917 
We	also	ran	this	model	using	data	from	experiment	2,	excluding	control	condition	trials	918 
in	which	sampling	time	difference	was	fixed.	Confidence	was	z-scored	per	participant.	919 
Again,	 choice,	 the	 interaction	 term	between	 choice	 and	 confidence	 and	dot	difference	920 
were	all	significant	predictors	of	the	difference	in	sampling	time	between	the	two	circles.	921 
	 	922 
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S2:	Hierarchical	logistic	regression	predicting	change	of	mind	923 
	924 
	925 
Hierarchical	Logistic	Regression	Model	Predicting	Change	of	Mind,	Experiment	1	926 
	927 
Predictor	 Coefficient	 SE	 z-value	 p-value	
Intercept	 -1.18	 0.21	 -5.65	 <0.0001	
Sampling	Bias	 -1.24	 0.08	 -11.0	 <0.0001	
Dot	Difference	 -0.24	 0.11	 -3.06	 0.002	
Confidence	 -0.58	 0.06	 -10.12	 <0.0001	
	928 
This	model	was	run	using	data	from	experiment	1.	Using	a	hierarchical	logistic	regression	929 
we	predicted	the	 log	odds	ratio	 that	 the	participant	changed	their	mind	 in	 the	second	930 
decision	 phase	 on	 a	 given	 trial.	 Sampling	 bias	 and	 confidence	 were	 z-scored	 per	931 
participant.	 Convergence	 issues	 were	 addressed	 by	 square-root-transforming	 dot	932 
difference.	Sampling	bias	 is	defined	as	 the	difference	between	 the	amount	of	 time	 the	933 
initially	 chosen	 vs	 unchosen	 circles	 were	 sampled.	 This	 variable	 negatively	 predicts	934 
change	 of	 mind,	 meaning	 the	 more	 the	 chosen	 circle	 was	 sampled,	 the	 less	 likely	935 
participants	were	to	change	their	mind.	Absolute	dot	difference,	which	is	a	measure	of	936 
trial	difficulty,	negatively	predicts	change	of	mind,	such	that	participants	were	less	likely	937 
to	 change	 their	 mind	 when	 the	 trial	 was	 easier.	 Finally,	 confidence	 was	 a	 negative	938 
predictor	of	 change	of	mind;	 the	higher	confidence	 in	 the	 initial	 choice,	 the	 less	 likely	939 
participants	were	to	change	their	mind.	940 
	941 
	942 
Hierarchical	Logistic	Regression	Model	Predicting	Change	of	Mind,	Experiment	2	943 
	944 
Predictor	 Coefficient	 SE	 z-value	 p-value	
Intercept	 -1.01	 0.28	 -3.62	 0.0002	
Sampling	Bias	 -1.40	 0.20	 -7.07	 <0.0001	
Dot	Difference	 -0.26	 0.09	 -2.72	 0.007	
Confidence	 -0.57	 0.06	 -8.86	 <0.0001	
Fixed	Sampling	 -0.10	 0.14	 -0.67	 0.50	
Sampling	Bias	
x	Fixed	
Sampling	

1.44	 0.20	 7.24	 <0.0001	

	945 
A	similar	model	to	that	presented	was	run	on	the	data	from	experiment	2.	Because	this	946 
experiment	 included	 a	 control	 condition	 in	which	 sampling	was	 fixed,	we	 included	 a	947 
dummy	variable	in	this	model	coding	whether	the	trial	was	in	the	control	condition	or	948 
not.	Sampling	bias,	dot	difference,	and	confidence	were	all	significant	negative	predictors	949 
of	change	of	mind.	However,	an	interaction	term	between	‘Fixed	Sampling’	(the	control	950 
condition)	and	sampling	bias	was	significantly	positive,	and	approximately	the	same	size	951 
as	 the	 main	 effect	 of	 sampling	 bias	 on	 change	 of	 mind.	 This	 means	 that	 in	 control	952 
condition	trials,	the	effect	of	sampling	bias	on	change	of	mind	disappears.	953 
	954 
	955 
	956 
	957 
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S3:	Sampling	Phase	Length	in	Experiment	2	958 
	959 
In	 experiment	 2,	 the	 length	 of	 the	 sampling	 phase	 (phase	 II)	was	 varied	 to	 study	 the	960 
emergence	of	a	sampling	bias	over	time.	The	sampling	phase	randomly	varied	and	was	961 
either	3000,	5000	or	7000ms.	In	the	experiment,	participants	were	forced	to	look	at	each	962 
circle	at	 least	once	during	the	sampling	phase,	otherwise	the	trial	was	invalidated.	We	963 
decided	to	exclude	trials	with	the	shortest	sampling	phase	length	of	3000ms,	because	it	964 
became	apparent	that	participants	were	not	able	to	allocate	this	time	beyond	looking	at	965 
each	patch	once.		966 
	967 

	968 
	969 
Figure	S3.1:	Mean	sampling	time	spent	viewing	the	initially	chosen	and	unchosen	patch	in	the	sampling	970 
phase	in	studies	2	for	each	sampling	phase	length.	Data	points	represent	individual	participants.	971 

	972 
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S4:	Change	of	mind	as	a	function	of	stimulus	presentation	time	in	the	fixed	sampling	974 
condition	975 
	976 
	977 

	978 
	979 
Figure	S4.1	In	Figure	4D,	we	plotted	the	probability	of	changes	of	mind	as	a	function	of	actual	gaze	time	by	980 
participants	in	the	fixed	viewing	condition.	Even	though	stimulus	presentation	was	fixed,	participants	could	981 
still	choose	to	saccade	back	to	the	central	fixation	cross	before	the	end	of	stimulus	presentation.	Therefore,	982 
actual	gaze	time	 is	a	better	reflection	of	 information	processing	 in	 this	condition.	Here,	we	are	plotting	983 
stimulus	presentation	time	in	the	fixed	sampling	condition	instead.	The	same	lack	of	effect	of	sampling	bias	984 
on	changes	of	mind	can	be	seen	here	in	the	fixed	sampling	condition	as	in	Figure	4.	985 
	 	986 
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S5.	GLAM	modelling	987 
	988 

	989 
Figure	S5.1.	GLAM	results	with	down-sampled	gaze	information	in	the	free	sampling	condition.	To	990 
check	whether	the	results	reported	in	the	main	text	are	an	artefact	of	the	low	variability	in	relative	gaze	in	991 
fixed	sampling	trials,	we	reduced	the	variability	of	free	sampling	trials	to	only	3	bins.	This	replicated	the	992 
number	of	bins	in	the	gaze	allocation	presented	in	our	fixed-viewing	trials.	GLAM	was	fitted	using	these	993 
data.	(A)	Model	comparison	between	the	GLAM	models	in	the	free	sampling	condition	fitted	using	original	994 
gaze	data	(continuous	gaze)	and	the	down	sampled	gaze	information	(bin	gaze).	We	found	no	significant	995 
difference	between	the	model	fit	scores	in	both	cases	(Mean	WAICFree/Continuous	=	-524.58;	Mean	WAICFree/Bin=	996 
-525.12;	 t17	 =	 1.46,	 p	 =	 0.16,	 ns).	Model	 fitting	was	 performed	 at	 a	 participant	 level.	WAIC	 scores	 are	997 
presented	using	log	scale.	A	higher	log-score	indicates	a	model	with	better	predictive	accuracy.	(B)	GLAM	998 
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parameters	resulting	from	Bin	Gaze	model	fit.	We	replicated	the	findings	in	the	main	text,	with	a	higher	999 
gaze	bias	(lower	γ	parameter)	in	the	free	sampling	condition	(Mean	γ	Free=	0.81,	Mean	γ	Fixed=	0.96,	t17=	-1000 
3.268;	p<0.01).	No	significant	differences	were	found	for	the	other	parameters.	γ:	gaze	bias;	τ:	evidence	1001 
scaling;	ν:	drift	term;	σ:	noise	standard	deviation.	(C)	The	Bin	Gaze	model	replicated	the	main	behavioural	1002 
relationships	in	a	similar	way	to	the	original	continuous	gaze	model.	The	four	panels	present	four	relevant	1003 
behavioural	 relationships	 comparing	 model	 predictions	 and	 overall	 participant	 behaviour:	 (top	 left)	1004 
responses	time	were	faster	(shorter	RT)	when	the	choice	was	easier	(i.e.	bigger	differences	in	the	number	1005 
of	dots	between	the	patches);	(top	right)	probability	of	choosing	the	left	patch	increased	when	the	number	1006 
of	dots		was	higher	in	the	patch	on	the	left	side	(DDots	=	DotsLeft	–	DotsRight);	(bottom	left)	the	probability	of	1007 
choosing	an	alternative	depended	on	 the	gaze	difference	 (DGaze	=	gLeft	 –	gRight);	 and	 (bottom	right)	 the	1008 
probability	of	choosing	an	item	that	was	fixated	longer	than	the	other,	corrected	by	the	actual	evidence	1009 
(DDots),	 depicted	 a	 residual	 effect	 of	 gaze	 on	 choice.	 Solid	 dots	 depict	 the	 mean	 of	 the	 data	 across	1010 
participants.	Lighter	dots	present	the	mean	value	for	each	participant	across	bins.	Solid	grey	lines	show	the	1011 
average	for	model	simulations.	Data	are	binned	for	visualization.	**:	p<0.01.	1012 
	1013 
	1014 
	1015 

1016 
Figure	S5.2.	Individual	out-of-sample	GLAM	predictions	for	behavioural	measures	in	free	and	fixed	1017 
sampling	conditions.	The	correlations	between	observed	data	and	predictions	of	the	model	for	individual	1018 
(A)	 mean	 RT,	 (B)	 the	 probability	 of	 choosing	 the	 correct	 patch,	 and	 (C)	 the	 gaze	 influence	 in	 choice	1019 
probability	 are	 presented.	 In	 the	 fixed	 sampling	 condition,	 the	 correlation	 between	 the	 performance	1020 
(probability	of	 correct)	of	 individual	participants	and	 the	model	predictions	was	 found	not	statistically	1021 
significant,	indicating	the	model	was	not	completely	accurate	in	predicting	participant-level	performance.	1022 
However,	the	model	captures	group-level	performance	(as	depicted	in	Figure	5B),	since	predicted	trials	1023 
had	 higher	 than	 chance	 accuracy	 and	 a	 similar	 range	 of	 performance	 as	 observed	 trials	 (accuracy	 is	1024 
between	0.6-0.9	for	observed	and	predicted).	Regarding	the	gaze	influence	measure	(residual	effect	of	gaze	1025 
on	 choice,	 once	 the	 effect	 of	 evidence	 is	 accounted	 for),	 the	 free	 sampling	 model	 predicts	 this	 effect	1026 
significantly	at	the	participant	level,	but	the	fixed	sampling	model	did	not.	Since	in	the	fixed	sampling	model,	1027 
in	practical	terms	there	is	no	gaze	bias	(γ	≈1),	we	expected	the	model	would	have	trouble	predicting	any	1028 
residual	gaze	influence.	Dots	depict	the	average	of	observed	and	predicted	measures	for	each	participant.	1029 
In	the	free	sampling	condition	the	model	prediction	correlated	significantly	with	observed	accuracy	and	1030 
gaze	influence,	at	the	participant-level.	Lines	depict	the	slope	of	the	correlation	between	observations	and	1031 
predictions.	Dots	indicate	the	average	measure	for	each	participant’s	observed	and	predicted	data.	Mean	1032 
95%	confidence	intervals	are	represented	by	the	shadowed	region.	All	model	predictions	are	simulated	1033 
using	parameters	estimated	from	individual	fits	for	even-numbered	trials.		1034 
 1035 
 1036 
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 1037 
	1038 
Figure	S5.3.	GLAM	model	comparison	for	free	and	fixed	sampling	conditions.	(A)	WAIC	scores	for	free	1039 
and	 fixed	 sampling	 models	 did	 not	 report	 significant	 difference	 in	 fit	 between	 the	 conditions	 (mean	1040 
WAICFree	=	-524.58;	mean	WAICFixed	=	-530.004;	t17	=	0.98,	p	=	0.34,	ns).	As	an	additional	check,	we	fitted	1041 
new	models	 for	both	conditions	without	 the	gaze	bias	(no	bias,	γ	=	1).	We	 found	that	 in	 the	 fixed	gaze	1042 
condition,	the	no	bias	model	was	the	most	parsimonious	model	(Mean	WAICFixed/GazeBias	=	-530.004;	Mean	1043 
WAICFixed/NoBias	=	-529.29;	t17	=	3.304,	p	<	0.01).	No	differences	were	found	between	the	gaze	bias	and	no	1044 
bias	models	in	the	free	sampling	condition	(Mean	WAICFree/GazeBias	=	-524.58;	Mean	WAICFree/NoBias	=	-526.23;	1045 
t17	=	1.537,	p	=	0.14,	ns).	(B-C)	Differences	in	WAIC	score	between	Gaze	Bias	–	No	Bias	(DWAIC)	models	1046 
were	calculated	for	each	individual	participant	and	experimental	condition.	This	corroborated	that	the	No	1047 
Bias	model	has	a	better	fit	in	the	fixed	sampling	condition	only	(C).	WAIC	scores	are	presented	using	log	1048 
scale.	A	higher	log-score	indicates	a	model	with	better	predictive	accuracy.	***:	p<0.001.	1049 
		1050 
	1051 
 1052 
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	1053 
	1054 
Figure	 S5.4.	 GLAM	 parameters	 for	 free	 and	 fixed	 sampling	 conditions.	 Participants	 for	 which	1055 
parameter	 estimation	 did	 not	 converge	 were	 removed	 from	 the	 analysis	 (4	 participants).	 The	 results	1056 
reported	in	the	main	text	were	still	observed:		a	higher	gaze	bias	(lower	γ	parameter)	in	the	free	sampling	1057 
condition	(Mean	γ	Free=	0.786,	Mean	γ	Fixed=	0.961,	t17=	-3.033;	p<0.01).	No	significant	differences	were	found	1058 
for	the	other	parameters.	γ:	gaze	bias;	τ:	evidence	scaling;	ν:	drift	term;	σ:	noise	standard	deviation.	**:	1059 
p<0.01	1060 
	 	1061 
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S6:	A	Descriptive	Model	of	Confirmatory	Information	Processing	1062 

We	have	designed	the	following	descriptive	economic	decision-making	model	that	can	be	1063 
used	to	capture	the	findings	described	above.	There	is	a	set	of	states	of	the	world	that	1064 
denote	the	number	of	dots	 in	each	part	of	 the	screen,	denoted	(𝜔9 , 𝜔7) ∈ ℝ&

: .	 In	what	1065 
follows,	 for	any	probability	measure	𝜇	over	ℝ&

: ,	denote	by	𝜇(𝜔9 > 𝜔7)	 the	probability	1066 
that	𝜇	assigns	to	the	event	that	𝜔9	is	above	𝜔7;	and	by	𝐵𝑈(𝜇, 𝐴)	the	Bayesian	update	of	𝜇	1067 
using	information	𝐴.	Subjects	start	with	a	symmetric	prior	𝜇;.		1068 
	1069 
First	Stage:	Subject	go	through	a	sampling	phase	in	which	they	gather	information	about	1070 
the	number	of	dots	in	each	screen.	They	get	two	noisy	signals	about	each	component	of	1071 
the	state,	𝑥09	and	𝑥07 ,	for	which	for	simplicity	we	assume	normally	distributed	noise:	1072 
	1073 

𝑥09 = 𝜔9 + 𝜖09	1074 
𝑥07 = 𝜔7 + 𝜖07 	1075 

	1076 
where	𝜖09 ∼ 𝑁(0, 𝜎09),	𝜖07 ∼ 𝑁(0, 𝜎07).	 For	 generality,	we	may	allow	 the	variances	 to	be	1077 
different,	 in	 case	 individuals	 follow	 an	 adaptive	 search	 procedure	 that	 leads	 to	1078 
asymmetric	 information	 acquisition.	 For	 simplicity,	we	 assume	here	 that	 they	 are	 the	1079 
same,	𝜎09 = 𝜎07 = 𝜎:.	1080 
	1081 
At	the	end	of	the	information	gathering	stage,	subjects	form	a	posterior	about	the	state	of	1082 
the	world,	𝜇0I = 𝐵𝑈(𝜇;|𝑥07 , 𝑥09).	They	are	then	asked	to	choose	an	action	𝑎0 ∈ {𝐿, 𝑅}	and	a	1083 
confidence	level	𝑐.	Following	standard	arguments,	they	choose	𝑎0 = 𝐿	if		𝜇0I(𝜔9 > 𝜔7) >1084 
0.5,	𝑎0 = 𝑅	if		𝜇0I(𝜔9 > 𝜔7) < 0.5,	and	randomize	with	equal	probability	between	𝐿	and	1085 
𝑅	if	𝜇0I(𝜔9 > 𝜔7) = 0.5	(a	probability	0	event).	1086 
	1087 
They	report	a	confidence	1088 

𝑐 = 2 ∗ T𝜇0I(𝜔9 > 𝜔7) −
1
2T.	1089 

	1090 
Note	that	𝑐 = 1	if	𝜇0I(𝜔9 > 𝜔7) ∈ {1, 0},	𝑐 = 0	if	𝜇0I(𝜔9 > 𝜔7) = 0.5.	1091 
	1092 
	1093 
Second	Stage:	The	key	departure	from	the	standard	normative	model	of	decision-making	1094 
is	that	the	beliefs	that	individuals	have	at	the	beginning	of	stage	2	are	not	the	posteriors	1095 
they	obtained	at	the	end	of	stage	1,	but	are	also	influenced	by	their	choice.	Denote		𝜇0I

#	1096 
the	belief	over	the	state	of	the	world	that	the	individual	would	obtain	if	she	only	observed	1097 
her	choice	–	given	the	decision	rule	above	–	but	did	not	take	into	account	the	signals	𝑥09	1098 
and	 𝑥07 ,	 i.e.,	 𝜇0I

# = 𝐵𝑈(𝜇;, 𝑎0).	 We	 posit	 that	 the	 belief	 used	 by	 the	 individual	 at	 the	1099 
beginning	of	the	second	stage,	𝜇:,	is	a	convex	combination	of	this	belief	and	the	posterior	1100 
at	the	end	of	period	1,	i.e.,		1101 
	1102 

𝜇: = 𝜃𝜇0I
# + (1 − 𝜃)𝜇0I	1103 

	1104 
where	𝜃 ∈ [0, 1]	indicates	the	degree	of	distortion:	when	𝜃 = 0	beliefs	are	not	distorted;	1105 
when	𝜃 = 1,	choices	in	the	second	stage	only	use	the	more	limited	information	contained	1106 
in	the	choice	of	stage	1,	and	not	the	full	information	coming	from	observed	signals.	The	1107 
use	of	the	linear	structure	is	not	relevant	but	simplifies	the	analysis.	1108 
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	1109 
In	 the	 second	 stage,	 subjects	 have	 to	 decide	 the	 sampling	 strategy.	We	 posit	 that	 the	1110 
fraction	of	time	spent	on	Left	is	determined	(with	noise)	as	a	strictly	increasing	function	1111 
of	the	belief	𝜇::	subjects	spend	more	time	on	average	on	the	area	where	they	believe	are	1112 
more	 dots.	 In	 Sepulveda	 et	 al.	 (2020)	 a	 model	 is	 described	 that	 generates	 a	 related	1113 
tendency.	 In	particular,	we	posit	 that	 the	 fraction	of	 time	spent	on	 the	 left	 circle,	𝑠,	 is	1114 
determined	by	a	standard	logistic	function	1115 
	1116 

𝑠 =
1

1 + 𝑒5<(=#(>%?>&)5;.A)
.	1117 

	1118 
Through	this	sampling,	individuals	receive	signals	1119 
	1120 

𝑥:9 = 𝜔9 + 𝜖:9	1121 
𝑥:7 = 𝜔7 + 𝜖:7 	1122 

	1123 

where	𝜖09 ∼ 𝑁(0, B
#

C
)),	𝜖07 ∼ 𝑁(0, B#

05C
),	so	that	better	information	is	obtained	about	each	1124 

dimension	the	more	 time	spent	contemplating	 it.	Using	 this,	 subjects	 form	a	posterior	1125 
𝜇:I = 𝐵𝑈(𝜇:, |𝑥:9 , 𝑥:7).	1126 
	1127 
Finally,	subjects	choose	an	action	𝑎: ∈ {𝐿, 𝑅}	and	a	confidence	level	𝑐.	Following	standard	1128 
arguments,	they	choose	𝑎0 = 𝐿	if		𝜇:I(𝜔9 > 𝜔7) > 0.5,	𝑎0 = 𝑅	if		𝜇:I(𝜔9 > 𝜔7) < 0.5,	and	1129 
randomize	with	 equal	 probability	 between	𝐿	 and	𝑅	 if	𝜇:I(𝜔9 > 𝜔7) = 0.5	 	 (again,	 a	 0	1130 
probability	event).	1131 
	1132 
This	model	 is	reminiscent	of	the	Second-Order	Model	of	Fleming	and	Daw	(2017),	but	1133 
with	the	difference	that	we	are	not	introducing	a	choice-affecting-beliefs	component	at	1134 
the	time	of	reporting	confidence,	but	only	at	the	beginning	of	the	second	stage.		1135 
	1136 
This	model	implies	that,	on	average,	subjects	will	sample	more	from	the	patch	they	had	1137 
previously	 chosen;	and	 that	 this	effect	 is	 stronger	 the	higher	 their	 confidence	 in	 their	1138 
choice—which	is	what	we	see	in	the	data.	1139 
	1140 
	When	 𝜃 > 0,	 the	 previous	 choice	 affects	 the	 sampling	 strategy	 even	 controlling	 for	1141 
confidence—which	 is	 also	 what	 we	 find.	 Whenever	 𝜇0I

#(𝜔9 > 𝜔7) > 𝜇0I	(𝜔9 > 𝜔7) >1142 
0.5,	the	presence	of	𝜃 > 0	will	lead	to	𝜇:(𝜔9 > 𝜔7) > 𝜇0I	(𝜔9 > 𝜔7) > 	0.5.	This,	in	turn,	1143 
will	distort	her	later	sampling	strategy	as	well	as	her	future	beliefs:	the	individual	will	1144 
require	 even	 stronger	 information	 to	 change	 her	 mind.	 The	 opposite	 happens	 when	1145 
𝜇0I	(𝜔9 > 𝜔7) > 	𝜇0I

#(𝜔9 > 𝜔7) > 0.5:	 in	 this	 case	𝜇0I	(𝜔9 > 𝜔7) > 𝜇:(𝜔9 > 𝜔7) > 0.5,	1146 
which	implies	that	the	individual	acts	as	if	she	were	less	confident	of	her	choice.	Previous	1147 
choice	will	affect	the	sampling	strategy,	but	now	less	so.	1148 
 1149 
	1150 
	 	1151 
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S7:	Model	Comparisons	1152 
	1153 
Sampling	Time	Models	1154 
To	 investigate	 the	 effects	 of	 choice,	 dot	 difference,	 confidence,	 and	 response	 time	 on	1155 
sampling	we	compared	6	hierarchical	 regression	models.	These	models	are	presented	1156 
below.	The	BIC	scores	for	each	model	in	each	experiment	are	plotted	in	Figure	S7.1.	The	1157 
best	fitting	models	according	to	BIC-scores	were	Model	5	in	experiment	1	and	Model	3	in	1158 
experiment	2.	We	chose	to	present	Model	5	for	both	experiments	as	we	were	interested	1159 
in	the	contribution	of	confidence	to	biased	sampling.		1160 
	1161 
	1162 
Sampling	Time	Models	1163 
	1164 
Models	 Formula	
1	 Sampling	Time	Difference	~	𝒩(β0	+	β1[Choice]	+	ε)	
2	 Sampling	Time	Difference	~	𝒩(β0	+	β1[Dot	Difference]	+	ε)	
3	 Sampling	Time	Difference	~	𝒩(β0	+	β1[Choice]	+	β2[Dot	Difference]	+	ε)	
4	 Sampling	 Time	 Difference	 ~	 𝒩(β0	 +	 β1[Choice]	 +	 β2[Confidence]	 +	

β3[Choice	*	Confidence]	+	ε)	
5	 Sampling	 Time	 Difference	 ~	𝒩(β0	 +	 β1[Choice]	 +	 β2[Dot	 Difference]	 +	

β3[Confidence]		+	β4[Choice	*	Confidence]	+	ε)	
6	 Sampling	 Time	 Difference	 ~	𝒩(β0	 +	 β1[Choice]	 +	 β2[Dot	 Difference]	 +	

β3[Confidence]		+	β4[Reaction	Time]	+	β5[Choice	*	Confidence]	+	β6[Choice	
*	Reaction	Time]	+		ε)	

	 1165 
	 	1166 
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	1167 
Figure	S7.1.	BIC	comparison	of	the	sampling	time	models	for	experiments	1	and	2.		1168 
Model	5	fit	the	data	from	experiment	1	the	best	(BIC	=	14340.8),	whereas	Model	3	was	the	best	fit	for	the	1169 
data	in	experiment	2	(BIC	=	6117.8).		1170 
	1171 
	1172 
Change	of	Mind	Models	1173 
To	investigate	the	effects	of	dot	difference,	sampling,	confidence,	and	response	time	on	1174 
change	 of	 mind	 we	 compared	 5	 hierarchical	 regression	 models.	 These	 models	 are	1175 
presented	below.	The	BIC	scores	for	each	model	in	each	experiment	are	plotted	in	Figure	1176 
S7.2.	Model	 5	 includes	 a	 dummy	 variable	 coding	whether	 or	 not	 the	 trial	was	 in	 the	1177 
control	 condition	 or	 not	 (in	 which	 sampling	 was	 fixed).	 As	 such,	 this	 model	 is	 only	1178 
applicable	to	experiment	2.	The	best	fitting	models	according	to	BIC-scores	were	Model	1179 
3	in	experiment	1	and	Model	5	in	experiment	2.		1180 
	1181 
	 	1182 

Sampling Time Models - Experiment 1 Sampling Time Models - Experiment 2
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Change	of	Mind	Models	1183 
	1184 
Models	 Formula	
1	 Change	of	Mind	~	logit-1(β0	+	β1[Dot	Difference]	+	ε)	
2	 Change	of	Mind	~	logit-1(β0	+	β1[Dot	Difference]	+	β2[Sampling	Bias]	+	ε)	
3	 Change	 of	Mind	~	 logit-1(β0	 +	 β1[Dot	 Difference]	 +	 β2[Sampling	 Bias]	 +	

β3[Confidence]	+	ε)	
4	 Change	 of	Mind	~	 logit-1(β0	 +	 β1[Dot	 Difference]	 +	 β2[Sampling	 Bias]	 +	

β3[Confidence]	+	β4[Reaction	Time]	+	ε)	
5	 Change	 of	Mind	~	 logit-1(β0	 +	 β1[Dot	 Difference]	 +	 β2[Sampling	 Bias]	 +	

β3[Confidence]	+	β4[Fixed	Sampling]	+	β5[Sampling	Bias	*	Fixed	Sampling]	
+	ε)	

	1185 
	1186 

	1187 
	1188 
Figure	S7.2.	BIC	comparison	of	the	change	of	mind	models	for	experiments	1	and	2.		1189 
Model	3	fit	the	data	from	experiment	1	the	best	(BIC	=	4760.8),	whereas	Model	5	was	the	best	fit	for	the	1190 
data	in	experiment	2	(BIC	=	4253.7).	1191 
	1192 
	1193 
	1194 
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