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Abstract

Successful navigation requires the ability to compute one’s location and heading from
incoming multisensory information. Previous work has shown that this multisensory
input comes in two forms: body-based idiothetic cues, from one’s own rotations and
translations, and visual allothetic cues, from the environment (usually visual landmarks).
However, exactly how these two streams of information are integrated is unclear, with
some models suggesting the body-based idiothetic and visual allothetic cues are combined,
while others suggest they compete. In this paper we investigated the integration of body-
based idiothetic and visual allothetic cues in the computation of heading using virtual
reality. In our experiment, participants performed a series of body turns of up to 360
degrees in the dark with only a brief flash (300ms) of visual feedback en route. Because
the environment was virtual, we had full control over the visual feedback and were able
to vary the offset between this feedback and the true heading angle. By measuring the
effect of the feedback offset on the angle participants turned, we were able to determine
the extent to which they incorporated visual feedback as a function of the offset error. By
further modeling this behavior we were able to quantify the computations people used.
While there were considerable individual differences in performance on our task, with some
participants mostly ignoring the visual feedback and others relying on it almost entirely,
our modeling results suggest that almost all participants used the same strategy in which
idiothetic and allothetic cues are combined when the mismatch between them is small, but
compete when the mismatch is large. These findings suggest that participants update their
estimate of heading using a hybrid strategy that mixes the combination and competition
of cues.
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Author summary

Successful navigation requires us to combine visual information about our environment
with body-based cues about our own rotations and translations. In this work we investi-
gated how these disparate sources of information work together to compute an estimate of
heading. Using a novel virtual reality task we measured how humans integrate visual and
body-based cues when there is mismatch between them — that is, when the estimate of
heading from visual information is different from body-based cues. By building compu-
tational models of different strategies, we reveal that humans use a hybrid strategy for
integrating visual and body-based cues — combining them when the mismatch between
them is small and picking one or the other when the mismatch is large.

Introduction 1

The ability to navigate — to food, to water, to breeding grounds, or even to work — is 2

essential for survival in many species. To navigate effectively we need to continuously 3

update our estimates of location and heading in the environment from incoming multisen- 4

sory information [1–3]. This multisensory input comes in two forms: body-based idiothetic 5

cues, from one’s own rotations and translations (in humans generated from the vestibular, 6

proprioceptive, and motor efferent copy systems), and visual allothetic cues, from the 7

environment (usually visual landmarks). In this paper we investigate how information 8

from body-based idiothetic and visual allothetic cues are integrated for navigation. 9

Navigation using only body-based idiothetic cues (for example navigating in the dark) 10

is called Path Integration. Path Integration is notoriously inaccurate involving both 11

systematic and random errors [4–6]. For example, systematic error include biases induced 12

by execution and past experiences such as history effects from past trials [7–10]. Random 13

errors include noise in the body-based idiothetic sensory cues as well as in the integration 14

process itself. These random errors accumulate with the square root of the distance 15

and duration traveled in a manner similar to range effects in magnitude estimations; a 16

consequence of the Weber–Fechner and Stevens’ Power Law [10–14]. Despite these sources 17

of errors in path integration, humans and animals rely heavily on path integration because 18

body-based idiothetic cues are constantly present (unlike visual allothetic landmark cues 19

that may be sparse [6, 15]). In addition, path integration allows for flexible wayfinding 20

by computing a route through new never experienced paths, and adjust for unexpected 21

changes along the way [4, 16, 17]. 22

Navigation using only visual allothetic cues (for example navigating a virtual world 23

on a desktop computer) is called Map or Landmark Navigation [1, 18]. Pure landmark 24

navigation (i.e. without body-based idiothetic cues) can only be studied in virtual environ- 25

ments, where body-based idiothetic cues can be decoupled from visual allothetic cues. In 26

these studies, human participants show no differences in their navigational ability with or 27

without isolation from body-based idiothetic cues, emphasizing that landmark navigation 28

is a separate, and potentially independent computation from path integration [19]. 29

Navigation using both body-based idiothetic and visual allothetic cues relies on both 30
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path integration and landmark navigation, yet exactly how the two processes work together 31

is a matter of debate. In ‘cue combination’ (or ‘cue integration’) models, independent 32

estimates from path integration and landmark navigation are combined to create an 33

average estimate of location and heading. This averaging process is often assumed to 34

be Bayesian, with each estimate weighed according to its reliability [20, 21]. Conversely, 35

in ‘cue competition’ models, estimates from path integration and landmark navigation 36

compete, with one estimate (often the more reliable) overriding the other completely. Based 37

on this view, Cheng and colleagues proposed that path integration serves as a back-up 38

navigational system that is used only when allothetic information is unreliable [22]. 39

Empirical support exists for both cue combination and cue competition accounts. In a 40

study by Chen and colleagues [23], humans in a virtual-navigation task averaged estimates 41

from path integration and landmark navigation according to their reliability, consistent 42

with a Bayesian cue combination strategy. Conversely, in a similar experiment by Zhao 43

and Warren [24], participants primarily used visual allothetic information, often ignoring 44

body-based idiothetic cues even when the mismatch was as large as 90◦, consistent with 45

a cue competition strategy. Similar discrepancies exist across the literature, with some 46

studies supporting cue combination (and even optimal Bayesian cue combination) [23–27], 47

and others more consistent with cue competition [24, 28–31]. 48

Further complicating these mixed findings across studies are the large individual differ- 49

ences in navigation ability between participants [2, 32–34]. These individual differences 50

encompass both high level processes, such as learning, knowledge, and decisions about 51

routes [35–37], as well as lower level processes, such as how individuals respond to Corrio- 52

lis forces and the perception of angular rotations due to differences in semi-circular canal 53

radii [38, 39]. Such large individual differences also impact the integration of body-based 54

idiothetic and visual allothetic cues and may be one reason for the discrepancies in the 55

literature [23, 24]. 56

In this paper, we investigate how people combine body-based idiothetic and visual 57

allothetic cues in the special case of computing egocentric head direction. We focus on 58

head direction because of its relative simplicity (compared to estimating both heading 59

and location) and because the head direction system is known to integrate both vestibular 60

(idiothetic) and visual (allothetic) cues [40]. In our task, participants performed full- 61

body rotations to a goal with only a brief flash of visual feedback that either matched 62

or mismatched their expectations. By building models of this task that capture the key 63

features of cue combination and cue competition strategies, as well as the ‘pure’ strategies 64

of path integration and landmark navigation, we find evidence for a hybrid strategy in 65

which the estimates of path integration and landmark navigation are combined when 66

the mismatch is small, but compete when the mismatch is large. Model comparison 67

suggests that almost all participants use this strategy, with the large individual differences 68

between participants being explained by quantitative differences in model parameters not 69

qualitative differences in strategy. We therefore suggest that this flexible, hybrid strategy 70

may underlie some of the mixed findings in the literature. 71
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Methods 72

Participants 73

33 undergraduate students (18 female, 15 male, ages 18-21) received course credit for 74

participating in the experiment. Of the 33, 3 students (3 female) did not finish block 1 due 75

to cybersickness and were excluded from this study. 76

Ethics statement 77

All participants gave written informed consent to participate in the study, which was 78

approved by the Institutional Review Board at the University of Arizona. 79

Stimuli 80

The task was created in Unity 2018.4.11f1 using the Landmarks 2.0 framework [41]. Partici- 81

pants wore an HTC Vive Pro with a wireless Adapter and held pair of HTC Vive controllers 82

(Fig. 1A). The wireless headset, that was powered by a battery lasting about 2 hours, was 83

tracked using 4 HTC Base Station 2.0, which track with an average positioning error of 84

17mm with 9 mm standard deviation [42]. Participants were placed in the center of a large 85

rectangular (13m x 10m x 5m) naturalistic virtual room with several decorations (Fig. 1B). 86

This was to ensure that visual feedback from different angles would be distinguishable by 87

the geometry of the room and the decorations. 88

Preprocessing and exclusion criteria 89

The 30 participants included for data analysis all completed block 1 (Fig. 1F). Due to 90

tracking failures in the headset caused by a low battery, data from 3 participants was lost 91

for most of session 2. Nevertheless we include data from all 30 participants in our analysis. 92

Trials were removed if participants rotated in the wrong direction or if they pressed in the 93

incorrect button to register their response. We also removed trials in which participants 94

responded before they received feedback. 95

The Rotation Task 96

During the procedure, participants were first guided through a rotation of −α degrees 97

with visual feedback present (encoding phase). They were then asked to turn back to 98

their initial heading, i.e. to turn a ‘target angle’ +α, with visual feedback either absent or 99

limited (retrieval phase). In the No Feedback condition, participants received no visual 100

feedback during the retrieval phase. In the Feedback condition, participants received only 101

a brief flash of (possibly misleading) visual feedback at time tf . By quantifying the extent 102

to which the feedback changed the participants’ response, the Rotation Task allowed us to 103

measure how path integration is combining with visual feedback to compute heading. 104
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Fig 1. Task procedure. (A) Participants wear an HTC VIVE headset along with the
handheld controllers to immerse themselves in a virtual room (B, C). First person view of
the virtual environment at the beginning of a trial. (C) Top down view of the virtual
environment. (D, E) Trial timeline for No Feedback (D) and Feedback (E) trials. At the
start of each trial they face the door of the room and turn through −α degrees with visual
feedback present. Visual feedback is then removed (gray squares) and they must turn back
α degrees to face the door again. At the end of the turn participants stop at heading angle
θt and report their confidence ς by adjusting the size of a red rectangle. The only
difference between the No Feedback and Feedback conditions is the presence of a brief
flash of visual information part way through the turn in the Feedback condition (E).
Overall participants completed 100 trials of the Feedback condition and 300 trials of the
No Feedback condition over the course of the experiment (F).
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More precisely, at the start of each trial, participants faced the door in a virtual reality 105

room (Fig. 1B, C) and were cued to turn in the direction of the haptic feedback provided 106

by a controller held in each hand (Fig. 1A). Feedback from the controller held in the left 107

hand cued leftward rotations (counterclockwise) while feedback from the right controlled 108

cued participants to rotate rightward (clockwise). Participants rotated until the vibration 109

stopped at the encoding angle, −α, which was unique for each trial (sampled from a 110

uniform distribution, U(α)). Participants were free to turn at their own pace and the 111

experimenter provided no guidance or feedback on their rotational velocity. During the 112

encoding procedure, participants saw the virtual room and were able to integrate both 113

visual and vestibular information to compute their heading. 114

During the retrieval phase, participants had to try to return to their original heading 115

direction (i.e. facing the door) with no (No Feedback condition) or limited (Feedback 116

condition) visual feedback. At the beginning of the retrieval phase, participants viewed a 117

blank screen (grey background in Fig. 1D). They then attempted to turn the return angle, 118

+α, as best as they could based on their memory of the rotation formed during encoding. 119

Participants received no haptic feedback during this retrieval process. 120

The key manipulation in this study was whether visual feedback was presented during 121

the retrieval turn or not and, when it was presented, the extent to which the visual 122

feedback was informative. In the No Feedback condition, there was no visual feedback 123

and participants only viewed the blank screen — that is they could only rely on path 124

integration to execute the correct turn. In the Feedback condition, participants saw a quick 125

(300ms) visual glimpse of the room, at time tf and angle f , which was either consistent 126

or inconsistent their current bearing θtf . Consistent feedback occurred with probability 127

ρ = 70%. In this case the feedback angle was sampled from a Gaussian centered at the true 128

heading angle and with a standard deviation of 30o. Inconsistent feedback occurred with 129

probability 1−ρ = 30%. In this case the feedback was sampled from a uniform distribution 130

between −180o and +180o. Written mathematically, the feedback angle, f was sampled 131

according to 132

f ∼
{
N (f |θtf , σ2

f ) with probability ρ = 0.7
U(f) with probability 1− ρ = 0.3

(1)

N (f |θtf is a Gaussian distribution over f with mean θtf and standard deviation σf = 30o. 133

This form for the feedback sets up a situation in which the feedback is informative 134

enough that participants should pay attention to it, but varied enough to probe the impact 135

of misleading visual information across the entire angle space. To further encourage 136

participants to use the feedback, they were not told that the feedback could be misleading. 137

Upon completing the retrieval turn, participants indicated their response with a button 138

press on the handheld controllers (Fig. 1D), thus logging their response angle, θt. Next, a 139

red triangle appeared with the tip centered above their head and the base 6 meters away. 140

Participants then adjusted the angle ς to indicate their confidence in their response angle 141

using the touch pad on the controllers. In particular, they were told to adjust ς such that 142

they were confident that the true angle α would fall within the red triangle (Fig. 1D). 143

Participants were told they would received virtual points during this portion, with points 144

scaled inversely by the size of the ς such that a small ς would yield to higher points (risky) 145
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and large ς would yield to lower points (safe). 146

After completing their confidence rating, the trial ended and a new trial began immedi- 147

ately. To ensure that participants did not receive feedback about the accuracy of their last 148

response, each trial always began with them facing the door. This lack of feedback at the 149

end of the trial ensured that participants were unable to learn from one trial to the next 150

how accurate their rotations had been. 151

Overall the experiment lasted about 90 minutes. This included 10 practice trials (6 with 152

feedback, 4 without) and 400 experimental trials split across two blocks with a 2-10 minute 153

break between them (Fig. 1E). Of the 200 trials in each block, the first and last 25 trials in 154

each block were No Feedback trials, while the remaining 150 were feedback trials. Thus 155

each participant completed 100 trials in the No Feedback condition and 300 trials in the 156

Feedback condition. 157

Participants were allowed to take a break at any time during the task by sitting on a 158

chair provided by the experimenter. During these breaks participant continued to wear 159

the VR headset and the virtual environment stayed in the same orientation. 160

Models 161

We built four models of the Rotation Task that, based on their parameters, can capture 162

several different strategies for integrating visual allothetic and body-based idiothetic 163

estimates of location. Here we give an overview of the properties of these models, full 164

mathematical details are given in the Supplementary Material. 165

Path Integration model 166

In the Path Integration model we assume that the visual feedback is either absent (as in 167

the No Feedback condition) or ignored (as potentially in some participants). In this case, 168

the estimate of heading is based entirely on path integration of body-based idiothetic cues. 169

To make a response, i.e. to decide when to stop turning, we assume that participants 170

compare their heading angle estimate, computed by path integration, with their memory 171

of the target angle. Thus, the Path Integration model can be thought of as comprising two 172

processes: a path integration process and a target comparison process (Fig. 2). 173

In the path integration process, we assume that participants integrate biased and noisy 174

vestibular cues about their angular velocity, dt. These noisy velocity cues relate to their 175

true angular velocity, δt by 176

dt = γdδt + νt (2)

where γd denotes the gain on the velocity signal, which contributes to systematic under- or 177

over-estimation of angular velocity and νt is zero-mean Gaussian noise with variance that 178

increases in proportion to the magnitude of the angular velocity, |δt|, representing a kind 179

of Weber–Fechner law behavior [10]. 180

We further assume that participants integrate this biased and noisy velocity information 181

over time to compute a probability distribution over their heading. For simplicity we 182
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Fig 2. Schematic of the Path Integration model. During path integration, participants
keep track of a probability distribution over their heading, which is centered at mean mt.
To respond they compare this estimated heading to their remembered target location, A,
halting their turn when mt = A. The experimenter observers neither of these variables,
instead we quantify the measured error as the difference between the true target angle, α,
and the true heading angle, θt.

assume this distribution is Gaussian such that 183

p (θt|d1:t−1) = N (θt|mt, s
2
t ) (3)

where the mt is the mean of the Gaussian over heading direction and s2t is the variance. 184

Full expressions for mt and s2t are given in the Supplementary Material. Fig. 2 illustrates 185

how this distribution evolves over time. 186

In the target comparison process, we assume that participants compare their estimate of 187

heading from the path integration process to their memory of the target angle. As with the 188

encoding of velocity, we assume that this memory encoding is a noisy and biased process 189

such that the participant’s memory of the target angle is 190

A = γAα + βA + nA (4)

where γA and βA are the gain and bias on the memory that leads to systematic over- or 191

under-estimation of the target angle, and nA is zero mean Gaussian noise with variance σ2
A. 192

To determine the response, we assume that participants stop moving when their current 193

heading estimate matches the remembered angle. That is, when 194

mt = A (5)

Substituting in the expressions for mt and A (from the Supplementary Material), we 195

can then compute the distribution over the measured error; i.e., the difference between 196

participants actual heading and the target (θt−α). Assuming all noises are Gaussian implies 197
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that the distribution over measured error is also Gaussian with a mean and variance given 198

by 199

E [θt − α] =
(γA − γd)α + βA

γd
; V [θt − α] =

σ2
dα + σ2

A

γ2d
(6)

Thus, the Path Integration model predicts that both the mean error and the variance in 200

the mean error will be linear in the target angle, α, a prediction that we can test in the No 201

Feedback condition (Fig. 7). In addition, in the Feedback condition, the Path Integration 202

model also predicts that the response error in the Feedback condition will be independent 203

of the visual feedback (Fig. 6A), a result that should not be surprising given that the Path 204

Integration model ignores visual feedback. 205

Kalman Filter model 206

Unlike the Path Integration model, which always ignores feedback, the Kalman Filter 207

model always incorporates the visual feedback into its estimate of heading (Fig. 3). Thus 208

the Kalman Filter model captures one of the key features of the Landmark Navigation 209

strategy. However, it is important to note that the Kalman Filter model is slightly more 210

general than ‘pure’ Landmark Navigation. Indeed, for most parameter values, it is a cue 211

combination model in that it combines the the visual feedback with the estimate from Path 212

Integration. Only for some parameter settings (as we shall see below), does the Kalman 213

Filter model converge to a pure Landmark Navigation strategy in which it completely 214

ignores prior idiothetic cues when visual feedback is presented. 215

The Kalman Filter model breaks down the retrieval phase of the task into four different 216

stages: initial path integration, before the visual feedback is presented; feedback incorpo- 217

ration, when the feedback is presented; additional path integration, after the feedback is 218

presented; and target comparison, to determine when to stop. 219

Initial path integration, is identical to the Path Integration model. The model integrates 220

noisy angular velocity information over time to form an estimate of the mean, mt and 221

uncertainty, st, over the current heading angle θt. 222

When feedback (f ) is presented, the Kalman Filter model incorporates this feedback 223

with the estimate from the initial path integration process in a Bayesian manner. Assuming 224

all distributions are Gaussian, the Kalman Filter model computes the posterior distribution 225

over head direction as 226

p(θtf |f, d1:tf−1) = N (θtf |m̂tf , ŝ
2
tf
) (7)

where ŝ2tf is the variance of the posterior (whose expression is given in the Supplementary 227

Material) and m̂tf is the mean given by 228

m̂tf = mtf +Ktf

(
f −mtf

)
(8)

where Ktf ∈ [0, 1] is the ‘Kalman gain,’ sometimes also called the learning rate [43, 44]. 229

The Kalman gain is a critical variable in the Kalman Filter model because it captures the 230

relative weighting of idiothetic (i.e. the estimate from Path Integration, mtf ) and allothetic 231
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Fig 3. Schematic of the Kalman Filter model. Similar to the Path Integration model, this
models assumes that participants keep track of a probability distribution over their
heading that, before the feedback, is centered on mean mt. When the feedback, f , is
presented, they combine this visual information with their path integration estimate to
compute a combined estimate of heading m̂t. They then stop turning and register their
response when m̂t = A, their remembered target. As with the Path Integration model,
none of these internal variables are observed by the experimenter, who instead measures
the error as the difference between the true target, α, and heading angle θt.
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(i.e. the feedback, f ) information in the estimate of heading. In general, the Kalman gain 232

varies from person to person and from trial to trial depending on how reliable people 233

believe the feedback to be relative to how reliable they believe their path integration 234

estimate to be. When the model believes that the Path Integration estimate is more reliable, 235

the Kalman gain is closer to 0 and idiothetic cues are more heavily weighted. When the 236

model believes that the feedback is more reliable, the Kalman gain is closer to 1 and the 237

allothetic feedback is more heavily weighted. In the extreme case that the model believes 238

that the feedback is perfect, the Kalman gain is 1 and the Kalman Filter model implements 239

‘pure’ landmark navigation, basing its estimate of heading entirely on the visual feedback 240

and ignoring the path integration estimate completely. 241

After the feedback has been incorporated, the model continues path integration using 242

noisy velocity information until its estimate of heading matches the remembered target an- 243

gle. Working through the algebra (see Supplementary Material) reveals that the measured 244

response distribution is Gaussian with a mean given by 245

E [θt − α] =
1

γd

(
(γA − γd)α−Ktf (f − γdθtf ) + b

)
(9)

This implies that the error in the Kalman Filter model is linear in the feedback prediction 246

error f − γdθtf (Fig. 6B). 247

Cue Combination model 248

Like the Kalman Filter model, the Cue Combination model combines the feedback with 249

the estimate of heading from path integration. Unlike the Kalman Filter model, however, 250

the Cue Combination model also takes into account the possibility that the feedback 251

will be misleading, in which case the influence of the feedback is reduced. In particular, 252

the Cue Combination model computes a mixture distribution over heading angle with 253

one component of the mixture assuming that the feedback is false and the other that 254

the feedback is true. These two components are weighed according to the computed 255

probability that the feedback is true, ptrue (Fig. 4). 256

Mathematically, the Cue Combination model computes the probability distribution over 257

heading angle by marginalizing over the truth of the feedback 258

p(θtf |f, d1:tf ) = p(θtf |false, d1:tf )pfalse + p(θtf |true, f, d1:tf )ptrue (10)

where ptrue = 1− pfalse = p(true|f, d1:tf ) is the probability that the feedback is true given 259

the noisy velocity cues seen so far. Consistent with intuition, ptrue decreases with the 260

absolute value of the prediction error at the time of feedback (f − mtf ) such that large 261

prediction errors are deemed unlikely to come from true feedback. 262

Equation 10 implies that, at the time of feedback, the Cue Combination model updates 263

its estimate of the mean heading by combining the estimates from Path Integration model, 264

mtf , with the estimate from the Kalman Filter model, m̂tf , as 265

m̃comb
tf

= mtfpfalse + m̂tfptrue (11)
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Fig 4. Schematic of the Cue Combination model. The Cue Combination model
combines two estimates of heading, the path integration estimate, mt, and the Kalman
Filter estimate, m̂t, to compute a combined estimate mcomb

t . The response is made when
this combined estimate matches the remembered target A.

Assuming that a similar target comparison process determines the response (i.e. partici- 266

pants stop turning when m̃comb
t = A), then this implies that the response distribution for 267

the Cue Combination model will be Gaussian with a mean error given by the mixture of 268

the Path Integration and Kalman Filter responses: 269

E [θt − α] =
1

γd

(
(γA − γd)α−Ktfptrue(f − γdθtf ) + βA

)
(12)

Because ptrue depends on the prediction error, Equation 12 implies that the average error 270

in the Cue Combination has a non-linear dependence on the prediction error (Fig. 6C). 271

Hybrid model 272

Instead of averaging over the possibility that the feedback is true or false, in the Hybrid 273

model the estimates from the Path Integration model and the Kalman Filter model compete 274

(Fig. 5). This is because the Kalman Filter model is itself a cue combination model the 275

Hybrid model is a true hybrid between cue combination and cue competition. 276

In particular, we assume that the Hybrid model makes the decision between Path 277

Integration and Kalman Filter estimates according to the probability that the feedback 278

is true (ptrue), by sampling from the distribution over the veracity of the feedback. Thus 279

with probability ptrue, this model behaves exactly like the Kalman Filter model, setting its 280
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Fig 5. Schematic of the Hybrid model. The Hybrid model bases its estimate of heading,
mhy
t , either on the path integration estimate or the Kalman Filter estimate. Here we

illustrate the case where the model chooses the landmark navigation estimate. The
response is made when the hybrid estimate matches the remembered target angle.

estimate of heading to mhy
t = m̃t, and with probability pfalse = 1− ptrue this model behaves 281

exactly like the Path Integration model, setting its estimate of heading to mhy
t = mt. This 282

implies that the distribution of errors is a mixture of the Kalman Filter and Path Integration 283

models such that the average response error is 284

E(θt − α) =
{ 1

γd

(
(γA − γd)α−Ktf (f − γdθtf ) + b

)
with probability ptrue

1
γd
((γA − γd)α + βA) with probability 1− ptrue

(13)

This competition process ensures that the relationship between response error and feedback 285

offset will be a mixture of the Path Integration and Kalman Filter responses (Fig. 6D). When 286

the model decides to ignore the feedback, the response will match the Path Integration 287

model. This occurs most often for large offset angles, when ptrue is closer to 0. When the 288

model decides to incorporate the feedback, the response will lie on the red line. This occurs 289

most often for small offset angles, when ptrue is closer to 1. 290

Model fitting and comparison 291

Each model provides a closed form function for the likelihood that the a particular angular 292

error is observed on each trial, τ , given the target, the feedback (in the Feedback condition), 293

and the true heading angle at feedback. That is, we can formally write the likelihood of 294
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Fig 6. Model predictions for the Path Integration, Kalman Filter, Cue Combination,
and Hybrid models. In (A-C) the red lines correspond to the mean of the response error
predicted by the model. In (D) the two lines correspond to the mean response when the
model assumes the feedback is true (red) and false (blue). The thickness of the red and
blue lines in (D) corresponds to the probability that the model samples from a distribution
with this mean, i.e. ptrue for red and 1− ptrue = pfalse for blue.
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observing errorτ on trial τ as 295

p(errorτ |X) =

{
p(errorτ |ατ ,X) No Feedback condition

p(errorτ |ατ , f τ , θτtf ,X) Feedback condition (14)

where vector X denotes the free parameters of the model. In all cases we used the Path 296

Integration model to compute the likelihoods on the No Feedback trials and each of the 297

four models to compute the likelihoods on the feedback trials. When combining each 298

model with the Path Integration model in this way, we yoked the shared parameters 299

between the models to be equal across the No Feedback and Feedback trials. 300

We then combined the likelihoods across trials to form the log likelihood for a given set 301

of parameters 302

LL(X) =
∑
τ

log p(errorτ |X) (15)

where the sum is over the trials in both the No Feedback and Feedback conditions. The 303

best fitting parameters were then be computed as those that maximize this log likelihood 304

XMLE = argmax
X

LL(X) (16)

Model fitting was performed using the fmincon function in Matlab. To reduce the 305

possibility of this optimization procedure getting trapped in local minima, we ran this 306

process 100 times using random starting points. Each starting point was randomly sampled 307

between the upper and lower bound on each parameter value as defined in Table S1. 308

Parameter recovery with simulated data showed that this procedure was able to recover 309

parameters adequately for all models (Supplementary Section 3, and Figs. S6, S8, S9, and 310

S10). 311

Model comparison was performed by computing the Bayes Information Criterion (BIC) 312

for each model for each participant 313

BIC = k log n− 2LL(XMLE) (17)

where k is the number of free parameters in the model and n is the number of trials in the 314

data. Model recovery with simulated data showed that this procedure was sufficient to 315

distinguish between the four models on this experiment (Supplementary Section 3 and Fig. 316

S4). 317

Results 318

Behavior in the No Feedback condition is consistent with the Path Inte- 319

gration model 320

The Path Integration model predicts that the mean of the response error will be linear in the 321

target angle α. To test whether this linear relationship holds, we plotted the response error 322
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Fig 7. Error vs target angle for the No Feedback condition. Each plot corresponds to
data from one participant and plots are ordered from most negative slope (top left) to
most positive slope (bottom right). The red circles correspond to human data, the solid
blue to the mean error from the Path Integration model fit, and shaded blue area to the
mean ± standard deviation of the error from the Path Integration model fit.
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Fig 8. Parameter values for the Path Integration model fit to the No Feedback data

θt − A as a function of target angle α for all of the No Feedback trials (Fig. 7). This reveals 323

a clear linear relationship between the mean response error and target angle. In addition, 324

for many participants, the variability of the response error also appears to increase with 325

the target angle, which is also consistent with the Path Integration model. Notable in Fig. 326

7 are the considerable individual differences between participants, with some participants 327

having a negative slope (systematically underestimating large target angles), some a 328

positive slope (overestimating large target angles), and some with approximately zero 329

slope. 330

To investigate further, we fit the Path Integration model to the No Feedback data. This 331

model has five free parameters capturing the gain and noise in the velocity signal (γd, σd) 332

and the gain, bias and noise in the target encoding process (γA, βA, σA). Because γd only 333

appears as part of a ratio with other parameters in the Path Integration model, it cannot be 334

estimated separately. We therefore fix the value of the velocity gain to γd = 1 and interpret 335

the resulting parameter values as ratios (e.g. γA/γd etc ...). 336

As shown in Fig. 7, the Path Integration model provides an excellent fit to the No 337

Feedback data, accounting for both the linear relationship between response error and 338

target and the increase in variability with target. 339

Looking at the best fitting parameter values, we find that the target gain is close to 1 at 340

the group level (mean γA/γd = 0.997), indicating no systematic over- or under-weighting 341

of the target across the population (Fig. 8A). Individual participants vary considerably, 342
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however, with γA/γd ranging from 0.8 (negative slope in Fig. 7) to 1.2 (positive slope in Fig. 343

7). In contrast to the target gain, we find a systematic target bias across the population, 344

with all participants turning slightly too far (mean βA/γd = 13.4o; Fig. 8B). Nonetheless, as 345

can be seen in 7, there is considerable variability across participants. 346

For accuracy, we find that most participants have some target noise (mean σA/γd = 5.35o; 347

Fig. 8C) and all participants have velocity noise (mean σd/γd = 1.19o; Fig. 8D). This latter 348

result suggests that the variance of the noise in head direction estimates grows linearly 349

with target angle and with a constant of proportionality close to 1. 350

Behavior in the Feedback condition is consistent with the Hybrid model 351

The key analysis for the Feedback condition relates the feedback offset, f − θtf , to the 352

response error, θt − α. As illustrated in Fig. 6, each model predicts a different relationship 353

between these variables. 354

In our experiment we found examples of behavior that was qualitatively consistent with 355

all four models. These are illustrated in Fig. 9. At the extremes, Participant 27 appeared to 356

ignore feedback completely, like what is shown for the path integration model (Fig. 9A), 357

while Participant 30 seemed to always use the feedback, just like the Kalman Filter model 358

(Fig. 9B). Conversely, Participant 15 appeared to use a Cue Combination approach, while 359

Participant 2’s behavior was more consistent with the Hybrid model. This latter behavior 360

is especially interesting because it strongly suggests a bimodal response distribution for 361

large feedback offsets. 362

To quantitatively determine which of the four models best described each participant’s 363

behavior we turned to model fitting and model comparison. We computed Bayes Informa- 364

tion Criterion (BIC) scores for each of the models for each of the participants and asked 365

which model had the lowest BIC score for each person. Fig. 10A plots BIC scores for each 366

model relative to the BIC score for the Hybrid model for each participant. In this plot, 367

positive values correspond to evidence in favor of the Hybrid model, negative values 368

correspond to evidence in favor of the other models. As can be seen in 10, the the Hybrid 369

model is heavily favored and best describes the behavior of all but three participants 370

(participant 27, who is best fit by the Path Integration model, and participants 15 and 23, 371

who are best fit by the Cue Combination model; Fig. 10B). 372

Qualitatively, the Hybrid model provides a good account of the data despite the large 373

individual differences in behavior. In Fig. 11 we compare the behavior of the model to the 374

behavior of four example participants. As already suggested in Fig. 9, Participant 2 is one 375

of the cleanest examples of Hybrid behavior and it is not surprising that this behavior is 376

well described by the model. Likewise the Hybrid model does an excellent job capturing 377

the behavior of Participant 30, whose qualitative behavior appears more Kalman Filter like. 378

The reason the Hybrid model outperforms the Kalman Filter model for this participant is 379

that Participant 30 appears to ignore the stimulus on two trials at offsets of around -100 380

and +100 degrees. These data points correspond to large deviations from the Kalman Filter 381

model behavior but are a natural consequence of the Hybrid model. The Hybrid model 382

also captures the behavior of participants who integrate the feedback over a much smaller 383
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Fig 9. Examples of human behavior on the feedback trials.

range such as Participants 10 and 25. A comparison between the Hybrid model and all 384

participants is shown in Supplementary Fig. S13. 385

Parameters of the Hybrid model suggest people use a true hybrid strat- 386

egy between cue combination and cue competition 387

Consistent with the individual differences in behavior, there were significant individual 388

differences in the fit parameter values across the group (Supplementary Fig. S11). Of 389

particular interest is what these parameter values imply for the values of the Kalman 390

gain, Ktf . As mentioned in the Methods section, this variable is important because 391

it determines the extent to which the Kalman Filter component of the Hybrid model 392

incorporates the allothetic visual feedback vs the idiothetic path integration estimate of 393

heading. The larger the Kalman gain, the more allothetic information is favored over 394
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Fig 10. Model comparison. (A) BIC scores for each model relative to the BIC score for the
Hybrid model for each participant. For each model, each circle corresponds to one
participant. Positive numbers imply the fit favors the Hybrid model, negative numbers
imply that the fit favors the other model. (B) The number of participants best fit by each
model. 28 out of 30 participants were best fit by the Hybrid model, suggesting that this
model best describes human behavior.

idiothetic information. Moreover, if the Kalman gain is 1, then the Hybrid model becomes 395

a ‘pure’ cue competition model. This is because the Kalman Filter component of the model 396

ignores idiothetic information prior to the feedback (i.e. it implements ‘pure’ landmark 397

navigation). Thus, the Hybrid model now decides between pure Path Integration and pure 398

Landmark Navigation, consistent with a pure Cue Combination approach. 399

In Fig. 12, we plot implied Kalman gains for all trials for each participant. This clearly 400

shows that the majority of participants do not have Ktf = 1, instead showing intermediate 401

values for the Kalman gain. Thus we conclude that participants use a true hybrid of cue 402

combination, when the mismatch between idiothetic and allothetic information is small, 403

and cue competition when the mismatch is large. 404

Discussion 405

In this paper, we investigated how humans integrate path integration (rotational) and 406

visual landmarks/ boundaries to estimate their heading. In our experiment, The Rotation 407

Task, participants made a series ‘of turns in virtual reality, mostly without visual feedback. 408

Visual feedback, when it was presented in the form of the boundaries of the room with 409

distinct landmarks, was brief and offset from the true heading angle. This offset led to 410

systematic errors in people’s turning behavior that allowed us to quantify how people com- 411

bine visual allothetic feedback with their internal estimate of heading direction, computed 412

by path integration of body-based idiothetic cues. 413

While there were considerable individual differences in task performance, our findings 414

suggest that the majority of participants used the same overarching hybrid strategy to 415

complete the task. In this strategy, body-based idiothetic and visual allothetic cues are 416

combined when the estimates of path integration and landmark navigation are close and 417

compete when the estimates are far apart. This behavior was well accounted for by a 418
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Fig 11. Comparison between data and the Hybrid model for four participants.
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Fig 12. Computed Kalman gain for all participants and all trials. The Kalman gains
computed for each trial for each participant are shown as gray dots. The mean Kalman
gain and 95% confidence intervals are shown in red.

computational model that switches between competition and combination according to 419

the subjective probability that the feedback is valid. 420

These findings support a hybrid model which may help to explain the mixed reports 421

in the literature regarding cue combination. Specifically, some studies report evidence 422

of cue combination [23, 25, 28, 45] while find evidence for others cue competition [24, 423

46]. One set of studies using a similar experimental paradigm involves the short-range 424

homing task of Nardini and colleagues and shows evidence for both cue combination and 425

competition depending on the conditions tested [25]. In this task, participants picked up 426

three successive objects in a triangular path and returned them after a delay. During the 427

return phase of the task, the experimenters manipulated the visual feedback to induce a 428

15 degree mismatch with the body-based cues. When both visual and body-based cues 429

were present, Nardini et al. found that the variance of the response was smaller than 430

when navigation relied on only one cue, consistent with the combination of visual and 431

body-based cues in a Bayesian manner. However, when Zhao and Warren [24] increased 432

the offset from 15 to 135 degrees, they found that participants based their estimate of 433

location either entirely on the visual cues (when the offset was small) or entirely on the 434

body-based cues (when the offset was large), taking this as evidence for a cue-competition 435

strategy. Thus, in the same task, participants appeared to switch from cue combination to 436

cue competition as the offset grew larger, exactly what we observe in our experiment, and 437

what is predicted by the Hybrid model. 438

More generally, our model fits with bounded rationality theories of human cognition 439

[47–50]. That is, people have limited computational resources, which in turn impacts 440

the kinds of computations they can perform and how they perform them. In our case, 441

combining visual and body-based cues to compute a probability distribution over heading 442

should be easier when the cues align and the distribution is unimodal than when the 443
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cues conflict and the posterior is bimodal. In this latter case, representing the bimodal 444

distribution by sampling one mode or the other, as the Hybrid model does, may be a 445

rational strategy that demands fewer computational resources. Indeed, other work has 446

shown that people may represent complex and multimodal distributions with a small 447

number of samples, which may be as low as just a single sample in some cases [51–53]. 448

A key prediction of such a sampling interpretation of the Hybrid model is that partic- 449

ipants should sometimes lose information when integrating visual allothetic and body- 450

based idiothetic cues. That is, when faced with a large feedback offset, instead of computing 451

the full posterior distribution over heading, participants collapse this bimodal distribution 452

to a unimodal distribution centered on the estimate from path integration or landmark 453

navigation. 454

Such a ‘semi-Bayesian’ interpretation, stands in contrast to a fully-Bayesian alternative 455

in which, participants do indeed keep track of the bimodal posterior and instead sample 456

their estimate of heading direction from this posterior to determine their response. In this 457

view, when faced with a large feedback offset, participants do compute the full distribution 458

over heading, but rather than average over this distribution to compute their response, 459

they sample from it instead. This implies that participants do not make a decision to ignore 460

or incorporate the feedback and, as a result, do not lose information about the stimulus or 461

their path integration estimate. 462

A key question for future work will be to distinguish between these two interpretations 463

of the task. Does sampling occur at the time of feedback causing a collapse of the posterior 464

distribution to one mode and a loss of information? Or does sampling occur later on and 465

without the collapse of the posterior? Both interpretations lead to identical behavior on the 466

Rotation Task. However, a modified version of the task should be able to distinguish them. 467

A key goal for future work will be to expand our experimental paradigm to test whether 468

the hybrid model can generalize to navigational behavior from both rotational and trans- 469

lational movements. Another future gold will be to combine the Rotation Task with 470

physiological measures (such as EEG) to study the neural underpinnings of this pro- 471

cess [54]. In addition, it will be interesting to explore individual differences in behavior in 472

more diverse populations including older adults and people with psychiatric disorders. 473

By providing within-trial dynamics of cognitive variables as well as characterizing large 474

individual differences with different parameter values, our task and model could help to 475

set the stage for this future work. 476

Supporting information 477

S1 Fig. Graphical representation of the Path integration model 478

S2 Fig. Graphical representation of the Kalman Filter model. 479

S3 Fig. Graphical representation of the Cue Combination and Hybrid models. 480
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1 Computational Models

We built four models of the task which integrate the visual feedback in different ways.
The simplest of these is the Path Integration model. This model ignores visual feedback
completely and bases its estimate on pure path integration. As shown in the Results
section, this model describes the behavior of at least one participant quite well and was
used for all participants to fit data from the No Feedback condition.

The second model is the Kalman Filter model. This model integrates the visual feedback
using the equations of the Kalman filter [55], which performs optimal cue combination
under the assumption that the feedback error is Gaussian (which is not the case in our task
because the feedback is sometimes sampled from a uniform distribution, see Equation 1).

The third and fourth models extend the Kalman filter to better match the actual genera-
tive process of the experiment. These models assume that the feedback can be misleading
and take this possibility into account by computing the probability that the feedback is
‘true’ (i.e. comes from the Gaussian distribution, p(true|f)) and false (i.e. comes from the
uniform distribution, p(false|f). The Cue Combination model, averages over this proba-
bility to form its estimate of heading. Conversely, the Hybrid model, samples from this
probability, incorporating feedback just like the Kalman filter with probability p(true|f)
and ignoring the feedback with probability p(false|f). In the following sections we develop
each of these models in detail.

1.1 Path Integration model

We begin by modeling the case in which feedback is either absent (as in the No Feedback
condition) or ignored (as in some participants). In this case, the estimate of heading is
based entirely on path integration of vestibular cues. To make a response, i.e. to decide
when to stop turning, we assume that participants compare their heading angle estimate,
computed by path integration, with their memory of the target angle. Thus, the Path
Integration model can be thought of as comprising two processes: a path integration
process and a target comparison process (Fig. S3).

Path integration In the encoding phase of the task, participants are guided through an
initial turn of −α degrees to face heading angle, θ0. In the retieval phase, they must then
undo this rotation without visual feedback to return to θ0 + α. For simplicity, and without
loss of generality, we take the initial head direction on each trial to be θ0 = 0o.

As they turn, we assume that participants receive vestibular cues about their angular
velocity. For simplicity we model this process in discrete time, although the extension to
continuous time is straightforward. We assume that on each time step t of the turn they
receive a biased and noisy measure of their angular velocity, dt, which is related to their
true angular velocity, δt by

dt = γdδt + νt (S1)

where γd denotes the gain on the velocity signal, which contributes to systematic under-
or over-estimation of angular velocity. νt is zero-mean Gaussian noise with variance that
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A) Graphical representation of the Path Integration model

δ0 δ1 ... δt−1

path integration target comparison

γd

σd d0 d1 ... dt−1

m0 m1 ... mt−1 mt

s0 s1 ... st−1 st

θ0

θtsd

α

A

γA

βA

σA

Observed by subject Observed by experimenter Free parameter

B) Mean and variance of error

E [θt − α] =
(γA − γd)α + βA

γd
; V [θt − α] =

σ2
dα + σ2

A

γ2d

Fig S1. The Path Integration model. (A) The model comprises two processes: path
integration and target comparison. In the path integration process the models’ estimate of
heading angle, mt (and corresponding uncertainty in this mean, st) is computed by
integrating biased and noisy velocity information, dt, over time. In the target comparison
process, this estimate of heading is compared with the models’ biased and noisy memory
of the target angle, A, to decide when to stop at measured angle θt. Blue nodes correspond
to variables that are ‘observed’ by the model (i.e. the participant) and can be used to
compute the response. Red nodes correspond to variables that are observed by the
experimenter and are the measurements we use to analyze behavior. White nodes
correspond to parameters that are unobserved (by either the participant or the
experimenter) describing imperfections in the coding of velocity (γd, σd) and target (γA, βA,
σA). Free parameters are denoted by a double line. To further distinguish between
variables available to the participant and those that are not, we write variables available to
the participant with Roman letters and variables that are not available to the participant
with Greek letters. (B) The model predicts that both the mean and variance of the response
error will be linear in target angle, α.
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increases in proportion to the magnitude of the angular velocity, |δt|, representing a kind
of Weber–Fechner law behavior [10],

νt ∼ N
(
νt
∣∣0, σ2

d|δt|
)

(S2)

where σ2
d is a constant that determines the relationship between noise and angular velocity.

Next we assume that participants use this noisy velocity information to compute a
probability distribution over their current heading angle.

p (θt|d1:t−1) = N (θt|mt, s
2
t ) (S3)

where the mean of the distribution is given by

mt =
t∑
i=1

dt = γdθt +
t∑
i=1

νi = γdθt + nd (S4)

where nd =
∑t

i=1 νi. The variance of the distribution is given by

s2t = s20 + θts
2
d (S5)

where s20 is the participant’s initial uncertainty in their location and s2d is the participant’s
estimate of the variance of noise in their own vestibular system.

Strictly speaking, the behavior of the Path Integration model only depends on the
mean, mt, and we do not need to make the assumption that participants compute a full
distribution over possible heading. However, as we shall see, computing both the mean
and variance of p (θt|d1:t−1) will be necessary for the models that incorporate feedback.

Target comparison Estimating the current heading angle is not enough to complete the
task. In addition participants have to remember the target angle and compare it to their
current estimate of heading. As with the encoding of velocity, we assume that this memory
encoding is a noisy and biased process such that the participant’s memory of the target
angle is

A = γAα + βA + nA (S6)

where γA and βA are the gain and bias on the memory that leads to systematic over- or
under-estimation of the target angle, and nA is zero mean Gaussian noise with variance σ2

A.
In the Supplementary Section 2 we show how this form of a gain and bias on the target
angle can result from Bayesian decoding of a noisy memory with no gain or bias.

To determine the response, we assume that participants stop moving when their current
heading estimate matches the remembered angle. That is, when

mt = A (S7)

Substituting in the expressions for mt and A, we get that the measured head angle when
they stop, θt, will satisfy

θt =
1

γd
(γAα + βA + nA − nd) (S8)
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Because the noise terms (nA and nd) are Gaussian, the measured error (θt − α) will also be
Gaussian. Thus we can characterize the probability distribution over the measured error
by its mean and variance

E [θt − α] =
(γA − γd)α + βA

γd
; V [θt − α] =

σ2
dα + σ2

A

γ2d
(S9)

The Path Integration model technically has seven free parameters (γd, σd, γA, βA, σA, sd,
s0). However, because the variance of the model’s estimate does not affect θt, two of these
parameters (sd and s0) cannot be estimated. In addition, the remaining five parameters all
appear as ratios with γd giving us four free parameters in the Path Integration model. In
practice when fitting the Path Integration model we set γd = 1 and interpret the remaining
parameters as ratios (e.g. γA/γd, Table S1).

1.2 Kalman Filter model

Unlike the Path Integration model, which always ignores feedback, the Kalman Filter
model always incorporates the visual feedback into its estimate of location. To model this
process, we split the retrieval phase into four components: initial path integration, before
the visual feedback is presented; feedback incorporation, when the feedback is presented;
additional path integration, after the feedback is presented; and target comparison, to
determine when to stop (Fig. S2).

Initial path integration Initial path integration is identical to the Path Integration model.
The model starts at a heading θ0 = 0 and integrates noisy angular velocity information
over time to form an estimate of the mean, mt and uncertainty, st, over the current heading
angle θt.

Feedback incorporation At time tf the feedback, f , is presented. The Kalman Filter
model assumes that the feedback can be noisy, but that it is always carries some information
about the true heading angle θtf . In particular, this model assumes that the feedback angle
is sampled from a Gaussian distribution centered on the true heading angle, θtf , such that

p(f |θtf ) = N (f |θtf , s2f ) (S10)

where s2f is the participant’s estimate of the variance of the feedback.
With this Gaussian assumption for the likelihood of the feedback, the Kalman Filter

model then combines the feedback with the estimate from path integration via Bayes rule

p(θtf |f, d1:tf−1) ∝
feedback︷ ︸︸ ︷
p(f |θtf ) ×

path integration︷ ︸︸ ︷
p(θtf |d1:tf−1)

= N (f |θtf , s2f )×N (θtf |mtf , s
2
tf
)

=⇒ p(θtf |f, d1:tf−1) = N (θtf |m̂tf , ŝ
2
tf
)

(S11)
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Parameter Path Landmark Cue Cue
and range Integration Navigation Combination Competition

Velocity gain, γd
0 ≤ γd ≤ 4

= 1

Variance of
velocity noise, σ2

d

0 ≤ σd ≤ 20
(as σd/γd)

Target gain, γA
0 ≤ γA ≤ 2

(as γA/γd)

Target bias, βA
−180 ≤ βA ≤ +180

(as βA/γd)

Variance of
target noise, σ2

A

0 ≤ σA ≤ 20
(as σA/γd)

Participant’s initial
uncertainty, s20
0 ≤ s0 ≤ 20

(as s0/sf )

Participant’s velocity
noise variance, s2d

0 ≤ sd ≤ 20
(as sd/sf )

Participant’s feedback
noise variance, s2f

0 ≤ sf ≤ 50
= 1

Participant’s prior on
true feedback, r

0 ≤ r ≤ 1

Table S1. Parameters, their ranges and values, in the different models.
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A) Graphical representation of the Kalman Filter model

δ0 δ1 δt−1δtf

path integration feedback incorporation path integration target comparison

γd

σd d0 d1 ... ... dt−1dtf

m0 m1 ... ... m̂t−1 m̂t
mtf m̂tf

s0 s1 ... ... ŝt−1 ŝtstf ŝtf

θ0

θt

θtf

f

ρ σf

sf

sd

α

A

γA

βA

σA

Observed by subject Observed by experimenter Observed by both Free parameter

B) Mean and variance of error

E [θt − α] =
1

γd

(
γAα−Ktf (f − γdθtf ) + b

)
V [θt − α] =

1

γ2d

(
σ2
A +

(
α−

(
2−Ktf

)
Ktf θtf

)
σ2
d

)
Fig S2. Graphical representation of the Kalman Filter model. (A) The model comprises
four processes: initial path integration, feedback incorporation, final path integration, and
target comparison. The initial path integration process proceeds exactly as in the Path
Integration model, estimating heading angle mt from noisy velocity information d. In the
feedback incorporation process, the path integration estimate is combined with the
feedback f to form a combined estimate m̂tf . In the final path integration process, the
model incorporates the new noisy velocity information to update the combined estimate
of heading. Finally, in the target comparison process, the combined estimate is compared
with the remembered target angle A to generate the response θt. (B) Expressions for the
mean and variance of the measured response error. Of note is that the mean is linear in
both the target angle and the prediction error f − γdθtf .
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where the mean and variance of this posterior distribution over (θtf ) are given by

m̂tf = mtf +
s2tf

s2tf + s2f

(
f −mtf

)
and ŝ2tf =

s2tf s
2
f

s2tf + s2f
(S12)

Note that the feedback updates the mean according to the prediction error f−mtf weighted
by the ‘Kalman gain’

Ktf =
s2tf

s2tf + s2f
=

s20 + θtf s
2
d

s20 + θtf s
2
d + s2f

(S13)

The Kalman gain captures the influence of the prediction error on the estimate of heading
angle. The more certain the model is that the feedback is accurate (i.e. smaller sf ) the
closer the Kalman gain is to 1 and the larger the effect of the feedback. Conversely, the
more certain the model is in its path integration estimate (i.e. smaller stf ) the closer the
Kalman gain is to 0 and the smaller the effect of the feedback.

Additional path integration After the feedback has been incorporated, the model con-
tinues path integration using noisy velocity information. Thus the estimate of the mean
continues to update as:

m̂t = m̂tf +
t−1∑
i=tf

δi (S14)

Substituting in the expressions for m̂tf , di, and mtf we get

m̂t = mtf +Ktf

(
f −mtf

)
+

t−1∑
i=tf

(γdδi + νi)

=

tf−1∑
i=1

(γdδi + νi) +Ktf

(
f −

tf−1∑
i=1

(γdδi + νi)

)
+

t−1∑
i=tf

(γdδi + νi)

= γdθt +Ktf

(
f − γdθtf

)
+

tf−1∑
i=1

(1−Ktf )νi +
t−1∑
i=tf

νi︸ ︷︷ ︸
noise, ε

(S15)

Target comparison Finally, the response is determined as the point at which m̂t is equal
to the noisy target angle, A

m̂t = γAα + βA + nA (S16)

Substituting in the expression for m̂t and rearranging for the response angle gives

θt =
1

γd

(
γAα−Ktf

(
f − γdθtf

)
+ βA + nA − ε

)
(S17)
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This implies that the distribution of errors (θt − α) is Gaussian with a mean given by

E [θt − α] =
1

γd

(
γAα−Ktf (f − γdθtf ) + b

)
(S18)

and a variance given by

V [θt − α] =
1

γ2d

(
σ2
A + (1−Ktf )

2θtfσ
2
d + (α− θtf )σ2

d

)
=

1

γ2d

(
σ2
A +

(
α−

(
2−Ktf

)
Ktf θtf

)
σ2
d

) (S19)

Note that, because s2f , s20, and s2d appear as part of a ratio in the equation for Ktf , only two
out of the three of these can be estimated from data. Thus, of the eight free parameters in
the Kalman Filter model (γd, σd, γA, βA, σA, s0, sd, and sf ), only seven can be estimated from
the data. In practice, when fitting this model we set s2f = 1 and interpret the participant’s
initial uncertainty and estimate of velocity noise as ratios, s0/sf and sd/sf respectively
(Table S1).

1.3 Cue Combination model

The Cue Combination model takes into account the possibility that the feedback will
be misleading. To do this it computes a mixture distribution over heading angle with
one component of the mixture assuming that the feedback is false and the other that
the feedback is true. These two components are weighted according to the computed
probability that the feedback is either false or true.

Mathematically, the Cue Combination model computes the probability distribution over
heading angle by marginalizing over the truth of the feedback

p(θtf |f, d1:tf ) = p(θtf |false, d1:tf )p(false|f, d1:tf ) + p(θtf |true, f, d1:tf )p(true|f, d1:tf ) (S20)

where p(true|f, d1:tf ) = ptrue = 1− pfalse is the probability that the feedback is true given
the noisy velocity cues seen so far. Thus the Cue Combination model requires two steps to
incorporate the feedback: first compute ptrue and second average over ptrue to determine
how much to take the feedback into account.

Computing ptrue Using Bayes rule, we can write the probability that the feedback is true,
ptrue as

p(true|f, d1:tf ) =
p(f |true, d1:tf )p(true)

p(f |true, d1:tf )p(true) + p(f |false, d1:tf )p(false)
(S21)

where p(f |true, d1:tf ) is the likelihood of the feedback assuming it is true, p(f |false, d1:tf )
is the likelihood of the feedback assuming it is false, and p(true) = 1 − p(false) is the
participant’s estimate of the prior probability that the feedback is true.
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A) Graphical representation of the Cue Combination and Hybrid models

δ0 δ1 δt−1δtf

path integration feedback incorporation path integration target comparison

γd

σd d0 d1 ... ... dt−1dtf

m0 m1 ... ... m̃t−1 m̃t
mtf m̃tf

s0 s1 ... ... ŝt−1 ŝtstf ŝtf

θ0

θt

θtf

f

ρ σf

r

sf

sd

α

A

γA

βA

σA

ptrue

Observed by subject Observed by experimenter Observed by both Free parameter

B) Mean and variance of error for the Cue Combination model

E [θt − α] =
1

γd

(
(γA − γd)α−Ktfptrue(f − γdθtf ) + βA

)
V [θt − α] =

1

γ2d

(
σ2
A +

(
α−

(
2−Ktfptrue

)
Ktfptrueθtf

)
σ2
d

)
C) Mean and variance of error for the Hybrid model

E [θt − α] =
{ 1

γd

(
(γA − γd)α−Ktf (f − γdθtf ) + b

)
with probability ptrue

1
γd
((γA − γd)α + βA) with probability 1− ptrue

V [θt − α] =

{
1
γ2d

(
σ2
A +

(
θt −

(
2−Ktf

)
Ktf θtf

)
σ2
d

)
with probability ptrue

1
γ2d

(σ2
dα + σ2

A) with probability 1− ptrue

Fig S3. The Cue Combination and Hybrid models. (A) Graphical representations of the
parameters in the Cue Combination and Hybrid models. In the feedback incorporation
stage, both models compute the probability that the feedback is true, ptrue. They then use
this probability to modulate the effect of feedback on their estimate of heading — the Cue
Combination model by averaging over ptrue, the Hybrid model with sampling from ptrue.
(B) The mean and variance of the measured error for the Cue Combination model are
linear in the target angle, α, but non-linear in the prediction error, f − γdθtf because ptrue is
non-linear in the prediction error. (C) The response distribution for the Hybrid model is a
mixture of two Gaussians.
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The likelihood of the feedback given that it is true, p(f |true, d1:tf ), can be computed by
marginalizing over the estimate of heading direction as

p(f |true, d1:tf ) =
∫
dθtfp(f |θtf , true)p(θtf |d1:tf ) (S22)

where p(θtf |d1:tf ) is the heading angle distribution computed by path integration and
p(f |θtf , true) is the likelihood of the feedback given the heading angle, which we assume
to be Gaussian; i.e.,

p(f |θtf , true) = N (f |θtf , s2f ) (S23)

This implies that p(f |true, d1:tf ) is the convolution of two Gaussians, which is itself another
Gaussian

p(f |true, d1:tf ) = N (f |θtf , s2f )~N (θtf |mtf , s
2
tf
)

= N (f |mtf , s
2
f + s2tf )

(S24)

The likelihood of the feedback given that it is false, p(f |false, d1:tf ), is simply a uniform
distribution over f

p(f |false, d1:tf ) = U(f) =
1

2π
(S25)

Finally, we define the participant’s estimate of the prior probability that the feedback is
true as a free parameter p(true) = 1− p(false) = r.

Putting it all together gives the following expression for ptrue

ptrue = p(true|f, d1:tf ) =
N (f |mtf , s

2
f + s2tf )r

N (f |mtf , s
2
f + s2tf )r + U(f)(1− r)

=
1

1 +

√
s2f+s

2
tf

2π
exp

(
(f−mtf )

2

2(s2f+s
2
tf

)

)(
1−r
r

) (S26)

Note, that ptrue depends on the square of the prediction error (f −mtf )
2 such that when

the prediction error has a large magnitude, ptrue is small. Unfortunately this dependence
requires an approximation before we can use it for model fitting. The reason is that mtf is
not observed by the experimenter, only θtf . In addition, because the dependence of ptrue
on mtf is non-linear it is not easy to average over this exactly. Instead we approximate mtf

in the expression for ptrue with its average, γdθtf , thus our approximate expression for ptrue
becomes

ptrue ≈
1

1 +

√
s2f+s

2
0+θtf s

2
d

2π
exp

(
(f−γdθtf )

2

2(s2f+s
2
0+θtf s

2
d)

)(
1−r
r

) (S27)

Note that s0, sd, and sf do not appear as a ratio in the expression for ptrue. This implies that,
unlike the Kalman Filter model, all three of these parameters can be estimated from the
data.
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Cue Combination over ptrue The Cue Combination model incorporates feedback by
computing the mixture distribution

p(θtf |f, d1:tf ) = p(θtf |false, d1:tf )pfalse + p(θtf |true, f, d1:tf )ptrue (S28)

This sum is the weighted sum of the distributions from the Path Integration model,
p(θtf |false, d1:tf ), and the Kalman Filter model, p(θtf |true, f, d1:tf ). Thus, at time t, the
mean of the combined heading angle distribution is simply the weighted sum of the Path
Integration estimates and the Kalman Filter estimates; i.e.,

m̃av
t = mtpfalse + m̂tptrue

= (γdθt + ν) pfalse +
(
γdθt +Ktf (f − γdθtf ) + ε)

)
ptrue

= γdθt +Ktfptrue(f − γdθtf ) +
(
1−Ktfptrue

) tf−1∑
i=1

νi +
t−1∑
i=tf

νi

(S29)

Computing the variance of p(θtf |f, d1:tf ) is a little more involved. However, because this
variance is unrelated to the measured behavior, we ignore it.

Target comparison As with the other models, we assume that participants stop turning
when their estimate of the mean heading angle matches their noisy memory of the target,
i.e. when

m̃av
t = γAα + βA + nA (S30)

Rearranging for the measured response angle, θt, gives

θt =
1

γd

γAα−Ktfptrue(f − θtf ) + βA + nA −
(
1−Ktfptrue

) tf−1∑
i=1

νi −
t−1∑
i=tf

νi

 (S31)

Which implies that the error follows a Gaussian distribution with mean and variance given
by

E [θt − α] =
1

γd

(
(γA − γd)α−Ktfptrue(f − γdθtf ) + βA

)
V [θt − α] =

1

γ2d

(
σ2
A +

(
α−

(
2−Ktfptrue

)
Ktfptrueθtf

)
σ2
d

) (S32)

The Cue Combination model has nine free parameters (Table S1), all of which can be
estimated from the data.

1.4 Hybrid model

Instead of averaging over the possibility that the feedback is true or false, the Hybrid model
makes a decision to either incorporate the feedback (in the same way as the Kalman Filter
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model) or ignore it (in the same way as the Path Integration model) (Fig. S3). We assume
that the model makes this decision according to ptrue, by sampling from the distribution
over the veracity of the feedback. Thus with probability ptrue, this model behaves exactly
like the Kalman Filter model, with

m̃samp
t = m̂t (S33)

and with probability pfalse = 1− ptrue this model behaves exactly like the Path Integration
model with

m̃samp
t = mt (S34)

This implies that the distribution of errors is a mixture of two Gaussians, such that with
probability ptrue, the mean and variance of the response error are

E(θt − α) =
1

γd

(
(γA − γd)α−Ktf (f − γdθtf ) + b

)
V(θt − α) =

1

γ2d

(
σ2
A +

(
α−

(
2−Ktf

)
Ktf θtf

)
σ2
d

) (S35)

and with probability pfalse = 1− ptrue, the mean and variance of the response error are

E(θt − α) =
1

γd
((γA − γd)α + βA)

V(θt − α) =
1

γ2d

(
σ2
dα + σ2

A

) (S36)

Like the Cue Combination model, the Hybrid model has nine free parameters (Table S1)
all of which can be estimated from the data.

2 Bayesian decoding of target position

In the main text we assumed the following form for the biased and noisy memory of the
target

A = γAα + βA + nA (S37)

where γA and βA are the gain and bias on the memory, which lead to systematic over- and
under-estimation of the target angle, and nA is zero mean Gaussian noise with variance σ2

A.
Here we show how this expression can be related to Bayesian decoding of a noisy, but

otherwise unbiased target angle
A = α + n (S38)

In particular, we assume that participants are aware that their memory is imperfect and
can, to some degree correct for this noise by incorporating prior knowledge about possible
α angles. That is, participants use Bayesian inference compute a posterior over α given A
as

p(α|A) ∝ p(A|α)p(α) (S39)
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Assuming both the prior and likelihood are Gaussian such that

p(α) = N
(
α|mα, s

2
α

)
p(A|α) = N

(
A|α, s2A

) (S40)

where mα is the participant’s estimate of the mean of the prior distribution, s2α is their
estimate of the variance of the prior, and s2A is the their approximation to the variance of
the memory noise (i.e. their estimate of the variance of nA).

Substituting these expressions for the likelihood and prior into Equation S39 implies
that the posterior over target angle is also a Gaussian with a mean and variance given by
Note that the mean of this distribution is

mean target estimate =
s2αA+ s2Amα

s2A + s2α

variance of target estimate =
s2As

2
α

s2A + s2α

(S41)

Note that the expression for the mean can be further related to the target by substituting
A = α + n giving

mean target estimate =

(
s2α

s2A + s2α

)
α +

(
s2Amα

s2A + s2α

)
+

(
s2α

s2A + s2α

)
n (S42)

Comparing this expression for the mean with Equation S37 we can make the identifications

γA =
s2α

s2A + s2α
and βA =

s2Amα

s2A + s2α
(S43)

3 Fitting simulated data

We tested the validity of our model fitting procedure by fitting simulated data. This
allowed us to determine whether data generated by a given model would be best fit by
that model (model recovery) and whether the parameters used to generate the data could
be recovered by the fitting process (parameter recovery). Matlab code to reproduce these
analyses can be found on GitHub (https://github.com/sharootonian/HeadingDirection).

3.1 Simulated data

Simulated data for each model were generated by simulating the models using the gen-
erative processes described in the main text. To ensure that the parameter values used
to simulate data were in a reasonable range, we used the parameter values fit to the
participants’ behavior to generate parameters for the simulations. In particular, for each
simulated participant we sampled each parameter randomly from the values fit to the
participants. Thus, the first simulated participant could have γd from participant number
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5, σd from participant number 27, and so on. In this way we ensured that the simulation
parameters were in a reasonable range, but removed any correlations between the param-
eters in the simulation. This latter point was important for testing whether the fitting
procedure induced correlations between the parameters. In all we simulated behavior
from 30 participants per model (total 120 simulated participants) on the same (but scram-
bled) set of trials seen by real participants in the experiment. Thus the simulated data we
obtained had the same number of trials as the real data set, but four times the number of
participants (30 per model).

3.2 Fitting simulated data

We fit the simulated data using the same procedure used to fit the real data in the main
paper. This allowed us to compute the best fitting parameter values and a BIC score for
each

3.3 Model recovery

We tested the ability of the model to identify the generating model by fitting all 120
simulated data sets with all four models. Using the BIC scores for each participant, we
then computed the ‘confusion matrix’ [56] as the fraction of times that data generated by
model X was best fit by model Y , p(fit = Y |sim = X) (Fig. S4A). In a perfect world this
matrix would be the identity matrix indicating that data generated by model X is always
best fit by model X . In practice, limitations in the experiment design and fitting procedure
often cause these matrices to be non-diagonal as is the case here. Nevertheless, for every
model, more than 50% of the data sets generated by model X are best fit by model X .

To further help interpret the model recovery data, we also computed the ‘inversion
matrix’ [56]. Unlike the confusion matrix, which approximates p(fit|sim), the inversion
matrix approximates p(sim|fit). This we compute from the confusion matrix using Bayes
rule

p(sim|fit) = p(fit|sim)p(sim)∑
sim p(fit|sim)p(sim)

(S44)

under the assumption that the prior on generating models p(sim) is uniform.
The inversion matrix more closely matches the inference process we face when inter-

preting the model fitting data in the paper. That is, we observe which model best fits each
subject and must infer the model that generated it. Again we see that model recovery is
good, but not perfect, such that (for example) 74% of the time that a model is best fit with
the Cue Competition model it was actually generated by the Cue Competition model.
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3.4 Parameter recovery

For the parameter recovery analysis we simulated and fit the data with the same model.
First, we fit data from the No Feedback model on just the No Feedback trials S5. Parameter
recovery is excellent int his case with no correlation between simulated and fit data falling
below 0.84.
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Next we performed the same analysis for the Cue Competition model, this time fitting
all trials, including both the No Feedback and Feedback conditions (Fig. S6). Again,
parameter recovery is good for this model.
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Critically, the model fitting process did not introduce new correlations into the data set.
In Fig. S7 we show this for the correlations between γA and γd and σd.
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Fig S7. The fitting procedure does not induce correlations between parameters either for
γd and γA (A) or γd and σd (B). When the simulation parameters (red) are uncorrelated, so
are the fit parameters (blue). Gray lines connect simulated and fit parameters.

Finally, for completeness we performed parameter recovery for the remaining three
models (No Feedback, Landmark Navigation, and Cue Combination model) using all
trials (i.e. from the No Feedback as well as the Feedback condition). Parameter recovery
was pretty good for all models Figures S8, S9, and S10.
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4 Parameter values for the Hybrid model

Fit parameter values for the Hybrid model are shown in Fig. S11. Like the model-free
measures of behavior, there was considerable variability in the parameter values across
participants. Thus, while the group average of the velocity gain was close to 1 (mean
γd = 1.01) individuals varied from systematically under-weighting velocity (γd < 1) to
systematically over-weighting it (γd > 1). All participants exhibited noise in their velocity
coding process, with σd = 1.38 on average. This latter result suggests that the variance of
the uncertainty in location from path integration grows rapidly, at around 1.38 times the
rotation angle. At this rate of growth, the noise in path integration will swamp the signal
in less than one turn.

Similarly suboptimalities were observed in the coding of the target. Like the velocity
gain, the group average of the target gain was close to 1 (mean γA = 1.04), there was
considerable variation between people from systematic under-weighting (γA < 1) to
systematic over-weighting of the target (γA > 1). In addition, as in the No Feedback
condition, all participants were biased towards over-estimating the target (mean βA = 13.0
degrees) and had considerable noise in the target coding process (mean σA = 7.5 degrees).

There were also considerable individual differences in participants’ inference parame-
ters: s0, sd, sf , and r. Most participants underestimated the feedback noise (mean sf = 8.68
versus the true value in the experiment of σf = 30o). Conversely, the group average of the
prior probability was more accurate (mean r = 0.69 which is remarkably close to the true
value of ρ = 0.7, although again there was considerable variability across the group.

The individual differences in s0, sd, and sf lead to considerable variability in the Kalman
gain across participants and (in some participants) across trials (Fig. 12). Some participants
show almost no variation across trials (left and right sides of Fig. 12), while others show
large variability across trials (middle participants in Fig. 12). This pattern can be explained
by recalling the equation for Kalman gain

Ktf =
s20 + s2dθtf

s2f + s20 + s2dθtf
(S45)

This equation implies that participants with both small and large noise in their path
integration process (i.e. sd ≈ 0 or sd � sf and s0) will have approximately constant
Kalman gain across trials. When the velocity noise is small (sd ≈ 0),

Ktf ≈ s20/(s
2
0 + s2f ) (S46)

which is a constant between 0 and 1 depending on the ratio of participants initial uncer-
tainty s0 to their estimate of feedback noise sf . This is the case for participants on the left
hand side of Fig. 12.

When the velocity noise is large (sd � sf and s0)

Ktf ≈ s2dθtf/s
2
dθtf = 1 (S47)

That is the Kalman gain is a constant with value equal to 1. This is the case for participants
on the right hand side of Fig. 12.
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Fig S10. Parameter recovery for Cue Combination model
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Fig S11. Best fit parameters for the Hybrid model

June 15, 2021 24/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.30.450548doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450548
http://creativecommons.org/licenses/by/4.0/


For participants whose velocity noise is intermediate in value, the uncertainty in their
estimate of heading at the time of feedback is close to their estimate of the feedback noise
giving them a Kalman gain between 0 and 1 that varies considerably depending on the
exact value of the true heading angle at feedback θtf .

4.1 Correlations between parameters

Finally we consider the correlations between fit parameter values (Fig. S12). Although
our relatively small sample size limits the power of this analysis, we find three significant
correlations and two near-significant correlations after Bonferroni correction for multiple
comparisons.
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Fig S12. Correlations between parameters in the Hybrid model. (A) Spearman correlation
coefficients for all nine parameters. * indicates p < 0.05 after Bonferroni correction for
multiple comparisons. (B) The correlation between the gain on velocity, γd, and the gain
on the target γA is near perfect. The red line corresponds to the linear least squares fit, the
black dashed line to the equation γA = 2γd − 1. (C) γd also correlates with the velocity
noise, σd, as does γA (not plotted).

The most striking of these correlations is the near-perfect correlation (r = 0.96) between
the target gain γA and velocity gain γd (Fig. S12B). As shown by the parameter recovery
analysis in Fig. S7, this correlation is not an artefact of the fitting procedure. Instead we
believe that this reflects a redundancy in the model whereby the same gain process that
contributes to people’s imperfect coding of the target also contributes to imperfect coding
of velocity. Intriguingly, the correlation in Fig. S12B is almost perfectly described by the
equation

γA = 2γd − 1 (S48)
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which is the dashed black line in Fig. S12B.
This relationship can cause displacement biases of target location in the direction of

motion, which is a phenomenon in perception called representational momentum [57–59]
. This displacement, characterized as a memory bias, is directly influenced by velocity
and has a linear relationship for small changes in velocity [60, 61]. Thus, we speculate that
this linear relationship between this deviation from perfect gain (i.e. gain = 1) in memory
and velocity is the derivative equivalent to representational momentum. However, exactly
why the slope of this relationship should be 2 is a mystery to us at this stage.

The other significant (and near significant) correlations also involve γd and γA with the
velocity noise σd and the participant’s estimate of feedback noise sf . Because γd and γA
are so tightly coupled, it is not surprising that their correlations with σd and sf are almost
identical and we focus only on the correlations with γd in Fig. S12.

For velocity noise, a positive correlation with γd (Fig. S12C) can be understood if the
noise in the velocity estimate occurs before the gain is applied. This is consistent with
modifying the equation for the noisy velocity to be

di = γd(δi + νi) (S49)

where the standard deviation of the noise is k, which relates to the standard deviation of
the noise in the original model as σd = γd × k.

Finally, while asserting the null comes with serious caveats with such a small sample
size, we note one correlation that was not significant. In particular, we note that sd and
σd are only weakly correlated. Perfect Bayesian inference would have these equal, as
participants use their estimate of their own velocity noise to optimally integrate feedback.
If our model is correct, then this suggests that participants may not have a good estimate
of their own path integration noise.
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5 Model fit for all subjects
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Fig S13. Comparison between data and model for all participants.
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6 Confidence Rating Correlations

At the end of each trial, participants rated their confidence by adjusting the angle ς in Fig.
1D. We found no correlation between any participant’s confidence rating and their angle
error (Fig. S14), which is consistent with previous work showing that people are relatively
bad at judging their own errors [62, 63]. Interestingly some participant’s confidence
rating does correlate with target angle Fig. S15. In other words, these participants feel
less and less confidant as they continue rotating. One possible explanation that these
participants not only estimating target location but rather they are calculating full posterior
distribution [64]. Indeed some of these participants show a significant correlation with the
posterior variance calculated from the Hybrid model Fig. S16. However, with the larger
individual differences, it is hard to make an exact conclusion.
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Fig S14. Subject’s confidence rating plotted against their angle error
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Fig S15. Subject’s confidence rating plotted against target location. Green: r >≥ 0.4
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Fig S16. Subject’s confidence rating plotted against the posterior variance Eq. 13 and S36
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