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Abstract. The inference of ploidy levels from genomic data is impor-
tant to understand molecular mechanisms underpinning genome evolu-
tion. However, current methods based on allele frequency and sequenc-
ing depth variation do not have power to infer ploidy levels at low- and
mid-depth sequencing data, as they do not account for data uncertainty.
Here we introduce HMMploidy, a novel tool that leverages the information
from multiple samples and combines the information from sequencing
depth and genotype likelihoods. We demonstrate that HMMploidy outper-
forms existing methods in most tested scenarios, especially at low-depth
with large sample size. We apply HMMploidy to sequencing data from the
pathogenic fungus Cryptococcus neoformans and retrieve pervasive pat-
terns of aneuploidy, even when artificially downsampling the sequencing
data. We envisage that HMMploidy will have wide applicability to low-
depth sequencing data from polyploid and aneuploid species.

Keywords: high-throughput DNA sequencing · ploidy · polyploidy ·
aneuploidy · hidden Markov model · genotype likelihood
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Introduction

In recent years, advances in Next Generation Sequencing (NGS) technologies
allowed for the generation of large amount of genomic data (38; 27). Many sta-
tistical and computational methods, and accompanying software, to process NGS
data for genotype and variant calling have been proposed (30; 23; 3). Addition-5

ally, dedicated software have been developed to analyse low-coverage sequencing
data (40; 19), a popular and cost-effective approach in population genomic stud-
ies (34). However, most of these efforts have been focused towards model species
with known genomic information. In particular, there has been a lack of research
into modelling sequencing data from non-diploid species or organisms with un-10

known ploidy.
Polyploidy is typically defined as the phenomenon whereby the chromosome

set is multiplied, resulting the organism to have three or more sets of chromo-
somes (42). Polyploidy is common to many organisms at different genic and
cellular levels, and it can be the consequence of hybridisation or whole genome15

duplication (17). For instance, polyploidy plays a significant role in the evolu-
tion and speciation of plants (47), as 34.5% of vascular plants (including leading
commercial crop species) are shown to be polyploid (55).

Of particular interest is the case of aneuploidy, whereby chromosomal aber-
rations cause the number of chromosomal copies to vary within populations20

and individuals. Ploidy variation can be associated with a response or adap-
tation to environmental factors (12), and it is a phenomenon commonly de-
tected in cancer cells (13) and several pathogenic fungi (i.e. Cryptococcus ne-
oformans, Candida albicans and Candida glabrata) and monocellular parasites
(49; 39; 15; 57; 56; 18; 4).25

Among aneuploid species, Cryptococcus neoformans is a fungal pathogen
capable of causing meningitis in immunocompromised individuals, particularly
HIV/AIDS patients. Ploidy variation, via aneuploidy and polyploidy, is an adap-
tive mechanism in Cryptococcus neoformans capable of generating variation
within the host in response to a harsh environment and drug pressure (39).30

Aneuploidy-driven heteroresistance to the frontline antifungal drug fluconazole
has been described (49), resulting in treatment failure in patients. Within flu-
conazole resistant colonies, aneuploidy was common, particularly disomy of chro-
mosome 1 which harbours the gene encoding the main drug target of fluconazole,
ERG11 (49). For these reasons, inferring the ploidy of a sample from genomic35

data, like in the case of Cryptococcus neoformans, is essential to shed light onto
the evolution and adaptation across the domains of life.

Available computational methods to infer ploidy levels from genomic data are
based either on modelling the distribution of observed allele frequencies (nQuire
(54)), comparing frequencies and coverage to a reference data set (ploidyNGS40

(2)), or using inferred genotypes and information on GC-content, although the
latter is an approach specific for detecting aberrations in cancer genomes (e.g.
AbsCN-seq (5), sequenza (16)). A popular approach is based on the simple
eyeballing method, that is, on the visual inspection of variation of sequencing
depth (compared to another ground-truth data set sequenced with the same45
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HMMploidy: inference of ploidy levels from short-read sequencing data 3

setup) and allele frequencies (2). However, methods based only on sequencing
depth, allele frequencies and genotypes limit the inference on the multiplicity
factor of different ploidy levels only (if present). Additionally, they often need
a reference data with known ploidy to be compared to, and they generally lack
power for low- or mid-depth sequencing data applications, which are typically50

affected by large data uncertainty. As low-coverage whole genome sequencing is
a common strategy in population genetic studies of both model and non-model
species (50), a tool that incorporates data uncertainty is in dire need.

To overcome these issues, we introduce a new method called HMMploidy to in-
fer ploidy levels from low- and mid-depth sequencing data. HMMploidy comprises55

a Hidden Markov Model (HMM) (43) where the emissions are both sequencing
depth levels and observed reads. The latter are translated into genotype like-
lihoods (40) and population frequencies to leverage the genotype uncertainty.
The hidden states of the HMM represent the ploidy levels which are inferred
in windows of polymorphisms. Notably, HMMploidy determines automatically its60

number of latent states through a heuristic procedure and reduction of the tran-
sition matrix. Moreover, our method can leverage the information from multiple
samples in the same population by estimate of population frequencies, making
it effective at very low depth.

HMMploidy infers ploidy variation in sliding windows among chromosomes65

and among individuals. While ploidy is not expected to vary within each chro-
mosome, the distribution of inferred ploidy tracts provides further statistical
support to whole-chromosome estimates. Additionally, HMMploidy can identify
local regions with aberrant predicted ploidy to be further investigated, for in-
stance as potential locations of copy number variants (CNVs) or structural rear-70

rangements. Finally, any detected within-chromosome ploidy variation can serve
as a diagnostic tool to investigate possible mapping or assembly errors. Notably,
by training separate HMMs, HMMploidy can effectively infer aneuploidy among
chromosomes and samples.

HMMploidy is written in R/C++ and python. Source code is freely available75

at https://github.com/SamueleSoraggi/HMMploidy, integrated into ngsTools

(22), and FAIR data sharing is available at the OSF repository https://osf.io/
5f7ar/. We will first introduce the mathematical and inferential model underly-
ing HMMploidy, then show its performance to detect ploidy levels compared to
existing tools, and finally illustrate an application to sequencing data from the80

pathogenic fungus Cryptococcus neoformans.

Material and methods

This section describes the methods used in the implementation of the HMMploidy
software. In what follows, data is assumed to be diallelic (i.e. we observe at most
two states at a particular genotype regardless of the number of copies), without85

loss of generality. Allowing for more than two alleles would add a summation
over all possible pairs of alleles in all calculations. In our notation, indices are
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lower case and vary within an interval ranging from 1 to the index’s upper case
letter, e.g. m = 1, . . . ,M .

Probability of sequenced data90

Let O = (O1, . . . ,OM) be the observed NGS data forM sequenced genomes at N
sites. Consider an m-th genome and n-th locus. We define a locus as a nucleotide
site. We assume that sequencing reads are mapped and aligned so that bases can
be assigned to a single nucleotide site. For ease of notation, we suppress the two
indices, since they do not vary in the formula (1). For such genome and locus95

define Y , G and O as the ploidy, genotype and sequencing data, respectively.
Given Y , the genotype G assumes values in {G0, . . . ,GY }, where each element is
the collection of nucleotides of the genotype, and ∣Gi∣ is the number of alternate
(or derived) alleles of the i-th genotype.

The probability of the sequenced data, conditionally on the ploidy Y and the100

population frequency F at locus n, is expressed by

p(O∣Y,F ) = ∑

G∈{G0,...,GY }
p(O∣G,Y )p(G∣Y,F ), (1)

where the left-hand side of the equation has been marginalised over the geno-
types, and the resulting probabilities have been rewritten as product of two
terms using the tower property of the probability. The first factor of the product
is the genotype likelihood (36). Note that the only varying parameter in it is the105

genotype; therefore it is also rewritten as L(G∣O,Y ). The second factor is the
probability of the genotype given the population frequency and the ploidy level,
in other words the prior probability of the genotype. The marginalisation over all
possible genotypes has therefore introduced a factor that takes into account the
genotype uncertainty. The calculation of genotype likelihoods for an arbitrary110

ploidy number and the estimation of population allele frequencies are described
in the Supplementary Material.

Throughout the analyses carried out in this paper, we assume Hardy-Weinberg
equilibrium (HWE) and thus model the genotype probability with a binomial
distribution (24; 53). Other methods considering departure from HWE (DHW),115

can be considered and implemented by ad hoc substitutions of the formula coded
in the software. Such functions can be useful in specific situations, such as
pathology-, admixture- and selection-induced DHW scenarios (10; 25; 26). How-
ever, we will leave the treatment of DHW for the inference of ploidy variation
to future studies.120

Hidden Markov Model for ploidy inference

Here, the HMM is defined, and the inferential process of ploidy levels from the
HMM is illustrated. Further mathematical details, proofs and algorithms are
available in the Supplementary Material.

Consider the N sites arranged in K adjacent and non-overlapping windows.125

For each individual m, HMMploidy defines a HMM with a Markov chain of length
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K of latent states Y
(1)
m , . . . , Y

(K)
m , as shown for a sequence of two ploidy levels

(Fig. 1A) in the graphical model of dependencies of Fig. 1B. Each k-th latent
state represents the ploidy level at a specific window of loci, and each window’s
ploidy level depends only on the previous one. Therefore, the sequence of states130

is described by a transition matrix AAA of size ∣Y ∣ × ∣Y ∣ and a ∣Y ∣-long vector of
starting probabilities δδδ, where Y is the set of ploidy levels included in the model
and ∣Y ∣ is the number of ploidy levels (i.e. cardinality of Y) (Fig. 1C).

In the HMM structure, each of the ∣Y ∣ ploidy levels emits two observations
(Fig. S1). Those contain a dependency on which ploidy is assigned to that135

window. The observations consist of the sequenced reads O
(k)
m and the average

sequencing depth C
(k)
m in the k-th window (Fig. 1B). The former is modelled by

the probability in Equation 1; the latter by a Poisson-Gamma distribution (7; 9)
(Fig. 1D). The Poisson-Gamma distribution consists of a Poisson distribution
whose mean parameter is described by a Gamma random variable. This generates140

a so-called super-Poissonian distribution, for which the mean is lower than the
variance. This allows us to model overdispersed counts, a common issue in NGS
datasets (1).

For the m-th HMM, the Poisson-Gamma distribution in window k is mod-
elled by the ploidy-dependent parameters α

Y
(k)
m
, β

Y
(k)
m
∈ R, describing mean and145

dispersion, where Y
(k)
m is the ploidy in the considered window. In each window,

the estimated population frequencies serve as a proxy for the probability of se-
quenced reads. Note that the Poisson-Gamma distributions depend each on a
ploidy level. This means that all windows assigned the same ploidy will refer to
the same mean and dispersion parameters.150

We propose a heuristic optimisation algorithm to automatically find the num-
ber of latent states of the HMM, and to assign them to the correct ploidy through
the genotype likelihoods. Our implementation, described in the Supplementary
Material, is a heuristic version of the well-known Expectation Conditional Max-
imisation (ECM) algorithm (8).155

Simulated data

The required memory, runtime and ploidy detection power of HMMploidy were
compared to the ones obtained by other methods using simulated data. We
simulated sequencing reads under a wide range of scenarios using a previously
proposed approach (21; 20). Specifically, each locus is treated as an independent160

observation, without modelling the effect of linkage disequilibrium. The number
of reads is modelled with a Poisson distribution with parameter given by the
input depth multiplied by the ploidy level. At each locus, individual genotypes
are randomly drawn according to a probability distribution defined by a set
of population parameters (e.g., shape of the site frequency spectrum). Once165

genotypes are assigned, sequencing reads (i.e. nucleotidic bases) are sampled
with replacement with a certain probability given by the base quality scores.

For comparing the performance of detecting ploidy between HMMploidy and
existing tools, 100 simulations of M genomes are performed for every combina-
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Fig. 1: HMM for two ploidy levels. (A) Consider a NGS dataset consisting
of a sequence of two ploidy levels. (B) The HMM describing the data has a
sequence of hidden states Y (1), . . . , Y (K) - one for each window of loci - that
can assume one of two values of the ploidies. Observations C(1), . . . ,C(K) and
O(1), . . . ,O(K) describe the sequencing depth and observed reads in each win-
dow, respectively. The index related to the sample is omitted to simplify the
notation. (C) The sequence of ploidy levels is described by a Markov chain with
two states, governed by a starting vector δδδ and a Markov matrix AAA. (D) At each
window, the observations are described by the distribution of depth. There are
two distributions, each one dependant on the ploidy level. Similarly, genotype
likelihoods describe the observed reads by modelling the genotypes at two dis-
tinct ploidy levels.
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HMMploidy: inference of ploidy levels from short-read sequencing data 7

tion of ploidy (from 1 to 5, constant along each genome), sample size (1, 2, 5,170

10, 20), and sequencing depth (0.5X, 1X, 2X, 5X, 10X, 20X). The sequencing
depth is defined as the average number of sequenced bases at one site for each
chromosomal copy (i.e. divided by the ploidy level). Each simulated genome has
a length of 5Kb with all loci being polymorphic in the population.

Simulated data for the analysis of runtime and memory usage consist of 100175

diploid genomes of length 10kb, 100kb, 1Mb, 10Mb. Each simulated genome
comprises an expected proportion of polymorphic sites equal to 1%. The sim-
ulation scripts and pipelines are included in the Github and OSF repositories.
Performance analysis was performed on a cluster node with four reserved cores
of an Intel Xeon Gold 6130 @1.00GHz with 24GB of RAM and the Ubuntu180

18.04.3 OS.

Application to real data

To illustrate the use of HMMploidy, we apply it to sequencing data from 23
isolates of the pathogenic fungus Cryptococcus neoformans recovered from HIV-
infected patients showing clinical evidence cryptococcal meningitis (45). Whole-185

genome sequencing data was performed on an Illumina machine following an
established protocol for sample preparation (44) and data processing (45). Reads
are mapped onto C. neoformans H99 reference genome (32), yielding an average
depth of approximately 100 reads per site. We generated an additional data set
by randomly sampling only 20% of reads for each sample. All sequencing raw190

reads were retrieved from the European Nucleotide Archive under the project
accession PRJEB11842.

Results and discussion

Predictive performance

We assess the power of HMMploidy to infer ploidy levels on simulated genomes195

ranging from haploid to pentaploid. Samples sizes varied from 1 to 20 individ-
uals haplotypes, and sequencing depths from 0.5X to 20X. HMMploidy is com-
pared to the two state-of-the-art methods ploidyNGS (2) and nQuire (includ-
ing a version with denoising option, nQuire.Den) (54). The former performs a
Kolmogorov-Smirnov test between the minor allele frequencies of the observed200

data and of simulated data sets at different ploidy levels (simulated at 50X).
The latter models the minor allele frequencies with a Gaussian mixture model.
We exclude depth-based methods because they are hardly applicable to low se-
quencing depth (Fig. S2,S3) and work as empirical visual checks rather than
algorithmic procedures. While nQuire and ploidyNGS sweep the whole simu-205

lated genomes, HMMploidy analyses windows of 250bp, so the detection rate is
calculated as the windows’ average, making the comparison deliberately more
unfair to our method.

At low-depth (0.5X), HMMploidy’s power increases with sample size up to 20 -
the largest we considered - in all scenarios excluding the tetraploid case (Fig. 2)).210
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8 S. Soraggi et al.

This might be because it is difficult to distinguish diploid and tetraploid geno-
types at such low depth. In the haploid and diploid case ploidyNGS has a remark-
able 100% success at very low depths (Fig. 2). This is likely because having only
few reads makes it easier to compare the data to a simulated genome with low
ploidy level and a simpler distribution of observed alleles. However, this erratic215

behaviour disappears at higher ploidy levels, and ploidyNGS is generally outper-
formed by nQuire.Den and/or HMMploidy. HMMploidy is outperformed at low
depth in the tetraploid scenario by both versions of nQuire. This might indicate
that genotype likelihoods are not successful in modelling tetraploid genotypes
as well as allele frequencies in this specific scenario.220

Note also that none of the methods performs well with a single haploid sam-
ple. This happens because many loci show only one possible genotype, and even
with the genotype likelihoods it is impossible to determine the multiplicity of
the ploidy. With more samples it is possible to exploit loci with at least another
allele to inform on the most likely genotype.225

In all tested scenarios, HMMploidy greatly improves its accuracy with in-
creasing sample size, with unique good performances at low depth (Fig. 2) not
observed with other methods. Additionally, HMMploidy infers ploidy levels in
sliding windows across the data (as in Fig. 3). Moreover, HMMploidy does not
require a reference genome at a known ploidy, unlike ploidyNGS. HMMploidy230

can identify haploid genomes, unlike nQuire. Note that either deeper sequenc-
ing depth or larger sample size is likely to be required for HMMploidy to detect
higher levels of ploidy, as the power of the method decreases with increasing
ploidy (Fig. S4).

Computational performance235

The benchmark of HMMploidy shows a rather constant CPU time across genome
lengths by keeping the number of windows fixed at K = 100 (Fig. S5A). The
shortest simulations are an exception, due to a very fast processing of the data
to be used in the HMM. Occasionally, runtimes are elevated for cases where the
inference algorithm is converging with difficulty. Fig. S5B shows the effect of in-240

creasing the number of windows on 10MB genomes. The growth of execution time
follows linearly the increase of K, plus a probable extra overhead for preprocess-
ing the data in many windows, showing that the forward-backward complexity
O(∣Y ∣2K) dominates the algorithm. In both the length- and windows-varying
scenarios, memory usage was kept at an almost constant value of 350MB. This245

is possible thanks to the implementation of file reading and frequency estima-
tion in C++. Both nQuire and ploidyNGS are obviously extremely fast and run in
less than one second because they only need to calculate and compare observed
allele frequencies, with a cost approximately comparable to the number of loci
in the data. Therefore, their performance is not reported in the benchmark fig-250

ures. Analogous trends on execution times would follow for genomes longer than
10MB and we expect HMMploidy to run without issues on larger genomes.

Note that HMMploidy trains a separate HMM on each genome even for larger
sample sizes. As shown above, each HMM might require considerable CPU time
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HMMploidy: inference of ploidy levels from short-read sequencing data 9

if many windows are used, or if the heuristic ECM algorithm has a slow conver-255

gence. However, training a separate HMM on each genome allows the method to
overcome two main issues: samples sequenced at different coverage, and ploidy
varying among samples. When samples are sequenced at different coverage, it is
common practice to standardise the sequencing depth across all genomes. How-
ever, this would make the estimation of the distributions of standardised counts260

difficult, especially in samples with noise, errors, and limited coverage. Addition-
ally, two genomes could easily have two different ploidy levels matching the same
distribution parameters. For example, a diploid-tetraploid sample where the two
ploidy levels have observations’ mean parameters -1 and 1 could match haploid-
diploid levels in another genome having the same mean parameters. The only265

case in which one can use the same HMM for all genomes is when they have all
the same ploidy levels. However, this function is not implemented in HMMploidy.
On the latter point, it would not be possible to detect sample-specific variation in
ploidy levels when training the HMM on pooled genomic data. Therefore, train-
ing a separate HMM on each genome is an important feature in HMMploidy.270

However, a simple extension of HMMploidy would allow to estimate an HMM on
the pooled data from multiple genomes, and to initiate HMM parameters and
number of latent states to reduce the model estimation runtime. These options
might be implemented in future versions of the software.

Application to real data275

We used HMMploidy to infer ploidy variation in 23 isolates of Cryptococcus ne-
oformans recovered from HIV-infected patients (45). By analysing variation in
normalised sequencing coverage, Rhodes and coworkers identified extensive in-
stances of aneuploidy, especially on chromosome 12, in several pairs of isolates
(45), in line with previous findings using karyotypic analysis (41). We sought280

to replicate these inferences using HMMploidy and assessed its performance on a
downsampled data set to mirror data uncertainty.

In accordance with the original study (45), we retrieve patterns of polyploidy
and aneuploidy within each isolate. Most of the analysed samples are haploid
(Fig. 3 and Fig. S6-S28). Interestingly, samples CCTP27 and CCTP27 at day285

121 (CCTP27-d121) are inferred to have the same ploidy, even though CCTP27-
d121 triplicates its sequencing depth on chromosome 12 (Fig. 3). We interpret
this pattern as one CNV instance spanning most of chromosome 12 for CCTP27-
d121. In fact, despite the increase in depth, the data is modelled as a haploid
chromosome by the genotype likelihoods. This further illustrates the importance290

of jointly using information on genotypes and depth variation to characterise
aneuploidy and CNV events. Sample CCTP50 had on average a higher depth
at day 409, but chromosome 1 changed from diploid (day 1) to haploid (day
409). Chromosome 12 was triploid at day 409 although the high variability of
sequencing depth is not informative on the ploidy.295

Notably, we were able to retrieve the same patterns of predicted ploidy vari-
ation when artificially down-sampling the sequencing data to 20% of the original
data set (Fig. S6-S28). Interestingly, ploidyNGS, nQuire and nQuire.Den infer

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.29.450340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450340
http://creativecommons.org/licenses/by/4.0/


10 S. Soraggi et al.

                            Number of Samples
         1               2                5              10           20

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
P

lo
id

y
 d

e
te

c
ti

o
n

 r
a
te

                                  Haploid depth

 1
.8
.6
.4
.2
 0

 1
.8
.6
.4
.2
 0

 1
.8
.6
.4
.2
 0

 1
.8
.6
.4
.2
 0

 1
.8
.6
.4
.2
 0

 .5 1 2 5 10 20  .5 1 2 5 10 20  .5 1 2 5 10 20  .5 1 2 5 10 20  .5 1 2 5 10 20   
  
  
  
5
  
  
  
  
  
  
  
  
 4

  
  
  
  
  
  
  
  
 3

  
  
  
  
  
  
  
  
2
  
  
  
  
  
  
  
 1

  
  
  
  
  
  
  
  
  
  
  
  
  
S

im
u

la
te

d
 p

lo
id

y
 n

u
m

b
e
r

Fig. 2: Comparison of ploidy detection rates for different methods at
various experimental scenarios. The rate of detecting the correct ploidy (y-
axis) is shown against the haploid sequencing depth (x-axis) for different sample
sizes (on columns) and ploidy levels (on rows). For every simulated ploidy level,
at each value of the sequencing depth we generate M genomes 100 times, where M
is the number of simulated samples. The ploidy detection rate is the proportion of
correctly detected ploidy levels in the genomic windows with the HMM method,
and the proportion of correctly detected ploidy levels along each whole genome
with the other tested methods.
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the highest tested ploidy in almost all windows of the 23 samples (Supplemen-
tary Table 1). This is likely because these methods fit the distribution of widely300

varying allele frequencies in each sample with the most complex ploidy model,
as they do not consider the information of genotype likelihoods.

Cryptococcal meningitis, caused by the fungal yeasts Cryptococcus neofor-
mans and Cryptococcus gattii, is a severe infection mostly affecting HIV/AIDS
patients (35). Oral fluconazole antifungal therapies are widely used for treat-305

ment of Cryptococcal meningitis, although their efficacy is reported to be poor
especially in Sub-Saharan Africa (33). Resistance to antifungal drugs is thought
to be responsible for such poor outcomes and relapse episodes, but its molecular
mechanisms are not yet understood (49). Resistance to oral fluconazole anti-
fungal drugs in Cryptococcus neoformans was associated with aneuploidy (48).310

Recent genomic studies identified multiple occurrences of aneuploidy in resistant
and relapse isolates (49). Our genomics inferences of aneuploidy in Cryptococcus
neoformans from HIV-infected patients can serve as diagnostic and molecular
surveillance tools to predict and monitor drug resistance isolates, whilst further
providing novel insights into the pathogen’s evolution (46) We envisage that315

HMMploidy can be deployed to large-scale genomics data of pathogenic species
to characterise aneuploidy-mediated drug resistance.

Conclusions

Here we introduce HMMploidy, a method to infer ploidy levels suitable for low-
and mid-depth sequencing data, as it jointly uses information from sequencing320

depth and genotype likelihoods. HMMploidy outperforms traditional methods
based on observed allele frequencies, especially when combining multiple sam-
ples. We predict that HMMploidy will have a broad applicability in studies of
genome evolution beyond the scenarios illustrated in this study. For instance,
the statistical framework in HMMploidy can be adopted to infer aneuploidy in325

cancerous cells (6), or partial changes of copy numbers in polyploid genomes due
to deletions or duplications (52).

Acknowledgements

We are grateful to Alan Rogers, Barbara Holland, Benjamin Peter, Nicolas
Galtier, and several anonymous reviewers for improving the manuscript.330

Funding

JR and MCF were supported by a grants from Natural Environmental Research
Council (NERC; NE/P001165/1 and NE/P000916/1), the UK Medical Research
Council (MRC; MR/R015600/1) and the Wellcome Trust (219551/Z/19/Z).
MCF is a CIFAR Fellow in the ‘Fungal Kingdom’ programme. We acknowledge335

support from the Erasmus+ programme to IA.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.29.450340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450340
http://creativecommons.org/licenses/by/4.0/


12 S. Soraggi et al.

3

2

1
95
90
85
80
75
70

3

2

1

3

2

1

3

2

1

250
200
150
100

60
50

20
30
40

50
60
70
80
90

100

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0 .2 .4 .6 

Chromosome 1 Chromosome 12

Position (Mb)

C
C

T
P
2

7
C

C
T
P
2

7
-d

1
2

1
C

C
T
P
5

0
C

C
T
P
5

0
-d

4
0

9D
e
p
th

 
P
lo

id
y
 

D
e
p
th

 
P
lo

id
y
 

D
e
p
th

 
P
lo

id
y
 

D
e
p
th

 
P
lo

id
y
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Fig. 3: Inference of ploidy levels on two samples of Cryptococcus ne-
oformans at different time points using HMMploidy. Inferred ploidy and
corresponding sequencing depth are shown in genomic windows for two samples
at day 1 (CCTP27 and CCTP50), day 121 (CCTP27-d121) and 409 (CCTP50-
d409) on chromosomes 1 and 12.
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1 Supplementary Material

1.1 Supplementary Methods

This section describes supplementary information on methods used for the im-
plementation of HMMploidy. O = (O1, . . . ,OM) is the observed NGS data for M
sequenced genomes at N polymorphic sites. For each m-th genome and n-th
locus we define Ym,n, Gm,n and Om,n as the ploidy, genotype and sequencing
data, respectively. Gm,n assumes values in {G0,G1, ...,GYm,n}, where each Gi

represents the i-th genotype as a collection {G1
i , . . . ,G

Ym,n+1
i } of its nucleotides,

with ∣Gi∣ defined as the number of alternate (or derived) alleles of the genotype.

1.2 Genotype likelihood for arbitrary ploidy number

Genotype likelihoods are at the core of HMMploidy, because they are used to
assign a probability of observing nucleotides at each locus given a possible geno-
type. Calculating genotype likelihoods for each ploidy (which in turn has its
own set of genotypes) allows HMMploidy to obtain a set of likelihoods for each
nucleotide locus given a ploidy’s possible genotypes. We will calculate geno-
type likelihoods using the base quality of each nucleotide. Bases across reads
are assumed to be independent, so that each base quality can be treated as the
probability of incorrectly sequenced nucleotide across reads (37).

For ease of visualisation, we will consider a diallelic locus n in a genomem but
suppress the two indices, because the formula of the genotype likelihoods depends
on r and the possible genotypes. Given m,n, consider the observed sequencing
data O, the coverage C and the ploidy Y at such genome and locus. Consider O
represented as a vector of length C of observed nucleotides [O1, . . . , Or]. Let ϵr
be the Phred probability calculated from the Phred quality score (14) for each
observed nucleotide Or.

If each ϵr was constant, then we would be able to observe the alternate alleles
with probability

p(O) =
∣G∣

Y
(1 − ϵr) + (1 −

∣G∣

Y
)ϵr,

for a given genotype and ploidy, where ∣G∣
Y

represents the observed frequency
of the alternate alleles. The equation above would produce the following genotype
likelihood:

L(G∣O,Y ) = (
C

∣G∣
)p(O)∣G∣(1 − p(O))

C−∣G∣
.

However, ϵr varies at each nucleotide. This means that the likelihood L(G∣O,Y )
is no longer binomial. The analytical procedure to calculate the likelihood im-
plies calculating all possible error-dependent assignments of nucleotides to a
genotype, for every genotype at each ploidy. This requires a large amount of
combinatorics and calculations at each locus, and therefore approximation is
necessary to tackle this problem.
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The approximation used in our software is an extension of the diploid GATK
model (37) and mostly resemble the approach of (29), where the idea of the
authors is to estimate genotypes at each nucleotide site without considering
linked loci, and to set the error ϵr to a uniform value ϵ. Further considerations
lead to an approximation of the genotype likelihood that ignores the Phred
error. Such method is essentially what is implemented in SAMtools (31). In our
case, the Phred error is still included in the model and varies across reads in a
nucleotide locus. Our assumption leads to the following genotype likelihood:

L(G∣O,Y ) =
C

∏

r=1

1

Y + 1
p(Or ∣G, ϵr, Y ), (1)

where p(Or ∣G, ϵr, Y ) is defined analogously as in the case of constant Phred
error:

p(Or ∣G, ϵr, Y ) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 − ϵr, if Or inG
ϵr
3

otherwise

1.3 Estimation of population frequencies

Population allele frequencies are calculated prior to the HMM optimisation to
decrease the computational time. Specifically, the population frequency Fn at
the n-th locus is estimated under the assumption of ploidy level being arbitrarily
very high to let frequencies represent any possible genotype.

Let F̂m,n be the observed minor allele frequency for sample m at locus n.

The population frequency estimator for Fn, say F̂n, is defined as

F̂n =
1

Cn

M

∑

m=1
Cm,nF̂m,n, (2)

where Cn = ∑
M
m=1Cm,n.

1.4 Hidden Markov Model for ploidy inference

Here, the HMM is defined, and the inferential process of ploidy levels from the
HMM is illustrated. Mathematical details, proofs and algorithm analysis of the
HMM for ploidy inference (Fig. S1) are presented here.

The Markov chain of ploidy levels is characterised by a ∣Y ∣ × ∣Y ∣ transition
matrix AAA, and a ∣Y ∣-long vector δδδ of starting probabilities for the first latent
state. Here, Y is the set of ploidy levels included in the model, and ∣Y ∣ is its
cardinality. The average depth for genome m in window k is characterised by the
ploidy-dependent parameters α

Y
(k)
m
, β

Y
(k)
m
∈ R, describing mean and dispersion

of the data, for each Y
(k)
m ∈ Y. For brevity we write the parameters of the depth

distribution in vector form, i.e. ααα, βββ. The allele frequencies calculated through
Equation (2) in the k-th window of loci serve as a proxy for the probability of
sequenced reads.
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HMMploidy: inference of ploidy levels from short-read sequencing data 3

Heuristic Expectation Conditional Maximization (HECM) The ECM
algorithm is used to infer the parameters AAA, δδδ modelling the sequence of ploidy
levels. This is done in two iterative steps by exploiting the ploidy-dependent
distributions of the observed data (sequenced reads and coverage in each win-
dow). The first step is the well-known forward-backward algorithm (43; 8), that
computes in each window the probability of a ploidy given all the observed data.
This is done in an efficient way through dynamic programming and exploitation
of Markov properties with computational complexity O(∣Y ∣2K) (i.e. linear in
the number of loci windows) by implementing two calculation sweeps, starting
respectively at the end and at the beginning of the observation sequence.

The forward-backward algorithm thus creates the mathematical link between
ploidy levels and observed data, and allows us to update the parameters gov-
erning the Markov chain of ploidy levels with the ECM algorithm in a subse-
quent step. The ECM algorithm maximizes a value (called intermediate quan-
tity) strictly related to the likelihood of the model, where the free variables of the
maximization are the matrix AAA, the vector δδδ and the parameters of the distribu-
tion of observed data. This procedure continues iteratively by recalculating the
forward-backward posteriors and the update parameters with the ECM, until
the intermediate quantity cannot be further improved.

We start by illustrating the steps of the ECM algorithm, and subsequently
adding the heuristic procedure. For ease of notation, λ is the tuple of pa-
rameters (AAA,δδδ,βββ,ααα) ∈ Λ, considered as two separate tuples: λ = (λ1, λ2) =
((AAA,δδδ,βββ), (ααα)) ∈ Λ1 ×Λ2. Given the parameters λℓ−1 calculated at the (ℓ− 1)-th
step of the ECM, the ℓ-th iteration to calculate λℓ follows the steps below:

1. calculate the intermediate quantity

Q(λℓ1∣λ
ℓ−1
) = E[ lnp(O(1∶K)m , Y (1∶K)m ∣(λℓ1, λ

ℓ−1
2 )) ∣O

(1∶K)
m , λℓ−1];

2. calculate λℓ1 = argλℓ
1∈Λ1

maxQ(λℓ1∣λ
ℓ−1
));

3. calculate the intermediate quantity Q(λℓ2∣(λ
ℓ
1, λ

ℓ−1
2 )) analogously to step 1;

4. calculate λℓ2 = argλℓ
2∈Λ2

maxQ((λℓ2)∣(λ
ℓ
1, λ

ℓ
2)).

Here, we used O
(1∶K)
m , Y

(1∶K)
m to denote O1

m, . . . ,O
K
m and Y 1

m, . . . , Y
K
m , respec-

tively.
The ECM algorithm for a HMM with negative binomial observations thus

consists of two EC-steps and two maximization steps. Specifically for the four
steps above:

1. the first EC-step calculates the expected complete-data log-likelihood with
the Markov chain parameters and the dispersion (βββ) parameters unknown
and to be estimated at the next M-step (maximization step), conditionally
to the mean (ααα) parameters estimated at the previous iteration of ECM;

2. the first M-step maximizes the intermediate quantity calculated at the first
step w.r.t. the unknown parameters;

3. the second EC-step replicates the first one inverting the roles of known and
unknown parameters;
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4. the second intermediate quantity can be maximized w.r.t. the mean param-
eters.

The EC-step of the ECM algorithm is very similar to the classical forward-
backward formulation in the E-step of the EM algorithm (7; 43). The E-step
expresses the expected complete-data log-likelihood with the all HMM param-
eters unknown and to be estimated at the next M-step. The E-step works for
observations distributed with one parameter, or multiple parameters whose max-
imization equations can be solved in normal form, i.e. by isolating the parameter
of interest in each equation (e.g. Poisson and Gaussian distribution). The EC-
step is a formulation of the E-step where only a portion of the HMM parameters
can be estimated in one maximization step (the M-step). This is a characteristic
of emission distributions whose parameters can be estimated only in function of
each other in a system of equation (e.g. gamma and negative binomial distribu-
tions). The average depths are modelled with a negative binomial distribution
to take data overdispersion into account (11).

The calculation of AAA,δδδ at iteration ℓ is solved by using the classical forward-
backward algorithm (43; 8), therefore we will only briefly mention the necessary
elements of it, while we analyzed more in depth the estimation of means and
dispersions.

The scope of each ECM iteration is to maximize the intermediate quantities
to achieve the highest value of the complete data log-likelihood. In this way,
at each iteration, new parameters can be used to rewrite Q and remaximize it
until convergence. It is worth remembering again that the resulting parameters
maximize a quantity different from the log-likelihood of the observed data - the
ECM uses two forms of Q to make the maximization feasible, since expressing
the log-likelihood directly is not concretely achievable.

The intermediate quantity can be explicitly written as the sum of three terms
involving separately the matrix AAA, the vector δδδ and the vectors ααα,βββ:

Q(λℓ1∣λ
ℓ−1
) = ∑

Y
(1∶K)
m ∈Y

ln(δℓ
Y
(1)
m
)p(Y (1∶K)m ∣O(1∶K)m ,C(1∶k)m , λℓ−1) (3)

+ ∑

Y
(1∶K)
m ∈Y

∑

K

k=2 ln(AAA
ℓ

Y
(k−1)
m Y

(k)
m
)p(Y (1∶K)m ∣O(1∶K)m ,C(1∶k)m , λℓ−1) (4)

+ ∑

Y
(1∶K)
m ∈Y

K

∑

k=1
( ln (p(O(k)m ∣Y

(k)
m , F (k))) + ln (p(C(k)m ∣Y

(k)
m , αℓ−1

Y
(k)
m
, βℓ

Y
(k)
m
)))

p(Y (1∶K)m ∣O(1∶K)m ,C(1∶k)m , λℓ−1) (5)

where the logarithm of a matrix is intended element-wise.
Consider the (m,k)-th forward variable defined by

f(y(k)m ) = p(O
(1∶k)
m ,C(1∶k)m , Y (k)m = y(k)m ∣λ),

that is, the probability of the first k observations and k-th ploidy y
(k)
m given the

parameters λ. Define the (m,k)-th backward variable as

b(y(k)m ) = p(O
(k+1∶K)
m ,C(k+1∶K)m ∣Y (k)m = y(k)m , λ),
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HMMploidy: inference of ploidy levels from short-read sequencing data 5

that is, the probability of the latest (K − k) observations, given the k-th ploidy

y
(k)
m and the parameters λ. The forward and backward variables can be com-
puted with an iterative procedure (43, eq. 19,20,24,25) and allow us to calculate
efficiently the likelihood of the data as

p(O(1∶K)m ,C(1∶k)m ∣λ) = ∑
y
(k)
m ∈Y

f(y(k)m )b(y
(k)
m ) for any k = 1, . . . ,K.

The two terms in the equation lines (3) and (4) include only the parameters
δδδ and AAA, respectively. This simplifies finding optimisation formulae for those
parameters by considering separately each term of lines (3) and (4). Such opti-
misation equations for δδδ and AAA are easily derived through Lagrange multipliers
(43, eq. 40a,40b). This does not solve the second step of the ECM algorithm,
because the optimum for βββ is still not calculated.

It is easy to see that both ααα and βββ concur in defining line (5). This is what
originates the conditional nature of the ECM algorithm, i.e. ααα and βββ cannot be
optimised independently. Therefore we first optimise βββ considering the values of
ααα calculated at the (ℓ−1)-th iteration of the ECM algorithm. Using the forward
and backward variables, and excluding terms independent from the Poisson-
Gamma parameters, Equation (5) can be written as follows:

∑

Y
(1∶K)
m ∈Y

K

∑

k=1
u(m,k) ln (p(C(k)m ∣Y

(k)
m , αℓ−1

Y
(k)
m
, βℓ

Y
(k)
m
))

= ∑

Y
(1∶K)
m ∈Y

K

∑

k=1
u(m,k) ln(

Γ (αℓ−1
Y
(k)
m

+C
(k)
m )

Γ (C
(k)
m + 1)Γ (αℓ−1

Y
(k)
m

)

)

+ ∑

Y
(1∶K)
m ∈Y

K

∑

k=1
u(m,k)(C(k)m ln(

1

βℓ

Y
(k)
m

+ 1
) + αℓ−1

Y
(k)
m

ln(
βℓ

Y
(k)
m

βℓ

Y
(k)
m

+ 1
))

where uℓ(m,k) = f(y
(k)
m )b(y

(k)
m )/p(O

(1∶K)
m ,C

(1∶k)
m ∣λℓ). By setting the partial deriva-

tive of Q(λℓ1∣λ
ℓ−1
) w.r.t. a certain βℓ

y
(k)
m

, y
(k)
m ∈ Y equal to zero as below, we will

be able to calculate the optimum for the derivative’s parameter:

∂Q(λℓ1∣λ
ℓ−1
)

∂βℓ

y
(k)
m

=

K

∑

k=1
−u(m,k)

C
(k)
m

βℓ

y
(k)
m

+ 1
+

K

∑

k=1
u(m,k)

αℓ−1
Y
(k)
m

βℓ

y
(k)
m

(βℓ

y
(k)
m

+ 1)
= 0.

Solving for βℓ

y
(k)
m

leads to the optimum of the parameter:

βℓ

y
(k)
m
=

αℓ−1
Y
(k)
m
∑

K
k=1 u(m,k)

∑
K
k=1 u(m,k)C

(k)
m

.

This completes the step 2 of the ECM. In our implementation of HMMploidy, we
want to leverage the information contained in the genotype likelihoods, whose
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partial derivative goes to zero and in principle are not integrated in the optimi-
sation. In HMMploidy, we add the genotype likelihoods to the depth distribution
prior to optimisation, so that forward and backward variables contain informa-
tion on both depth and genotypes, and allow the identification of different states
with distinct ploidy levels.

The value of Q(λℓ2∣(λ
ℓ
1, λ

ℓ−1
2 )) can be easily calculated as in step 1, and by

setting the partial derivative of Q(λℓ2∣(λ
ℓ
1, λ

ℓ−1
2 )) w.r.t. α

ℓ

y
(k)
m

, y
(k)
m ∈ Y, to zero,

we obtain:

K

∑

k=1
u(m,k)( ln (

βℓ

y
(k)
m

βℓ

y
(k)
m

+ 1
) + ψ0(α

ℓ

y
(k)
m
+C(k)m ) − ψ0(α

ℓ

y
(k)
m

)) = 0.

Solving for αℓ

y
(k)
m

is done through the Newton-Rapson method (7), completing

step 4 of the ECM.

Heuristic step and ploidy inference The ECM algorithm is repeated as
an iterative sequence of EC and M steps, until the expected conditional log-
likelihood of the model satisfies a convergence criteria. When convergence is
achieved, HMMploidy performs the heuristic step, by running few iterations of
the ECM over the HMM, where the set of ploidy levels is reduced by one, and
the parameters for initialisation are the final ones from the ECM. We assume
that, if the HMM has an overfitting set of ploidy levels, observation parameters
are overlapping (28) for two or more ploidy levels. Therefore, removing one
unnecessary ploidy requires only few extra iterations for the EM to converge
again. The Bayesian Information Criterion (BIC) (7; 8) is used to compare the
HMM with the reduced HMMs. If there is a reduced HMM with a better BIC
score, then the ECM runs again on such HMM, otherwise it stops. Such method
is an adaptation of the suggestion in (28).

After the HMM is reduced through the BIC comparison, we reduce the tran-
sition matrix between ploidy levels, i.e. we remove ploidy values for which there
is almost zero probability of lasting a reasonable number of adjacent windows.
In other words, we remove ploidy levels that will last for the length of one or few
more windows of loci. Once the HMM parameters are determined through the
heuristic sweep, the standard Viterbi algorithm (51) is applied to infer the most
likely sequence of ploidy levels from the parameters of the HMM. The Viterbi
algorithm is another example of dynamic programming, allowing to bypass the
calculation of all possible ∣Y ∣K sequences of ploidy levels to determine which one
is the best.

Reduction of the transition matrix An important element of a HMM is the
transition matrix between states and the meaning of each state. Thanks to the
heuristic ECM, HMMploidy is able to assign a ploidy to each state of the Markov
chain in an unsupervised mode without overfitting the data. However, one needs
to check whether transitions between states follow a biological meaning. For
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HMMploidy: inference of ploidy levels from short-read sequencing data 7

example, it is unlikely that a ploidy occurs only in a small window of loci, and
then shifts again to the previous value, i.e. such event is likely due to noise or
other biological artefact altering the quality and behaviour of the data (e.g. the
presence of a centromere).

Once the HECM algorithm has converged to a set of parameters λ ∈ Λ, it
is possible to perform an optional filtering on the transition matrix AAA of the
HMM. Given the matrix AAA of size ∣Y ∣ × ∣Y ∣, the time of permanence in a state
y ∈ Y has geometric distribution with parameter AAAy,y (9). If the user expects
that a ploidy level has to remain uninterrupted for at least a certain number
of windows N , then a corresponding minimum value for the parameter of the
geometric distribution can be estimated. In fact, the probability of permanence
in ploidy y for at least N > 0 windows is given by the cumulative distribution
function of the geometric distributions, that is, 1 − (1 − y)N .

Given N , HMMploidy calculates the minimum value of y that has to be on
the diagonal of AAA. Rows and columns corresponding to diagonal entries lower
than y are cancelled and AAA is rendered stochastic again. Corresponding values of
δ, α, β are also removed. Afterwards, the HMM optimisation is performed again
on the new subset of ploidy levels for adjustment of the remaining parameters.

Application in presence of sparse polymorphic sites Given an individual
m, consider each k-th window of its genome. In presence of very few polymorphic
sites in each window, the genotype likelihoods might not be enough to determine
the ploidy, especially when the data is at low-depth and in presence of error, as
it is often the case with high-throughput data.

To consider this case, the option useGeno is added to the software. When
useGeno=’yes’, the HMM infers the ploidy numbers as explained in the main
text. Otherwise, if When useGeno=’no’, only the sequencing depth data is used
to infer the hidden states of a binomial HMM initially. This allows to consider
the largest possible windows of loci. Each latent state is then assigned a ploidy
by maximising Equation (1) over all the windows with same hidden state.

1.5 Results from the analysis of Cryptococcus Neoformans

Here we present all the inferred ploidy levels from the 23 isolates of Cryptococcus
Neoformans from the original study (45). Each figure contains:

– In the first line, inferred ploidy levels from chromosome 1 and 12 using the
full data,

– In the second line, inferred ploidy levels from chromosome 1 and 12 using
20% of the original sequencing data.

Most of the results from the downsampled data coincide with the inference from
the whole data. Higher ploidy levels can be hard to detect in some cases, and are
occasionally detected as a constant lower ploidy or as a highly varying sequence
of adjacent ploidy levels. However, downsampling seems to recover a constant
haploid chromosome 12 in sample cctp50 (Fig. S12B-D) according to what the
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8 S. Soraggi et al.

sequencing depth indicates. This means that downsampling might reduce the
effect of noisy data points that could alter the detected ploidy. In fact, the
triploid sections of chromosome 12 are at the extremities of the chromosome,
where the data is more affected by noise and in general by a lower sequencing
quality.

All the other samples recover successfully the original ploidy levels in down-
sampled data. However, note that there are few changes in ploidy probably due to
noise or the presence of reads close to the centromere (Fig. S21, S16, S15, S13,
S14). Ploidy levels for Cryptococcus Neoformans samples inferred by competing
methods nQuire, nQuire.Den, and ploidyNGS are presented in Supplementary
Table 1.
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1.6 Supplementary Figures

Y
(1)
m Y

(2)
m

⋯⋯ Y
(K)
m

C
(1)
m O

(1)
m C

(2)
m O

(2)
m C

(K)
m O

(K)
m

Figure S 1: Hidden Markov Model for ploidy inference. Graphical repre-

sentation of the HMM to infer the ploidy levels of the m-th genome. Y
(k)
m is the

ploidy of the k-th window of genome m. The ploidy-dependent emissions con-

sist of the average sequencing depth C
(k)
m and the sequenced data O

(k)
m , whose

distributions are respectively described by a Poisson-gamma distribution and by
Equation (1).
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10 S. Soraggi et al.

A

B

Figure S 2: Histograms of minor allele frequencies and inferred ploidy
with HMMploidy at low depth. (A) Distribution of the minor allele frequencies
of one simulated triploid genomes (out of a sample of 20 individuals) of 10kbp
at depth 1X for the haploid state. It is not trivial to determine the ploidy by
visual inspection of this graph. (B) Inferred ploidy with HMMploidy from the
same individual on windows of 500 bases. Using the information contained in all
the other individuals, it is possible to infer the correct ploidy.
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Minor allele frequency calculated from
20 triploid genomes − depth 1X

MAF
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Figure S 3: Histograms of minor allele frequencies for many samples at
low depth. Histogram of the estimated minor allele frequency for 20 simulated
triploid individuals in a window of 500 bases. The distribution is closer to the one
expected for a triploid individual, but it is still not possible to infer the ploidy
by a simple visual inspection of the graph. The use of genotype likelihoods in
HMMploidy supplies additional information to infer the correct ploidy.
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Figure S 4: Relationship between ploidy levels and detection rate. Power
of HMMploidy to detect the correct ploidy level (on y-axis) on simulated genomes
with increasing ploidy (on x-axis) from one to six at depth 1X. The power de-
creases with higher ploidy numbers because genotype likelihoods lack informa-
tion to characterise correct genotypes.
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CPU time of HMMploidy at varying genome lenghts

CPU time of HMMploidy at varying number of windows of loci

Figure S 5: CPU running time for HMMploidy. (A) CPU running time of
HMMploidy by simulating genomes of various lengths and keeping the windows
number to 100. The time is quite constant, meaning that the loading and process-
ing of the data is very fast, and most of the time is taken by the HMM inference.
(B) CPU running time of HMMploidy by increasing the number of windows on a
10MB genome. The time grows accordingly with K in an almost linear fashion
(due to a probable overhead for preprocessing the data in many windows), as
predicted by the computational cost of the forward-backward algorithm.
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Figure S 6: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate 16001-
d106. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 7: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate 16001-
d1. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 8: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate cctp27-
d121. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 9: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate cctp27.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 10: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate cctp50-
d257. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 11: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate cctp50-
d409. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 12: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate cctp50.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 13: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr14-
d97. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 14: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr13.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.29.450340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450340
http://creativecommons.org/licenses/by/4.0/


HMMploidy: inference of ploidy levels from short-read sequencing data 23

	Inferred ploidies from Supercontig_3.1
Sample: ifnr14

Position (Mb)

pl
oi

dy

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●
●
●●

●

●
●●●

●●●●●
●

●●●
●●

●
●
●

●●●

●

●
●
●●●

●●●●
●

●
●
●●

●

●
●
●

●●●●

●
●●●●

●●
●●

●●●
●●

●

●●●

●
●●●

●
●

●

●●

●
●
●
●
●●●●

●

●●
●
●

●●

●
●●●

●

●

●●
●

●●
●●●●●

●

●

●
●
●

●

●●●
●

●
●
●●●

●●●●
●●●

●
●
●
●
●
●●

●

●
●
●●

●●●
●●●●●●

●●
●●

●●

●
●
●●●●●

●●●

●
●
●
●●

●●●
●
●

●

●●●

●

●

●●

●

●●●●
●
●
●

●

●
●
●
●

●

●

●

●
●

●●●●
●

●

●●●

●

●●
●
●●●●●

●

●●
●

90
11

0
13

0

Window−Mean Depth

Position (Mb)

de
pt

h

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

● Mean Depth Neg.Bin. Mean

	Inferred ploidies from Supercontig_3.12
Sample: ifnr14

Position (Kb)

pl
oi

dy

9.
0

34
.9

60
.8

86
.6

11
2.

5

13
8.

4

16
4.

3

19
0.

1

21
6.

0

24
1.

9

26
7.

7

29
3.

6

31
9.

5

34
5.

4

37
1.

2

39
7.

1

42
3.

0

44
8.

9

47
4.

7

50
0.

6

52
6.

5

55
2.

4

57
8.

2

60
4.

1

63
0.

0

65
5.

8

68
1.

7

70
7.

6

73
3.

5

75
9.

3

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●

●
● ●

●

● ● ●
●

● ●

●

●

●

●

● ● ● ● ●

● ●

●
●

●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

● ●

● ● ● ● ●
●

● ●

● ●

● ●

● ●
●

●

●

●
●

●

●

●

● ● ●
● ●

●
●

●

●
● ●

90
11

0
13

0

Window−Mean Depth

Position (Kb)

de
pt

h

9.
0

34
.9

60
.8

86
.6

11
2.

5

13
8.

4

16
4.

3

19
0.

1

21
6.

0

24
1.

9

26
7.

7

29
3.

6

31
9.

5

34
5.

4

37
1.

2

39
7.

1

42
3.

0

44
8.

9

47
4.

7

50
0.

6

52
6.

5

55
2.

4

57
8.

2

60
4.

1

63
0.

0

65
5.

8

68
1.

7

70
7.

6

73
3.

5

75
9.

3

● Mean Depth Neg.Bin. Mean

A B

	Inferred ploidies from Supercontig_3.1
Sample: ifnr14

Position (Mb)

pl
oi

dy

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

1
2

0

1

P
os

te
rio

r

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●
●
●●

●

●
●●●

●●●●●●
●●●●●

●
●
●

●●●
●

●
●
●●●

●●●●
●

●
●
●●

●

●
●
●

●●●●

●
●●●●●●

●●

●●●
●●

●

●●●

●
●●●

●●

●

●●

●
●
●
●
●●●●

●

●●
●
●

●●
●
●●

●

●

●

●●
●
●●

●●●●●
●

●

●
●
●

●
●●●

●

●
●●●●

●●●●
●●●

●
●

●●●
●●

●
●
●
●●

●●●
●●●●●●

●●
●●

●●

●
●
●●●●●

●●●
●
●

●
●●

●●●
●
●

●

●●●
●
●

●●

●

●●●●
●
●
●

●

●
●
●●

●

●

●

●
●

●●●●
●

●

●●●

●

●●●
●●●●●●

●●
●

18
22

26
30

Window−Mean Depth

Position (Mb)

de
pt

h

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

● Mean Depth Neg.Bin. Mean

	Inferred ploidies from Supercontig_3.12
Sample: ifnr14

Position (Kb)

pl
oi

dy

9.
0

34
.9

60
.8

86
.6

11
2.

5

13
8.

4

16
4.

3

19
0.

1

21
6.

0

24
1.

9

26
7.

7

29
3.

6

31
9.

5

34
5.

4

37
1.

2

39
7.

1

42
3.

0

44
8.

9

47
4.

7

50
0.

6

52
6.

5

55
2.

4

57
8.

2

60
4.

1

63
0.

0

65
5.

8

68
1.

7

70
7.

6

73
3.

5

75
9.

3

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●

●
● ●

●

● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●
●

●
●

●

● ●

●
●

●

● ●
●

●

●

●

●

●
●

● ●

● ● ● ●
●

●
● ●

● ●

●
●

● ● ●

● ●
●

●

●

●

●

● ● ● ● ●

●
●

●

● ●
●

18
22

26

Window−Mean Depth

Position (Kb)

de
pt

h

9.
0

34
.9

60
.8

86
.6

11
2.

5

13
8.

4

16
4.

3

19
0.

1

21
6.

0

24
1.

9

26
7.

7

29
3.

6

31
9.

5

34
5.

4

37
1.

2

39
7.

1

42
3.

0

44
8.

9

47
4.

7

50
0.

6

52
6.

5

55
2.

4

57
8.

2

60
4.

1

63
0.

0

65
5.

8

68
1.

7

70
7.

6

73
3.

5

75
9.

3

● Mean Depth Neg.Bin. Mean

C D

Figure S 15: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr14.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 16: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr63-
d128. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 17: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr18.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 18: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr19.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 19: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr24-
d101. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 20: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr23-
d179. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 21: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr23.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 22: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr27.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 23: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr34.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 24: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr35.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.29.450340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450340
http://creativecommons.org/licenses/by/4.0/


HMMploidy: inference of ploidy levels from short-read sequencing data 33

	Inferred ploidies from Supercontig_3.1
Sample: ifnr4

Position (Mb)

pl
oi

dy

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●●
●
●

●

●●●●●
●
●●●

●●●
●
●
●
●
●
●●

●

●●●●
●
●
●

●

●
●
●●

●

●
●
●●

●
●●

●
●
●●●

●●
●
●●●

●
●
●●●●

●
●
●●

●
●
●

●
●
●●●

●●●●●
●●

●
●
●

●●

●●
●
●
●
●

●
●●

●

●

●

●●
●●●

●

●

●●●●

●

●●

●

●
●●

●●●●●●●●

●●
●●

●●

●
●

●
●

●●●
●●●●●

●●●

●●
●●

●●●
●
●
●
●
●●●●●●●●●●●

●
●

●

●

●

●
●
●●●

●●
●
●
●

●
●

●
●

●
●●●

●

●
●
●
●●●●

●
●

●
●
●
●
●
●●●

●
●
●

●

●

●

●
●●●

●
●●●

●
●
●

80
10

0
12

0

Window−Mean Depth

Position (Mb)

de
pt

h

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

● Mean Depth Neg.Bin. Mean

	Inferred ploidies from Supercontig_3.12
Sample: ifnr4

Position (Kb)

pl
oi

dy

13
.0

38
.8

64
.6

90
.3

11
6.

1

14
1.

8

16
7.

6

19
3.

4

21
9.

1

24
4.

9

27
0.

6

29
6.

4

32
2.

2

34
7.

9

37
3.

7

39
9.

4

42
5.

2

45
1.

0

47
6.

7

50
2.

5

52
8.

2

55
4.

0

57
9.

8

60
5.

5

63
1.

3

65
7.

0

68
2.

8

70
8.

6

73
4.

3

76
0.

1

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●

●
● ● ●

●

● ●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●
●

●
●

●

● ●

●
●

●

● ●

● ●

● ●
●

● ● ●
●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●
●

70
90

11
0

Window−Mean Depth

Position (Kb)

de
pt

h

13
.0

38
.8

64
.6

90
.3

11
6.

1

14
1.

8

16
7.

6

19
3.

4

21
9.

1

24
4.

9

27
0.

6

29
6.

4

32
2.

2

34
7.

9

37
3.

7

39
9.

4

42
5.

2

45
1.

0

47
6.

7

50
2.

5

52
8.

2

55
4.

0

57
9.

8

60
5.

5

63
1.

3

65
7.

0

68
2.

8

70
8.

6

73
4.

3

76
0.

1

● Mean Depth Neg.Bin. Mean

A B

	Inferred ploidies from Supercontig_3.1
Sample: ifnr4

Position (Mb)

pl
oi

dy

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

1
2

3
4

0

1

P
os

te
rio

r

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●●
●
●

●

●●●●●
●
●●●

●●●
●
●
●
●
●
●●

●

●●●●
●
●
●

●

●
●
●●

●

●
●●●

●
●●

●
●
●●●

●●
●
●●●

●
●
●●●●

●
●
●●

●
●
●

●
●
●●●

●●●●●
●●

●
●
●

●●

●●

●
●
●
●

●
●
●

●
●●

●●
●●●

●

●

●●
●
●

●

●●

●

●
●●

●●●●●●●●

●●
●●

●●

●
●

●
●

●●●
●●●●●

●●●

●●
●●

●●●
●
●●

●
●●

●●●
●●

●
●●●

●
●

●

●

●

●
●
●●●

●●
●
●
●

●
●
●
●

●
●●●

●

●
●
●
●●●●

●
●

●
●
●●

●
●●●

●

●
●

●

●

●

●
●●●

●
●●●

●
●
●

16
20

24
28

Window−Mean Depth

Position (Mb)

de
pt

h

0.
0

0.
1

0.
2

0.
3

0.
3

0.
4

0.
5

0.
6

0.
6

0.
7

0.
8

0.
9

1.
0

1.
0

1.
1

1.
2

1.
3

1.
3

1.
4

1.
5

1.
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
0

2.
1

2.
2

2.
3

● Mean Depth Neg.Bin. Mean

	Inferred ploidies from Supercontig_3.12
Sample: ifnr4

Position (Kb)

pl
oi

dy

13
.0

38
.8

64
.6

90
.3

11
6.

1

14
1.

8

16
7.

6

19
3.

4

21
9.

1

24
4.

9

27
0.

6

29
6.

4

32
2.

2

34
7.

9

37
3.

7

39
9.

4

42
5.

2

45
1.

0

47
6.

7

50
2.

5

52
8.

2

55
4.

0

57
9.

8

60
5.

5

63
1.

3

65
7.

0

68
2.

8

70
8.

6

73
4.

3

76
0.

1

1

0

1

P
os

te
rio

r

Inferred Ploidy Posterior Prob.

●

●
● ● ●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

● ●

● ●

●
●

●
●

● ●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

16
20

24

Window−Mean Depth

Position (Kb)

de
pt

h

13
.0

38
.8

64
.6

90
.3

11
6.

1

14
1.

8

16
7.

6

19
3.

4

21
9.

1

24
4.

9

27
0.

6

29
6.

4

32
2.

2

34
7.

9

37
3.

7

39
9.

4

42
5.

2

45
1.

0

47
6.

7

50
2.

5

52
8.

2

55
4.

0

57
9.

8

60
5.

5

63
1.

3

65
7.

0

68
2.

8

70
8.

6

73
4.

3

76
0.

1

● Mean Depth Neg.Bin. Mean

C D

Figure S 25: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr4.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 26: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate ifnr6.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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Figure S 27: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate rtc24-
d154. (A-B) Results using the whole data on chromosomes 1 (A) and 12 (B).
(C-D) Results using the data downsampled to 20% of its original depth on
chromosomes 1 (C) and 12 (D).
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Figure S 28: Ploidy inference on full and downsampled sequencing data.
Inferred ploidy levels from HMMploidy for chromosome 1 and 12 of isolate rtc24.
(A-B) Results using the whole data on chromosomes 1 (A) and 12 (B). (C-D)
Results using the data downsampled to 20% of its original depth on chromosomes
1 (C) and 12 (D).
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