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ABSTRACT12

Quantifying sequence-specific protein-ligand interactions is critical for understanding and exploiting numerous
cellular processes, including gene regulation and signal transduction. Next-generation sequencing (NGS) based
assays are increasingly being used to profile these interactions with high-throughput. However, these assays do
not provide the biophysical parameters that have long been used to uncover the quantitative rules underlying
sequence recognition. We developed a highly flexible machine learning framework, called ProBound, to define
sequence recognition in terms of biophysical parameters based on NGS data. ProBound quantifies transcription
factor (TF) behavior with models that accurately predict binding affinity over a range exceeding that of previous
resources, captures the impact of DNA modifications and conformational flexibility of multi-TF complexes, and
infers specificity directly from in vivo data such as ChIP-seq without peak calling. When coupled with a new assay
called Kd-seq, it determines the absolute affinity of protein-ligand interactions. It can also profile the kinetics of
kinase-substrate interactions. By constructing a biophysically robust foundation for profiling sequence recognition,
ProBound opens up new avenues for decoding biological networks and rationally engineering protein-ligand
interactions.

13

Introduction14

Gene regulatory and signal transduction networks rely on sequence-specific molecular recognition to guide con-15

stituent proteins to preferentially bind to or chemically modify specific nucleic-acid or amino-acid ligands or16

substrates. These interactions often span orders of magnitude in strength and are modulated not only by sequence,17

but also by other in vivo effects such as competition, cooperation, saturation and chemical modifications1. As even18

weak ligands can be functional2–4, comprehensive and accurate profiling of sequence recognition is essential to19

decode these networks.20

Sequence-specific interactions are most appropriately described in terms of biophysical parameters such as21

equilibrium constants and reaction rates. Sequence recognition models, which often take the form of position-specific22

scoring matrices5, encode how a protein recognizes any sequence and have proven useful for predicting binding23

targets and the impact of genetic variation1. However, in their current form, they fall short of predicting actual24

biophysical constants. To build truly quantitative recognition models, we need improved algorithms along with25

high-quality datasets to train them.26

In recent years, NGS has dramatically increased the throughput with which molecular interactions can be27

probed. In particular, high-throughput methods coupling NGS with in vitro selection on random ligand pools have28

emerged as powerful and flexible tools for the unbiased profiling of sequence recognition. This includes SELEX29

methods for TFs6–16 and RNA-binding proteins17, 18, as well as protein display methods for proteases19 and T-cell30

receptors20. Transforming the resulting sequencing reads into quantitative recognition models remains challenging,31
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Figure 1: Overview of the ProBound method. A range of high-throughput experiments utilize selection on
random DNA, RNA and displayed protein libraries coupled with NGS to characterize sequence-specific molecular
interactions. ProBound uses machine learning tailored to model the recognition, selection, and sequencing processes
in such experiments to infer biophysically meaningful sequence recognition models from a wide range of NGS data.

as the biophysical properties are only indirectly encoded in the sequencing reads. Moreover, randomized ligand32

pools can be extremely complex and even the best sequences can go unobserved. There is currently no general33

method that systematically addresses these issues.34

Here, we solve this problem with a flexible machine learning framework, called ProBound, capable of learning35

biophysically interpretable recognition models from a wide range of sparse NGS data. It can quantify relative36

affinities, absolute dissociation constants, cooperativity, methylation sensitivity, and enzymatic parameters by37

analyzing data from various in vivo or in vitro assays covering DNA, RNA, or protein ligands. The resulting38

binding models are highly accurate, as illustrated by their superior performance relative to existing resources. While39

current methods support elements of these features21–25, ProBound allows for unprecedented quantitative rigor and40

generality.41

Results42

The ProBound framework43

ProBound uses three layers to systematically model NGS data (Figure 1; Methods): a binding layer that predicts the44

binding free energy or enzymatic efficiency from sequence; an assay layer that predicts the post-selection frequency45

of a ligand; and a sequencing layer that represents the stochastic sampling of DNA reads during deep sequencing.46

Together, these elements are combined in a likelihood function that aims to explain the observed distribution of read47

counts across multiple selection rounds or conditions in terms of the sequence features of the ligand. Each layer is48

easily extensible; for example, the binding layer can model TF complexes by accommodating multiple recognition49

models and their interactions. Flexibility in the assay layer enables the modeling of alternative selection processes50

(e.g. catalysis) and the utilization of multiple assays to measure more complex phenomena (e.g. cooperativity).51

A compendium of accurate TF binding models52

Our initial objective was to analyze thousands of published SELEX datasets9, 10, 12, 14, 15, 26–28 and produce high-53

quality TF binding models that capture low-affinity binding, an important yet difficult-to-detect gene regulatory54

phenomenon2–4, 22. This required us to quantify TF sequence recognition over a wide affinity range, rather than55

merely classify sequences as “bound” or “unbound”. We therefore assembled a training database of 2,124 published56

SELEX datasets and designed a computational pipeline to uniformly build binding models (Figure 2a; Supplemental57

Table 1; Methods). To assess the generalization performance of our models, we linked each TF to published58

protein binding microarray (PBM), ChIP-seq, and non-training SELEX data. We computed three complementary59

performance metrics: meaningful affinity fold-range (MAFR), a new metric that provides a conservative bound60

on the ability of a model to detect low-affinity binding; R2, the fraction of signal variance explained by the model;61

and area under the precision-recall curve (AUPRC), a common metric22, 25, 29, 30 for quantifying how well a model62
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Figure 2: Validation of TF binding model performance. (a) Breakdown of the training dataset used to build
recognition models by originating study and TF family (pie charts) and by availability of testing data used to evaluate
them (Venn diagram). Representative SELEX (top) and PBM (middle) comparisons of observed and model-predicted
binding signals used to quantify generalization performance. Each point in the scatter plots corresponds to either
500 SELEX probes or 10 PBM probes; green indicates where the model predicts binding above an estimated
baseline (see Methods), while darker points indicate the meaningful affinity fold-range (MAFR) of observed binding
signal over which at most 5% of predicted binding was below the baseline. Representative precision-recall curve
(bottom) for the ChIP-seq peak classification task used to quantify model performance in terms of AUPRC. (b)
Performance comparison of ProBound models vs. popular existing resources. For each ProBound and resource
model pair (points), the average score was computed for all matching testing datasets. Horizontal bars indicate
median performance. Significance was computed using the Wilcoxon signed-rank test.

classifies genomic regions as bound or unbound as determined by ChIP-seq peaks31. We used these to benchmark our63

models to those in major resources, linking all JASPAR32, DeepBind30, HOCOMOCO33, and Jolma et al. (2013)26
64

models by TF. On average, ProBound outperformed these resources across all metrics (Figure 2b), with the PBM and65

SELEX metrics displaying the largest improvement. The less notable improvement in AUPRC is likely due to bias66

towards high-affinity sequences in ChIP-seq peaks, for which accurate low-affinity predictions are less relevant22.67

Below, we will introduce an alternative method for analyzing ChIP-seq data that eliminates the need for ChIP-seq68

peak discovery.69

Over the years, a number of TFs have been assayed many times by different research groups and SELEX70

platforms. We reasoned that jointly analyzing such data would produce a “consensus” model focused on the true71

binding signal rather than platform-specific biases (Figure S1a). Encouragingly, such consensus models displayed72

significantly improved performance when compared to traditional single-experiment models (Figure S1b), indicating73

that multi-experiment analysis can improve binding predictions. Finally, to facilitate adoption by other researchers,74

we have made a curated version of our models, comparative analyses, and computational tools readily available75

through a comprehensive resource at motifcentral.org.76
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Figure 3: Integrated modeling of complementary assays quantifies the impact of methylation and co-factors
on TF binding. (a) Combinations of TFs assayed (top) and unified model learned by ProBound (bottom). The
model consists of the inferred energy logos for the monomeric and dimeric complexes (motifs) and the (b) inferred
binding cooperativity (y-axis) between Hth and Exd:Ubx for different relative positions (x-axis) and orientations
(red: parallel; blue: anti-parallel) of the subunits. Disk areas proportional to the affinity of the strongest predicted
sequence highlight the most stable configurations. Shaded region indicates overlapping motifs. Schematics (inset)
illustrate two configurations indicated on the plot. (c) Combinations of TFs and methylated/unmethylated libraries
assayed (schematic); methylation-aware binding models (motifs) using the alphabet in Figure S3a; and impact
of meCpG on binding free energy (plots; −∆∆GCpG→meCpG/RT on y-axis) as a function of position within the
binding site (x-axis). Half-disk areas are proportional to the maximum affinity when either CpG (white) or meCpG
(black) is substituted at the corresponding position in the highest-affinity sequence and highlight positions with
high-affinity methylation readout. (d) Impact of substituting a CpG (white) or meCpG (black) at a specific position
in the highest-affinity binding site as quantified using ChIP-seq data. Each pair of bars corresponds to a substitution
at a specific position and to red arrows in (c). Antibody symbols indicate respective immunoprecipitated factor.
Asterisks indicate significance computed using an F-test (see Methods and Supplemental Table 2). (e) Same as (c)
for data simultaneously measuring methylation readout for meCpG, 5hmC, and 6mA modifications.

Quantifying TF binding cooperativity77

Variables beyond sequence, such as co-factor interactions and DNA methylation, significantly influence TF behavior78

in vivo, and therefore, TF binding models must account for them in order to improve binding predictions. We first79

focused on co-factors, which modulate TF binding in a cell-type-specific manner. Despite the growing number of80

SELEX assays characterizing TF complexes9, 11, 34, it remains a challenge to quantify sequence recognition in a81

way that clearly separates the contributions from many potential TF complexes and their various internal structural82

configurations – a problem that grows exponentially with the number of factors assayed. In a novel approach that83

builds upon our multi-experiment framework, we measure subunit binding specificity and cooperativity by explicitly84

modeling the allowed complexes in multiple SELEX datasets that probe different TF combinations.85

We first applied this method on the complex formed by three highly conserved Drosophila homeodomain86

proteins: Homothorax (Hth), Extradenticle (Exd) and Ultrabithorax (Ubx). Previous studies showed that Ubx and87

Exd form fixed-spacer heterodimers10, 22 and that Hth uses multiple relative spacings to bind cooperatively with88

similar heterodimers34. To characterize Hth:Exd:Ubx, we first performed SELEX-seq with all three factors and then89
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analyzed these data in conjunction with our previous monomer and heterodimer data (Figure 3a, S2a). Importantly,90

we modeled the ternary complex with two subunits representing Hth and Exd:Ubx; the total binding energy was the91

sum of their independent binding specificities and of a cooperativity term that depended on their relative position92

and orientation.93

The resulting model revealed significant cooperativity (∆∆Gconfig ≈ 2RT ) when Hth binds 8-13 bps upstream of94

Exd:Ubx (Figure 3b), which, along with our monomer and heterodimer models, mirrored our previous results22, 34.95

While a larger spacing is tolerated when Hth is reversed, cooperativity is lost when Hth binds far away from the96

Exd:Ubx half-site, regardless of orientation. As expected, selection in the Hth-Exd-Ubx experiment was driven by97

multiple subcomplexes with alternate spacing preferences (Figure S2b), underscoring the need to simultaneously98

model all preferences. As a further test, we reanalyzed published data for POU2F:GSC2 and GCM1:ELK1 in99

combination with matched monomer data11, 26. In both cases, strong binding cooperativity was detected at a specific100

relative offset (Figure S2c, d).101

Learning methylation-aware TF binding models102

Next, we focused on another variable affecting in vivo binding: DNA methylation. Chemical modifications to DNA,103

such as fully methylated CpG dinucleotides (meCpG), are common epigenetic marks that can alter TF binding, and104

thus, gene regulation35–38. Unlike existing methods that compare methylated and normal SELEX libraries to detect105

TF “methylation readout” at the level of enriched subsequences14, 16, 39, we used ProBound with an extended alphabet106

(Figure S3a, Methods) and our multi-experiment framework to learn methylation-aware binding models that resolve107

the position-specific impact of methylation (∆∆GCpG→meCpG), enabling binding predictions to any (un)methylated108

sequence.109

We tested this approach by simultaneously uncovering the effect of meCpG on the ATF4:CEBPγ heterodimer110

while controlling for the confounding influence of their respective homodimers. Using data for all combinations of111

ATF4/CEBPγ and normal/methylated DNA (Figure S3b), we simultaneously learned methylation-aware binding112

models for all three dimers (Figure 3c, Methods). These predict methylation induced stabilization/destabilization113

patterns (Figure 3c, S3c) consistent with previous analyses of the ATF4 homodimer15 and similar to those of114

the related CEBPβ homodimer15 and ATF4:CEBPβ heterodimer39. Strikingly, ATF4 overrides CEBPγ to retain115

its methylation readout at the central position of the heterodimer complex. Importantly, we used ChIP-seq data116

to estimate the impact of these position-specific methylation sensitivities in vivo, and found that methylation117

significantly affected binding in the direction predicted by our models (Figure 3d, Methods).118

Other DNA modifications, such as N6-methyladenine (6mA) and 5-hydroxymethylcytosine (5hmC), can also be119

functional40–45. To characterize their impact, we extended the EpiSELEX-seq protocol to assay multiple sub-libraries120

simultaneously: unmethylated, meCpG, 5hmC, and 6mA (Figure 3e and S4a). Not only is this simpler than assaying121

each methylation mark separately, it also reduces experimental error. Repeating the binding assay for CEBPγ and122

jointly analyzing all four libraries reveals significant and distinct stabilization/destabilization patterns for both 5hmC123

and 6mA (Figure 3e and S4b). Notably, the inferred meCpG methylation sensitivity is identical to what we found124

above. These results illustrate both the scalability of our approach and the impact 5hmC and 6mA can have on125

binding.126

Measuring absolute binding constants using SELEX127

While we have focused on quantifying binding specificity in terms of relative affinities, knowledge of absolute128

affinities is necessary for predicting equilibrium occupancy and for comparing different TFs on a common scale.129

Fundamentally, SELEX assays probe relative ligand frequencies, and so far, have only been used to estimate relative130

affinities. To overcome this limitation, we developed a novel assay called KD-seq. It uses ProBound to jointly analyze131

the input, bound, and free probes from a selection round and produce both a specificity model and an estimate of the132

absolute dissociation constant (KD) for a reference sequence. Intuitively, KD-seq uses a sum rule to relate the relative133

ligand frequencies of the three libraries and convert them to absolute binding probabilities (Figure 4a, Methods).134

We initially tested KD-seq using the Drosophila homeodomain protein Distal-less (Dll) at low DNA and TF135

concentrations (100nM and 20nM, respectively) to achieve strong enrichment and avoid excessive binding saturation.136

5/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 - KD.pdf
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Figure 4: ProBound infers absolute KD values. (a) Schematic overview of the KD-seq method. After a TF is
incubated with a randomized DNA library, the bound, free, and input probes are sequenced, measuring the relative
probe frequencies in each fraction. This can be used to estimate the absolute binding probabilities (and hence KD)
with a sum rule that relates the three frequencies. (b) KD model for Dll consisting of a specificity model with an
energy logo (top) and an interaction matrix (middle), which together predict the relative binding affinity, and the
absolute KD for a reference sequence (bottom). The interaction plot shows stabilizing (red) and destabilizing (blue)
corrections to the energy logo for each pair of positions (boxes) and bases (pixels) in the logo. Gray indicates
prohibited corrections. Model generated from data where [Dll] = 100nM and [DNA] = 20nM. (c) Comparison of the
predicted K−1

D (x-axis) and observed probe fractions (y-axis) in the bound (top) and free (bottom) libraries. Points
represent the average observed fraction for 500 probes binned by predicted KD. Dashed line indicates expected
value assuming equilibrium binding model. (d) Comparison between EMSA-measured (y-axis) and model-predicted
(x-axis) KD values for four probes. (e) KD of the sequence TTTAATTGGT as estimated by KD-seq for different Dll
and DNA concentrations.

The resulting model (Figure 4b) accurately predicted enrichment in the bound and free libraries over three orders of137

magnitude in KD (Figure 4c). For validation, we measured the KD values of the optimal model-predicted binding138

site and three suboptimal sequences using EMSA and found excellent quantitative agreement (Figure 4d). We139

then confirmed the robustness of KD-seq affinity measurements by repeating the assay at different TF and DNA140

concentrations (Figure S5a). The resulting specificity models were virtually identical (pairwise r2 for ∆∆G ranging141

from 0.974-0.998), with the fraction of bound DNA changing as expected (Figure S5b). While the estimated KD142

of the highest-affinity sequence was robust in many conditions, it shifted at extremely high TF concentrations143

(∼600-fold above EMSA-measured KD) or when DNA concentration was significantly above that of the TF (Figure144

4e).145

ProBound can also learn KD models by jointly analyzing the bound and input libraries of multiple SELEX146

experiments at different TF concentrations. Intuitively, this approach leverages saturation effects to determine the147
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Figure 5: ProBound learns quantitative binding models and sample-specific activities using peak-free ChIP-
seq analysis. (a) Binding models for GR and three co-factors (left) learned from GR ChIP-seq data from the IMR90
cell line47 and for GR from a SELEX dataset (center). The scatterplot compares the energy coefficients learned from
ChIP-seq (y-axis) and SELEX (x-axis) data9. (b) Combined specificity (top) and sample-specific binding activity
(bottom) model learned by jointly analyzing three GR ChIP-seq datasets after treatment with 30, 300, or 3000µg/kg
of corticosterone (CORT)48. The scatterplot (left) compares the energy coefficients as in (a).

absolute affinity scale. For Dll, the KD models from the two approaches are very similar (Figure S5a,c-d). When148

applied to multi-concentration RNA Bind-N-seq18 data for RBFOX2, the resulting KD-model captured the observed149

transition from linear to saturated selection in the experiments (Figure S5f). Finally, we note that ProBound can150

estimate relative affinities using only the free and bound libraries, as in the Spec-seq46 assay (Figure S5e).151

Peak-free motif discovery from ChIP-seq data152

While the preceding analyses have focused on quantifying the impact of co-factors and TF concentration on in153

vitro binding, we also wished to learn their in vivo impact directly from ChIP-seq data. Standard motif discovery154

algorithms aim to discover overrepresented sequences within discrete genomic regions – identified by “peak callers”155

– that harbor a statistically significant enrichment of ChIP-seq reads. Peak calling is useful for identifying the most156

prominent genomic binding sites, but it ignores information about cis-regulatory logic contained within more weakly157

bound regions. We hypothesized that by directly modeling the enrichment between the input and ChIP libraries,158

ProBound can extract such information even from weakly enriched regions.159

To test this approach, we used ProBound to discover the factors driving the selection in glucocorticoid receptor160

(GR) ChIP-seq data from the IMR90 cell line47 (see Methods). It found four binding models: one consistent with the161

GR consensus sequence49, 50 and three others consistent with known GR co-factors AP-1, FOXA1, and TEAD47, 51
162

(Figure 5a). Inspired by our multi-concentration analysis above, we next set out to quantify the impact the nuclear163

concentration of a TF can have on binding. We did so by jointly analyzing multiple ChIP-seq datasets that probe164

GR binding in the murine hippocampus after treatment with varying levels of corticosterone (CORT)48, an agonist165

that increases the nuclear concentration of GR (Figure 5b). The resulting model captured sample-specific activity166

parameters reflective of GR nuclear concentration that were proportional to CORT concentration (Figure 5b).167

It should be noted that both these models were constructed on data that was intentionally downsampled to less168

than one mapped read per kb of genomic sequence on average. Thus, even when peak discovery is ineffective,169

ChIP-seq data clearly contain sufficient information to reliably infer TF binding models, capture the influence of170

co-factors, and quantify biologically meaningful cell state parameters. Significantly, the free-energy parameters of171

both GR binding models showed striking agreement with those from a model trained on in vitro data9 (r2 = 0.96172

and r2 = 0.93, respectively; Figure 5a, b), suggesting that in vitro and in vivo observations of binding specificity can,173
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Figure 6: ProBound quantifies sequence-dependent kinetics of the tyrosine kinase c-Src. (a) Schematic
overview of the bacterial display assay used to profile the sequence specificity of the tyrosine kinase c-Src. (b) keff
model for c-Src with an energy logo (top) and an interaction matrix (bottom) trained on data from 5, 20 and 60
minutes of exposure. The central position of the model was fixed to recognize tyrosine (gray). (c) Comparison
of the predicted keff (x-axis) and phosphorylated fraction (y-axis) for 5 (blue), 20 (purple) and 60 minutes (red)
of exposure to c-Src. Points represent the average observed phosphorylated fraction for 500 probes binned by
predicted keff. Dashed lines indicate expected value according to model. (d) Comparison of the HPLC-measured
normalized initial phosphorylation rate v0 (y-axis, n = 3 technical replicates) and the model-predicted keff (x-axis)
for five disease-associated WT/MUT SNP pairs (arrows) and a peptide predicted to have high activity (table and
Supplemental Table 3). The concentration of c-Src was 500 nM and that of the substrate peptide was 100 µM. Error
bars indicate the standard error of the mean and asterisks indicate significance computed using a two-sided t-test.

in fact, be highly concordant.174

Profiling tyrosine kinase kinetics175

Biological processes that employ sequence-specific protein-protein interactions are increasingly being studied with176

display assays utilizing diverse DNA-templated protein libraries19, 20, 52. While these methods are profiling these177

interactions more comprehensively than ever before, interpreting the data remains challenging for many of the same178

reasons as above. Furthermore, current analytical methods tend to focus on detecting enriched sequence features179

rather than explicitly estimating binding constants or enzymatic parameters. Given the similarities with SELEX180

assays, we were motivated to use ProBound to characterize protein sequence recognition.181

As a proof-of-concept, we focused on a process critical to many signal transduction pathways in the cell –182

the phosphorylation of tyrosine residues on proteins. Recently, the substrate sequence preferences of several183

tyrosine kinases were surveyed with a bacterial display library containing thousands of known kinase targets53. To184

comprehensively profile the preferences for one of these kinases, c-Src, in an unbiased way, we repeated the assay185

with a new library design that randomizes ten amino-acid residues around a fixed central tyrosine and exposed this186

library to c-Src for varying durations (Figure 6a; Methods). After sequencing, we jointly analyzed all time points187

to learn a model that predicts the sequence-specific catalytic efficiency keff, a simple metric that is often used to188

compare different substrates against a single enzyme. Visualizing the inferred efficiency model as a sequence logo189

(Figure 6b) revealed a position-specific pattern of favorable residues that were consistent with the earlier study53.190
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The model also accurately captures the observed fraction of phosphorylated peptides over a 100-fold range in keff for191

all three time points (Figure 6c).192

To validate the model, we used high-performance liquid chromatography (HPLC) to measure the phosphorylation193

rates for eleven peptides. As genetic variants can significantly impact phosphorylation rates54, we used the PTMVars194

database55 to find four disease-associated SNPs predicted by our ProBound model to have a large allelic difference.195

Indeed, measurements of their normalized initial phosphorylation rate differed significantly in the direction predicted196

by the model (Figure 6d). In addition, there was no measurable difference for a SNP predicted to cause only a197

small allelic difference for the F8 protein, and a model-generated high-efficiency peptide (Src-high) was indeed the198

highest. Significantly, these predictions tracked measurements over three orders of magnitude in keff, suggesting that199

ProBound is a powerful new tool for quantifying enzyme specificity.200

Discussion201

A major goal of this study was to rigorously estimate biophysical parameters from NGS data using machine learning.202

While biochemists have measured such parameters for decades, these measurements are generally low-throughput.203

By contrast, high-throughput sequencing-based analysis tends to focus on the detection of enrichment patterns that204

only indirectly reflect these quantities. Moreover, modern machine learning methods such as deep neural networks205

tend to yield highly overparametrized black box models whose parameters have no direct biophysical meaning. Here,206

we showed that by explicitly modeling the assay process, we can use machine learning to turn DNA sequencers into207

virtual measurement devices that accurately quantify biophysical parameters. Molecular biologists and computer208

scientists often address the same question using very different language; for instance, classifier performance and209

binding free energies are both used to quantify sequence recognition. We hope that approaches such as ours help210

keep the literature more coherent and inspire direct experimental validation of algorithm performance.211

Central to our approach is the observation that some quantities cannot be estimated through pairwise enrichment212

analysis but only through more structured integration of complementary data. One example is our combinatorial213

approach to the separation of different TF complexes, which we also extended to methylation-aware binding models.214

Another is how analyzing the bound, free, and input fractions jointly – not pairwise – allows absolute affinities to be215

measured. Our approach is reminiscent of more traditional biochemical assays, which collect data across different216

time points, concentrations, or fractions, and use curve fitting to estimate constants. As we study increasingly217

complex aspects of sequence recognition — such as the combined impact of sequence, co-factors, DNA methylation,218

and TF concentrations, or the integration of in vitro and in vivo perspectives — we foresee that rigorous integration of219

complementary data along the lines that we have sketched here will become increasingly important. More generally,220

we anticipate that the accurate and unbiased profiling of sequence recognition that ProBound enables will have221

numerous applications in areas of biotechnology where the rational engineering of ligands is critical.222
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Methods223

Overview of the algorithm224

For each experiment, the data consists of a count table enumerating the probes in each SELEX round. The core of225

the algorithm is a statistical model of the experiment that defines the likelihood of a set of model parameters given226

the count table. On a high level, this likelihood is computed by first defining the probability that each probe is bound227

in terms of its sequence, then predicting the probe frequencies in each library using a cumulative selection function,228

and finally modeling the stochastic sampling of sequencing. The model parameters are estimated from the data229

through numerical maximization of the likelihood.230

Probabilistic motivation of the binding model231

The binding model defines the probability that a probe is bound:

Pbound =
Zbound

1+Zbound
. (1)

Here Zbound is the partition function, which can be thought of as a weighted sum over microscopic states. Assuming
that at most two protein molecules are bound to the probe, the partition function is given by

Zbound = ∑
a

∑
x

[Pa]

KD,a(Sx)
+∑

a,b
∑
x,y

[Pa][Pb]

KD,a(Sx)KD,b(Sy)
ωa:b(x,y), (2)

where a is an index that denotes protein type, [Pa] is the concentration of protein a, Sx a probe subsequence of length232

La starting at an offset and strand denoted by x, KD,a(Sx) is the dissociation constant for protein a binding Sx, and233

ωa:b(x1,x2) quantifies the cooperativity between factors a and b binding at position x1 and x2, respectively. Note that234

ωa:b(x1,x2) equals 1 if a and b bind independently from each other, equals 0 for prohibited conformations, and is235

greater than 1 if the factors bind cooperatively.236

It is convenient to express KD in terms of its value for a references sequence S0 and a modifier factor called the
relative binding affinity:

Krel
D,a(Sx) =

KD,a(Sx)

KD,a(S0)
= exp

(
∆∆Ga(Sx)

RT

)
. (3)

Here ∆∆Gm(S) ≡ ∆G(S)−∆G(S0) is the difference in free-energy penalty ∆G of binding between S and S0, R237

denotes the ideal gas constant and T is the absolute temperature.238

A central goal of our algorithm is to learn how ∆∆Gm(S) depends on the sequence. ProBound models this as a
sum of additive contributions associated with sequence features φ :

∆∆Ga(Sx)

RT
= ∑

φ∈Φ

βa,φ Xφ (Sx)≡ ~βa ·~X(Sx) (4)

Here Φ is the set of sequence features, βφ is the energetic impact of φ , and Xφ (Sx) is a binary indicator of whether239

sequence Sx contains φ . By default, Φ is simply the letter sequence along Sx, meaning ~β encodes a position-specific240

affinity matrix (PSAM) with size matching the length of Sx. ProBound can also include letter pairs (both adjacent241

and non-adjacent) as features.242

Implementation of binding model243

While the above derivation provides a motivation for the binding model, it has to be adapted for SELEX experiments.
First, it is clear from Eq. 2 that the protein concentration [Pa] and binding constant KD,a(S0) for a given factor a cannot
be separately estimated from the data, but only the ratio αa = [Pa]/KD,a(S0) can, a quantity we call the binding mode
activity. We similarly define the binding mode interaction activities as αa:b = [Pa][Pb]/KD,a(S0)KD,b(S0). Second,
because the free protein concentration can vary between SELEX rounds r, the activities can take independent values
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in each round. Third, most experiments are performed in a low-protein-concentration regime where Zbound� 1
and Pbound ∝ Zbound. Because the data only provide information about the relative rate at which probes are selected,
only the relative values of αa and αa:b are meaningful in this limit. Fourth, while PSAM models can be accurate for
close-to-consensus sequences, they severely underestimate the affinity of far-from-consensus sequences, for which
non-specific binding is dominant56. This can be addressed by including a non-specific binding term αN.S. in Zbound.
Finally, it is sometimes important to include a factor ωa(x) that models biases in binding along the probe. Putting all
of this together gives that the partition function in selection round r is given by:

Zbound,r = αN.S.,r +∑
a

αa,r ∑
x

ωa(x)e−βa· ~X(Sx)+∑
a,b

αa:b,r ∑
x,y

e−βa· ~X(Sx)−βb· ~X(Sy)ωa:b(x,y) (5)

The binding probes typically feature a variable region flanked by constant sequences. The sliding window sum over244

subsequences Sa can be configured to include fa letters from the flanking sequences. By default, the sum runs over245

both strands, but it can be restricted to only one strand (which is useful for modeling RNA and peptides).246

Selection model247

The selection model predicts the relative concentrations fi,r of each binding probe i each selection round r. By
default, the concentrations in two subsequent rounds are related through an enrichment factor proportional to the
binding. It is convenient to express this as

fi,r = fi,r−1 (Zbound,i,r)
ρ (1+Zbound,i,r)

γ (6)

where Zbound,i,r is the partition function evaluated for probe i in round r. Experiments conducted in the low–protein-248

concentration limit are modeled by setting (ρ,γ) = (1,0). Binding saturation can be accounted for by setting249

(ρ,γ) = (1,−1).250

Some experiments (such as KD-seq, see below), do not use multiple rounds of binding enrichment and are better
modeled using

fi,r = fi,0 (Zbound,i,r)
ρr (1+Zbound,i,r)

γr (7)

Finally, kinetic experiments that enrich and sequence modified or unmodified probes can be modeled using the
constant-rate enrichment model:

fi,r = fi,r−1

(
1

1+ e−δ
e−Zbound,i,r +

1
1+ eδ

(
1− e−Zbound,i,r

))
(8)

Here δ → ∞ and δ →−∞ correspond to the unmodified and modified fractions, respectively.251

Sequencing model252

The sequencing model computes the likelihood of the observed count tables ki,r given the relative concentrations fi,r

predicted by the selection model. The counts are assumed to follow a Poisson distribution with expectation value

E[ki,r] = ηr fi,r (9)

Here the parameter ηr normalizes the relative probe concentration and adjusts to the correct sequencing depth. The
(rescaled) likelihood is then

logL = ∑
r,i
[ki,r log(ηr fi,r)−ηr,i fi,r]/ktotal + const. (10)

where ktotal is the total number of reads and where the last term is independent of model parameters and can be
ignored for the purpose of optimization. Because fi,r is proportional to fi,0, the latter parameter can be optimized
analytically and substituted back into Eq. 10, giving

logL = ∑
r,i
(ki,r log pr;i)/ktotal + const. (11)
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where pr;i = ηr fi,r/∑r′ ηr′ fi,r′ . Note that Eq. 11 also can be derived by assuming the counts for each probe follow253

the multinomial distribution across columns with probability pr;i. Also note that because all unobserved probes254

have ki,r = 0 and do not contribute to the likelihood, the sum over i only runs over the the observed probes. This255

is a major advantage compared to NRLB22, where the sum is over all 4L probes, with L is the number of variable256

positions. This sum can only be evaluated using dynamic programming and this restricts NRLB to data from only a257

single round of affinity-based enrichment in the absence of saturation. Finally, note that Eq. 11 is independent of258

the initial probe frequencies fi,0, meaning that initial library need not be random but can consist of genomic DNA259

fragment or custom-designed sequences.260

Multi-experiment learning261

ProBound simultaneously models multiple experiments by computing the likelihood Le of each experiment e and
then optimizing the combined likelihood

logL = ∑
e

logLe (12)

The precise way in which the likelihood Le is evaluated can be tailored to the details of each experimental design:262

1. A different configuration of binding modes and their interactions can be chosen for each experiment when263

computing Zbound when desired.264

2. The binding mode (and interaction) activities can either take independent values αa,e in each experiment or be265

constrained to αa,e = [Pa]eαa where αa is the global activity of binding mode a and [Pa] is a set parameter.266

The latter is useful when integrating experiments conducted at different protein concentrations, or in kinetic267

assays where [Pa] is set to the treatment time.268

3. Chemical modifications are encoded by expanding the alphabet and transliterating letters appropriate experi-269

ments. For example, meCpG modifications can be encoded using the alphabet ACcGgT, the complementarity270

rules A↔ T, C↔ G, c↔ g, expanding the feature set Φ of the binding model to inlude the additional letters,271

and performing the transliteration CG→ cg for methylated probes.272

Regularization273

Three regularization terms were included to avoid overfitting and to improve the stability of the numerical optimiza-
tion: The first was a L2 regularization term for the parameter vector

~θ = {βφ , logαa, logαa:b, logωa(x), logωa:b(x,y), logηr} (13)

with weight λ . The second term was inspired by the Dirichlet distribution which commonly is used as a prior
for probability parameters. For each feature φ thus we identified all features Φc(φ) that are of the same class c
(monomer, or dimer with the same spacing) and located at the same position within the binding site, and then define
a feature probability

p(φ) =
eβφ

∑φ ′∈Φc(φ) eβ
φ ′

(14)

The regularization term is then computed as the rescaled log-PDF of p(φ) in the Dirichlet distribution

kDirichlet

ktotal
∑
φ

log p(φ) (15)

where kDirichlet is analogous to a pseudocount. The final regularization term in the likelihood is defined as

∑
i

(
eθi−θmax + e−θi−θmax

)
(16)

and introduces an exponential barrier (by default θmax = 40) that prevents the optimizer from failing or getting274

trapped in regions with large numerical errors.275
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Procedure for setting kDirichlet276

The importance of the Dirichlet regularizer in Eq. 15 is set by kDirichlet. For fits with all-by-all interactions, the277

inferred coefficients tended to be unstable for small values of kDirichlet. While increasing kDirichlet stabilizes the278

coefficients, they shrink towards zero when kDirichlet is excessively large. We thus developed a procedure for setting279

kDirichlet and applied it uniformly in our analysis of Dll (Figure 4b), RBFOX2 (Figure S5j), and Src (Figure 6b). In280

this procedure, we ran ProBound using a wide range of Dirichlet weights (kDirichlet ∈ {0, 10, 20, 50, 100, 200, 500,281

1000, 2000}), fixed the monomer coefficients ~βmono and dimer coefficients ~βdi in each resulting model using the282

mismatch gauge (see below), and computed the pairwise Pearson correlation r2 between the inferred ~βdi for different283

values of kDirichlet. The resulting matrix r2(k1,k2), where k1 and k2 are values of kDirichlet, had a block-like structure284

where ~βdi was highly correlated for large values of k1 and k2 but only weakly correlated when k1 or k2 was small. We285

considered the coefficients to have stabilized when r2 > 0.8 between a model and the model with the next-smaller286

value of kDirichlet. Using this procedure, we fixed kDirichlet to be 200 for RBFOX2, 200 for the single-experiment Dll287

analyses, 1000 for the multi-experiment Dll analyses, and 50 for Src.288

Model optimization scheme289

ProBound optimizes the above model by first restricting it to only include the first binding mode (and non-specific290

binding) and optimizing this model, and then sequentially including and optimizing additional binding modes (and291

interactions as they become possible). As each new binding mode a (or interaction a : b) is included and optimized,292

the algorithm takes seven sub-steps: (i) heuristic adjustment of αa (or αa:b) so that it is expected to contribute to293

5% to Zbound; (ii) freezing the values of all model parameters; (iii) unfreezing and optimizing η to avoid shocks294

from incorrectly predicted sequencing depth; (iv) unfreezing and optimizing the monomer features in ~βa mode295

to give an initial binding model (ωa:b(x,y is unfrozen and optimized for interactions); (v) greedy exploration of296

alternative binding models with different frame shift (shifting the recognized sequence features to left or right),297

footprint (expanding the region of feature recognition to the left and/or right) or flank length (including subsequences298

located further into the fixed flanking regions when computing Zbound); (vi) sequential unfreezing and optimization299

of dimer features and ωa(x) if applicable; (vii) unfreezing of all model parameters. At each substep, L-BFGS is used300

to optimize the unfrozen parameters. By default, the parameters are seeded with small random numbers, but the301

binding modes can also optionally be seeded using IUPAC codes. Additional constraints can be imposed on the302

parameters to implement reverse-complement symmetric binding modes or translationally symmetric interactions.303

Gauge fixing304

Models with pairwise letter interactions are over-parametrized, meaning that an infinite set of parameter values
~β encode the same sequence specificity. Specifically, for any binding site sequence S, ~β ·~X(S) is invariant under
transformations of the form

βφ → βφ +A ∀φ ∈Φmono(x1) (17)

βφ → βφ −A ∀φ ∈Φdi(x1,x2,n) (18)

where Φmono(x1) is the set of monomer features at position x1, Φdi(x1,x2,n) is the set of dimer features connecting305

positions x1 and x2 and with n at x2, and A is the transformation coordinate. For visualization and model comparison306

purposes, it is convenient to select one representative model for each sequence specificity (analogous to gauge fixing307

in physics). We here use a convention we call the ’mismatch gauge’. In this convention, the coefficients are such that,308

first, only one monomer coefficient contributes for single-edit variations of reference sequence S0, and, second, at309

most one of the dimer coefficients contribute for each double-edit variations of S0. After imposing mutation gauge,310

the resulting PSAMs were visualized using standard energy logos57 and the interaction coefficients were displayed311

using heat maps.312

Benchmarking ProBound313

How fits were trained, trimmed, and selected314

To benchmark ProBound, we first curated a training database of published TF SELEX datasets9, 10, 12, 14, 15, 26–28.315

Datasets with low sequencing depth or low enrichment were filtered out as described below. Each dataset was then316
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analyzed by ProBound using three settings that differed in the number of binding modes and in how non-specific317

binding was modeled (see Supplemental Methods).318

For each resulting fit, one binding mode typically captured the TF sequence specificity and the other typically319

absorbed platform-specific biases. To automatically identify the TF mode, we computed a heuristic quality score,320

which favors modes that both are important for the fit and have high specificity, and selected the mode with the321

top score. This score was r2
mode + log Imono, where r2

mode is the the Pearson correlation (across SELEX probes)322

of the log-transformed binding affinity predicted by the mode (plus an optimized non-specific term) and the log-323

transformed binding predicted by the full fit, and Imono is the information content of the mononucleotide coefficients324

after imposing the mismatch gauge.325

To automatically select which of the three settings produced the best fit in a way that does not give an unfair
advantage when comparing to published models, we developed the quality score Straining which measures model
performance in predicting the training data. Straining was defined to be the average of six sub-scores that quantify
different aspects of model performance:

Straining =mean
({

Flogit(r2
fit,8mer;0.5), Flogit(R2

fit,affinity,0.95), Flog( ffit,affinity;5.0),

Flogit(R2
scoring,training;0.95), Flog(MAFRscoring,training;5.0), Flog(Iscoring,mono;3.0

})
(19)

where the functions Flogit(x;x0) = expit(logit(x)− logit(x0)) and Flog(x;x0) = expit(log(x)− log(x0)) map the met-326

ric x to the unit interval such that the threshold x0 maps to 0.5. Here,327

• r2
fit,8Mer was computed by first using the full ProBound model to predict the training count table, then counting

the number of occurrences nobs/pred
8mer (k,r) of each 8mer k in each round r of the of the observed and predicted

count tables, then computing the observed and predicted 8mer enrichment between the first and last round
using

f obs/pred
8mer (k) =

1
rlast− rfirst

log

(
1+nobs/pred

8mer (k,rlast)

1+nobs/pred
8mer (k,rfirst)

)
(20)

and finally computing the Pearson correlation between f obs
8mer and f pred

8mer.328

• R2
fit,affinity and ffit,affinity were computed by first using the full ProBound model to predict the training count

table. Then, for each pair of rounds subsequent rounds r and next(r) (ignoring rounds with less than 10,000
reads), the probes were sorted (conjointly in the observed and predicted tables) by the predicted enrichment
between the rounds. The probes were then divided into bins i with associated the observed and predicted
probe counts nobs/pred

bin (i,r) such that nobs
bin (r)+nobs

bin (next(r)) = 1000 in each bin. After computing the observed
and predicted enrichment using

f obs/pred
bin (i;r) =

1
next(r)− r

log

(
1+nobs/pred

bin (i,next(r))

1+nobs/pred
bin (i,r)

)
(21)

we finally computed the metrics

R2
fit,affinity = maxr R2

k

(
f obs
bin (i;r), f pred

bin (i;r)
)

(22)

ffit,affinity = maxr

(
maxi f obs

bin (i;r)
mini f obs

bin (i;r)

)
(23)

where R2
i denotes the coefficient of variation evaluated across bins i.329

• R2
scoring,training and MAFRscoring,training were computed using the same method that was used to quantify gen-330

eralization performance in predicting testing SELEX data (see below) but instead predicting the training331

data.332

• Iscoring,mono is the information content of the scoring model, computed using the monomer coefficients after333

imposing the mismatch gauge.334
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Evaluation of Model Performance335

To benchmark the resulting binding models, we curated a testing database of published SELEX (same as training336

database, but excluding the training dataset), PBM58–60 and ENCODE ChIP-seq31 datasets. We then quantified the337

ability of the above binding models to predict the testing data. Binding models and testing data were matched by TF338

and species; if no match was found, the matching criteria were expanded to consider orthologous human and mouse339

TFs. For comparison, we also downloaded binding models from the JASPAR, DeepBind, HOCOMOCO databases340

and the original HT-SELEX TF binding survey26, 30, 32, 33 and repeated all analysis using these models.341

For the SELEX and PBM experiments, we used the binding models to predict the total affinity (denoted xi)
for each probe i and quantified how well these predictions agree with the measured binding yi. For the SELEX
experiments, the signal consisted of the probe-count enrichment ki,r+1/ki,r between subsequent SELEX rounds (with
maximum normalized to 1). For the PBM experiments, the background-subtracted and min-max normalized binding
signal was used. For both platforms we encountered two challenges: First, the measurements for individual probes
were too noisy to quantify model performance accuracy (for SELEX, typical sequences were observed just once;
for PBM, the signal depends strongly on the position of the binding site in the probe, which varies). Inspired by
earlier PBM analyses which removed position bias by considering the 8mer-binned median signal29, 61, we sorted
and binned the probes using xi (with bin size 500 for SELEX and 10 for PBM) and then computed the binned signal
yi (using the bin-averaged enrichment, with pseudocount 1, for SELEX, and the median signal for PBM). Second,
binding signals can be distorted by experimental artifacts such as binding saturation, background, and non-specific
binding not modeled by the model. To correct for such distortions, xi was transformed using the binding saturation
function:

ŷi =
β0

1+(βC(xi +βNSB))−1 (24)

Here β0 sets the scale, βC > 0 sets the concentration, and βNSB sets the non-specific binding. These parameters342

were estimated by minimizing ∑i[log(yi/ŷi)]
2 for SELEX (with β0 > 0 and βNSB > 0) and ∑i(yi− ŷi)

2 for PBM (for343

which yi can be negative). Model quality was then quantified using the coefficient of determination R2 of yi and344

ŷi (on a logarithmic scale for SELEX) and the MAFR, which is defined as (maxi yi)/ybg where ybg is the weakest345

signal detected by the model. To estimate ybg, we first defined a set of (binned) probes predicted to be bound as346

ŷi > 1.25Q1(ŷ) (where Q1 is the first quartile) and then defined ybg to be the smallest value of yi identifying the347

bound set at 5% FDR. For multi-round SELEX experiments, R2 and the effective range were computed for all rounds348

and the largest values were recorded.349

For the ChIP-seq experiments, we quantified model performance using the area under the precision-recall curve350

in classifying binding peak vs. background sequences. To get the peak sequences, we downloaded narrowPeak351

files from the ENCODE portal (see below) and extracted the genome sequence from the 500 peaks with the strongest352

enrichment. To generate the background set, we shifted the peak interval one peak length to the left and right and353

extracted the genome sequences.354

Filtering of SELEX training datasets355

We first curated a database of published SELEX experiments and downloaded the associated raw sequencing
data9, 10, 12, 14, 15, 26–28. Methylated SELEX experiments were not considered. For each experiment, we downsampled
the sequencing libraries to contain at most 100,000 reads and tabulated the probe counts in each SELEX round. We
then filtered out low-quality experiments using three criteria: First, low-coverage experiments were removed by
requiring at least two rounds to have at least 10,000 reads. Second, experiments were discarded if no sequencing
library before round three had 10,000 or more reads. Third, experiments with low-enrichment were discarded. The
enrichment was quantified by first tabulating the frequencies p(k,r) (using pseudocount 5) of all 5mers k in each
SELEX round r, and then, for each pair of rounds ri and r j with 10,000 or more reads, computing the rescaled KL
divergence

DKL(r2,r1) =
∑k p(k,r2) log2

p(k,r2)
p(k,r1)

r2− r1
(25)
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Only experiments with rescaled KL divergence exceeding 0.01 for at least one combination of rounds were retained.356

Scoring of binding probes357

In quantifying generalization performance, we predicted the occupancy of DNA sequences using both the ProBound358

binding models and previously published models. For DeepBind, we exponentiated the scores returned from the359

deepbind scoring tool, which is proportional to binding affinity. For JASPAR and original HT-SELEX TF survey,360

the binding models were position-frequency matrices (containing counts). These were first converted to position361

probability matrices (PPM, using a psuedocount of 1) which were then used to compute the binding probability362

at each offset in the sequence. The occupancy was then defined to be the sum of the binding probabilities. For363

HOCOMOCO, the binding models were PPMs and the occupancies were computed as described above.364

ENCODE ChIP-seq datasets365

ENCODE datasets were downloaded on December 2018 using the query string:366

https://www.encodeproject.org/metadata/type=Experiment&status=released& ...367

... perturbed=false&assay_title=TF+ChIP-seq&target.investigated_as= ...368

... transcription+factor&audit.ERROR.category%21=extremely+low+read+ ...369

... length&audit.ERROR.category%21=control+extremely+low+read+depth& ...370

... audit.ERROR.category%21=extremely+low+read+depth& ...371

... audit.NOT_COMPLIANT.category%21=insufficient+replicate+concordance& ...372

... audit.NOT_COMPLIANT.category%21=unreplicated+experiment& ...373

... audit.NOT_COMPLIANT.category%21=control+insufficient+read+depth& ...374

... audit.NOT_COMPLIANT.category%21=poor+library+complexity& ...375

... audit.NOT_COMPLIANT.category%21=severe+bottlenecking&...376

... audit.NOT_COMPLIANT.category%21=insufficient+read+length&...377

... audit.NOT_COMPLIANT.category%21=insufficient+read+depth& ...378

... files.file_type=bed+narrowPeak/metadata.tsv379

Binding by multi-protein complexes380

ProBound Analysis381

ProBound was configured to jointly analyze SELEX experiments performed with different combinations of TFs,382

as described in the Supplemental Methods. In the case of Hth-Exd-Ubx, we analyzed published SELEX-seq383

experiments for Exd-Ubx, Hth, Exd, and Ubx. In addition, we preformed SELEX-seq for Hth-Exd-Ubx (see below).384

POU2F-GSC2 and ELK1-GCM1 were analyzed as described in the Supplemental Methods and Supplemental Table385

4.386

Experimental Protocol387

The Hth-Exd-Ubx SELEX experiment was carried out following previously published methods10, 62. Briefly, after388

expressing and purifying the wild-type homeodomain proteins, a final concentration of 50 nM was assembled,389

incubated with excess DNA (10-20 fold) for 30 minutes, and loaded onto an EMSA gel. A DNA library with 30390

randomized bases was used. The TF-bound fraction was isolated from the gel, amplified, and either subjected391

to another round of enrichment or prepared for sequencing. Three rounds of enrichment were performed. After392

each selection round, the DNA was extracted from the gel and amplified by using Ilumina’s small RNA primer393

sets. Sequencing barcodes were added in a five cycle PCR step and the final library was gel-purified using a native394

TBE-gel before sequencing. Libraries were sequenced at the New York Genome Center using separate lanes on an395

Illumina HiSeq 2000 sequencing machine.396

Effect of DNA Methylation397

ProBound Analysis398

ProBound learns methylation-aware binding models by jointly analyzing normal and methylated SELEX libraries399

after encoding the methylation state of each basepair using an extended alphabet (see Figure S3a and configuration400
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in Supplemental Methods). Encoding methylation status in this manner allows us to infer the position-specific401

free energy impact of such chemical modifications. For the ATF4/CEBPγ homo- and hetero-dimers, we jointly402

analyzed two published EpiSELEX-seq experiments for ATF4 and CEBPγ , and a new EpiSELEX-seq experiment403

that included both ATF4 and CEBPγ . We also generated EpiSELEX-seq data for CEBPγ in combination with the404

chemical modifications meCpG, 5hmC, and 6mA.405

Experimental Protocol406

ATF4 protein purification and EpiSELEX-seq experiments were performed as described previously15. Purified407

CEBPγ protein was kindly donated by the Lomvardas lab at the Zuckerman Institute at Columbia University.408

To generate randomized 5hmC or 6mA libraries, single-stranded oligos with a 16-bp randomized region were409

ordered from TriLink Biotechnologies, substituting i) deoxycytidine triphosphate (dCTP) with deoxy-(5hm)-cytidine410

triphosphate (d5hmCTP), or ii) deoxyadenosine triphosphate (dATP) with deoxy-(6m)-adenosine triphosphate411

(d6ATP) during the synthesis step. For double-stranding, a standard mix of deoxy-nucleotides was used, resulting412

in hemi-modified libraries. meCpG libraries were generated by enzymatic treatment with M.SssI (NEB) as413

described previously15. The library sequences consisted of left and right constant adapters (GGTAGTGGAGG- and414

-CCAGGGAGGTGGAGTAGG respectively) flanking a library specific barcode and a 16bp randomized sequence:415

• no modification: -TGGG-CCTGG-N16-416

• meCpG: -GCAC-CCTGG-N16-417

• 5hmC-Library: -CAGT-CCTGG-N16- (5hmC instead of C in 16N)418

• 6mA-Library: -AGTG-CCTGG-N16- (6mA instead of A in 16N)419

GLM analysis of ATF4 and CEBPγ ChIP data420

To estimate the effect of DNA methylation on in vivo AFT4 and CEBPγ binding, we first scanned the genome for421

close-to-consensus motif matches i with CG at positions predicted by the model to have strong methylation readout:422

TGACGTCA and TGACGTCG for ATF4:AFT4; TTGCGCAA for CEBPγ:CEBPγ; and TTGCGTCA and TTGCATCG423

for CEBPγ :ATF4. We next downloaded aligned ATF4 and CEBPγ ChIP-seq reads and matched input from ENCODE424

(ENCFF872NFM, ENCFF801LQC, ENCFF713PVH), extended the alignments to 125bps, and computed the genome425

coverages (kATF4,i, kCEBPγ,i, kInput,i) at each motif match. The DNase-seq coverage (kDNase,i, ENCFF971AHO) and426

bisulfite sequencing methylation status ( fmeCpG,i, ENCSR765JPC, binarized using 20% and 80% thresholds, and427

keeping matches with at least 10 reads) were also recorded. We finally modeled the ATF4 and CEBPγ ChIP-seq428

coverage at the relevant motif matches (excluding CEBPγ:CEBPγ matches for ATF4 and ATF4:ATF4 matches for429

CEBPγ) using two separate binomial generalized linear models:430

kChIP,i ∼ Binomial
(

kChIP,i + kInput,i,
eηi

1+ eηi

)
(26)

ηi = β0,a + kDNase,i βDNase + fmeCpG,i βmeCpG,a (27)

In this model, β0,a encodes the relative affinity of motif a, βDNase encodes the impact of DNA accessibility, and431

βmeCpG encodes the impact of DNA methylation for motif a and is the sought-after variable. The significance of the432

methylation readout was assessed using a F-test (see Supplemental Table 2). For TGACGTCG, we assumed that the433

methylation readout of the two CGs contribute independently and that the readout of the central CG can be estimated434

using the sequence TGACGTCA.435

Inferring Absolute KD’s436

The KD-seq assay incubates a protein TF (or other protein) with a library of DNA probes (or RNA or peptide probes),
separates the bound and free probes, and sequences the input (I), bound (B) and free (F) fractions. In equilibrium,
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the probability that probe i is bound or free is given by

p(B|i) = [DNAi]B
[DNAi]I

=
[P]F

[P]F +KDi

(28)

p(F|i) = [DNAi]F
[DNAi]I

=
KD,i

[P]F +KD,i
(29)

where [DNAi]I, [DNAi]B, and [DNAi]F are the probe concentrations in the input, free and bound libraries, [P]F is the
free protein concentration, and KD,i is the dissociation constant that we wish to measure. The sequencer does not
measure p(B|i) or p(F|i) directly but rather gives the probe counts ki,I, ki,B, and ki,F. The expectation values of these
counts are given by

E[ki,I]

kI
=

[DNAi]I
[DNA]I

= p(i)

E[ki,B]

kB
=

[DNAi]B
[DNA]B

= p(i|B)

E[ki,F]

kF
=

[DNAi]F
[DNA]F

= p(i|F) (30)

where [DNA]I, [DNA]B, [DNA]F are the DNA concentrations in the in the respective fractions, kI, kB and kF are
the sequencing depths of the libraries which are treated as fixed experimental setting. To estimate the dissociation
constants, note that

KD,i

[PF]
=

p(F |i)
p(B|i)

=
p(i|F)p(F)

p(i|B)p(B)
(31)

where p(B) and p(F) are the net fractions of DNA that is bound and free. Intuitively, these can fractions can be
estimated from the data by finding the values that make the observed probabilities in Eq. 30 satisfy the sum rule:

p(i) = p(i,F)+ p(i,B) = p(i|F)p(F)+ p(i|B)p(B) (32)

ProBound can be configured to learn a KD model by analyzing the probe frequencies in the input, bound and free
libraries (r = {I,B,F}). Specifically, configuring ProBound to use the non-cumulative enrichment model (Eq. 7)
with ρr = {0,1,0} and γr = {0,−1,−1} and restricting the activities to be constant across columns implements the
binding probabilities in Eq. 29. With these settings,

KD,i = [P]F/Zbound,i (33)

The ProBound model implicitly encodes p(B); this value can be found by equating the expected counts in ProBound

E[ki,I] = ηI fi,I (34)

E[ki,B] = ηB fi,I p(B|i) (35)

E[ki,F] = ηF fi,I p(F|i) (36)

with the corresponding expectation values in Eq. 30, computing the bound-to-input ratio, and using Bayes’ theorem
to simplify, giving

p(B) =
kB

kI

ηI

ηB
(37)

Test the modeling assumptions (c.f. Figure 4c), the probes were binned by the predicted KD,i, and, for each bin,
the observed and predicted binding probabilities were computed using

p(B|i) = E[ki,B]

E[ki,I]

ηI

ηB
(38)

Here E[ki,B] and E[ki,I] were evaluated using the observed and predicted read counts in each bin.437

18/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450414
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimental Protocol438

6xHis tagged Drosophila Distalless (Dll) protein lacking amino acids N terminal to its homeodomain (Dll∆N) was pu-439

rified by standard procedures. 0.05% Tween-20 was included in the lysis buffer and in the elution buffer to prevent the440

target protein from sticking to plasticware. The purified protein was quantified by Bradford assay, using BSA as the441

standard. The 10mer R0 library was generated by annealing the library oligo (GTTCAGAGTTCTACAGTCCGACCTGG442

-10N -CCAGGACTCGGACCTGGACTAGG) and the SELEX-R primer (CCTAGTCCAGGTCCGAGT), followed by a443

Klenow mediated primer extension reaction. The library DNA was purified using Qiagen minElute columns, and444

were quantified using nanodrop. The SELEX procedure was largely the same as previously described10, except that445

a Cy5 labeled DNA probe, instead of a P32 labeled probe, was used as the marker to indicate where the bound and446

unbound fractions were. The Cy5 labeled DNA probe was generated by annealing a Cy5 labeled primer to a DNA447

probe with the desired DNA sequence, followed by Klenow reaction. EDTA was used to stop the reaction. The448

probe was directly used in the binding reaction, without further purification.449

For each SELEX condition, 15µ l of protein solution (at 2x final concentration) in dialysis buffer (20mM HEPES450

pH8.0, 200mM NaCl, 10% glycerol, 2mM MgCl2, 0.05% Tween-20) was made. The library mixture was made by451

adding desired amount of the R0 library to 6µl of 5x binding buffer (50mM Tris-HCl pH7.5, 250mM NaCl, 5mM452

MgCl2, 20% glycerol, 2.5mM DTT, 2.5mM EDTA, 125ng/µl polydIdC, 100ng/µl BSA, 0.125% Tween-20), and453

filling to 15µl with H2O. The protein and DNA parts were mixed and incubated at room temperature for 30 to 40454

minutes before loading the gel. For Cy5 labeled markers, 15µ l of 200nM Dll∆N in dialysis buffer was mixed to 15µ l455

of DNA mixture (6µl 5x binding buffer, 8µl H2O and 1µl 200nM probe), and was incubated at room temperature456

for 30 to 40 minutes.457

After running the gel, gel slices corresponding to the bound and unbound fractions were cut from the gel, and458

were each place in a 500µl tube with several needle poked holes at the bottom. The 500µl tubes were each placed459

within a 2ml tube, and was spun at max speed at room temperature to smash the gel. 650µ l of DNA extraction buffer460

(10mM Tris-HCl, pH7.5, 150mM NaCl, 1mM MgCl2, 0.5mM EDTA, pH 8.0), and 50µ l of 20% SDS were added to461

each smashed gel sample, and the tubes were rotated at room temperature for 2 to 4 hours. The tubes were then spun462

at max speed at room temperature for 2 minutes. 650µl of sample was transferred to a Spin-X filter column, and463

was spun at room temperature at the max speed for 2 minutes. The DNA in flow through was purified by phenol464

chloroform extraction followed by isopropanol precipitation. 20µg of glycogen was used to facilitate precipitation,465

and the DNA pellet was dissolved in 20µl of Qiagen EB buffer.466

Each purified SELEX DNA was properly diluted such that the following PCR program gave good library467

yield for all samples. The 1-step library preparation was done in a 50µl reaction, which contains 5µl of prop-468

erly diluted SELEX DNA, 10nM of one of the 8 SELEX-for primers, 10nM of the common SELEX-rev primer,469

1µM of NEB universal primer for Illumina, and 1µM of selected NEB index primer for Illumina. PCR was470

done with the Phusion DNA polymerase (NEB), using the following program: 1 cycle of 98◦C for 30 seconds;471

5 cycles of 98◦C for 10 seconds, 60◦C for 30 seconds, and 72◦C for 15 seconds; 10 cycles of 98◦C for 10472

seconds, and 65◦C for 75 seconds; 1 cycle of 65◦C for 5 minutes; and hold at 4◦C. Amplified libraries were473

purified using 1.5 volume (75µl) of Ampure beads, and eluted with 15µl of Qiagen EB buffer. The libraries474

were pooled and sequenced using Illumina Nextseq 550, following standard procedures. The forward primers475

consisted of consisted of left and right constant sequences (ACACTCTTTCCCTACACGACGCTCTTCCGATCT-476

and -GTTCAGAGTTCTACAGTCCGA repectively), flanking a library specific barcode: 1) --, 2) -AGAC-, 3)477

-TCAGAC-, 4) -CAGAC-, 5) -C-, 6) -GAC-, 7) -AC-, and 8) -TTCAGAC-. In addition we used the reverse478

primer GACTGGAGTTCAGACGTGTGCTCTTCCGATCT- CCTAGTCCAGGTCCGAGT, the NEB universal primer479

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA- CACGACGCTCTTCCGATCT, the NEB index primer480

CAAGCAGAAGACGGCATACGAGAT-[6bp index]- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT.481

EMSA validation482

The same batch of the Dll∆N protein that was used in the SELEX experiments was also used in the measurement of483

the absolute KD values of Dll∆N to selected DNA sequences. The EMSA experiments were performed following484

regular protocol. Briefly, the protein was diluted with dialysis buffer to 2x of the desired final concentration in a total485
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volume of 15µl. The DNA mixture was made by mixing 6µl of 5x binding buffer, 8µl of H2O, and 1µl of 200nM486

Cy5-labeled DNA probe. The DNA probes had the same flanks as the 10mer SELEX library, and the indicated487

middle 10bp. The protein part and the DNA part were mixed well, and incubated at room temperature for 30 to 40488

minutes before loading the 0.5X native TBE gel.489

After running the gel, an image was taken using the Typhoon imager, and the band intensity was quantified using490

FIJI v1.52n (see Supplemental Table 5). Briefly, each band was selected using the rectangle selection tool, and the491

selected regions were converted to histograms. A straight line was drawn at the bottom of each histogram, and the492

areas of the enclosed peak regions were quantified and used as band intensity.493

KD was finally estimated used non-linear binding curve fitting. The intensity of the bound band decreased with
migration distance (data not shown). We therefore estimated the fraction of bound probes as yBound/(yBound+α yFree),
where yBound and yFree, respectively, are the intensities of the bound and free band, and α corrects for the migration-
induced signal loss. In equilibrium, the predicted bound fraction equals(

1+
2KD

[TF]tot− [DNA]tot−KD +
√
([TF]tot− [DNA]tot−KD)2 +4KD[TF]tot

)−1

(39)

where [TF]tot and [DNA]tot are the total TF and DNA concentrations, respectively. For each probe, KD and α were494

estimated by minimizing the squared difference between the estimated and predicted bound fractions across all495

Dll∆N concentrations.496

Peak-free motif discovery from ChIP-seq data497

To analyze the GR ChIP-seq data from the IMR90 cell line47, we first aligned the (single-end) Input and ChIP reads498

to the genome and extracted a sufficiently long (200bp) sequence downstream of the 5′-end genomic position of the499

mapped read. Next, we randomly sampled 106 reads from each library and constructed a count table containing the500

Input and ChIP read counts in the first and second columns, respectively. ProBound was then configured to model501

this table as a single-round SELEX experiment. Because GR binds DNA as a homodimer, we configured ProBound502

to impose reverse-complement symmetry while fitting free-energy parameters the primary motif. We then iteratively503

added three additional binding modes to the model to capture the influence of potential co-factors. To analyze the504

GR ChIP-seq data from the murine hippocampus48, we followed a similar procedure and constructed one count505

table for each of the three CORT concentrations (sampling 105 sequences per library) and then configured ProBound506

to jointly model all count tables using a single reverse-complement-symmetric binding mode.507

Tyrosine kinase sequence recognition508

ProBound Analysis509

In this assay, a library of peptide substrates Si is treated with a enzyme E and the concentrations of the products Pi is
quantified using high-throughput sequencing (see below). This reaction can be modeled using Michaelis–Menten
kinetics generalized to multiple substrates:

E +Si
kon,i


koff,i

E:Si →
kcat,i

E +Pi (40)

In the limit of low enzyme concentration, the reaction quickly reaches a quasi-steady state with

[E:Si] = [E][Si]/KM,i (41)

where KM,i = (koff + kcat,i)/kon,i is the Michaelis constant for substrate i. In this limit, the change in substrate
concentration is given by

∂t [Si] =−keff,i[Si][E] (42)

where keff,i = kcat,i/KM,i is the catalytic efficiency. Integrating this equation yields

[Si](t) = [Si](0)e−keff,i
∫ t

0 [E](t) (43)
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where [Si](0) is the substrate concentration right after the quasi-equilibrium was reached. The concentrations in the
product library can then be expressed as

[Pi](t) = [Si]total

(
1− 1+[E](t)/KM,i

1+[E](0)/KM,i
e−keff,iE(t)t

)
(44)

where [Si]total = [Si]+ [E:Si]+ [Pi] is concentration in the initial library and E(t) = t−1 ∫ t
0 [E](t) is the time-averaged

enzyme concentration. This can be simplified further by noting that only a small fraction of substrates are bound in
the limit of low enzyme concentration

[E:Si]/[Si] = [E]/KM,i� 1 (45)

and thus

[Pi](t) = [Si]total

(
1− e−keff,iE(t)t

)
(46)

Note that the selection only differs between probes through keff,i. ProBound can thus model the assay using Eq. 8
with δ →−∞ and

Zbound,i,P = keff,iE(t)t (47)

Here E(t) depends on both KD,i and [Si] throughout the reaction and is generally unknown. We here assume that510

most enzyme is free so that E(t) = [E]total; a lower (free) enzyme concentration would lead to a global rescaling of511

keff,i but not affect the relative efficiency or its sequence dependence.512

Preparation of degenerate peptide library to profile tyrosine kinase specificity513

The degenerate peptide library contained 11-residue sequences with five randomized amino acids flanking either514

side of a fixed central tyrosine residue. These sequences were fused to the eCPX bacterial surface display scaffold63.515

To clone this library, we first amplified the eCPX-coding sequence with a 3′ SfiI restriction site. This was fused to516

the random library in another PCR step using the following degenerate oligonucleotide: GCTGGCCAGTCTGGCCAG-517

NNSNNSNNSNNSNNStatNNSNNSNNSNNSNNS- GGAGGGCAGTCTGGGCAGTCTG, which contains a 5’ SfiI site.518

The resulting amplified product was digested with SfiI restriction endonuclease, purified, and ligated into the SfiI-519

digested pBAD33-eCPX plasmid, as described previously53. The ligation reaction was concentrated and desalted,520

then used to transform DH5α cells by electroporation. Transformed cells were grown overnight in liquid culture,521

then the plasmid DNA library was extracted and purified using a commercial midiprep kit.522

Preparation of biotinylated antibody523

The phosphotyrosine monoclonal antibody, pY20, conjugated to the fluorophore, perCP-eFluor 710 (Invitrogen,524

catalog 46-5001-42), was desthiobiotinylated before use in the specificity screen. The antibody was first purified525

away from bovine serum albumin (BSA) and gelatin by anion exchange using a salt gradient of 0 to 1 M NaCl in 0.1526

M potassium phosphate buffer. The fractions that eluted after 0.2 M NaCl were pooled and then buffer-exchanged527

into 0.1 M potassium phosphate by dilution and centrifugal filtration. The antibody was then labeled in a 200 µL528

small-scale reaction using the DSB-X labeling kit (Molecular Probes) according to the manufacturer’s instructions.529

Concentration of the antibody was monitored by its absorbance at 490 nm to determine percentage yield. The530

average final concentration of the antibody was around 0.2 mg/mL. The specificity of the antibody was validated531

using cells expressing displayed peptides. Cells treated with a tyrosine kinase without ATP show no background532

antibody staining. By contrast, cells expressing displayed peptides, treated with tyrosine kinase and 1mM ATP show533

increasing antibody staining as a function of phosphorylation time.534
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High-throughput specificity screen535

The catalytic domain of the human tyrosine kinase c-Src was screened against the degenerate peptide library as536

described previously53, one main difference being the use of magnetic beads to isolate phosphorylated cells rather537

than fluorescence-activated cell sorting. In short, E. coli MC1061 cells transformed with the library were grown to538

an optical density of 0.5 at 600 nm. Expression of the surface-displayed peptides was induced with 0.4% arabinose539

for 4 hours at 25 ◦C. After expression, the cell pellets were collected and subject to a wash in phosphate buffered540

saline (PBS). Phosphorylation reactions of the library were conducted with 500 nM of purified c-Src and 1 mM541

ATP in a buffer containing 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM TCEP, and 2 mM sodium542

orthovanadate. Time points were taken at 5, 20, and 60 minutes. Kinase activity was quenched with 25 mM EDTA543

and the cells were washed with PBS. Kinase-treated cells were labeled with roughly 0.05 mg/mL of the biotinylated544

pY20 antibody for an hour and then washed again with PBS containing 0.2% BSA.545

The phosphorylated cells were isolated with Dynabeads R© FlowComp
TM

Flexi (Invitrogen) following the man-546

ufacturer’s protocol. In total, two populations were collected for each time point: cells that did not bind to the547

magnetic beads and eluted after each wash (unbound) and cells that bound to the magnetic beads and eluted after548

the addition of the release buffer (bound). After isolation of these two populations, the cell pellet was collected,549

resuspended in water, and then lysed by boiling at 100 ◦C for 10 minutes. The supernatant from this lysate was550

then used as a template in a 50 µL PCR reaction to amplify the peptide-codon DNA sequence using the same551

forward and reverse TruSeq-eCPX primers as described previously53. The product of this PCR reaction was then552

used as a template for a second PCR reaction to append a unique 5’ and 3’ indices. The resulting PCR products553

were purified by gel extraction, and the concentration of each sample was determined using QuantiFluor R© dsDNA554

System (Promega). Each sample was pooled to equal molarity and sequenced by paired-end Illumina sequencing555

on a MiSeq instrument. The deep sequencing data were processed as described previously53, 64. The paired-end556

reads were merged using FLASH65 and the adapter sequences were trimmed using the software Cutadapt66. The557

remaining sequences were translated into amino acid codes, and sequences containing stop codons were removed.558

Validation measurement of phosphorylation rates559

To validate predictions made by Probound, phosphorylation rates were determined in vitro using purified c-Src560

and 11 synthetic peptides (purchased from Synpeptide). The phosphorylation reactions were carried out at 37◦C561

using 500 nM purified c-Src and 100 µM peptide in a buffer containing 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM562

MgCl2, 1 mM TCEP, and 2 mM sodium orthovanadate. Reactions were initiated by the addition of 1 mM ATP, and563

at various time points, 100 µL of the solution was quenched with 25 mM EDTA (every 10s for the faster reactions,564

every 2-10m for the slower reactions). Each reaction was carried out in triplicate.565

The concentration of the substrate and the phosphorylated product at each time point was determined by reversed-566

phase HPLC with UV detection at 214 nm (Agilent 1260 Infinity II). A 40 µL volume of the quenched reaction567

was injected onto a C18 column (ZORBAX 300SB-C18, 5µm, 4.6 x 150 mm). A gradient system was used with568

solvent A (water and 0.1% TFA) and solvent B (acetonitrile and 0.1% TFA). Elution of the peptides was performed569

at flow rate of 1 mL/min using the following gradient: 0-2 min: 5% B, 2-12 min: 5-95% B, 12-13 min: 95% B,570

13-14 min: 95-5% B, and 14-17 min: 5% B. The peak areas of the substrate and product were calculated using the571

Agilent OpenLAB software. The initial rate for each peptide was obtained by fitting a straight line to a graph of peak572

area as a function of time in the linear regime of the reaction progress curve and calculating the slope of the line.573
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Figure S1: Integrative analysis of multiple TF SELEX datasets produces consensus binding models. (a)
Schematic contrasting ProBound’s multi-experiment learning strategy that builds a consensus model for a TF by
simultaneously training on all relevant SELEX data for the TF with the traditional approach that builds independent
models for every individual dataset. (b) Generalization performance of consensus binding models (y-axis) and
single-experiment models (x-axis) on three different metrics (scatterplots). Points correspond to models trained on
individual experiments and lines connect experiments used to build the corresponding consensus model. Points
above the diagonal correspond to instances where the consensus model outperforms single-experiment models.Figure S2 - Complex.pdf
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Figure S2: Integrative modeling to quantify TF binding cooperativity. (a) Schematic table describing the
combinations of TFs assayed in five experiments (top) that were jointly analyzed to produce recognition models
of the different monomers and their complexes (bottom) by explicitly defining which models can form in each
experiment (+ sign). (b) Distribution of probes (top) and the predicted relative contribution of every recognition
mode (bottom) as a function of predicted binding selection strength (x-axis) in the first round of selection from
SELEX-seq data assaying Hth, Exd, and UbxIV. (c) Integrative modeling of HT-SELEX and CAP-SELEX data for
POU2F and GSC2 (schematic table) yields recognition models for the monomers (motifs) and binding cooperativity
for GSC2:POU2F (scatterplot) as a function of relative position (x-axis) and orientation (red: parallel; blue: anti-
parallel). Motif (below) shows the configuration indicated on the plot. (d) Same as (c), except for the factors ELK1
and GCM1.
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Figure S3: Learning methylation-aware binding models from EpiSELEX-seq data. (a) Alphabet used to
represent normal and methylated base pairs. (b) Same as Figure S2a, but showing the combinations of ATF4,
CEBPγ , and normal and methylated DNA that were included in each experiment and the resulting complexes that
were modeled. (c) K-mer enrichment analysis for the observed ATF4 EpiSELEX-seq read counts (left), the counts
predicted by a mononucleotide-only model (middle), and the counts predicted by a mono- and di-nucleotide model
(bottom). Each scatterplot compares the 8mer enrichment observed in the normal (x-axis) and methylated (y-axis)
libraries. Every point represents an 8mer and is colored according to the legend; color is assigned based on a 6bp
matching substring between the 8mer and the IUPAC code.
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Figure S4: Extending EpiSELEX-seq to measure the impact of 5hmC and 6mA on CEBPγ binding. (a)
Schematic table describing the factors, library and recognition model used in analyzing the extended EpiSELEX-seq
assay (c.f. Figure S3b). (b) K-mer enrichment analysis comparing normal and modified EpiSELEX-seq libraries,
computed and displayed as in Figure S3c.
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Figure S5 - KD.pdf
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Figure S5: The robustness of KD-seq. (a) Comparison between EMSA-measured (dashed line) and different model-
predicted (points) KD values for four binding probes (text). Various model training strategies (x-axis) leveraged
different sequencing libraries: the input/bound/free libraries from a single experiment (left); the input/bound/free
libraries from multiple experiments at different TF concentrations (center); or the input/bound libraries from multiple
experiments at different TF concentrations (right). (b) Fraction of DNA bound as inferred by ProBound when
learning binding models from individual KD-seq experiments (c.f. left points in (a)). (c) Example KD model (left)
and observed and predicted probe enrichments (right; c.f. Fig. 4c) for a model from the central points in (a). (d)
Same as (c), but for a model from the right points in (a). (e) Same as (c), but only using the bound/free libraries
(analogous to Spec-seq). This model can only predict relative KD, as the bound/free ratio is proportional to K−1

D for
all TF concentrations. In addition, the model predicts enrichment in the data up to a global rescaling factor. (f) Same
as (d), but for a model derived from RNA Bind-n-Seq data for RBFOX2.
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Supplemental Methods724

Software Manual725

ProBound can be run on a dedicated compute server located at probound.bussemakerlab.org. As input,726

this server takes a configuration file and a collection of count tables. The configurations file is in the JSON format727

and consists of a series of function calls:728

[729

{ "function": "functionName1", "variableName1": "value1", ...},730

{ "function": "functionName2", "variableName1": "value1", ...},731

...732

]733

These functions configure the model components (binding modes, interactions, count tables, and enrichment models),734

configure the optimizer, set custom alphabets, and configure the output. For each of the components, there are735

functions that configure the basic parameters, functions that set custom seeding, and functions determine how736

the component is optimized. Below we provide documentation for these functions. In addition, we provide the737

configuration files that were used for the fits presented in the main text.738

Count tables739

• addTable: This function adds a count table (containing the SELEX data) to the model.740

– countTableFile (string, required): Path to the count table file. The table should be tab separated,741

have the variable region of the probe sequences in the first columns, and have the number of occurrences742

of each probe in each SELEX library in the following columns. This file can be gzipped. All sequences743

must have equal length.744

– inputFileType (string, default is tsv): Format of the input file. Can either be tsv or tsv.gz.745

– nColumns (integer, required): Number of columns with probe counts in the count table (that is, the746

first column, containing probe sequences, is not counted) .747

– variableRegionLength (integer, required): Length of the sequences in the count table.748

– rightFlank (string, default is ""): Specifies the constant sequence flanking the variable region to749

the right.750

– leftFlank (string, default is ""): Specifies the constant sequence flanking the variable region to the751

left.752

– modeledColumns (list of integer, default is [-1]): Specifies what columns in the count table should753

be modeled. By default, all columns are included as indicated by ’-1’.754

– transliterate (objects, default is {"in":[], "out":[]}): List of edits that should be made755

to the probe sequences in order to encode DNA modifications. in lists the probe subsequence that756

should be substituted and out lists the substitutes. The lists in and out must have equal length, and757

each pair of sequences must have equal length.758

Enrichment models759

• addSELEX: This function adds an enrichment model to the overall model. Enrichment models are one-to-one760

associated with count tables in sequential order.761

– modelType (string, default is SELEX): Type of enrichment model. Possible choices are SELEX,762

rhoGamma, and ExponentialKinetics.763
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– bindingModes (list of integer, default is [-1]): Specifies what binding modes should be included764

in the enrichment model. [-1] includes all binding modes.765

– bindingModeInteractions (list of integer, default is [-1]): Specifies what binding mode766

interactions should be included in the enrichment model. [-1] includes all interactions.767

– cumulativeEnrichment (boolean, default is true): Specifies whether the enrichment should768

accumulate across columns to model repeated SELEX selection.769

– concentration (float, default is 1): Specifies the fixed concentration factor that multiples all770

activities used by the enrichment model.771

– bindingSaturation (boolean, default is false): Option for SELEX enrichment models indicat-772

ing whether the selection should be linear (∝ x ) or or saturated (∝ x/(1+ x)).773

• enrichmentModelSeed: This function specifies seeding of parameters for the enrichment model.774

– rho (list of floats): Option for rhoGamma models seeding ρr for each round r.775

– gamma (list of floats): Option for rhoGamma models seeding γr for each round r.776

• enrichmentModelConstraints: Function specifying constraints on the parameters in the enrichment777

model and how they should be optimized.778

– fitRho (boolean, default is false): Option for rhoGamma models specifying whether ρ should be779

optimized.780

– fitGamma (boolean, default is false): Option for rhoGamma models specifying whether γ should781

be optimized.782

– roundSpecificRho (boolean, default is true): Option for rhoGamma models specifying whether783

ρr can take independent values for each round r.784

– roundSpecificGamma (boolean, default is true): Option for rhoGamma models specifying785

whether γr can take independent values for each round r.786

– trySaturation (boolean, default is false): Option for SELEX models specifying whether the787

optimizer should test if setting bindingSaturation=true improves the model.788

Binding modes789

• addBindingMode: This function adds a binding mode to the model and assigns it a running index, starting790

at 0.791

– size (integer, required): The width of the binding mode792

– flankLength (integer, default is 0): Distance into the fixed flanking region that is scored by the793

binding mode.794

– dinucleotideDistance (integer, default is 0): Maximum distance between the two letters of795

the dimer sequence features that are included in the ∆∆G model. 0 inactivates the dimer features, 1796

includes only adjacent letters, such as CG.797

– singleStrand (boolean, default is false): True indicates that only the forward should be scored798

and included in Zbound.799
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– positionBias (boolean, default is false): Indicates whether the position-bias factor should be800

included (ωa(x) is then a free) or not (ωa(x) = 1).801

• addNS: Adds a non-specific binding mode (shorthand function for adding a mode with size=0). This802

function takes no arguments.803

• bindingModeSeed: This function sets the seeding (the initial values of the parameters, before optimization)804

of the binding mode.805

– index (integer): Index of the binding mode for which the seeding is specified. The seeding is applied806

to all binding modes if no index is specified.807

– mononucleotideIUPAC (string): Seeds the binding mode to recognize the sequences consistent808

with the IUPAC string. At each position, matches get βa,φ = 0 and mismatches get βa,φ =−1.809

– mononucleotideString (string): Seeds the binding mode to recognize sequences consistent with810

the string. At each position, matches get βa,φ = 1 and mismatches give βa,φ = 0. The period character811

(.) is a wildcard and matches any letter.812

• bindingModeConstraints: This function specifies both constraints imposed on the binding mode813

during optimization and strategies used to optimize the it.814

– index, integer, required: Index of the binding mode that will be manipulated.815

– symmetryString (string, default is null): This string defines a symmetry on the binding mode.816

Two formats are possible:817

∗ The first format specifies a symmetry by using letters and digits to identify equivalent positions in818

the binding mode. Upper and lower case letters are related through complement and digits are819

self-complementary. For example, the string ab1BA specifies a reverse-complement symmetric820

binding mode of size five. Here complementarity relates a↔ A, b↔ B, and 1↔ 1. The string821

ab1BAab1BA specifies a 10bp binding site with a tetrameric symmetry. The pipe sign (|) is a822

barrier for dinucleotide interactions. This divides the binding mode into regions and removes823

dinucleotide interactions that connect different regions.824

∗ The second format specifies a sequence of blocks that together fill in the binding mode. Each825

block is assigned an ID number and two block with the same ID have identical sequence recog-826

nition. A block with a negative ID is the reverse complement of a blocks with same but pos-827

itive ID. Each block can be constrained to be reverse complement symmetric. For example,828

the symmetry string: 1:6:True corresponds to a 6bp reverse-complement symmetric block,829

1:3:False,1:3:False corresponds to two concatenated 3bp blocks in head-to-tail con-830

figuration, 1:3:False,-1:3:False corresponds to a two 3bp blocks in the head-to-head831

configuration. Recognition of dimer sequence features that span blocks are prohibited.832

Note that the footprint of a binding mode cannot be modified if a symmetry is specified since the833

expanded binding mode would no longer have the size specified by the symmetry string.834

– roundSpecificActivity (boolean, default is true): Indicates whether the binding mode activi-835

ties can take different values in different SELEX rounds (columns in the count table).836

– experimentSpecificActivity (boolean, default is true): Indicates whether the binding mode837

activities can take different values in different experiments (count tables).838
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– experimentSpecificPositionBias (boolean, default is true): Indicates whether the posi-839

tion bias parameters can take different values in different experiments. This must be true if the840

experiments have different probe lengths.841

– optimizeSize (boolean, default is false): Indicates whether the size of the binding mode should842

be optimized. If true, the binding mode is (separately) expanded to the left and to the right, the model843

parameters are re-optimized, and the expanded binding mode is kept if the likelihood improved.844

– optimizeSizeHeuristic (boolean, default is false): Same as optimizeSize but the bind-845

ing mode is expanded both to the left and right (simultaneously) and the flank length is incremented.846

– optimizeFlankLength (boolean, default is false): Indicates whether the flank length should be847

optimized. If true, the flank length is incremented, the model parameters are re-optimized, and the848

new model is kept if the likelihood improved.849

– optimizeMotifShift (boolean, default is false): Indicates whether shifted versions of the850

binding mode should be explored. If true, the motif is binding model is shifted to the left and851

right (separately), the model parameters are re-optimized, and the new model is kept if the likelihood852

improved.853

– optimizeMotifShiftHeuristic (boolean, default is false): Same as optimizeMotifShift854

but only a single shift is tested. This shift is found by first computing the information content for each855

position in the binding mode, then computing the ’center of mass’ of the information content, and856

finally computing the shift such that the center of mass is at the center of the binding mode.857

– maxSize (integer, default is -1): Specifies an upper limit of the binding mode size. -1 indicates no858

limit.859

– maxFlankLength (integer, default is -1): Specifies an upper limit of to the flank length. -1 indicates860

no limit.861

– informationThreshold (float, default is 0.1): Threshold on the information content (computed862

for the first two and last two bases in the binding mode) determining whether optimizeSize and863

optimizeSizeHeuristic should attempt to expand the binding mode to the left and right.864

– positionBiasBinWidth (integer, default is 1): This setting configures the set of possible binding865

configurations in the probe sequence to be partitioned into bins with specified width and constrains the866

position-bias parameters ωa(x) (where x is a configuration) to be constant in each bin, thus reducing867

the number of independent parameters. By default, each bin contains a single configuration and no868

constraint is thus imposed.869

– fittingStages (list of JSON objects, default is []): This setting instructs the optimizer to ex-870

plore variations of the binding mode using a sequence of fitting stages. Each fitting stage can use a871

different set of variations and is defined by a JSON object that maps the included variations to true.872

The variations are: optimizeSize, optimizeSizeHeuristic, optimizeFlankLength,873

optimizeMotifShift and optimizeMotifShiftHeuristic.874

• symmetry: Shorthand function for specifying the symmetry of a binding mode:875

– index (integer, required): Specifies the index of symmetric binding mode876

– symmetryString (string): Specifies the symmetry using the same format as in bindingModeConstraints.877
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Interactions878

• addInteraction: Function for adding interactions between binding modes.879

– bindingModes (list containing two integers, required): Indices of the interacting binding modes.880

– positionBias (boolean, default is false): If true, the binding mode interaction ωa(x,y) have881

independent value for each value of the binding mode configurations x and y. If false, the binding882

mode interaction is translationally invariant and only depends on x− y (where x and y are strand-aware883

coordinates).884

– maxOverlap (integer, 0): Maximum allowed overlap of the binding modes.885

– maxSpacing (integer, default is -1): Maximum allowed spacing between the binding modes. -1886

indicates no limit.887

• interactionConstraints: This function specifies constraints imposed on the binding mode interaction888

during optimization.889

– index (integer, required): Index of the constrained binding mode interaction.890

– roundSpecificActivity (boolean, default is true): Indicates whether the binding mode inter-891

action activities can take different values in different SELEX rounds (columns in the count table).892

– experimentSpecificActivity (boolean, default is true): Indicates whether the binding mode893

interaction activities can take different values in different experiments (count tables).894

– experimentSpecificInteraction (boolean, default is false): Indicates whether the bind-895

ing mode interaction can take different values in different experiments. This must be true if896

positionBias=true and the experiments have different probe lengths.897

General settings898

• output: Function specifying where and how the output should be written.899

– outputPath (string, required): Path to the output directory.900

– baseName (string, required): String specifying the beginning of output file names (shared between all901

output files).902

– printTrajectory (boolean, default is false): Indicates whether the optimizer trajectory should903

be saved.904

– verbose (boolean, default is false): Indicates whether the message output to STDOUT should be905

verbose.906

• optimizerSetting: This function configures the optimizer and accepts the following variables:907

– lambdaL2 (float, default is 1-e7): Weight λ of the L2 regularizer.908

– pseudocount (float, default is 0): Value of kDirichlet (determining the weight of the Dirichlet regular-909

izer).910

– expBound (float, default is 40): Parameter θmax of the exponential barrier regularizer.911

– nThreads (integer, default is 4): Number of threads used for parallelization.912
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– nRetries (integer, default is 3): Number of retries that are made after numerical failures before the913

optimizer proceeds to the next step.914

– likelihoodThreshold (integer, default is 0): Smallest likelihood improvement required for a915

variation of a model component to be accepted.916

• lbfgsSettings: This function specifies options for the L-BFGS optimizer.917

– memory (integer, default is 100): Number of previous steps kept in memory918

– maxIters (integer, default is 500: Maximum number of iterations.919

– convergence (float, default is 1e-7): Convergence criteria.920

• setAlphabet: Function specifying the alphabet.921

– letterOrder (string, default is ACGT): String specifying the set of valid letters and their order.922

– letterComplement (string, default is "C-G,A-T"): String specifying what letters are mapped to923

each other by the complementarity transformation. The two letters in a pair are connected by a dash924

sign and pairs are separated by comma signs.925

Output926

ProBound outputs the model parameters in the form of a JSON Object. This object has the keys:927

• countTable: List of JSON Objects with the parameters for the count table models. Each object has the928

form:929

– h: List containing the values of hr ≡ lnηr, where the index r runs over rounds.930

• enrichmentModel: List of JSON Objects with the parameters for the enrichment models. The only931

enrichment model with parameters is rhoGamma:932

– rho: List containing the values of ρr where the index r runs over rounds.933

– gamma: List containing the values of γr where the index r runs over rounds.934

• bindingModes: List of JSON Objects with the parameters for the binding modes. Each object has the935

form:936

– activity: Two-level nested list containing the binding mode activities αe,r, where the indices e runs937

over experiments (count tables) and r runs over SELEX rounds (columns in the table).938

– mononucleotide: Single-level list containing the mononucleotide binding mode coefficients in ~βa939

for binding mode a. This list can be thought of as a flattened PSAM: Letter c at position x in the PSAM940

has index L∗ x+ c, where L is the length of the alphabet. For the standard alphabet this corresponds to:941

{βA,1,βC,1,βG,1,βT,1,βA,2...}.942

– dinucleotide: Two-level list containing the dinucleotide binding mode coefficients in ~βa for943

binding mode a. The first index specifies the spacing between the interacting letters (0 is NN, 1 is N.N,944

etc). The second index can be thought of as a flattened dinucleotide PSAM: A dinucleotide feature with945

letters c1 and c2 and with the first letter on position x has index L2x+Lc1 + c2, where L is the length of946

the alphabet. For the standard alphabet this corresponds to {βAA,1,βAC,1,βAG,1,βAT,1,βCA,1...}.947
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– positionBias: Three-level list containing the position bias lnω(x). The indices are: (1) experiment,948

(2) stand, and (3) position in the sequence. The position is specified in the 5’-3’ direction, meaning that949

the first position of the binding mode on the forward and reverse strands are on the opposite ends of the950

sequence.951

• bindingModeInteractions: List of JSON Objects with the parameters for the binding mode interac-952

tions. Each object has the form:953

– activity: Two-level nested list containing the binding mode interaction activities αe,r, where the954

indices e runs over experiments (count tables) and r runs over SELEX rounds (columns in the table).955

– positionMatrix: Five-level list containing the binding mode interaction lnω(x,y). The indices956

are: (1) experiment, (2) stand of the first binding mode, (3) strand of the second binding mode, (4)957

position of the first binding mode in the sequence, and (5) position of the second binding mode in the958

sequence. The positions are specified in the 5’-3’ direction, meaning that the first position of a binding959

mode on the forward and reverse strands are on the opposite ends of the sequence.960

ProBound configuration used in paper961

ProBound was run with a variety of settings in order to learn the binding models shown in the figures. The962

corresponding JSON builder objects are provided below. These settings utilize two builder functions addTableDB963

and oututDB) that only work in our internal computational environment, but both these functions can be substituted.964

For example,965

{"function": "addTableDB", "count_table_id": 2600 }966

loads a count table with internal count table ID 2600 using our database. This function call should be replaced with:967

{"function": "addTable", "countTableFile": "UbxIVa-Hth-Exd.30mer1.tsv.gz",968

"inputFileType": "tsv.gz", "variableRegionLength":30, "nColumns": 4,969

"leftFlank": GTTCAGAGTTCTACAGTCCGACGATC,970

"rightFlank": CCCGGGTCGTATGCCGTCTTCTGCTTG }971

The variable values for all count tables used below can be found in Supplemental Table 2 and 3. This table972

also contains the accession numbers for the published sequencing data used to generate the count tables (such as973

UbxIVa-Hth-Exd.30mer1.tsv.gz). The second internal function is974

{"function": "outputDB", "fit_id": 6595 }975

This function sets the ProBound output files using our internal database. This function call should be replaced with976

{"function": "output", "outputPath": "/path/to/output", "baseName": "fit",977

"printTrajectory": true, "verbose": true }978

This function directs the output to the directory "/path/to/output" and names of the output files start with fit.979

Finally, some of the settings below seed the binding mode to have the sequence readout at the center. The seeding980

strings were based on earlier unseeded fits that are not shown. These unseeded fits explored different sizes, shifts,981

and flank lengths of the binding modes using optimizeFlankLength, optimizeMotifShiftHeuristic,982

and optimizeSizeHeuristic as illustrated by the first setting below.983
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TF binding models, single-experiment984

In benchmarking ProBound, each training dataset was analyzed using three settings and the best binding model was985

then selected based on its ability to explain the training data (see Methods). The first setting utilized one non-specific986

binding mode (constant across sequences) and two PSAM binding modes. The size, frame shift and flank length of987

the PSAM binding modes were all optimized sequentially:988

[989

{"function": "optimizerSetting", "lambdaL2": 1e-6, "pseudocount": 20,990

"likelihoodThreshold": 0.0002 },991

{"function": "addTableDB", "count_table_id": tableId },992

{"function": "addSELEX" },993

{"function": "addNS" },994

{"function": "addBindingMode", "size": 12, "flankLength": 5},995

{"function": "addBindingMode", "size": 12, "flankLength": 5},996

{"function": "bindingModeConstraints", "index": 1, "maxFlankLength": -1,997

"maxSize": 18, "fittingStages": [998

{ "optimizeFlankLength": true },999

{ "optimizeMotifShiftHeuristic": true },1000

{ "optimizeSizeHeuristic": true } ] },1001

{"function": "bindingModeConstraints", "index": 2, "maxFlankLength": -1,1002

"maxSize": 18, "fittingStages": [1003

{ "optimizeFlankLength": true },1004

{ "optimizeMotifShiftHeuristic": true },1005

{ "optimizeSizeHeuristic": true } ] },1006

{"function": "outputDB", "fit_id": fitID }1007

]1008

Here metadata for each count table (variableRegionLength, nColumns, leftFlank, rightFlank, and,1009

when available, data accession numbers) is available in Supplemental Table 2. The second binding setting was1010

equivalent to the first except for two changes: the non-specific binding mode was replaced by a 1bp PSAM that can1011

absorb some sequence bias, and only the first and lasts available SELEX round was used:1012

[1013

{"function": "optimizerSetting", "lambdaL2": 1e-6, "pseudocount": 20,1014

"likelihoodThreshold": 0.0002 },1015

{"function": "addTableDB", "count_table_id": tableID,1016

"modeledColumns": [rFirst, rLast] },1017

{"function": "addSELEX"},1018

{"function": "addBindingMode", "size": 1, "singleStrand": true,1019

"positionBias": true},1020

{"function": "addBindingMode", "size": 12, "flankLength": 5},1021

{"function": "addBindingMode", "size": 12, "flankLength": 5},1022

{"function": "bindingModeConstraints", "index": 1, "maxFlankLength": -1,1023

"maxSize": 18, "fittingStages": [1024

{ "optimizeFlankLength": true },1025

{ "optimizeMotifShiftHeuristic": true },1026

{ "optimizeSizeHeuristic": true } ] },1027

{"function": "bindingModeConstraints", "index": 2, "maxFlankLength": -1,1028

"maxSize": 18, "fittingStages": [1029

{ "optimizeFlankLength": true },1030

38/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450414
http://creativecommons.org/licenses/by-nc-nd/4.0/


{ "optimizeMotifShiftHeuristic": true },1031

{ "optimizeSizeHeuristic": true } ] },1032

{"function": "outputDB", "fit_id": fitID }1033

]1034

Here rFirst and rLast should be replaced with the zero-based index of the first and last available SELEX round.1035

The third setting was also identical to the first except it learned three PSAM binding modes:1036

[1037

{"function": "optimizerSetting", "lambdaL2": 1e-6, "pseudocount": 20,1038

"likelihoodThreshold": 0.0002 },1039

{"function": "addTableDB", "count_table_id": tableID },1040

{"function": "addSELEX" },1041

{"function": "addNS" },1042

{"function": "addBindingMode", "size": 6, "flankLength": 5},1043

{"function": "addBindingMode", "size": 6, "flankLength": 5},1044

{"function": "addBindingMode", "size": 6, "flankLength": 5},1045

{"function": "bindingModeConstraints", "index": 1, "maxFlankLength": -1,1046

"maxSize": 14, "fittingStages": [1047

{ "optimizeFlankLength": true },1048

{ "optimizeMotifShiftHeuristic": true },1049

{ "optimizeSizeHeuristic": true } ] },1050

{"function": "bindingModeConstraints", "index": 2, "maxFlankLength": -1,1051

"maxSize": 14, "fittingStages": [1052

{ "optimizeFlankLength": true },1053

{ "optimizeMotifShiftHeuristic": true },1054

{ "optimizeSizeHeuristic": true } ] },1055

{"function": "bindingModeConstraints", "index": 3, "maxFlankLength": -1,1056

"maxSize": 14, "fittingStages": [1057

{ "optimizeFlankLength": true },1058

{ "optimizeMotifShiftHeuristic": true },1059

{ "optimizeSizeHeuristic": true } ] },1060

{"function": "outputDB", "fit_id": fitID }1061

]1062

TF binding models, multiple experiments1063

To learn learn a unified TF binding model from multiple SELEX datasets, the above three settings were modified to1064

load and model multiple count tables. For example, the first setting was changed to be1065

[1066

{"function": "optimizerSetting", "lambdaL2": 1e-6, "pseudocount": 20,1067

"likelihoodThreshold": 0.0002, "nThreads": 20 },1068

{"function": "addTableDB", "count_table_id": tableId1 },1069

{"function": "addTableDB", "count_table_id": tableId2 },1070

...1071

{"function": "addSELEX" },1072

{"function": "addSELEX" },1073

...1074

{"function": "addNS" },1075

{"function": "addBindingMode", "size": 12, "flankLength": 5 },1076

{"function": "addBindingMode", "size": 12, "flankLength": 5 },1077
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{"function": "bindingModeConstraints", "index": 1, "maxFlankLength": -1,1078

"maxSize": 18, "fittingStages": [1079

{ "optimizeFlankLength": true },1080

{ "optimizeMotifShiftHeuristic": true },1081

{ "optimizeSizeHeuristic": true } ] },1082

{"function": "bindingModeConstraints", "index": 2, "maxFlankLength": -1,1083

"maxSize": 18, "fittingStages": [1084

{ "optimizeFlankLength": true },1085

{ "optimizeMotifShiftHeuristic": true },1086

{ "optimizeSizeHeuristic": true } ]},1087

{"function": "outputDB", "fit_id": fitID }1088

]1089

Here one call to addSELEX is added each count table loaded using addTableDB.1090

Combinatorial SELEX1091

The Hth-Exd-Ubx CombSELEX-seq experiment was analyzed using following settings:1092

[1093

{"function": "optimizerSetting", "nThreads": 20, "lambdaL2": 1e-6 },1094

{"function": "lbfgsSettings", "maxIters": 1000},1095

{"function": "addSELEXTableDB", "count_table_id": 2600,1096

"bindingModes": [0, 1, 2, 3, 4 ],1097

"bindingModeInteractions": [-1] },1098

{"function": "addSELEXTableDB", "count_table_id": 2703,1099

"bindingModes": [0, 1, 2, 3 ],1100

"bindingModeInteractions": [] },1101

{"function": "addSELEXTableDB", "count_table_id": 2702,1102

"bindingModes": [0, 3 ],1103

"bindingModeInteractions": [] },1104

{"function": "addSELEXTableDB", "count_table_id": 5653,1105

"bindingModes": [0, 2, ],1106

"bindingModeInteractions": [] },1107

{"function": "addSELEXTableDB", "count_table_id": 2680,1108

"bindingModes": [0, 4 ],1109

"bindingModeInteractions": [] },1110

{"function": "addNS" },1111

{"function": "addBindingMode", "size": 13, "flankLength": 7,1112

"dinucleotideDistance": 1 },1113

{"function": "addBindingMode", "size": 8, "flankLength": 5,1114

"dinucleotideDistance": 1 },1115

{"function": "addBindingMode", "size": 8, "flankLength": 5,1116

"dinucleotideDistance": 1 },1117

{"function": "addBindingMode", "size": 8, "flankLength": 5,1118

"dinucleotideDistance": 1 },1119

{"function": "bindingModeSeed", "index": 1,1120

"mononucleotideIUPAC": "NATGATTTATGAN" },1121

{"function": "bindingModeSeed", "index": 2,1122

"mononucleotideIUPAC": "NTTATGGN" },1123

{"function": "bindingModeSeed", "index": 3,1124
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"mononucleotideIUPAC": "NTTGAYRN" },1125

{"function": "bindingModeSeed", "index": 4,1126

"mononucleotideIUPAC": "NNTGAYRN" },1127

{"function": "addInteraction", "bindingModes": [1,4], "positionBias": false,1128

"maxOverlap": 8 },1129

{"function": "interactionConstraints", "index": 0,1130

"experimentSpecificInteraction": true },1131

{"function": "outputDB", "fit_id": 19565 }1132

]1133

Here each SELEX enrichment model is configured to included the appropriate biding modes and interactions, as1134

indicated in Figure S2a, The interaction corresponds to the Hth-Exd-Ubx complex. An initial unseeded fit (not1135

shown) was used to determine consensus sequence for each TF/complex, but some modes had unfavorable offsets in1136

the PSAMs. In the final fit (above), the PSAMs were therefore seeded to have the sequence recognition in the center.1137

meCpG EpiSELEX-seq for ATF4 and CEBPγ1138

The meCpG EpiSELEX-seq data for ATF4/CEBPγ was analyzed using the following settings:1139

[1140

{"function": "optimizerSetting", "lambdaL2": 1e-6, "nThreads": 20 },1141

{"function": "addTableDB", "count_table_id": 3218,1142

"transliterate": { "in": [], "out": [] }},1143

{"function": "addTableDB", "count_table_id": 3219,1144

"transliterate": { "in": ["CG"], "out": ["cg"]}},1145

{"function": "addTableDB", "count_table_id": 3224,1146

"transliterate": { "in": [], "out": [] }},1147

{"function": "addTableDB", "count_table_id": 3225,1148

"transliterate": { "in": ["CG"], "out": ["cg"]}},1149

{"function": "addTableDB", "count_table_id": 3246,1150

"transliterate": { "in": [], "out": [] }},1151

{"function": "addTableDB", "count_table_id": 3247,1152

"transliterate": { "in": ["CG"], "out": ["cg"]}},1153

{"function": "addSELEX", "bindingModes": [0, 1 ] },1154

{"function": "addSELEX", "bindingModes": [0, 1 ] },1155

{"function": "addSELEX", "bindingModes": [0, 2 ] },1156

{"function": "addSELEX", "bindingModes": [0, 2 ] },1157

{"function": "addSELEX", "bindingModes": [0, 1, 2, 3] },1158

{"function": "addSELEX", "bindingModes": [0, 1, 2, 3] },1159

{"function": "setAlphabet", "letterComplement": "C-G,A-T,c-g",1160

"letterOrder": "ACGTcg" },1161

{"function": "addNS" },1162

{"function": "addBindingMode", "size": 12, "flankLength": 3,1163

"dinucleotideDistance": 1 },1164

{"function": "addBindingMode", "size": 12, "flankLength": 3,1165

"dinucleotideDistance": 1 },1166

{"function": "addBindingMode", "size": 12, "flankLength": 3,1167

"dinucleotideDistance": 1 },1168

{"function": "bindingModeSeed", "index": 1,1169

"mononucleotideIUPAC": "NNTGACGTCANN" },1170

{"function": "bindingModeSeed", "index": 2,1171
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"mononucleotideIUPAC": "NNTTGCGCAANN" },1172

{"function": "bindingModeSeed", "index": 3,1173

"mononucleotideIUPAC": "NNTTGCATCANN" },1174

{"function": "symmetry", "index": 1, "symmetryString": "1:12:1" },1175

{"function": "symmetry", "index": 2, "symmetryString": "1:12:1" },1176

{"function": "bindingModeConstraints", "index": 1,1177

"fittingStages": [ { "optimizeFlankLength": true } ],1178

"maxFlankLength": -1 },1179

{"function": "bindingModeConstraints", "index": 2,1180

"fittingStages": [ { "optimizeFlankLength": true } ],1181

"maxFlankLength": -1 },1182

{"function": "bindingModeConstraints", "index": 3,1183

"fittingStages": [ { "optimizeFlankLength": true } ],1184

"maxFlankLength": -1 },1185

{"function": "outputDB", "fit_id": 9458 }1186

]1187

Here, only the appropriate binding modes are included in each experiment (as indicated in Figure S3b) and CG1188

is transliterated to cg in the modified libraries to encode meCpG. The PSAMs were seeded (based on an earlier1189

unseeded fit) to have the sequence recognition at the center, and the homodimer binding modes were constrained to1190

be reverse-complement symmetric.1191

meCpG, 5hmC and 6mA EpiSELEX-seq for CEBPγ1192

The meCpG-, 5hmC-, and 6mA-aware binding model for CEBPγ was learned using the following settings:1193

[1194

{"function": "optimizerSetting", "lambdaL2": 1e-6, "nThreads": 20 },1195

{"function": "addTableDB", "count_table_id": 3224,1196

"transliterate": { "in": [], "out": [] } },1197

{"function": "addTableDB", "count_table_id": 3225,1198

"transliterate": { "in": ["CG"], "out": ["dh"]} },1199

{"function": "addTableDB", "count_table_id": 3227,1200

"transliterate": { "in": ["C"], "out": ["c"] } },1201

{"function": "addTableDB", "count_table_id": 3226,1202

"transliterate": { "in": ["A"], "out": ["a"] } },1203

{"function": "addSELEX" },1204

{"function": "addSELEX" },1205

{"function": "addSELEX" },1206

{"function": "addSELEX" },1207

{"function": "setAlphabet", "letterComplement": "C-G,A-T,a-t,c-g,d-h",1208

"letterOrder": "ACGTacgtdh" },1209

{"function": "addNS" },1210

{"function": "addBindingMode", "size": 12, "flankLength": 3,1211

"dinucleotideDistance": 1 },1212

{"function": "bindingModeSeed", "index": 1,1213

"mononucleotideIUPAC": "NNTTGCGCAANN"},1214

{"function": "bindingModeConstraints", "index": 1,1215

"fittingStages": [ { "optimizeFlankLength": true } ],1216

"maxFlankLength": -1 },1217

{"function": "symmetry", "index": 1, "symmetryString": "1:12:1"},1218
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{"function": "outputDB", "fit_id": 12707 }1219

]1220

These settings encode meCpG as dh, 5hmC:G as c (g on the reverse strand), and 6mA:T as a (t on the reverse1221

strand). While this encoding differs from that displayed in Figure S3a, it is straightforward to update the encoding of1222

the binding model.1223

RNA-binding proteins1224

The RNA Bind-N-seq data for RBFOX2 was analyzed using the following settings:1225

[1226

{"function": "optimizerSetting", "nThreads": 20, "lambdaL2": 1e-6,1227

"pseudocount": 200 },1228

{"function": "lbfgsSettings", "maxIters": 1000 },1229

{"function": "addTableDB", "count_table_id": 2479 },1230

{"function": "addTableDB", "count_table_id": 2483 },1231

{"function": "addTableDB", "count_table_id": 2478 },1232

{"function": "addTableDB", "count_table_id": 2482 },1233

{"function": "addTableDB", "count_table_id": 2477 },1234

{"function": "addTableDB", "count_table_id": 2481 },1235

{"function": "addTableDB", "count_table_id": 2476 },1236

{"function": "addTableDB", "count_table_id": 2480 },1237

{"function": "addTableDB", "count_table_id": 2484 },1238

{"function": "addSELEX", "bindingSaturation": true, "concentration": 1 },1239

{"function": "addSELEX", "bindingSaturation": true, "concentration": 4 },1240

{"function": "addSELEX", "bindingSaturation": true, "concentration": 14 },1241

{"function": "addSELEX", "bindingSaturation": true, "concentration": 40 },1242

{"function": "addSELEX", "bindingSaturation": true, "concentration": 121 },1243

{"function": "addSELEX", "bindingSaturation": true, "concentration": 365 },1244

{"function": "addSELEX", "bindingSaturation": true, "concentration": 1100},1245

{"function": "addSELEX", "bindingSaturation": true, "concentration": 3300},1246

{"function": "addSELEX", "bindingSaturation": true, "concentration": 9800},1247

{"function": "addNS" },1248

{"function": "addBindingMode", "size": 10, "flankLength": 6,1249

"singleStrand": true, "dinucleotideDistance": 10 },1250

{"function": "bindingModeConstraints", "index": 1,1251

"roundSpecificActivity": false,1252

"experimentSpecificActivity": false },1253

{"function": "bindingModeSeed", "index": 1,1254

"mononucleotideString": "..TGCATG.."},1255

{"function": "outputDB", "fit_id": 16567 }1256

]1257

Here the SELEX model constrained the experiment-specific activities to be proportional to the RBP concentrations1258

used in each experiment, and the binding mode was configured include all-by-all interactions and to only score the1259

forward strand. The 1nM, 4nM and 14nM experiments have very weak binding enrichment and are not shown in1260

Figure S5f.1261

KD-seq - single experiment1262

The single-concentration KD analyses used the following configuration:1263
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[1264

{ "function": "optimizerSetting", "lambdaL2": 1e-6, "nThreads": 20,1265

"pseudocount": 200 },1266

{ "function": "lbfgsSettings", "maxIters": 1000},1267

{ "function": "addTableDB", "count_table_id": 5137 },1268

{ "function": "addSELEX", "modelType": "RhoGamma", "concentration": 100,1269

"cumulativeEnrichment": false },1270

{ "function": "addNS" },1271

{ "function": "addBindingMode", "size": 10, "flankLength": 6,1272

"dinucleotideDistance": 10 },1273

{ "function": "bindingModeConstraints", "index": 0,1274

"roundSpecificActivity": false },1275

{ "function": "bindingModeConstraints", "index": 1,1276

"roundSpecificActivity": false },1277

{ "function": "enrichmentModelSeed", "index": 0, "rho": [0,1,0],1278

"gamma": [0,-1,-1] },1279

{ "function": "bindingModeSeed", "index": 1,1280

"mononucleotideString": "..TAATTG.." },1281

{ "function": "outputDB", "fit_id": 16609 }1282

]1283

KD-seq - multiple experiments1284

The multi-concentration KD analyses of the Input/Bound/Free libraries used the following configuration:1285

[1286

{ "function": "optimizerSetting", "lambdaL2": 1e-6, "nThreads": 20,1287

"pseudocount": 1000 },1288

{ "function": "addTableDB", "count_table_id": 5134 },1289

{ "function": "addTableDB", "count_table_id": 5135 },1290

{ "function": "addTableDB", "count_table_id": 5136 },1291

{ "function": "addTableDB", "count_table_id": 5137 },1292

{ "function": "addSELEX", "modelType": "RhoGamma", "concentration": 3300,1293

"cumulativeEnrichment": false },1294

{ "function": "addSELEX", "modelType": "RhoGamma", "concentration": 1000,1295

"cumulativeEnrichment": false },1296

{ "function": "addSELEX", "modelType": "RhoGamma", "concentration": 330,1297

"cumulativeEnrichment": false },1298

{ "function": "addSELEX", "modelType": "RhoGamma", "concentration": 100,1299

"cumulativeEnrichment": false },1300

{ "function": "addNS" },1301

{ "function": "addBindingMode", "size": 10, "flankLength": 6,1302

"dinucleotideDistance": 10 },1303

{ "function": "bindingModeConstraints", "index": 0,1304

"roundSpecificActivity": false,1305

"experimentSpecificActivity": false },1306

{ "function": "bindingModeConstraints", "index": 1,1307

"roundSpecificActivity": false,1308

"experimentSpecificActivity": false },1309

{ "function": "enrichmentModelSeed", "rho": [0,1,0],1310

"gamma": [0,-1,-1] },1311
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{ "function": "bindingModeSeed", "index": 1,1312

"mononucleotideString": "..TAATTG.."},1313

{ "function": "outputDB", "fit_id": 19357 }1314

]1315

The analyses that instead analyzed the Input/Bound and Bound/Free libraries used the same configuration but with1316

the arguments "modeledColumns": [0,1] and "modeledColumns": [1,2], respectively, added to1317

addTableDB.1318

Peak-free ChIP-seq motif discovery - single experiment1319

The binding models for GR and its cofactors were learned from ChIP-seq data using the following settings:1320

[1321

{"function": "optimizerSetting", "lambdaL2": 1e-6, "pseudocount": 20,1322

"nThreads": 20 },1323

{"function": "addTableDB", "count_table_id": 4974 },1324

{"function": "addSELEX", "modelType": "SELEX",1325

"cumulativeEnrichment": true },1326

{"function": "addNS" },1327

{"function": "addBindingMode", "size": 15, "flankLength": 0,1328

"dinucleotideDistance": 0, "positionBias": true },1329

{"function": "addBindingMode", "size": 10, "flankLength": 0,1330

"dinucleotideDistance": 0, "positionBias": true },1331

{"function": "addBindingMode", "size": 10, "flankLength": 0,1332

"dinucleotideDistance": 0, "positionBias": true },1333

{"function": "addBindingMode", "size": 10, "flankLength": 0,1334

"dinucleotideDistance": 0, "positionBias": true },1335

{"function": "bindingModeSeed" , "index": 1,1336

"mononucleotideString": "AG.ACA...TGT.CT" },1337

{"function": "symmetry", "index": 1,1338

"symmetryString": "abcdefg1GFEDCBA" },1339

{"function": "bindingModeConstraints", "index": 1,1340

"positionBiasBinWidth": 5 },1341

{"function": "bindingModeConstraints", "index": 2, "maxSize": 18,1342

"positionBiasBinWidth": 5, "fittingStages": [1343

{ "optimizeMotifShiftHeuristic": true },1344

{ "optimizeSize": true } ] },1345

{"function": "bindingModeConstraints", "index": 3, "maxSize": 18,1346

"positionBiasBinWidth": 5, "fittingStages": [1347

{ "optimizeMotifShiftHeuristic": true },1348

{ "optimizeSize": true } ] },1349

{"function": "bindingModeConstraints", "index": 4, "maxSize": 18,1350

"positionBiasBinWidth": 5, "fittingStages": [1351

{ "optimizeMotifShiftHeuristic": true },1352

{ "optimizeSize": true } ] },1353

{"function": "outputDB", "fit_id": 14540 }1354

]1355

Here the GR binding mode was configured to be reverse-complement symmetric.1356
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Peak-free ChIP-seq motif discovery - multiple agonist treatments1357

The impact of CORT treatment GR binding was quantified using the following settings:1358

[1359

{"function": "addTableDB", "count_table_id": 4873 },1360

{"function": "addTableDB", "count_table_id": 4874 },1361

{"function": "addTableDB", "count_table_id": 4875 },1362

{"function": "addSELEX" },1363

{"function": "addSELEX" },1364

{"function": "addSELEX" },1365

{"function": "addNS" },1366

{"function": "addBindingMode", "size": 15, "flankLength": 0,1367

"dinucleotideDistance": 0 },1368

{"function": "optimizerSetting", "lambdaL2": 1e-6 },1369

{"function": "bindingModeConstraints", "index": 1,1370

"roundSpecificActivity": true,1371

"experimentSpecificActivity": true },1372

{"function": "bindingModeSeed", "index": 1,1373

"mononucleotideString": "AG.ACA...TGT.CT" },1374

{"function": "symmetry", "index": 1,1375

"symmetryString": "abcdefg1GFEDCBA" },1376

{"function": "outputDB", "fit_id": 10057 }1377

]1378

Here the binding mode is configured to have independent activities in each experiment.1379

Kinase sequence specificity1380

The peptide-sequence specificity of tyrosine kinase Src was quantified using the following settings:1381

[1382

{"function": "optimizerSetting", "nThreads": 20, "lambdaL2": 1e-6,1383

"pseudocount": 50 },1384

{"function": "lbfgsSettings", "maxIters": 2000 },1385

{"function": "addTableDBs", "count_table_ids": [4831,4830,4832] },1386

{"function": "addSELEX", "modelType": "ExponentialKinetics",1387

"concentration": 0.25 },1388

{"function": "addSELEX", "modelType": "ExponentialKinetics",1389

"concentration": 1 },1390

{"function": "addSELEX", "modelType": "ExponentialKinetics",1391

"concentration": 3 },1392

{"function": "setAlphabet", "letterComplement":1393

"A-A,C-C,D-D,E-E,F-F,G-G,H-H,I-I,K-K,L-L,M-M,N-N,P-P,Q-Q, \\1394

R-R,S-S,T-T,V-V,W-W,Y-Y",1395

"letterOrder": "ACDEFGHIKLMNPQRSTVWY" },1396

{"function": "addNS" },1397

{"function": "addBindingMode", "size": 7, "flankLength": 3,1398

"singleStrand": true, "dinucleotideDistance": 7},1399

{"function": "bindingModeConstraints", "index": 1,1400

"experimentSpecificActivity": false },1401

{"function": "symmetry", "index": 1, "symmetryString": "abc.efg" },1402

{"function": "bindingModeSeed", "index": 1,1403
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"mononucleotideString": "...Y...",1404

"seedScale": 10 },1405

{"function": "enrichmentModelConstraints", "index": -1,1406

"fitDelta": [false, false]},1407

{"function": "enrichmentModelSeed", "index": -1, "delta": [0,-15] },1408

{"function": "outputDB", "fit_id": 16581 }1409

]1410

Here the concentration setting was used to encode the different exposures of the experiments (5min, 20min1411

and 60min were encodes as 0.25, 1, and 3) and an extended and self-complementary alphabet was used to represent1412

peptides. The binding mode was configured to include all-by-all interactions between the peptides and only the1413

forward strand was scored. The commands bindingModeSeed and symmetry were used to fix the central1414

position to recognize Y.1415
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