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The rapid growth of high-throughput single-cell and single-
nucleus RNA sequencing technologies has produced a wealth of
data over the past few years. The available technologies con-
tinue to evolve and experiments continue to increase in both
number and scale. The size, volume, and distinctive charac-
teristics of these data necessitate the development of new soft-
ware and associated computational methods to accurately and
efficiently quantify single-cell and single-nucleus RNA-seq data
into count matrices that constitute the input to downstream
analyses.

We introduce the alevin-fry framework for quantifying
single-cell and single-nucleus RNA-seq data. Despite being
faster and more memory frugal than other accurate and scal-
able quantification approaches, alevin-fry does not suffer
from the false positive expression or memory scalability issues
that are exhibited by other lightweight tools. We demonstrate
how alevin-fry can be effectively used to quantify single-cell
and single-nucleus RNA-seq data, and also how the spliced and
unspliced molecule quantification required as input for RNA ve-
locity analyses can be seamlessly extracted from the same pre-
processed data used to generate regular gene expression count
matrices.
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1. Introduction
Both the number and scale of single-cell RNA-seq (scRNA-
seq) experiments have been growing rapidly in recent
years (1). The data generated by various single-cell sequenc-
ing technologies have distinct characteristics preventing them
from being processed by the otherwise mature and widely
used tools developed for gene-level or transcript-level quan-
tification from bulk RNA-seq data (e.g. (2–4)). While Cell
Ranger exists as a commercial solution for preprocessing
data generated using the popular 10x Genomics technologies
platform, it is both computationally and memory intensive,
and since version 3 has been developed as a closed-source
product, limiting the transparency of the methods it imple-
ments. Further, it does not have built-in support for tech-
nologies beyond those developed by 10x Genomics. There-
fore, to address the computational challenges that arise in the
processing of high-throughput single-cell RNA-seq data, nu-
merous new approaches for efficient preprocessing have been
developed.

Srivastava et al. (5) introduced alevin, which focused on
improving the computational efficiency of tagged-end single-

cell RNA-seq quantification and also introduced a novel ap-
proach for resolving gene-multimapping UMIs. Likewise,
the raindrop tool (6) pairs a custom lightweight mapping
approach with a reduced index to count UMIs mapping to
genes, providing a fast counting approach. Melsted et al.
(7) introduced the kallisto|bustools pipeline for pro-
cessing single-cell RNA-seq data; the approach focuses on
modularity and speed, using pseudoalignment (3) to the tran-
scriptome to produce intermediate BUS files (8) that are sub-
sequently manipulated using bustools commands.

Most recently, Kaminow et al. (9) introduced STARsolo.
This preprocessing method is built directly atop the STAR
aligner on which Cell Ranger also relies. STARsolo fo-
cuses on being a fast and easy-to-use solution for processing
single-cell and single-nucleus RNA-seq (snRNA-seq) data.
While being much faster and more memory frugal than Cell
Ranger, it can be tuned to mimic Cell Ranger almost
exactly. However, by virtue of performing spliced align-
ment to the genome, STARsolo is more memory and time-
intensive than pseudoalignment to the transcriptome (at least
for scRNA-seq data).

In this work, we present alevin-fry, a config-
urable framework for the processing of scRNA-seq and
snRNA-seq data. Alevin-fry has been designed as
the successor to alevin. It subsumes the core fea-
tures of alevin, while also providing important new
capabilities and considerably improving the performance
profile, and we anticipate that new method development
and feature additions will take place primarily within
the alevin-fry codebase. Alevin-fry can prepro-
cess scRNA-seq data much more quickly than the next-
fastest method, kallisto|bustools, while also virtu-
ally eliminating the large numbers of spuriously expressed
genes predicted under pseudoalignment-to-transcriptome ap-
proaches (9). Simultaneously, alevin-fry exhibits sim-
ilar accuracy to STARsolo while processing data appre-
ciably faster and requiring less memory. On snRNA-seq
data, where intronic sequences are often included for quan-
tification, alevin-fry and STARsolo are both faster
and use less memory than kallisto|bustools. In
fact, alevin-fry can process snRNA-seq data with the
same speed and memory efficiency with which it pro-
cesses scRNA-seq data, substantially outperforming both
STARsolo and kallisto|bustools. Alevin-fry is
an accurate, computationally efficient, and easy-to-use tool
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that presents a unified framework for preprocessing single-
nucleus and single-cell RNA-seq data for gene expression
or RNA velocity analysis, making it an appealing choice for
processing the diverse and growing array of single-cell RNA-
sequencing experiments being performed.

2. Methods
Alevin-fry is a configurable framework for the process-
ing of single-cell and single-nucleus data. It makes use of
salmon (4) for basic barcode and UMI parsing and the map-
ping of the reads to the constructed reference index. The
output of salmon, when configured to produce output for
alevin-fry, is a RAD (Reduced Alignment Data) format
file, which is a chunk-based binary file optimized for ma-
chine parsing, that encodes the relevant information neces-
sary for subsequent (post-mapping) processing of the data
(Section S1). Alevin-fry consumes the salmon output
directory — containing the RAD file and other relevant meta
information about the sample — and processes the data in a
number of steps. The main processing steps correspond to
permit-list generation, RAD file collation, and finally, quan-
tification of the collated RAD file. We describe the options
provided by alevin-fry and further details of these spe-
cific steps below.

2.1. Constructing a reference index. The alevin-fry
workflow quantifies single-cell data based on a reference in-
dex created by salmon. Here, we will discuss two types of
reference sequences that can be used to construct such an in-
dex, and describe the relative advantages and disadvantages
of these options. Regardless of the reference over which one
decides to build an index, salmon makes use of the puffer-
fish (10) index, and a dense or sparse index variant can be
constructed.

First, at least for the processing of single-cell (not single-
nucleus) data, one might consider building a reference index
over the spliced transcriptome. The main benefits of this ap-
proach are that it is simple, and the resulting index tends to
be very small. For example, when using the spliced tran-
scriptome extracted from the latest 10x Genomics version of
GRCh38, the (dense) reference index is only ∼ 700MB, and
the entire mapping and quantification procedure can be per-
formed in ∼ 3GB of RAM.

However, while the frugal resource use of an index re-
stricted to only the spliced transcriptome is appealing, it
comes with potential drawbacks. The most significant draw-
back, perhaps, is that it results in substantial false positive
rates (i.e. spuriously detected genes) (9). One likely mecha-
nism is that in typical single-cell experiments, some fraction
of reads (in cases, up to ∼ 25%) derive from intronic or in-
tergenic sequences rather than from spliced transcripts (9).
When these true sequences of origin are absent from the in-
dex, reads deriving from them may sometimes be spuriously
assigned to a spliced transcript that shares some local se-
quence similarity with the true locus of origin. The degree
to which such spurious assignment occurs also depends on
the specifics of the algorithm used for mapping; for example,

the problem is most pronounced when using pseudoalign-
ment (3), followed by pseudoalignment with structural con-
straints, and is somewhat (but not fully) mitigated when using
selective-alignment (9).

One alternative is to map to the genome directly, as is done
by Cell Ranger and STARsolo. This allows consider-
ation of all genomic loci when determining the appropriate
mapping location for a read, and results in the elimination
of the false positives that are induced by forcing reads to
map only against the annotated transcriptome. While build-
ing such an index is quite comprehensive, the associated costs
are that the index is inevitably larger, and the common align-
ment approaches for single-cell data (both Cell Ranger
and STARsolo are based on STAR (11) as their underly-
ing aligner) require considerably more RAM during align-
ment. Further, these approaches require solving the spliced
(rather than contiguous) alignment problem; while good so-
lutions (like STAR and HISAT2 (12)) exist, this problem is
more computationally intensive and lightweight approaches
like quasi-mapping (13) and pseudoalignment (3) have not
yet been adapted to the problem of spliced mapping.

We propose here an alternative middle-ground, which is
to align against a reference that indexes both the spliced
transcriptome and the set of (collapsed) intron sequences
that are likely to generate reads in a typical single-cell (or
single-nucleus) experiment. We employ a reference prepa-
ration algorithm to produce what we refer to as a splici
(spliced + intronic) reference, representing a slight modifi-
cation of references previously used for RNA velocity pre-
processing (7, 14). Further details explaining how this ref-
erence is constructed are provided in Section S2. Unlike the
spliced transcriptome alone, this index contains the intronic
sequences that are likely to give rise to a non-trivial fraction
of reads in a single-cell experiment, and including these se-
quences allows one to properly resolve read origin and avoid
the spurious mapping associated with mapping against the
spliced transcriptome alone, similar to what is accomplished
by decoy sequences in bulk RNA-seq quantification (15)
(though different in execution, as the quantification method
itself, and not just the mapping algorithm, is aware of these
sequences). On the other hand, by indexing the spliced tran-
scriptome and introns (with flanking sequence) directly, this
reference does not require spliced alignment and is therefore
amenable to both fast contiguous alignment algorithms like
selective-alignment (15) as well as lightweight approaches
like pseudoalignment (3). While the size of this reference
is considerably larger than the spliced transcriptome alone,
it is still smaller than the genome. For the index used by
alevin-fry, a dense index for a recent human reference
constructed in such a manner requires ∼ 10GB of RAM for
mapping, while the sparse index requires only ∼ 6.5GB. We
demonstrate below how mapping against this index addresses
the shortcomings of mapping against just the spliced tran-
scriptome, while retaining modest memory requirements.

2.2. Fragment mapping. As with constructing a reference
against which to map reads, multiple choices can be made
as to exactly how fragments should be mapped to the ref-
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Figure 1: Overview of the alevin-fry pipeline (operating in unspliced, spliced, ambiguous quantification mode). The
arrows highlight the flow of data through the pipeline, whose output is a matrix specifying the expected counts of each of the
considered splicing states of each gene within each quantified cell.

erence. In alevin-fry there are two main options avail-
able; selective-alignment (15), and pseudoalignment (3) with
structural constraints.

Broadly, selective-alignment is more accurate but more
computationally intenstive. Fragments are mapped against
the index using maximal exact matches between reads and
indexed unitigs (uniMEMS) as seeds, which are then chained
to determine a putative mapping score. Low-scoring pu-
tative mappings are discarded, and high-scoring mappings
are validated using alignment scoring via dynamic program-

ming, based on the banded, parallel implementation of min-
imap2 (16). All best-scoring alignments that are above a user-
defined threshold are reported as valid alignments for the
fragment. The explicit alignment scoring avoids the report-
ing of mappings where the locus having the best set of seed
matches is not the locus having the best alignment. Likewise
the discarding of alignments below the user-defined thresh-
old ensures that fragments arising from some other origin that
have no high-quality alignment in the indexed reference will
not be reported and processed as valid mappings.
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On the other hand, pseudoalignment with structural con-
straints, exposed via the --sketch flag, is very fast, but it
does not validate mapping locations via alignment scoring.
This approach first uses a custom implementation of pseu-
doalignment (3) to determine which k-mers from the frag-
ment match different targets. Subsequently, the implied map-
pings are subjected to filtering by structural constraints re-
quiring that the matches supporting the pseudoalignment are
in a consistent orientation, are co-linear with respect to the
read and the reference, and that the stretch (maximum dis-
tance between any pair of k-mers comprising the mapping)
is not too large. While using a splici index largely eliminates
the problem of false positive expression that has previously
been reported when using pseudoalignment-to-transcriptome
approaches (9), enabling accurate quantification using this
rapid approach, there are still some false positive mappings
that can only be properly eliminated with alignment scoring
(i.e. using selective-alignment).

2.3. Permit-list generation. After the reads have been
mapped to the target index, either using selective-alignment
or pseudoalignment with structural constraints, the resulting
RAD file is inspected to determine the set of cellular barcodes
(CBs) that should be used for quantification. In single-cell
sequencing experiments, cell capture rates are imperfect, and
thus some fraction of barcodes may correspond to droplets
that failed to properly capture a cell (17). In this case,
the fragments associated with these barcodes usually exhibit
many fewer distinct Unique Molecular Identifiers (UMIs)
mapped to target sequences in the index than barcodes corre-
sponding to properly captured cells. Likewise, errors that oc-
cur during PCR amplification and sequencing can “corrupt”
the sequence of a cellular barcode, so that the barcode ob-
served in the sequenced fragment is different from that which
was originally attached to the underlying molecules prior to
sequencing.
Alevin-fry’s generate-permit-list command

works to determine the set of CBs that will eventually
be quantified, as well as to perform correction of likely-
corrupted barcodes to the “true” barcode from which they
derived. It exposes a number of different strategies to deter-
mine the set of CBs that should be quantified. The supported
strategies are --force-cells, --expect-cells,
--knee-distance, --unfiltered-pl and
--valid-bc. Here we briefly describe the
--knee-distance and --unfiltered-pl strategies,
since they are likely to be the most commonly employed
by users of alevin-fry. A description of all available
methods is provided in the alevin-fry documentation
(https://alevin-fry.readthedocs.io/en/
latest/generate_permit_list.html). This step
is also used to apply orientation filtering to the mapped
records. So, for example, in protocols where all fragments
are expected to map to the reference in the forward orien-
tation, fragments (and their associated barcodes) are only
considered valid if at least one forward strand mapping
exists.

Knee distance permit-list generation. The knee dis-

tance filtering implemented in alevin-fry is an imple-
mentation of the (updated) strategy that is provided in the
UMI-tools (18) software. It is an iterative knee finding
strategy that attempts to automatically determine the number
of barcodes corresponding to high-quality cells by examining
the frequency histogram of observed barcodes. Briefly, this
method first counts the number of reads associated with each
barcode, and then sorts the barcodes in descending order by
their associated read count. It then constructs the cumulative
distribution function from this sorted list of frequencies. Fi-
nally, it applies an iterative algorithm to attempt to determine
the optimal number of barcodes to include by looking for a
“knee” or “elbow” in the CDF graph. The algorithm consid-
ers each barcode in the CDF where its x-coordinate is equal
to this barcode’s rank divided by the total number of barcodes
(i.e. its normalized rank) and the y-coordinate is equal to the
(normalized) cumulative frequency achieved at this barcode.
It then computes the distance of this barcode from the line
x = y (defined by the start and end of the CDF). The initial
knee is predicted as the point that has the maximum distance
from the x = y line. The algorithm is iterative, because ex-
periments with many low-quality barcodes may predict too
many valid barcodes using this method. Thus, the algorithm
is run repeatedly, each time considering a prefix of the CDF
from index 0 through the previous knee’s index times 5. Once
two subsequent iterations of the algorithm return the same
knee point, the algorithm terminates. Once the set of “permit-
ted” barcodes has been determined by this method, the reads
that have barcodes not within this set are corrected against it
by checking if they are within one edit of some barcode in
the list; if so, they are attributed to that barcode.

Correcting to an unfiltered permit-list. Some technolo-
gies, like 10x Chromium, provide a set of specific known and
experiment-independent barcodes that will be a superset of
the barcodes that should be observed in any given sample.
This list of “possible” barcodes can be treated as a set of bar-
codes against which the observed barcodes can be corrected.
The --unfiltered-pl option accepts as an argument a
list of possible barcodes for the sample. When using this
argument, the user may also pass the --min-reads argu-
ment to determine the minimum frequency with which a bar-
code must be seen in order to be retained. The algorithm used
in this mode passes over the input records (mapped reads)
and counts how many times each of the barcodes in the un-
filtered permit list occurs exactly. Any barcode occurring ≥
min-reads times will be considered as a present cell. Subse-
quently, all barcodes that did not match a present cell will be
searched (at an edit distance of up to 1) against the barcodes
determined to correspond to present cells. If an initially non-
matching barcode has a unique neighbor among the barcodes
for present cells, it will be corrected to that barcode, but if it
has no 1-edit neighbor, or if it has two or more 1-edit neigh-
bors among that list (i.e. its correction would be ambiguous),
then the record is discarded. Of course, unfiltered count ma-
trices constructed in this manner will contain many barcodes
not corresponding to properly captured cells, and should be
subjected to subsequent filtering prior to analysis.
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In all cases, the result of the generate-permit-list
step of alevin-fry is the creation of a “correction map”
that specifies which barcodes are to be quantified, and how
barcodes are to be corrected against this quantified set, as
well as a census of the number of observed and valid frag-
ments corresponding to each corrected barcode. The census
information is used in the subsequent collation step to enable
an efficient partitioning strategy for collating the records by
corrected barcodes.

2.4. Collation of RAD files. Once the permit-list and cor-
rection map have been generated, the initial RAD file
must be collated by the corrected cellular barcodes; this
is done using alevin-fry’s collate command. In
this phase, all fragments to be quantified are grouped to-
gether such that those sharing the same barcodes appear
contiguously in the file. This step of processing serves
an analogous purpose as the sorting of BUS (8) files as
done in kallisto|bustools (7). However, there are
a few technical differences that relate to the way in which
alevin-fry processes the collated RAD files and to the
way in which RAD files are structured differently from BUS
files.

First, the collate command, unlike sorting, does not
induce a total order on the resulting records. Specifically,
while records that pass filtering and have the same corrected
barcode are guaranteed to occur contiguously within the re-
sulting collated file, there is no specific or meaningful order
between the segments of the file corresponding to individual
corrected barcodes. Further, within the set of records cor-
responding to a corrected barcode, there is no ordering or
collation among the UMIs. This is due, in part, to the fact
that all records sharing the same corrected barcode will be
present in memory at the same time during the quantification
phase, as well as the fact that certain UMI resolution strate-
gies apply edit-distance collapsing for which UMI collation
is insufficient. This means that, in the general case, collation
can potentially be implemented in a more computationally ef-
ficient manner than sorting, though in practice, multithreaded
sorting of fixed sized records is very efficient.

Eliminating the requirement of having sorted records also
means that the collated records corresponding to each bar-
code can appear at whichever location in the collated output
file that is desired. This admits extra flexibility in how col-
lation is performed. Specifically, corrected barcodes are as-
signed to roughly appear in order of descending frequency
in the output collated RAD file. This means that the largest
(and potentially slowest to process) cells will appear near the
beginning of the collated RAD file. Since quantification it-
self is multithreaded, this allows more efficient pipelining of
quantification among multiple threads. Since threading gran-
ularity happens at the level of individual cells (i.e. the records
for the same cell will never be quantified by multiple threads
at the same time), placing the largest cells early in the quan-
tification phase means that one is unlikely to encounter a sit-
uation where large and complex cells are encountered late in
processing and many threads remain work starved while pro-
cessing for the large cell completes.

The collation strategy implemented in alevin-fry is
a two-pass approach. First, each corrected barcode is as-
signed a bucket index; the input RAD file is parsed (in par-
allel by many worker threads), and each record is written
to the bucket it is assigned based on its corrected barcode.
This ensures that all records sharing the same corrected bar-
code are routed to the same bucket. Further, the bucket sizes
are limited by a user-defined maximum record count to en-
sure that individual buckets can be fully loaded into memory
while retaining an overall small memory profile. In a second
pass, each bucket is read into memory and its records are lo-
cally collated. This is done by constructing an in-memory
hash map mapping each corrected barcode in this bucket to
the vector of records sharing this barcode. Subsequently,
each locally collated chunk is appended to the output col-
lated RAD file (and optionally compressed if the user passes
the --compress flag). In the resulting RAD file, the num-
ber of chunks is equal to the number of cells to be quantified
(i.e. the number of corrected barcodes), and all of the records
sharing the same corrected barcode appear consecutively in
the file.

2.5. Quantification. With the collated RAD file prepared,
alevin-fry is able to quantify the count for each gene
within each cell separately and in parallel via the quant
command. As with the mapping and permit-list genera-
tion phase, a number of different UMI resolution strategies
are implemented in alevin-fry. Here, we briefly de-
scribe those strategies — cr-like and cr-like-em —
that currently support the unspliced, spliced and ambigu-
ous (USA) quantification mode that is used throughout this
manuscript. As opposed to splice unaware quantifciation
(which alevin-fry also supports), the USA quantification
mode produces a count for each splicing status of each gene
within each quantified cell. Additional resolution strategies
are described in Section S3.

The quantification for each cell is carried out indepen-
dently and in parallel, so we explain the procedure, without
loss of generality, for the records corresponding to an individ-
ual cell. First, read records are collated (in memory) by their
corresponding UMI. For each UMI, the set of transcripts to
which the read maps is projected onto the corresponding set
of genes. This process is aided by the use of a three ele-
ment transcript to gene map. Each entry in the map contains
the name of an individual target sequence from the splici in-
dex, the corresponding gene to which this target belongs, and
a splicing status, recorded as ‘S’ if the target derives from a
spliced transcript and ‘U’ if it derives from intronic sequence.
Each gene is assigned a pair of globally unique identifiers,
one corresponding to all “spliced” variants of the gene and
the other to the “unspliced” (intronic) sequences for the gene.
The gene-level identifiers corresponding to a given record are
sorted and deduplicated. All records corresponding the cur-
rent UMI are iterated in the same fashion, and a count is kept
of how many times the UMI is associated with a read that
maps to each gene identifier (with “spliced” and “unspliced”
identifiers treated as distinct).

After all occurrences of the UMI are observed, the UMI is
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assigned to the gene with the largest frequency. If there is no
unique gene with the highest frequency of occurrence, then
the UMI is discarded if the cr-like resolution strategy is
being used. On the other hand, if the cr-like-em resolu-
tion strategy is being used, a gene-level equivalence class is
formed from all gene identifiers having the highest frequency
of mapping for this UMI. Each identifier in the label of the
equivalence class comprises a gene and a splicing status. The
status is ‘U’ if only the unspliced identifer of this gene is
among the most frequent mapping targets for this UMI, it is
‘S’ if only the spliced identifier is among the most frequent,
and if both the unspliced and spliced identifiers of this gene
are among the most frequent mapping targets for this UMI,
then the status is ‘A’ (ambiguous). The UMI is attributed
to this equivalence class, and an expectation maximization
(EM) algorithm, like that employed in Srivastava et al. (5),
is subsequently used to probabilistically allocate counts to
specific gene and splicing status pairs in the resulting count
vector for this cell.

Under both of these resolution strategies, the resulting
count matrix contains a count not just for each gene within
each cell, but the count is further distributed over each gene’s
splicing status (confidently assigned to spliced molecules
from the gene, confidently assigned to unspliced molecules
from the gene, or ambiguous in splicing status). Depending
upon the type of data analysis being performed, this count
matrix can then be used to directly extract the counts of in-
terest. For example, if performing a “standard” single-cell
gene expression analysis, one can extract the spliced and am-
biguous counts for each gene in each cell and sum them to-
gether to produce the equivalent of a standard count matrix. If
performing quantification on a single-nucleus RNA-seq sam-
ple, the counts from all splicing categories can be summed
to produce the total UMI count attributed to each gene (re-
gardless of splicing status). For an RNA velocity analysis,
the spliced and unspliced counts can be separated into dis-
tinct matrices and provided to a downstream RNA velocity
computation tool (19, 20).

These resolution strategies thus provide a convenient solu-
tion for quantification of gene expression in a variety of dif-
ferent single-cell settings. The same processing approach can
be used for the quantification of gene expression in single-
cell experiments, or in single-nucleus experiments, or even
to provide the input for RNA velocity analysis. At the same
time, explicitly accounting for the unexpected origin of reads
(e.g., from intronic sequence in single-cell experiments) can
also virtually eliminate the spurious detection of genes exhib-
ited by methods that restrict mapping or alignment to only
the spliced transcriptome. This is possible as these resolu-
tion strategies implemented by alevin-fry are designed
to infer both the gene and splicing status of the underlying
fragments, but leave the determination of how to combine
or aggregate UMIs arising from different splicing statuses to
downstream analysis.

Finally, a number of additional and even more so-
phisticated resolution methods (namely parsimony and
parsimony-em) are present in alevin-fry but not yet

exposed under USA mode. These implement variants on the
original UMI resolution algorithm introduced by Srivastava
et al. (5) that applies a parsimony condition to approximately
determine the minimal set of transcripts that could give rise
to the observed set of UMIs. These alternative methods are
further described in Section S3. We are currently working on
adapting these algorithms so that they can also be meaning-
fully applied in alevin-fry’s USA mode.

2.6. RNA velocity. With the development of single-cell
RNA-seq technologies, RNA velocity analysis has become
increasingly popular. Velocyto (19) defines single-cell
RNA velocity as the time derivative of the gene expression
state, which is determined by the ratio of the spliced and
unspliced mRNA transcript molecule counts of each indi-
vidual gene. By modeling transcriptional dynamics, RNA
velocity can reveal cellular differentiation dynamics and de-
velopmental lineages present in a given single-cell experi-
ment. scVelo (20) further enhances RNA velocity com-
putation by eliminating the steady-state assumption made
by Velocyto, and applying an expectation maximization
method to solve the differentiation dynamics according to a
series of master equations. The accurate and robust estima-
tion of RNA velocity remains an active and exciting area of
research.

To explore preprocessing for RNA velocity analysis, we
make use of a mouse pancreatic endocrinogenesis dataset in-
troduced by Bastidas-Ponce et al. (21) and used as an exam-
ple dataset in the scVelo. This experiment is obtained with
the 10x Genomics Chromium Single Cell 3’ Reagent Kit v2
and the read length is 151 nt. To utilize the cell state an-
notation information provided in scVelo example dataset,
only the 3,696 cells that are included in the scVelo exam-
ple dataset are included in our analysis. The quantified cells
are all from stage E15.5. The processing was performed on
raw FASTQ files retrieved from the Gene Expression Om-
nibus, accession number GSE132188.

Following the preprocessing steps adopted by scVelo,
we downloaded the pre-built mouse mm10 v2.1.0 reference
sequences and GTF files from 10X Genomics. To ob-
tain the appropriate input for RNA velocity analysis with
alevin-fry we make use of USA mode quantification,
kallisto|bustools was run via the kb_python tool
with the --workflow lamanno option, which results in
the generation of two separate output matrices correspond-
ing to the spliced and the unspliced counts, and STARsolo
was run with the --soloFeatures Gene Velocyto
option.

Depending on the RNA velocity method being used, am-
biguous counts (which are output separately by STARsolo
and alevin-fry) should either be provided explicitly, or
allocated among the spliced and unspliced counts (or dis-
carded entirely). We tested 7 different strategies to process
the ambiguous counts, which are for each gene within each
individual cell, (i) discarding the ambiguous counts, (ii) re-
garding the ambiguous count as spliced, (iii) regarding the
ambiguous count as unspliced, (iv) evenly distributing the
ambiguous count to spliced and unspliced, (v) dividing the
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ambiguous count by the ratio of confidently spliced count to
the confidently unspliced count, (vi) dividing the ambiguous
count by the ratio of not-unspliced (spliced + ambiguous) to
unspliced, and (vii) dividing the ambiguous counts by the ra-
tio of spliced to not-spliced(unspliced + ambiguous). We dis-
cuss the results of approach (ii) in Section 3.3, and provide
all other results in Section S5.
ScVelo version 0.2.3 is used to analyze RNA velocity un-

der a python 3.8.5 environment. Cells whose cell barcode is
in the scVelo example dataset are kept for further analy-
sis. The pre-defined cell type and UMAP representation of
each cell are obtained from the scVelo example dataset.
The count matrices generated by all three methods are pro-
cessed as described in Bergen et al. (20). Specifically, the
count matrices are median normalized, only the top 2,000
variable genes are kept, the first- and second-order moments
of the normalized spliced and unspliced counts of each gene
are calculated, and the reaction rates and latent variables are
recovered. RNA velocity is estimated using the dynamical
mode, and the directional flow of the estimated velocity is
visualized in the predefined UMAP (22) embedding.

2.7. Clustering analysis of snRNA-seq data. To evalu-
ate the process of quantifying an snRNA-seq dataset using
these preprocessing tools, we performed a cell type clus-
tering analysis on the data from Marsh and Blelloch (23)
using Seurat 4.0.1 (24) under an R 4.0.5 environment.
When analyzing single-nucleus RNA-seq data, we sum the
unspliced (U), spliced (S), and ambiguous(A) counts re-
turned by alevin-fry to get the overall count of each
gene within each cell. Likewise, kallisto|bustools
is run via the kb_python tool with the --workflow
nucleus option specified, and STARsolo is run with the
--soloFeatures GeneFull option.

A snRNA-seq mouse placenta dataset (23) is selected
as the example for demonstrating single-nucleus clustering
analysis. The nuclei were captured with the Chromium Sin-
gle Cell 3’ Reagent V3 Kit from 10X Genomics, and the read
length is 150nt. In this analysis, only the samples from day
E14.5 are included. These raw reads can be accessed from
GEO under accession code GSM460987.

To compare the results from different quantification tools
fairly, we implemented the emptyDrops CR functionality
of STARsolo in R, and then applied this function to filter
empty droplets for the results of all tools under the same set-
ting, which is the default setting in STARsolo. Only bar-
codes whose FDR is less than 0.01, mitochondrial counts
are less than 0.25%, and that have 500−4,000 unique genes
were kept for further clustering analysis.

After filtering empty droplets, the RNA counts of each
nucleus were log normalized. Next, the top 2,000 variable
genes were detected and their gene counts were scaled and
used in the following steps. Then, PCA was performed with
those variable genes, and a subset of significant PCs were
selected using the JackStraw algorithm implemented in
Seurat. Using those PCs, the t-SNE dimensionality reduc-
tion (25) was calculated, the nearest neighbor graph was con-
structed and clustering was performed. In order to assign
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Figure 2: The frequency distribution of the pres-
ence of genes across all shared cells for STARsolo,
kallisto|bustools, and alevin-fry (including
multiple index types for alevin-fry).

cell type to each cluster, the R object provided by Marsh and
Blelloch (23) was used as the reference to transfer the cell
type annotation from the reference samples to the query ob-
ject according to the anchor genes determined by the signifi-
cant PCs.

The nuclei assigned as trophoblast were then selected to
explore the trophoblast subclusters. Similar to the previous
procedure, clusters were found using a subset of significant
PCs determined by JackStraw, and cell types were learned
from the trophoblast R objected provided in the supplemen-
tary file of Marsh and Blelloch (23).

3. Results
Here we demonstrate the performance and accuracy of
alevin-fry in a variety of different use cases, and com-
pare its computational resource usage as well as the quality
of its results to those provided by the other recently intro-
duced tools STARsolo and kallisto|bustools. We
examine results on simulated data (Section 3.1), on a spe-
cific single-cell RNA-seq dataset where the effect of align-
ment pipelines has previously been explored (Section 3.2), in
the context of preparing count matrices for an RNA velocity
analysis (Section 3.3), for the processing of single-nucleus
RNA-seq data sets (Section 3.4), and finally we explore the
overall runtime and peak memory usage characteristics on
this broad array of datasets (Section 3.5).

3.1. Simulated data. We first evaluated the different meth-
ods on data from a non-parametric simulation first intro-
duced by Kaminow et al. (9). This simulation is seeded with
the PBMC5k experiment (26). We use the simulated data
in which reads derive from across the genome at realistic
rates (i.e. from introns, spliced transcripts, and intergenic
sequences), but without the simulated gene-level multimap-
ping. While not tied to any parametric model, and therefore
likely to produce realistic mapping statistics, it is important
to recall the caveat that simulated data often fails to recapitu-
late at least some important aspects of experimental data (15).
This implies that the performance on simulated data likely

He et al. | Accurate and fast single-cell bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.29.450377doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450377
http://creativecommons.org/licenses/by-nc-nd/4.0/
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represents, in a sense, the upper bound of accuracy achiev-
able by these methods on experimental data, and the degra-
dation in performance of different methods may vary as the
complexity of the data increase. Nonetheless, analyzing the
accuracy of these tools under various metrics on this sim-
ulated data provides an important perspective as to the po-
tential strengths and shortcomings of different methods in a
situation in which the ground truth counts are known.

Table 1 displays the results for the different methods as
evaluated under various metrics on the set (intersection) of
the cells quantified by all methods. The definitions of these
metrics are given in Section S6. While no method yields
the best performance universally, there are some clear trends
that can be observed. First, as was noted by Kaminow et al.
(9), the methods that perform mapping (either pseudoalign-
ment or pseudoalignment with structural constraints) directly
to the spliced transcriptome alone perform worse than the
other approaches — often considerably — under almost all
metrics (the sole exception being the mean per-cell relative
false negative rate). Specifically, these approaches exhibit a
markedly reduced cell-level Spearman correlation with the
truth, as well as largely inflated relative false positive expres-
sion (27-32%) and increased mean absolute relative devia-
tions (MARD).

To explore these false positive expression estimates in
slightly more detail, Figure 2 shows the frequency distri-
bution of the number of cells in which each gene appears,
where genes are sorted in descending order independently
per method. Specifically, we observe that STARsolo, and
both variants of alevin-fry that make use of the splici
index follow a very similar frequency distribution, and that
this is distinct from the frequency distribution followed by
kallisto|bustools and alevin-fry when mapping
only to the transcriptome. This suggests that, not only does
mapping to the transcriptome alone result in hundreds of spu-
riously expressed genes per cell, but many of these genes
themselves are expressed across hundreds of cells. Among
the two evaluated approaches that map only to the spliced
transcriptome, alevin-fry (in sketch mode) performs
better than kallisto|bustools. On the other hand, the
methods that map to expanded references, either the whole
genome in the case of STARsolo or the splici reference
in the case of alevin-fry, all generally perform well
under the various metrics. STARsolo exhibits the high-
est cell-level Spearman correlation, as well as the smallest
relative false positive and relative false negative rate, while
alevin-fry exhibits the lowest MARD (both when run in
sketch mode and when using selective-alignment).

Though there are differences under all metrics reported by
the methods mapping to the expanded reference, the mag-
nitude of these differences is generally small, and, in par-
ticular, is much smaller than the difference between any of
these methods and those methods that map only to the spliced
transcriptome. Moreover, we observe that, holding the other
variables fixed (e.g. the reference and UMI resolution strat-
egy), selective-alignment yields a small but consistent accu-
racy improvement over pseudoalignment with structural con-

straints. Presumably, this results largely from the ability of
selective-alignment to discard fragments arising from outside
of the spliced or unspliced transcriptome that would other-
wise be spuriously assigned to some target. Nonetheless,
we observe that pairing the expanded (splici) transcriptome
with an appropriately UMI resolution strategy that is aware
of both spliced and unspliced gene variants allows for the
use of sketch mode (pseudoalignment with structural con-
straints) in a manner that corrects the high number of false
positive expression predictions that are otherwise observed
when mapping only to the spliced transcriptome.

3.2. Analysis of a Danio rerio pineal experiment. To ex-
plore the performance of alevin-fry in species other than
human and mouse, and in an experimental sample where the
alignment pipeline has previously been hypothesized to be of
importance for downstream analysis, we analyzed the Danio
rerio pineal gland dataset introduced in Shainer et al. (27),
and subsequently re-analyzed in (28).

Shainer and Stemmer (28) find that for the D. rerio
pineal dataset, kallisto|bustools’s result enables the
FindClusters function of Seurat to recover an impor-
tant biological feature that is not uncovered when examining
the Cell Ranger output. Specifically, the claim is that the
resulting clustering discovers two distinct cone photoreceptor
(PhR) clusters, the cone PhRs expressing the red cone opsin
(red cone PhRs or red+ cells) and the cone PhRs express-
ing the parietopsin (PT cone PhRs or PT+ cells). These two
cell types, which are derived from a common PhR-restricted
progenitor but that express distinct opsins, are two mutually
exclusive neuronal fates of photoreceptors in this tissue (29).
The PT+ cells produce parietopsin (30), a green-sensitive
photopigment that belongs to the non-visual opsins, whose
expression is regulated by the repression of Notch activity
and the stimulation of bone morphogenetic proteins (BMPs)
activity. The red+ cells generate opn1lw1 (31), one of the two
long wavelength-sensitive (red) visual opsins expressed in
D. rerio pineal tissue. On the other hand, when using Cell
Ranger’s inferred counts, these two clusters are collapsed
into a single cone PhR cluster that expresses the main marker
genes for both the red cone PhR and PT cone PhR clusters.
Interestingly, they also discover that the strongest differen-
tially expressed marker gene between the red and PT cone
PhR clusters when analyzing the kallisto|bustools
counts is col14a1b, a collagen gene.

To further investigate the differences reported
in (28), we processed this data with STARsolo,
kallisto|bustools, and alevin-fry using USA
mode and the splici reference. Further, we ran STARsolo
with 1MM (default), 1MMDir and exact UMI deduplication
strategies. To normalize across the cell filtering method,
we ran all tools to produce unfiltered quantifications, and
subsequently filtered the resulting count matrices using the
DropletUtils (17) R package, and we also evaluated the
results of all methods on only the subset of cellular barcodes
discovered by alevin-fry’s knee-finding method.

Initially, we noticed that, despite the fact that Shainer
and Stemmer (28) made use of DropletUtils to filter
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method mean Sp. corr. MARD (drop NA) MARD (NA=0) mean rFP/cell mean rFN/cell

STARsolo 0.997 0.031 0.002 0.001 0.005
kallisto|bustools 0.864 0.263 0.024 0.328 0.006
alevin-fry (txome, sketch) 0.883 0.226 0.020 0.273 0.006
alevin-fry (splici, sketch) 0.988 0.026 0.002 0.011 0.012
alevin-fry (splici, sla) 0.992 0.019 0.001 0.004 0.011

Table 1: The performance of the examined tools under various accuracy metrics on the simulated data. All metrics are measures
on the subset of genes and cells defined by all tested methods, and are taken with respect to ground-truth abundances.

the count matrices, they did not actually make use of the
emptyDrops function provided by that package to esti-
mate the high-confidence cells from empty droplets. Rather,
they followed a more simplistic filtering strategy of running
the barcodeRank function (with a lower bound set to a
non-default value of 500) and then selecting all cells hav-
ing a UMI count above the inflection point determined
by this function. On this data, this filtering strategy is con-
siderably more strict than the actual emptyDrops method,
and passes through many fewer cells. Additionally, when
creating a Seurat object out of the count matrices, non-
default filtering is applied, passing min.cells = 3 and
min.feature = 200. Nonetheless, in an attempt to first
reproduce the results of Shainer and Stemmer (28), we pro-
ceeded with this filtering. The resulting figures are provided
in Figure S4.1 and Figure S4.2.

When applying this filtering strategy, we did, indeed, find
that kallisto|bustools exhibits distinct clusters for
the red and PT cone PhR cells, and that the strongest dif-
ferentially expressed gene (DEG) between these clusters was
col14a1b.

Likewise, we found that STARsolo using the default 1MM
strategy did not separate the relevant cells into distinct red
and PT cone PhR clusters at a resolution parameter of ei-
ther 0.9 or 1.2. Alevin-fry (which was not considered
in the original manuscript) does separate the relevant cells
into two distinct clusters at both the 0.9 and 1.2 resolution
parameters. However, we find that in the alevin-fry re-
sults, col14a1b is not one of the marker genes detected by
FindAllMarkers function of Seurat. In fact, as with
the STARsolo results, the col14a1b gene is not detected at
any appreciable level among any of the cells after the pre-
scribed filtering is applied. We investigated this difference
and report our findings below and the clusterings and fea-
tures plots in Section S4. However, we first wished to deter-
mine what differences might be causing the clustering of the
STARsolo counts to fail to separate these cells into two dis-
tinct clusters when the clustering of both the alevin-fry
and kallisto|bustools counts yield the distinct clus-
ters.

One major difference is the 1MM (default) method used
for UMI deduplication, which attempts to mimic the algo-
rithm used in Cell Ranger. We also tested the 1MMDir
method that implements the directional algorithm described
in UMI-tools (18), and the exact method that only dedu-
plicates sequence identical UMIs. We discovered that un-
der this Shainer and Stemmer (28) filtering, the STARsolo

counts when using both the 1MMDir and exact deduplica-
tion methods yield distinct clusters for the red and PT cone
PhR clusters at resolution parameters of both 0.9 and 1.2.
Thus, under this filtering strategy, the deduplication method
seems to be important for the signal separating these clus-
ters to be picked up by Seurat’s clustering algorithm. It
is worth noting, however, that even when the distinct clus-
ters are not found, the t-SNE embedding computed from
STARsolo counts places subsets of the cone PhRs in dif-
ferent positions in the embedding, and the subsets at these
different positions express, disjointly, the marker genes for
the red+ and PT+ cells; the clusters are just not separated by
the clustering algorithm, as shown in Figure S4.2e and Fig-
ure S4.2f.

Next, we decided to investigate what would happen if
one applied a different filtering strategy to select the cells
and generate the Seurat count object. Specifically, the
emptyDrops function of the DropletUtils package
implements a procedure explicitly designed to model the am-
bient background distribution of expression and to select,
with some user-defined false discovery rate (FDR), the bar-
codes corresponding to truly-captured cells. Thus, keep-
ing the subsequent filtering, clustering and marker detection
procedures the same as in the Shainer and Stemmer (28)
manuscript, we filtered the barcodes using the emptyDrops
method with default parameters, and created the resulting
Seurat object using default parameters (Figure S4.3 and
Figure S4.4). When applying this filtering, none of the tested
methods yielded distinct clusters for the red+ and PT+ cells
at either of the tested resolutions (0.9 and 1.2), and we also
noted an attenuated signal for the epithelial cell cluster un-
der STARsolo and alevin-fry based on the predefined
markers (28). Again, while inspection of the placement of the
corresponding cells in the respective UMAP embeddings and
the genes that they express suggest that the signal separating
these clusters is present in all tested methods, the clustering
procedure used by Seurat did not separate these clusters.

Finally, we evaluated the clustering results for the different
quantification methods restricting the set of analyzed cells
(i.e. barcodes) to those selected by alevin-fry’s knee-
distance filtering procedure. Specifically, in this experiment
we quantified the data with alevin-fry, using the knee-
distance method to determine the permit-list. Subsequently,
the count matrices for each method were subset to include
only the barcodes appearing in this permit-list. This filter-
ing strategy is more conservative than those examined above
(i.e. fewer cells passed filtering). However, when examin-
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ing the set of cells selected by this approach, all of the tested
methods discovered distinct red+ and PT+ clusters at both
the 0.9 and 1.2 resolution parameters (Figure S4.5 and Fig-
ure S4.6). This was true even for STARsolo’s quantification
results when using the (default) 1MM UMI resolution policy.
Seemingly, this filtering of cell barcodes resulted in a sig-
nal between these clusters that was somehow clearer with re-
spect to the method used by the FindClusters algorithm
of Seurat.

Taken together, these results suggest that the main fac-
tor in the separation of these clusters during processing is a
combination of the specific filtering parameters used to re-
tain cell barcodes, in conjunction with what specific UMI
deduplication strategy was used. Of the methods tested,
alevin-fry, kallisto|bustools, and STARsolo
(with the 1MMDir and exact UMI resolution strategies)
recovered the distinct clusters under the initial filtering de-
scribed by Shainer and Stemmer (28) and under the knee-
distance filtering of alevin-fry (though not under the fil-
tering that directly made use of emptyDrops). Conversely,
STARsolo (with the default 1MM UMI resolution strat-
egy) produced counts under which these clusters were only
discovered when evaluating the subset of cells returned by
alevin-fry’s knee-distance filtering procedure. Nonethe-
less, the signal itself (in terms of the biologically-relevant
opn1lw1 (31) and parietopsin (30) marker genes) is quite
strong in the quantifications produced by all of the tested
methods, if one looks for it specifically. That is, by visu-
alizing (e.g. via a FeaturePlot) the expression of these
genes overlaid on the t-SNE embedding, there are clear sub-
sets of the cone PhR cells that express one or the other
of these markers, even when Seurat does not find them
as separate clusters. Thus, it is unclear that the result re-
ported by Shainer and Stemmer (28) is really evidence that
kallisto|bustools produces counts that yield more bi-
ologically meaningful clusters. A potentially more conserva-
tive interpretation is simply that there are complex interac-
tions between the cell barcode selection strategies, UMI res-
olution strategies, and the specific numeric thresholds chosen
for filtering that all contribute to the actual clusters returned
by a clustering algorithm with any given set of input param-
eters, even when an underlying biological signal is clearly
present.

Finally, we return to the case of the strong DEG marker
signal of the col14a1b gene found between the the red and
PT cone PhR clusters in the kallisto|bustools quan-
tifications, but which is completely absent from the filtered
counts in the STARsolo and alevin-fry quantifications.
To the best of our knowledge, there is no immediate or well-
known biological mechanism that would cause this gene to be
a differential marker between red+ and PT+ cells. To further
investigate the situation, we ran kallisto (3) in bulk mode
to produce a pseudobam file that reports which underlying
reads were being pseudoaligned to the constituent transcripts
of col14a1b. When we extracted these reads and attempted
to align them to the corresponding transcripts, we discovered
that they almost universally produced very poor quality align-

ments, where the only long contiguous matches between the
read and the transcript were stretches of low-complexity se-
quence close to the k-mer size (31 in this case) in length.
This explains why STARsolo (and Cell Ranger in the
original manuscript (28)) were not reporting these as valid
alignments to this gene.

We explored the origin of these reads further by using
BLAST (32) to query these reads against the NCBI nu-
cleotide database. For the reads we examined, the top
BLAST hits contained the pde6hb (phosphodiesterase 6H,
cGMP-specific, cone, gamma, paralog b) gene, which clearly
has biologically plausible expression in this dataset. How-
ever, this gene was not found as expressed by any of the meth-
ods, since it does not appear in the Ensembl 101 D. rerio an-
notation that was used (following Shainer and Stemmer (28)).
Thus, in this case, both STARsolo and alevin-fry
avoided misattributing the seemingly large number of reads
actually arising from pde6hb to other genes within the an-
notation, while kallisto|bustools falsely attributed
many of these reads to col14a1b, for which there does not
appear to be any evidence of expression.

While the spurious expression of genes when making use
of a pseudoalignment-to-transcriptome approach has been
previously reported by Kaminow et al. (9), and this spuri-
ous expression has even been reported to result in the expres-
sion of biologically implausible genes (33), it is of partic-
ular note in this dataset, since it results in the spurious ex-
pression of a gene that is detected as the strongest marker
between these clusters of interest. In fact, this signal was
so strong that it was explicitly noted in (28) that col14a1b
“was the most DE gene in the red cone-like PhRs.” and that
“this gene was not detected at all by the Cell Ranger align-
ment, and therefore did not exist as a DE gene”. The analy-
sis here demonstrates that, upon focused inspection, there is
no strong evidence for the presence of this gene in the data,
and the strong DEG signal inferred between these clusters
when using the kallisto|bustools quantifications is
almost certainly a spurious result that derives from its use of
pseudoalignment-to-transcriptome and a lack of filtering its
mapping results. More generally, such occurences may not be
particularly rare, and so caution should be applied when in-
terpreting statistics like total gene detection, or median gene
or UMI count, as larger values of such quantities may indi-
cate reduced precision and not just increased sensitivity.

3.3. RNA Velocity of a pancreas dataset. The USA mode
of alevin-fry generates unspliced (U), spliced (S) and
ambiguous (A) count for each gene within each cell. In the
pancreas dataset, the ratio of the total unspliced counts to the
total spliced counts to the total ambiguous counts (U:S:A) is
0.806 : 0.125 : 0.069 over all genes within all cells. As usu-
ally RNA velocity estimators (19, 20) take only spliced and
unspliced counts as the input, the ambiguous counts need ei-
ther to be discarded or to be apportioned toward spliced and
unspliced counts. We tested 7 different strategies for han-
dling these ambiguous counts and observe that assigning the
ambiguous count differently leads to distinct velocity and la-
tent time estimation. In this section, we discuss the result of

10 | bioRχiv He et al. | Accurate and fast single-cell

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.29.450377doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450377
http://creativecommons.org/licenses/by-nc-nd/4.0/


assigning all ambiguous counts as spliced counts, since this
coincides with the reasonable prior belief that most reads in
this type of experiment should arise from spliced transcripts.
By doing so, the ratio of the total unspliced count to the total
spliced count is then 0.875 : 0.125. The streamlines in the ve-
locity graph (Figure 3) portray the cycling nature of the Duc-
tal cells and endocrine progenitors, the cellular development
process of endocrine progenitors (indicated by the concentra-
tion of the transcription factor Ngn3), and the differentiation
process of endocrine cells, which ends with Beta cells at the
latest time point, as described by Bergen et al. (20).

Setting the corresponding RNA velocity related flags, for
STARsolo, --soloFeatures Gene Velocyto, and
for kallisto|bustools, --workflow lamanno,
return the counts required by the RNA velocity pipelines.
The resulting U:S:A ratio of the STARsolo counts
is 0.834 : 0.122 : 0.044, and the resulting U:S ratio
of kallisto|bustools counts is 0.819 : 0.181
(kallisto|bustools does not report ambiguous
counts). Although the ratios are similar across the re-
sults of all methods, the velocity and the latent time
estimation are distinct. In the velocity graph produced by
kallisto|bustools counts (Figure S5.5a), for exam-
ple, the streamlines form a back-flow, and the arrows point
from the differentiated cells (Epsilon, Beta, and Alpha cells)
back towards the pre-endocrine cell cluster, corresponding to
the results reported in Soneson et al. (14). The velocity graph
derived from STARsolo counts after assigning ambiguous
counts to spliced (Figure S5.3b) avoids such back-flow, but
does not seem to reveal the cycling population of Ductal
cells, and some streamlines over the Beta cell cluster point
to the opposite direction, against other streamlines over the
same cell population.

Additionally, while the latent time assignments computed
by scVelo when using the alevin-fry (Figure S5.2b)
and STARsolo (Figure S5.4c) counts match the streamlines
in their respective velocity graph and the latent time assign-
ment obtained from the pre-computed counts provided in the
scVelo tutorial, the latent time assignment derived from the
kallisto|bustools counts is discordant with those of
the other methods as well as with the directions of velocity
arrows leading from the Ductal cell cluster and pre-endocrine
cell cluster to the differentiated cells. Specifically, when uti-
lizing kallisto|bustools counts, the latent time esti-
mated by scVelo (Figure S5.5b) originates in the cluster of
Beta cells, and concords with the velocity arrows leaving this
cluster, but runs opposite to the main flow from the Ductal,
Ngn3 and Pre-endocrine clusters into the differentiated cell
clusters.

In summary, comparing the velocity graphs generated by
all three methods on the endocrine pancreas dataset, the ve-
locity streamlines and latent time assignments derived from
alevin-fry counts well delineate the cellular develop-
ment process of pancreatic endocrinogenesis, and those de-
rived from STARsolo recapitulate most of the expected bi-
ology, but differ in some details, while the results derived
from the kallisto|bustools counts only recapitulate

parts of the expected biology.

Figure 3: A visualization of the velocity estimation derived
from alevin-fry counts in a UMAP-based embedding
after assigning all ambiguous counts as spliced counts; the
streamlines represent the velocity estimated by scVelo.
Points (cells) are colored according to the cell type annota-
tion.

3.4. Processing of a mouse placenta single-nu-
cleus RNA-seq dataset. Like single-cell RNA-sequencing,
single-nucleus RNA-sequencing technology is increasingly
used to explore many types of biological questions, particu-
larly in situations where full-cell scRNA-seq would be diffi-
cult or dissociation unlikely to succeed. In this section, we
analyzed an snRNA-seq dataset from mouse placenta (23)
that is further described in Section 2.7.

After filtering, 10,577 barcodes had (emptyDrops) FDR
< 0.01 in the quantifications produced by alevin-fry.
Among those, 10,483 barcodes’ mitochondrial count were
lower than 0.25% and had 500−4,000 expressed genes (Fig-
ure S7.1). PCA was then performed on the normalized and
scaled RNA count of the top 2,000 variable genes. Based
on p-values from the JackStraw, the first 35 PCs were se-
lected to build the nearest neighbor graph and find cell clus-
ters. A total of 17 clusters were found with a clustering reso-
lution parameter of 0.6. To assign cell types for each cluster,
a preprocessed Seurat (24) object was downloaded from
the supplementary files of Marsh and Blelloch (23) (Sec-
tion S7), and the cells therein were used as the reference for
cell type classification using Seurat’s anchor transfer func-
tionality. In this Seurat object, cells are classified as be-
longing to 5 major cell types; blood cells, decidual stroma,
endothelial, fetal mesenchyme, and trophoblast. Those cell
types correspond to the basic structure of the placenta, which
consists of the maternal decidua, the junctional zone, and the
labyrinth zone (23, 34).

By transferring the cell type annotations from the refer-
ence Seurat object to the alevin-fry result, all five
clusters were detected, and the t-SNE embedding of the
alevin-fry counts is similar to that of the reference ob-
ject (Figure 4). This process was also performed for the result
of STARsolo (Figure S7.2b) and kallisto|bustools
(Figure S7.2c), and the five essential cell types were also
detected. In conclusion, all three methods were able to re-
tain the most significant biological signals captured in the
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3 RESULTS

single-nucleus RNA-seq experiment, and subsequently pro-
duced similar cell type assignment and t-SNE embedding.

Decidual Stroma

Trophoblast

Fetal Mesenchyme

Blood Cells

Endothelial

−25

0

25

−50 −25 0 25

Trophoblast
Endothelial
Decidual Stroma
Fetal Mesenchyme
Blood Cells

Figure 4: The t-SNE embedding plot of an alevin-fry
processed mouse placenta single-nucleus dataset. Samples
were filtered to remove empty droplets. RNA counts were
normalized and scaled. PCA was performed on the top 2,000
variable genes. Clustering was performed on the significant
PCs. The color of each nucleus represents the inferred cell
type annotation, which was learned from a reference dataset.

Subsequently, the 7,027 nuclei assigned as trophoblast in
alevin-fry result were then selected to analyze refined
trophoblast subclusters. Again, a JackStraw p-value in-
formed the use of the top 28 PCs to find subclusters in the
trophoblast nuclei. As some cell types have only a few cor-
responding nuclei, we set the clustering resolution very high
(as 2.5) to detect the detailed clustering assignments and 27
clusters were found. After referring to anchors from the ref-
erence result (23), which defined 13 cell types, 12 of them
were assigned to those 27 clusters. After applying the same
procedure, the 6,837 trophoblast nuclei resulted in the dis-
covery of 11 cell types in kallisto|bustools’s result
and the 6,631 trophoblast nuclei in the STARsolo count
matrix resulted in 10 cell types being found. Of the 13 refer-
ence clusters, alevin-fry counts had no resulting annota-
tion for SynTII precursor, kallisto|bustools counts
had no resulting annotation for SynTII precursor or SynTI
precursor, and STARsolo had no resulting annotation for
SynTI precursor, LaTP or JZP1. The reference labels that
were not assigned across methods generally had low barcode
counts in the reference dataset. It is important to note here
that, just as with the cluster analysis explored in Section 3.2,
the “absence” of a cluster depends on the details of the fil-
tering approach, intermediate processing, and clustering pa-
rameters, and so the lack of a distinct cluster annotated via
reference transfer does not necessarily indicate that the rele-
vant biological signal was not present in the counts produced
by a method.

In summary, all three tools demonsrated robust reca-
pitulation of the major expected biological signals from
this single-nucleus experiment, with alevin-fry recov-
ering slightly more known cell types when subclustering
trophoblast nuclei. Further, as outlined in Section 3.5,

alevin-fry processed this data much faster and re-
quired considerably less memory than either STARsolo or
kallisto|bustools.

3.5. Speed and memory usage. Finally, we assessed the
speed and memory requirements of the three tools tested in
this manuscript across the datasets explored in the previous
sections as well as using the PBMC10k dataset (35) with the
latest 10x reference annotation. We exclude Cell Ranger
from this analysis, as it has previously been demonstrated
that STARsolo can produce results that are almost identical
to those of Cell Ranger, but that it is much faster and
requires less RAM (9).

All experiments were conducted on a server with an Intel
Xeon CPU (E5-2699 v4) with 44 cores and clocked at 2.20
GHz, 512 GB of memory, and 8 (non-RAID) 3.6 TB Toshiba
MG03ACA4 HDDs, and samples were processed using a
Nextflow (36) workflow. All tools tested here provide multi-
threaded capabilites and were run with 16 threads. All exper-
iments were run using STARsolo version 2.7.9a, salmon
v1.5.1, alevin-fry v0.4.0, kb_python 0.26.0 (with
kallisto 0.46.2 and bustools 0.40.0). STARsolo
was run with the --soloFeatures Gene option to
process single-cell samples, with the --soloFeatures
GeneFull option to process single-nucleus samples, and
with the --soloFeatures Gene Velocyto option to
process samples for RNA velocity analysis. STARsolo of-
fers the ability to use either a dense or sampled suffix ar-
ray index. Here, all tests were run using the dense suffix
array, which provides the fastest runtime but which also re-
quires more memory. If memory is at a greater premium,
users can instead choose to use the sparse index, which
reduces the index size by a factor of ∼ 2 but which re-
quired ∼ 1.7 times as long for processing, on average (9).
Kallisto|bustools was run using the kb_python
wrapper with --workflow standard used for single-
cell samples, --workflow nucleus used for single-
nucleus samples and --workflow lamanno used to pro-
cess samples for RNA velocity analysis. alevin-fry was
run in USA-mode on all samples using the --cr-like
UMI resolution method and the appropriate counts were ex-
tracted from the resulting matrix depending upon the sam-
ple type. alevin-fry was tested with both the sparse
and dense index as well as using both the unfiltered permit-
list and filtering of barcodes prior to quantification using the
knee-distance method.

Among the methods tested, alevin-fry, when us-
ing sketch mode, is always the fastest (Figure 5).
When processing single-cell data and indexing only
the spliced transcriptome, kallisto|bustools is
the second-fastest tool. When both alevin-fry
and kallisto|bustools are configured to use
the spliced transcriptome alone as the mapping target,
alevin-fry exhibits the lowest memory usage, followed
by kallisto|bustools. The speed of STARsolo
matches that of kallisto|bustools when the number
of threads grows (often at around 16 to 20 threads depend-
ing on the specific details of the hardware configuration
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being used), but, by virtue of aligning against the entire
genome, it consumes more memory when performing a
standard (spliced) single-cell analysis. As expected, when
alevin-fry is configured to use the splici transcriptome
rather than just the spliced transcriptome, there is a moderate
increase in th memory usage (e.g. to ∼ 10GB in dense
mode and ∼ 6.5GB in sparse mode for the most recent 10X
Genomics annotation of the human transcriptome). The
runtime sees little effect when mapping against the splici
transcriptome compared to the spliced transcriptome, and
there also appears to be little consistent difference in the
mapping speed of alevin-fry when using the sparse
rather than the dense index. Thus, while mapping against the
splici transcriptome requires more memory, it has little effect
on the runtime and yields markedly more accurate counts,
as it avoids the pitfalls of pseudoalignment-to-transcriptome
described by Kaminow et al. (9).

When processing single-nucleus data, alevin-fry is
the fastest and most memory-frugal method (Figures 5 and 6).
Since STARsolo and alevin-fry indices already con-
tain the relevant intronic sequence, their index sizes do not
grow when processing single-nucleus samples or preparing
RNA velocity results. However, when processing single-
nucleus data, there is a notable performance inversion be-
tween STARsolo and kallisto|bustools. The size of
the kallisto|bustools index grows much larger than
those of the other tools, and the speed decreases substan-
tially. Thus, depending upon the specific organism and an-
notation complexity, when processing single-nucleus sam-
ples, STARsolo is the second-fastest and second most
memory-frugal tool (even when using its dense suffix ar-
ray index). On the dataset examined here, compared to
alevin-fry (sparse, unfiltered), STARsolo takes ∼ 2.6
times as long and uses ∼ 6.3 times as much memory while
kallisto|bustools takes ∼ 4.1 times as long and uses
∼ 13.1 times as much memory.

In summary alevin-fry is the fastest method, on aver-
age completing in under half the time required by the next
fastest method. It also exhibits tightly-controlled peak mem-
ory requirements, with processing using the sparse index
completing in less than 8GB of memory for all the differ-
ent organisms and datasets processed in this paper. Among
STARsolo and kallisto|bustools, which method is
faster or which requires less memory depends on the specific
type of data being processed and the details of the reference
being used.

4. Conclusions
We have introduced alevin-fry as an accurate,
computationally-efficient, and lightweight framework
for the processing of both single-cell and single-nucleus
RNA-seq data, and we have compared alevin-fry to both
STARsolo and kallisto|bustools. Alevin-fry
is consistently the fastest of these tools and is able to process
datasets, on average, in less than half the time taken by
the other tools. At the same time, when taking advantage
of its sparse index, alevin-fry is able to process both
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Figure 5: Timing for all tools (run with 16 threads) on the dif-
ferent datasets evaluated in this manuscript. Dashed horizon-
tal lines appear to denote 15 minutes, 30 minutes, 60 minutes,
90 minutes and 120 minutes.
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Figure 6: Peak memory usage for all tools on the different
datasets evaluated in this manuscript. Dashed horizontal lines
appear to denote 4GB, 8GB, 16GB and 32GB.

single-cell and single-nucleus data using less than 8GB of
RAM. The splici index, that we propose to use for all types
of quantifications covered here, allows the application of a
fast mapping method (pseudoalignment (3) with structual
constraints) while avoiding the estimation of spurious gene
expression that is observed when such approaches are
applied only to the spliced transcriptome (9). This allows
alevin-fry to quantify expression with considerably
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4 CONCLUSIONS

increased precision compared to other lightweight tools
like kallisto|bustools, while using appreciably less
memory than STARsolo.

Moreover, coupling the splici index with a UMI resolu-
tion method that is aware of the splicing status of differ-
ent indexed targets, we introduce USA mode quantification
which unifies single-cell, single-nucleus and RNA veloc-
ity preprocessing with alevin-fry. At the same time,
alevin-fry is highly-configurable, providing flexibility
to users at many stages of the preprocessing pipeline. For
example, at the expense of a higher runtime (though not in-
creased peak memory usage), even more precise quantifica-
tions can be obtained by performing selective-alignment (15)
of sequenced fragments. Similarly, multiple options are pro-
vided for barcode (i.e. cell) permit listing and UMI resolu-
tion. Alevin-fry can also be used for processing other
types of experiments, such as spatial scRNA-seq data and
feature barcoded scRNA-seq data, and we are maintaining
a growing suite of tutorials at https://combine-lab.
github.io/alevin-fry-tutorials/.

We believe that alevin-fry strikes a remarkable bal-
ance between the often competing criteria of accuracy, per-
formance, and flexibility, and that these characteristics make
it a very appealing choice for preprocessing the rapidly-
growing collection of high-throughput single-cell and single-
nucleus RNA-seq data.

Availability: Alevin-fry is written in Rust
(https://www.rust-lang.org/), and is avail-
able under the BSD 3-Clause license, as a free
and open source tool at https://github.com/
COMBINE-lab/alevin-fry. The generation of
RAD files is implemented as part of the alevin
command of the salmon tool, available at https:
//github.com/COMBINE-lab/salmon. Both tools
are also available through bioconda (37). Useful scripts and
functions for preparing a splici reference for indexing and for
reading alevin-fry output in Python and R is available at
https://github.com/COMBINE-lab/usefulaf.
The scripts used to perform the analyses in this
manuscript are available at https://github.com/
COMBINE-lab/alevin-fry-paper-scripts/.
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