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Abstract: 

Evolutionary convergences are observed at all levels, from phenotype to DNA and protein 
sequences, and changes at these different levels tend to be highly correlated. Notably, convergent and 
parallel mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug 
resistance, and other adaptations to changing environments.    

We propose a two-step approach to detect mutations under convergent evolution in protein 
alignments. We first select mutations that emerge more often than expected under neutral evolution 
and then test whether their emergences correlate with the convergent phenotype under study. The 
first step can be used alone when no phenotype is available, as is often the case with microorganisms. 
In the first step, a phylogeny is inferred from the data and used to simulate the evolution of each 
alignment position. These simulations are used to estimate the expected number of mutations under 
neutral conditions, which is compared to what is observed in the data. Next, using a comparative 
phylogenetic approach, we measure whether the presence of mutations occurring more often than 
expected correlates with the convergent phenotype.   

Our method is implemented in a standalone workflow and a webserver, called ConDor. We 
apply ConDor to three datasets: sedges PEPC proteins, HIV reverse transcriptase and fish rhodopsin. 
The results show that the two components of ConDor complement each other, with an overall accuracy 
that compares favorably to other available tools, especially on large datasets. 

 
Key Words: molecular evolution, phylogenetics, selection, adaptation, convergence, C4 metabolism, 
HIV, resistance to drugs, rhodopsin.   
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Introduction 

Convergent evolution is often defined as the independent acquisition of similar traits in distinct 
lineages over the course of evolution (Arendt and Reznick 2008; Losos 2011; Stern 2013). The studied 
traits can be behavioral, morphological, molecular, etc. In each category, traits can be quantitative 
(size, length, weight…), binary (presence or absence of a given phenotype) or categorical (a trait is 
subdivided into several categories). The presence of convergence, especially at the phenotypic level, 
is often seen as evidence of adaptation in the sense that similar evolutionary paths were found in 
response to the same evolutionary constraints (Castoe et al. 2009; Losos 2011). Many studies focus on 
the molecular level, assuming that convergent phenotypes may result from the same genetic changes 
(Stern 2013; Rosenblum et al. 2014; Storz 2016). At the protein level, it is common to distinguish (Zhang 
and Kumar 1997) between parallel mutations (a change toward the same amino acid is observed from 
the same ancestral amino acid), convergent mutations (change toward the same amino acid, from 
different ancestral amino acids), and reversions (mutations that restore an amino acid previously lost 
during evolution). For the sake of simplicity, in what follows we will refer to these three types of 
mutations as "convergent mutations”, unless explicitly stated.  

Examples of evolutionary convergence at the molecular level have been demonstrated in 
higher eukaryotes, related to adaptation to certain environments (Muschick et al. 2012; Foll et al. 2014; 
Foote et al. 2015; Hill et al. 2019; Lu et al. 2020; Xu et al. 2020), diet (Zhang 2006; Zhen et al. 2012; 
Ujvari et al. 2015; Hu et al. 2017), changes in metabolism (Besnard et al. 2009; Parto and Lartillot 2018), 
morphological transformations (Larter et al. 2018) and acquisition of new abilities (Davies et al. 2012; 
Parker et al. 2013; Lee et al. 2018; Marcovitz et al. 2019; Chai et al. 2020). Similarly, when submitted 
to constraints such as harsh experimental conditions and drug treatments, microorganisms and viruses 
adapt and are likely to exhibit similar escapes. This has been demonstrated in HIV after exposure to 
antiviral drug treatments in several patients (Crandall et al. 1999) and within a single treated patient 
(Holmes et al. 1992). Similarly, Cuevas et al. (2002) found adaptive convergence in experimental 
populations of RNA viruses, and van Ditmarsch et al. (2013) in pathogenic bacteria. In natural 
conditions, evolutionary convergence was found in viruses having experienced host shifts (Longdon et 
al. 2018; Escalera-Zamudio et al. 2020; Martin et al. 2021) and changes in vector specificity (Tsetsarkin 
et al. 2007).  

Several methods have been developed to detect convergent evolution at the molecular level 
(Zhang and Kumar 1997; Zhang 2006; Tamuri et al. 2009; Parker et al. 2013; Thomas and Hahn 2015; 
Zou and Zhang 2015a; Parto and Lartillot 2017; Chabrol et al. 2018; Rey et al. 2018). They are all based 
on prior knowledge of a convergent phenotype and aim to identify the protein mutations underlying 
the phenotypic trait studied. However, they differ in the scale at which molecular convergence is 
sought and the exact definition of what a convergent mutation is. 

Some approaches aim to identify which coding genes harbor mutations supporting a 
convergent phenotype, while others study which amino-acid changes can explain convergent changes 
at the scale of a single protein. Methods of the first category are commonly applied to eukaryotic and 
prokaryotic genomes and perform genome-wide analyses to detect convergent genes by considering 
simultaneously all positions of the corresponding protein sequences; for example, the methods 
developed by Parker et al. (2013), Zou and Zhang (2015b), Thomas and Hahn (2015) and Chabrol et al. 
(2018) were applied to the search of genes responsible for echolocation in mammals. In the second 
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configuration, the coding genes responsible for the convergent phenotype have already been 
identified and the methods focus on the detection of convergent evolution at the position level; for 
example, Zhang and Kumar (1997) identified convergent and parallel mutations in stomach lysozyme 
sequences of foregut fermenters. Similarly, Zhang (2006) found parallel substitutions in colobine 
pancreatic ribonucleases, and Rey et al. (2018) found positions with convergent substitutions in the 
PEPC protein occurring jointly with the transition toward C4 metabolism in sedges. In fact, testing the 
significance of convergent changes at individual protein positions has many potential applications. In 
the case of complex eukaryotic and bacterial organisms, there are few examples of a single amino-acid 
change that could explain a convergent phenotype (Storz 2016). However, in the case of viruses with 
rapid evolution, and whose (small) genomes are strongly constrained, only a few amino-acid changes 
are generally possible at a given position (Pond et al. 2012) and position-wise convergent evolution is 
expected to be relatively frequent (Gutierrez et al. 2019). Determining molecular changes that deviate 
from what is expected by chance can thus be indicative of adaptive phenomena. This was the case for 
SARS-CoV-2, where one first identified mutations in the Spike protein, which were spreading within 
the viral population and appeared multiple times independently, before being demonstrated to be 
evolutionarily advantageous for the virus (van Dorp et al. 2020; Korber et al. 2020; Martin et al. 2021). 
Note, however, that mutations that were initially thought to be adaptive were eventually shown to be 
simply the result of founder events (Hodcroft et al. 2021), demonstrating the difficulty of detecting 
convergent mutations without access to the phenotype. 

Most importantly, different methods have different ways of selecting which mutations underly 
the studied convergent phenotype. In the most intuitive definition, one aims to detect mutations 
toward the same amino acid, which occurred in all clades with the convergent phenotype. This is the 
definition used first in (Zhang and Kumar 1997) and then in (Zhang 2006; Foote et al. 2015; Thomas 
and Hahn 2015; Zou and Zhang 2015b). An extension was proposed by Chabrol et al. (2018), where the 
convergent amino acid may only be found in a subset of the convergent species, as well as in some 
non-convergent species. Considering that a change toward the same amino acid may be too strict since 
several amino acids have similar physicochemical properties, Rey et al. (2018) relaxed this constraint 
in the PCOC program, by considering changes in amino-acid profiles (Le et al. 2008). Their work on 
amino-acid profiles follows previous works aimed at detecting positions under condition-dependent 
selection, but which did not focus solely on convergent evolution (Tamuri et al. 2009; Parto and Lartillot 
2017; Parto and Lartillot 2018). A radically different approach, proposed by Parker et al. (2013) and 
inspired from Castoe et al. (2009), relies on the fact that convergence can lead to errors in phylogenetic 
reconstruction by artificially bringing convergent species together. These authors proposed selecting 
positions that best support the phylogeny that groups species with the convergent phenotype 
together, rather than the species tree (but see the critiques of this method by Thomas and Hahn (2015) 
and Zou and Zhang (2015b)). 

One of the main challenges in detecting molecular convergence is to identify only the 
convergent mutations that are linked to the studied convergent phenotype. In their review of methods 
for detecting molecular convergence, Rey et al. (2019) referred to this type of mutation as foreground 
convergence (or foreground convergent mutations) in opposition to background convergence which is 
unrelated to the convergent phenotype. Indeed, at the molecular level, one can find patterns of 
convergent mutations linked to another convergent phenotype, or occurring because of mutational 
biases, protein conformation limitations, constraints at the molecular level or epistatic forces (Zhang 
and Kumar 1997; Rokas and Carroll 2008; Storz 2016; Stoltzfus and McCandlish 2017). It has been 
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shown that most (if not all) substitution models may fail at distinguishing between foreground 
convergent mutations and background ones (also called non-adaptative convergent mutations), 
especially in close taxa between highly exchangeable amino acids, and on fast-evolving sites (Goldstein 
et al. 2015; Zou and Zhang 2015a). In other words, finding multiple independent mutations resulting 
in the same (or a similar) amino acid should be tested carefully, even when the number of such 
mutations appears to be high. We shall see that our findings confirm this.  

Another difficulty is the definition of the convergent phenotype and the annotation of taxa 
that do or do not have this phenotype. For example, in the case of viruses, we usually do not know the 
exact phenotype, but use a proxy instead. In the case of drug resistance mutations (DRMs) that occur 
repeatedly in different patients treated with antiviral drugs, we use the treatment status as a proxy for 
the resistance status. Although we expect that most (but not all, e.g., due to poor adherence) 
sequences from patients who fail drug treatment will contain resistance mutations, we also expect 
that some drug resistance mutations will be found in untreated (naive) patients in the case of 
resistance transmission (Blassel et al. 2021). Similarly, environmental constraints are not strictly 
speaking phenotypes, but act as selective forces that can lead to phenotypic and molecular 
convergence. However, we do not expect all organisms living under the same environmental 
conditions to exhibit the same recurrent mutations. 

In some respects, the identification of convergent mutations has similarities with the detection 
of positions under positive selection (Goldman and Yang 1994). The idea is indeed to identify mutations 
that might be advantageous, as they are found more often than expected in a neutral (or purifying) 
model of evolution. In the positive selection framework, these mutations can be directed to a specific 
amino acid (directional), or correspond to any change that differs from the original amino acid 
(diversifying). This is the case, for example, with immune avoidance where mutations towards any new 
amino acid at antigenic sites are generally favorable and positively selected. Conversely, in the case of 
convergent evolution, we are interested in substitutions towards one or a few similar amino acids, in 
the branches leading to the convergent taxa. Thus, a large number of non-synonymous substitutions 
on convergent positions are expected, but the criterion of positive (or relaxed purifying) selection 
alone is not sufficient to assert convergence. The FADE software (Murrell et al. 2012) in the HyPhy suite 
(Pond et al. 2005) tests whether positions in a protein alignment are subject to directional selection 
(or mutational bias) within a specified set of "foreground" branches that typically correspond to 
convergent taxa. This tool thus has its roots in positive selection approaches, but is closely related to 
convergence detection. 

Here we propose a new method for detecting convergent evolution at the position (or site) 
scale in large amino-acid alignments, while relaxing the constraint that convergent mutations must be 
found only in organisms with the convergent phenotype and in all of them. Our method does not 
require specifying the branches where molecular convergence occurred (as with PCOC and FADE, for 
example), which is a complex step, especially with large data sets and when using a proxy for the 
phenotypic convergence. The taxa are simply annotated as convergent or non-convergent, and the 
mutations correlated with this status are then detected. We are interested in mutations leading to a 
target amino acid, regardless of the ancestral amino acids at this position. In other words, parallel, 
convergent mutations and reversions are considered indifferently, and we consider mutations 
resulting in different target amino acids as different events. With this definition our method is in line 
with methods aiming at detecting changes towards the same amino acid, as opposed to detecting 
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changes in profiles (Rey et al. 2018). Indeed, there are many examples of known convergent mutations, 
where the changes involve highly exchangeable amino acids that have very similar biochemical 
profiles. For example in HIV drug resistance, there are convergent mutations from Isoleucine to Valine 
and Tyrosine to Phenylalanine (the two most exchangeable amino acid pairs, cf. BLOSUM62) that 
confer resistance to certain drugs (Wensing et al. 2019). 

In the following sections, we describe this approach, which is implemented in a workflow called 
ConDor (for Convergence Detector), available as a web service (condor.pasteur.cloud) and as a 
standalone workflow. Its performance is evaluated using three datasets involving sedge PEPC proteins, 
HIV reverse transcriptase, and fish rhodopsin. The results are compared to those of PCOC and FADE, 
which are based on different assumptions. 

New Approaches 

Method overview 

Our method aims to identify amino-acid mutations that emerged multiple times in 
independent lineages, occurred more frequently than expected under a neutral (or null) substitution 
model, and are correlated with a known convergent phenotype. The method is subdivided into two 
independent components: (1) the “Emergence” component that detects mutations emerging more 
often than expected under neutral evolution, and (2) the “Correlation” component that identifies 
mutations that are positively correlated with the convergent phenotype. The combination of the two 
components accurately identifies amino-acid mutations resulting from convergent evolution 
associated with the convergent phenotype (foreground mutations), although it is also possible to 
execute and interpret the results of the two components independently.  

A representation of the ConDor workflow is shown in Figure 1. Inputs are constituted of: (i) a 
multiple protein sequence alignment (MSA); (ii) a phylogeny; (iii) an outgroup; (iv) the phenotype of 
each of the taxa; and (v) user supplied thresholds to select convergent mutations. The quality of the 
MSA and phylogeny is critical and should be carefully checked by users of the method, as, for example, 
running ConDor on poorly aligned and gappy sites of a MSA can lead to poor results and incorrect 
conclusions. The two first steps of the workflow (Fig. 1) are common to the Emergence and Correlation 
components. In step (1), we estimate the parameters of the null model from the MSA (parameters of 
the substitution model, ML-based branch lengths of the phylogeny, evolutionary rate per position, 
etc.). In step (2), we reconstruct the substitution history and count the number of emergence events 
of mutation (EEMs) observed for every position and amino acid of interest in the MSA (i.e., those 
present in sufficient number of sequences). In the Emergence component, for each position and amino 
acid of interest, the two main steps are: (3) simulation of new datasets under the null model and 
counting of simulated EEMs; (4) comparison of observed and simulated numbers of EEM to identify 
the mutations that occurred significantly more often than expected assuming the null model. The 
Correlation component is applied to all mutations with more than n EEMs (n is user-defined). The two 
mains steps are: (3’) computation of the log Bayes factor of the model assuming a dependence 
between the presence/absence of the phenotype and the given mutation, versus the model assuming 
their independence, using BayesTraits (Pagel 1994; Pagel and Meade 2006); (4’) determination, for 
mutations associated with the phenotype, whether the dependence is positive or negative. The final 
step (5) combines the results of steps (4) and (4’) and provides a list of potential convergent mutations. 
The results of steps (4) and (4’) are also provided to the user and can be interpreted independently. 
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Note that step (4) does not require knowledge of the phenotype (or a proxy for it, as with DRMs in 
HIV). For all selected mutations, Condor provides the evolutionary rate of the corresponding position, 
the nature of the mutation (convergent, parallel, revertant), the number of EEMs, the genetic barrier 
(minimum number of mutations at the DNA level), the BLOSUM score, etc. All these statistics are 
described in the user guide (https://condor.pasteur.cloud/help) and can be used to further analyze the 
results and select the most relevant mutations. 

 

Figure 1: Flowchart of the method. The method takes as input an amino-acid alignment as well as the 
corresponding phylogeny and phenotype metadata. The MSA and phylogeny are used for inference of the 
null model (branch lengths, substitution model and its parameters, evolutionary rate per site, etc.) and 
ancestral character reconstruction. In the emergence component, the tree and root sequence are used to 
simulate 10,000 alignments under the null model; the output is the list of mutations that emerged more 
often in the input alignment than in the simulations. In the correlation component, we select mutations 
that are positively correlated with the phenotype. The combination of the two components gives the list 
of mutations proposed as convergent. 

The null model and all its components are inferred from the input alignment and the phylogeny 
using ModelFinder (Kalyaanamoorthy et al. 2017) and IQ-TREE (Nguyen et al. 2015). The selected 
substitution model, along with amino-acid frequencies, rates-across-sites distribution parameters, 
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branch lengths, and evolutionary rate per site are assumed to represent the data without convergence. 
We make this assumption because using large alignments (>1000 sequences), we consider that 
mutations resulting from convergent evolution are rare enough to have a negligible influence on 
parameter inference. The phylogeny with optimized branch lengths is then rooted using the user 
supplied outgroup. This is necessary to infer the ancestral sequence at the root of the tree, run 
simulations starting from this sequence, and count simulated EEMs. For the analyses discussed here, 
we restricted ourselves to mutations present in at least 0.5% of the sequences (default value, this 
threshold is adjustable by the user). Ancestral character reconstruction (ACR) for positions with 
mutations of interest is performed using a maximum likelihood approach, implemented in PastML 
(Ishikawa et al. 2019). We use the “maximum a posteriori” (MAP) method in which the state with the 
highest marginal posterior is selected at each tree node. Once all ancestral amino acids are 
reconstructed and associated with all internal nodes in the phylogeny, we identify where independent 
amino-acid changes occurred in the tree and count them as explained in the subsection “Counting 
emergence events”. Using this count of the observed number of EEMs, we restrict the Emergence and 
Correlation analyses to mutations with more than n EEMs (i.e., found in more than n independent 
clades, n=2 in all analyses below). 

Estimating the expected number of emergences with simulations 

The emergence component consists of simulating the convergence-free evolution that is expected for 
each tested position of the alignment. In our experiments, we performed many (10,000) simulations 
per position, using a homemade script (available on GitHub). Our implementation does not use the 
exact root amino acid reconstructed by ACR as a starting point, but instead draws amino acids based 
on their marginal posterior probabilities to account for reconstruction uncertainty (e.g., two amino 
acids with posteriors of 0.55 and 0.45). After the simulations of sequence evolution along the tree, we 
count the number of EEMs (10 000 values per position and per AA studied) using the algorithm detailed 
below. For example, let us consider the mutation M41L from our HIV dataset, where at position 41, a 
Methionine (M) is substituted by a Leucine (L) in 211 sequences. The observed number of EEMs toward 
L is 47, which is smaller than 211 as in some subtrees all tips have L, corresponding to only 1 EEM. 
Then, 47 is compared to the distribution of the number of EEMs toward L (always starting from an M 
at the tree root since there is no ambiguity in ACR), among 10,000 simulations in the null model; this 
distribution ranges from 0 to 31 with an average of 12. From the observed number of EEMs and the 
distribution of simulated EEMs, we estimate a p-value. To avoid zero p-values when all simulations 
result in fewer EEMs than observed EEMs, we use a pseudo-count of 0.5, which means that the 
(uncorrected) p-value is equal to (0.5 + #simulated-EEMs ≥ observed-EEMs) / 10,001 (~5x10-5 in our 
M41L example). Since we test many positions and mutations, we use the Holm–Bonferroni method 
(Holm 1979) to correct for multiple comparisons, with a default rejection threshold of 10% (adjustable 
by the user). We consider that mutations passing threshold after p-value correction did not occur by 
chance. These mutations can be studied on their own in the absence of an identified phenotype. 
However, we know from previous studies that background convergent mutations in real data tend to 
be more frequent than expected under any available substitution model, due to model 
approximations, epistatic constraints, etc. (Rokas and Carroll 2008; Castoe et al. 2009; Goldstein et al. 
2015; Zou and Zhang 2015a). Moreover, some of these very frequent mutations may be truly adaptive 
and convergent, but for other phenotypic traits than the one studied. Thus, we expect that a significant 
fraction of these frequent mutations are false positives for the studied phenotype. The Correlation 
component complements the Emergence component to focus on mutations that correlate positively 
with the phenotype, that is, foreground convergent mutations.  
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Counting independent emergence events of mutation (EEMs) 

To count EEMs, we consider only the initial appearances of each mutation in the tree. 
However, the observed number of EEMs is inferred by ACR from the input sequences, while the 
expected number of EEMs and its distribution are estimated from many simulations evolving the 
probabilistic root sequence along the tree using the null model. In simulations, there may be changes 
in internal nodes that are not transmitted to any tree leaf. In this case, these changes cannot be 
inferred by ACR, and the expected number of changes artificially deviates from the ACR-based 
observed number of EEMs. This effect is even more pronounced on fast-evolving positions since more 
changes are expected. For this reason, we decided to only count as EEMs the changes transmitted to 
at least one leaf.  

 

Figure 2: Counting the emergence events of mutations (EEMs). In this tree, we count two (parallel) EEMs 
toward the yellow state, two reversions toward the blue state, and only one EEM toward the red state 
since the mutation at the bottom of the tree is not transmitted to any leaf and thus not counted. 

In the tree illustrated in Figure 2, there are 6 changes along the branches, which are 
represented either by a cross or a NO symbol. The NO symbol stands for a change that is not 
transmitted to any tree leaf (blue to red on the bottom part of the tree). This node would have been 
inferred either blue or yellow by ACR, but highly unlikely red, while this might occur in simulations. 
This is why we do not count these cases. The two yellow crosses mark changes that are transmitted to 
at least one leaf, and are both counted. The two blue crosses mark a reversion to the root state. Even 
though we do not make the difference between convergent, parallel, and reversion events, we keep 
the information for downstream interpretation. 

This way of counting EEMs has linear time complexity in the number of tips, just as the ACR 
and simulation algorithms, which explains the relatively fast computing times of the Emergence 
component (12 minutes on average per mutation on the rhodopsin dataset with 1,500 sequences, see 
below), though it is based on many (10,000) simulations. 

Correlation with the convergent phenotype 

The correlation component of ConDor is based on the ‘Discrete’ method from BayesTraits 
(Pagel 1994; Pagel and Meade 2006), which combines Markovian modeling of trait evolution and 
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Bayesian model comparison, to distinguish between the two hypotheses of independent (H0) versus 
dependent (H1) evolution of two traits along a phylogeny. Here, we apply BayesTraits to the analysis 
of two binary traits: presence/absence (1,0) of the mutation and convergent/not convergent (1,0) 
phenotype. For each of the hypotheses (corresponding to different evolutionary models), the marginal 
log-likelihood (approximated by the harmonic mean of the likelihoods after several millions of 
iterations) is calculated using a stepping stone sampler. BayesTraits then calculates the log Bayes factor 
(logBF) to decide if the (H1) dependence hypothesis is supported:  

  

( )
( )

1

0
2

MarginalLikelihood
logBF log

MarginalLikelihood

H

H

 
=  

   . 

As described in the BayesTraits manual (www.evolution.reading.ac.uk/Files/BayesTraits-V1.0-
Manual.pdf), a “logBF greater than 2 is considered as ‘positive’ evidence, greater than 5 is ‘strong’ and 
greater than 10 is ‘very strong’ evidence”. To account for different dataset sizes, we chose different 
thresholds for log BF (2 for the Sedges PEPC dataset, with 78 sequences, and 20 for the other datasets, 
with >1,000 sequences). Note, moreover, that when using the two components of ConDor, BayesTraits 
is only applied to mutations that are already selected by the Emergence component and corrected for 
multiple testing (regarding EEMs). Once we know that the evolution of the two traits is correlated, we 
need to determine the direction of the correlation: is the presence of the mutation favored (i.e. more 
frequent) in the convergent tips (positive correlation) or in the non-convergent tips (negative 
correlation)? For all the analyses presented here, we retained only positive correlations, corresponding 
to convergent molecular adaptations to the phenotype of interest (e.g. drug resistance in HIV). 
However, with the rhodopsin dataset, we were interested in adaptations to both environmental 
conditions (marine versus brackish/fresh water), and thus launched ConDor (and the other programs 
tested) twice, with each condition in turn considered "convergent". 

This method has been widely used in evolutionary biology and ecology to test correlations 
among behavioral, morphological, genetic and cultural characters, and for predicting functional gene 
linkages (Barker and Pagel 2005). To our knowledge, it has not been used to detect evolutionary 
convergence. One of the main advantages of this method is that it takes into account the phylogenetic 
correlation between taxa (as opposed to simple association tests, such as Fisher’s exact test that is 
commonly used for the detection of DRMs in HIV (Blassel et al. 2021)). Furthermore, it does not force 
the emergence of molecular convergence in all species with the convergent phenotype, as does the 
‘One Change’ (OC) model of PCOC, for example (Rey et al. 2018). This characteristic is especially 
important as in most analyses we do not know the exact phenotype, but use a proxy. However, it 
should be kept in mind that the Correlation component in isolation can identify mutation events that 
fall outside the scope of convergent evolution. For example, a perfect correlation between a mutation 
and phenotype can arise from a single mutation event which is then propagated to all the tips of the 
corresponding subtree (a so called “founder” event; Bhattacharya et al. 2007; Gutierrez et al. 2019).  

Results 

Overview: data, methods and comparison criteria 

We applied ConDor to three datasets with widely studied convergent mutations: (1) a sedge 
phosphoenolpyruvate carboxylase (PEPC) protein dataset with mutations associated with the 
acquisition of C4 metabolism; (2) an HIV dataset of reverse transcriptase with ~33% sequences with 
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drug resistance mutations (DRMs); and (3) a dataset of fish rhodopsin, a light-sensitive receptor protein 
that is highly conserved but known to vary at certain positions among species depending on their 
environment. 

For HIV and rhodopsin data sets, we reconstructed the phylogeny from the sequences 
(nucleotide data and protein data respectively), using ModelFinder (Kalyaanamoorthy et al. 2017) and 
IQ-TREE (Nguyen et al. 2015) with standard options (see Material and Methods). For sedge PEPC data 
we used the provided phylogeny. Each phylogeny (with branch lengths reoptimized with amino-acid 
sequences for HIV and sedge PEPC) was used as input of ConDor, PCOC (Rey et al. 2018) and FADE 
(Murrell et al. 2012). For all tested methods, we evaluated the same mutations and positions, 
corresponding to the mutations present in at least 0.5% of the sequences and with more than 2 EEMs.  

Given a rooted phylogeny, an alignment of amino acid sequences, and a list of convergent 
clades, PCOC performs a detection analysis for its three models (Profile Change, One Change, and both) 
for which we can set independent significance thresholds. Instead of detecting a change toward the 
same amino acid, the Profile Change (PC) component aims at detecting positions for which the general 
use in amino acid preference has changed in the convergent clades. This preference is modeled by a 
vector of amino-acid frequencies or ‘profile’ and, at a convergent position, the profile used in all 
convergent clades must be different from the ancestral profile. Conversely, for a non-convergent 
position, the same profile is used all along the tree. In addition, the One Change (OC) model forces that 
the switch of profile occurs along with at least one substitution in the branches rooting the convergent 
clades. Positions that verify the two sub-models are retained as convergent by PCOC, using a specific 
approach to combine the p-values from both sub-models. For the profiles, we used the C10 model that 
combines 10 profiles to represent the diversity of biochemical and mutational properties among amino 
acids (Le et al. 2008; default option in PCOC). Before running PCOC, users have to annotate the clades 
for their convergent status, using the list of species having the convergent phenotype. According to 
(Rey et al. 2018), a clade is said to be convergent if all its tips possess the convergent phenotype, and 
the branches yielding convergence (where OC is expected) are those rooting the maximal convergent 
clades. PCOC aims to detect positions with molecular convergence, and does not return a list of 
mutations, but a list of positions. We considered in our experiments that a mutation was detected by 
PCOC, when (1) it was present at a position where at least one of the sub-models (PC and/or OC) was 
verified (threshold above 0.8), and (2) the mutation in question was more frequent in species with the 
convergent phenotype than in the non-convergent ones. 

FADE is one of the methods to detect selection available in the HyPhy package (Pond et al. 
2005). FADE replaces previous approaches to test for episodic directional selection in protein 
alignments, which showed high detection power with DRMs in HIV (Murrell et al. 2012). To run FADE, 
the users first have to specify the branches that are expected to have undergone directional selection, 
called “foreground” branches. These typically correspond to all branches in convergent clades (and 
non-solely to the clade rooting branches, as with the OC component of PCOC; see Material and 
Methods for details). FADE tests for each position in the alignment if there is a “substitution bias 
toward a particular amino acid in the foreground branches, compared to the background branches”. 
The method relies on a Bayesian framework and a Bayes Factor >100 provides strong evidence that 
the site is evolving under directional selection.  

ConDor aims at detecting mutations emerging more often than expected under a null model 
and which are correlated with the convergent phenotype (or its proxy). In our experiments, the null 
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model corresponded to the best substitution model according to BIC, as inferred by ModelFinder 
(Kalyaanamoorthy et al. 2017). However, we also tested alternative models to check the robustness of 
the method to model violation (inevitable with real data). Both ConDor components use selection 
thresholds, which were fixed to corrected p-value <10% and log Bayes factor >20 for Emergence and 
Correlation respectively, unless otherwise specified. A mutation that verified both conditions was 
retained as a sign of foreground convergence.  

We compared the three methods (PCOC, FADE and ConDor) using common statistics such as 
the number of true positives (TP: number of detected convergent mutations), true negatives (TN: 
number of non-detected non-convergent mutations), false positives (FP: number of detected non-
convergent mutations) and false negatives (FN: number of non-detected convergent mutations). We 
also computed the recall (TP/(TP+FN)), precision (TP/(TP+FP)) and F1 score for each method. The F1 
score is the harmonic mean of recall and precision:  

2×TP
F1 score

2×TP + FP + FN
=

. 

The F1 score provides a balanced view between recall and precision, which are generally in tension 
(improving precision typically reduces recall and vice versa). The F1 score is robust to class imbalance, 
as is usually the case with convergent mutations that are much less frequent that non-convergent 
mutations.  

Sedges PEPC protein dataset 

We selected this dataset on C4 metabolism because it was the one used as a reference to 
evaluate PCOC in (Rey et al. 2018). This dataset comprises 78 sequences and allows comparison of 
convergence detection methods with a small dataset. C4 metabolism is a recognized case of 
convergence in plants and arose multiple times independently from the ancestral C3 metabolism. It is 
thought to be an adaptation to arid and warm environments (Ehleringer et al. 1997). Among the many 
proteins involved in the C4 photosynthetic pathway, phosphoenolpyruvate carboxylase (PEPC) has 
been studied to find a molecular basis for phenotypic convergence. PEPC is shared by both C3 and C4 
plants and is encoded by a multigene family. The standard, well-supported hypothesis is that the pepc 
gene responsible for C4 metabolism has derived from an ancestral pepc gene responsible for C3 
metabolism.  

In our analyses, we focused on sedges, a plant family with multiple independent emergence 
events of C4 metabolism. We based our analysis on the dataset used in (Besnard et al. 2009) and later 
in (Rey et al. 2018). This dataset consists of an alignment of 78 sequences and 458 positions. We 
annotated the phenotype of the sequences according to two methods. First, based on the global 
phenotype of the plant (C3 or C4 metabolism) according to (Bruhl and Wilson 2007). With this 
annotation, multiple copies of PEPC in the same plant have the same annotation. Seven sequences 
were annotated to be intermediate between C3 and C4 and we removed this clade. This resulted in a 
dataset composed of 71 protein sequences, 22 being annotated as C4. Second, we kept the genotype-
based annotation used by Besnard et al. (2009). This annotation is grounded in the fact that, in the 
PEPC amino-acid sequence, the A780S mutation (i.e., a change from A to S on reference position 780) 
has been experimentally demonstrated to be a major determinant of C4-specific characteristics. 
(Bläsing et al. 2000). They then predicted the metabolism associated with the sedges PEPC sequences 
according to the presence or absence of the A780S mutation. Compared to the first annotation, this 
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resulted in a change of annotation for 4 sequences, from C4 to C3 metabolism. Moreover, 5 of the 
proteins from C3-C4 intermediate sedges were annotated as C4 and 2 as C3. This dataset, using the 
genotype-base annotation by Besnard et al. (2009), thus contains 78 sequences, 23 annotated as C4. 

Mutations at positions 780 and 665 were confirmed experimentally to have an impact on the 
catalytic activity and folding of PEPC (Svensson et al. 2003; Christin et al. 2007). Including these two 
positions, Besnard et al. (2009) found 16 positions under positive selection that carry parallel amino-
acid mutations in genes associated with C4 metabolism. Although most of these positions have not 
been fully confirmed experimentally, Rey et al. (2018) used these potentially convergent positions to 
evaluate the application of PCOC (and other approaches) to this dataset. We used the same reference 
positions in our analyses and comparisons and considered these positions to be true positives. We 
tested for convergence all mutations present in at least 3 sequences and with more than 2 EEMs for 
both phenotype- and genotype-based sequence annotations. Due to the difference in size of both 
datasets, we tested a different number of mutations. With the “phenotypic” annotation, we tested 59 
mutations spread over 51 positions (with 11 positions likely harboring convergent mutations) and with 
the “genotypic” annotation, 66 mutations spread over 56 positions (with 12 positions likely harboring 
convergent mutations). 

The results of the method comparisons for the two analyses are presented in Table 1. We first 
describe the results of the genotypic annotation as it was the one used in previous analyses (Besnard 
et al. 2009; Rey et al. 2018). 

Using PCOC on the genotypic dataset with a posterior probability threshold >0.8 (as used in 
(Rey et al. 2018)), 10 positions are detected among which 7 are true positives (TP). We thus find a large 
intersection between Besnard et al. and PCOC results, as previously described in (Rey et al. 2018). 
PCOC results are mostly driven by the OC component, which detects 14 positions including 8 TPs. The 
PC component, on the other hand, leads to lower accuracy and finds only 1 TP and 4 false positives 
(FP). With this dataset, PCOC results are derived primarily from the OC component that “assumes that 
convergent positions must have undergone a substitution on the branches where the adaptation took 
place” (Rey et al. 2019). With small datasets like this one, one can reasonably use PCOC recommended 
method, which infers “the branches where the adaptation took place” as the ones rooting the 
convergent clades, where all tips have the convergent phenotype. This works very well here (see Fig. 
4 in Rey et al. 2018), hence the performance of PCOC. However, it is generally difficult (if not 
impossible) to define the position of these branches in larger and more complex phylogenies, due to 
phylogenetic uncertainty, reconstruction errors, and the use of a proxy for the phenotype. In this 
regard, with the phenotypic annotation PCOC and its subcomponents are no longer able to recover 
any TP. This shows that by annotating the sequences based on the genotype (presence or absence of 
the A780S mutation), there is a perfect match between the convergent clades and the mutations, 
which is advantageous for PCOC. However, on this data set, PCOC fails with the phenotypic annotation, 
which is mutation agnostic and probably more realistic for many convergent evolution studies. 

Using the genotypic annotation, FADE detects 15 positions, including 11 TP. Even though this 
tool and model were designed in a different context (typically the detection of DRMs in viruses; Murrell 
et al. 2012), it performs very well and outperforms PCOC with a F1 score of 0.81 (against 0.64 for 
PCOC). With the phenotypic annotation, FADE accuracy decreases but still leads to the best results (F1 
= 0.67) demonstrating the robustness of this method. This decrease is explained by the fact that there 
are fewer TPs recovered at the same time as more FPs. This behavior is expected as with this 
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annotation, convergent mutations are no longer exclusively in convergent clades. Like PCOC, FADE 
requires the user to define the foreground branches where the adaptation occurred, which leads to 
similar difficulties. However, the hypotheses behind directional selection are less strict than with OC, 
as one simply assumes a mutational bias towards a certain amino acid in all branches of the convergent 
clades. 

Genotypic annotation 
based on A780S 
56 positions tested 

TP FP FN TN Recall  Precision F1 score 

PC 1 4 11 40 0.08 0.20 0.12 
OC 8 6 4 38 0.67 0.57 0.62 
PCOC 7 3 5 41 0.58 0.70 0.64 
FADE 11 4 1 40 0.92 0.73 0.81 
Emergence 7 14 5 30 0.58 0.33 0.42 
Correlation 7 6 5 38 0.58 0.54 0.56 
ConDor 4 3 8 41 0.33 0.57 0.42 
Phenotypic annotation  
51 positions tested 

       

PC 0 3 11 37 0 0 0 
OC 0 1 11 39 0 0 0 
PCOC 0 0 0 0 0 0 0 
FADE 9 7 2 33 0.82 0.56 0.67 
Emergence 6 17 5 23 0.55 0.26 0.35 
Correlation 5 7 6 33 0.45 0.42 0.43 
ConDor 4 3 7 37 0.36 0.57 0.44 

Table 1: Method comparison on sedge PEPC dataset. We display for PCOC, FADE, ConDor and their sub-
components, several performance indicators on the detection of convergent positions either with 
genotypic annotation according to (Besnard et al. 2009) or phenotypic annotation. TP: true positives. FN: 
false negatives. FP: false positives. TN: true negatives. Recall (TP/(TP+FN)): proportion of TP among all 
positions retained by Besnard et al. (2009; 12 positions tested). Precision (TP/(TP+FP)): proportion of TP 
among all positions retained by the given method. F1 score: harmonic mean between recall and precision. 
PC: positions detected with a profile change in convergent clades, with posterior probability >0.8 (as used 
in (Rey et al. 2018)). OC: positions with one mutation on the branches leading to the convergent clades, 
with posterior probability >0.8. PCOC: combination of PC and OC components with posterior probability 
>0.8. FADE: positions with mutations showing evolution under directional selection in convergent clades, 
with Bayes Factor >100. Emergence: positions with mutations showing a number of EEMs statistically 
higher than expected with p-value <0.1 (after Holm-Bonferroni correction for multiple tests). Correlation: 
positions with mutations positively correlated with C4 annotation, with log Bayes factor >2. ConDor: 
combination of Emergence and Correlation. In bold: best result for each indicator.   
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Figure 3: ConDor, PCOC and FADE convergent-mutation detections on sedges PEPC protein dataset. We 
display the mutations predicted to be associated to a C3-to-C4 change of metabolism by (Besnard et al. 
2009). The two experimentally demonstrated mutations are in black, the other convergent mutations 
retained by Besnard et al. are in grey, and all other likely non-convergent mutations detected by PCOC, 
FADE or ConDor are in white. Mutations proposed by PCOC and FADE are indicated with an asterisk and a 
circle on the top, respectively. Mutations proposed by ConDor are present in the ‘ConDor detection zone’, 
corresponding to the upper-right white rectangle.  Mutations are sorted on the x-axis by the p-value 
associated with the number of emergences (EEMs). The dashed lines represent various thresholds of Holm-
Bonferroni adjusted p-values. We report on the y-axis the log Bayes Factor as obtained with BayesTraits. 
The plain horizontal line represents the threshold for ‘positive evidence’ of dependence between mutations 
and genotypic annotation (logBF >2).  

On this dataset, ConDor selected as null model the JTT substitution matrix associated with 
‘freerate’ rates across-sites model (Susko et al. 2003; Soubrier et al. 2012) with 3 categories (R3). The 
Emergence component of ConDor detects 21 positions with higher-than-expected number of EEMs 
(Holm-Bonferroni adjusted p-value <10%), 7 of which are TP. Emergence does not use any phenotype 
information and likely detects convergent mutations linked to factors other than C4 metabolism, hence 
the high number of detected positions that do not belong to Besnard et al. list. Based on the genotypic 
annotation, the Correlation component refines these results, as expected since it accounts for the 
genotype and focuses on foreground convergent mutations: 7 of these 21 positions carry mutations 
that are positively correlated with C4 metabolism (BF>2; A780S, I588L, P540T, E572Q, S620C, H665N, 
F611L), among which 4 are TP. These correspond to the mutations present in the ‘ConDor detection 
zone’ in Figure 3. We notice that Correlation alone works fairly well (Table 1), without using any 
information on amino-acid exchangeability and biochemistry, as constitutive of the Emergence 
component. The combination of the two components in ConDor, using the genotypic annotation, 
increases the precision of the two components individually without however reaching the one of FADE 
and PCOC, resulting in mild F1 (0.42). However, F1 score overall decreases compared to the correlation 
component alone (0.56 for correlation alone). The 4 TPs found by ConDor are also found by the two 
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other methods and especially the 2 positions that were demonstrated experimentally (780 and 665). 
All methods detect other convergent candidates, most of which being different between methods (see 
Fig. 3). This confirms that the experimental evidence on this dataset is still partial. Other convergent 
mutations could probably be found, and some of the 14 positions proposed by Besnard et al. might 
not actually be involved in C4 metabolism. With the phenotypic annotation, the F1 scores of the 
Emergence and Correlation components alone decrease as for the other methods (the Emergence 
component is not affected by the annotation, but less positions are tested than with the genotypic 
annotation). In contrast, ConDor as a whole is little affected by this annotation change (and the 
reduction of tests). It has the best precision among all methods (0.57) and maintains a mild F1 value 
(0.44). These results indicate that ConDor is robust to the detection of convergent mutations, even 
when a convergent mutation is not present in all the convergent clades or when a convergent clade 
also contains non-convergent mutations. Further analyses will confirm this finding. 

HIV reverse transcriptase dataset 

Drug resistance mutations (DRMs) occur independently in patients undergoing drug therapy 
and are therefore a prime example of molecular convergence. In the case of HIV, they are well 
characterized and extensively studied, as their occurrence can lead to treatment failure and 
transmission of resistant viral strains. In particular, mutations must meet certain criteria to be 
identified as DRMs, including experimental validation (Wensing et al. 2019). DRMs are primarily found 
in proteins targeted by antiretroviral therapies: protease, reverse transcriptase, and integrase. The list 
of known DRMs affecting these proteins is publicly available at https://hivdb.stanford.edu/ and is 
updated regularly. As in the previous sedge PEPC dataset, DRMs are written in the form “XposY”, with 
X the ancestral (or wild-type) amino acid, “pos” the position of the substitution according to the HXB2 
reference sequence, and Y the mutated amino acid, that is, the amino acid conferring resistance. We 
will use this notation for all our analyses. 

In our case, we are interested in mutations on the reverse transcriptase, where DRMs are 
numerous, diverse, and have been experimentally confirmed. Furthermore, not all mutations 
occurring at a resistance-associated position make the virus resistant, but only a small subset, and 
frequently only one. This case is therefore particularly suitable for our method, which aims to detect 
convergence at the level of mutations and not only at the level of positions. Here we analyze an HIV-1 
group M reverse transcriptase dataset sampled from 10 countries in West and Central Africa, and 
associated with metadata such as patient treatment status. We use treatment status as a proxy for 
phenotype, assuming that most patients with a detectable viral load (virus circulating in the host 
organism) are either treated patients whose treatment has failed due to the development of DRMs, or 
untreated (naive) patients without DRMs. However, some treated patients may have unsuppressed 
viral loads for other reasons (e.g., poor adherence to treatment), and some naive patients may have 
been infected with resistant strains harboring DRMs. This dataset was first studied in (Villabona-Arenas 
et al. 2016) and then in (Blassel et al. 2021), from which we retrieved the data. After removal of 
recombinant sequences (those for which the recombination occurs within the reverse transcriptase), 
it contains 1,858 sequences of 747 nucleotide positions that have been translated into 249 amino-acid 
positions. Ten subtypes and CRFs (circulating recombinant forms) are represented in this data, the 
major one being subtype C (37%). This dataset has several advantages for benchmarking convergence 
detection methods, compared to a UK dataset, also studied in (Blassel et al. 2021). First, a large 
percentage of the sequences are from treated patients (31%). Second, the DRMs are relatively 
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frequent: ~26% of the sequences harbor at least 1 DRM that is present in at least 10 sequences. Finally, 
there is relatively little transmitted resistance (12% of naïve sequences have one or more DRMs, 
Villabona-Arenas et al. 2016). For example, the mutation M184V, which is the most frequent, is 
observed in 378 and 5 sequences with treated and naive status, respectively, corresponding to relative 
frequencies of 66% and 0.4%. It is expected that such a DRM will be found by any reasonable 
convergence detection method. In contrast, rare DRMs are much more difficult to detect. For example, 
DRM Y188L is found in only 21 sequences (all from treated patients), which corresponds to 3.7% of 
treated sequences and 1% of all sequences. Note that in these two examples, we are far from observing 
a perfect correlation between the presence of the DRM and (the proxy used for) the phenotype (i.e., 
treatment status). 

We tested 240 mutations present in at least 10 sequences and showing more than 2 EEMS, 
corresponding to 95 positions. Among these 240 mutations, 29 are DRMs distributed on 24 positions. 
We focused on these 29 DRMs to assess and compare the performance of our approach. 

The PC component of PCOC works with a mild accuracy (F1 = 0.41). PC finds 12 positions 
associated with a shift in profile, 8 of which harbor DRMs. These 12 positions correspond to 20 
mutations positively correlated with convergent phenotype, among which 10 are DRMs (TPs). In 
addition, no position is significant for the OC component (nor PCOC). This result is somewhat expected 
as DRMs are only found in a subset of all sequences showing the convergent phenotype. Moreover, 
several DRMs are not associated with a shift in profile and occur between closely related amino acids 
such as V and I or K and R (Fig. 4). 

HIV dataset – 29 DRMs 
240 mutations tested TP FP FN TN Recall Precision F1 score 

PC 10 10 19 201 0.35 0.50 0.41 
FADE HIVb >100 22 66 7 145 0.76 0.25 0.38 
FADE JTT >100 24 69 5 142 0.83 0.26 0.39 
FADE HIVb INFINITY 13 6 16 205 0.45 0.68 0.54 
Emergence HIVb 20 67 9 144 0.69 0.23 0.34 
Emergence JTT 21 78 8 133 0.72 0.21 0.33 
Correlation HIVb 16 3 13 208 0.55 0.84 0.67 
Correlation JTT 16 2 13 209 0.55 0.89 0.68 
ConDor HIVb 15 2.0 14 209 0.52 0.88 0.65 
ConDor JTT  16 1 13 210 0.55 0.94 0.7 

Table 2: Method comparison on HIV reverse transcriptase dataset. Several performance indicators of the 
detection of convergent mutations are displayed for PC, FADE, ConDor, and ConDor sub-components. We display 
the results using the best substitution matrix (HIVb) and, when possible, with JTT that figures out a form of model 
misspecification. TP: DRMs found by the given method. FN: DRMs not found by the given method. FP: mutations 
found by the given method, which are not DRM. TN: non-DRM mutation, not found by the given method. Recall: 
proportion of TP among all DRMs (29 DRMs tested). Precision: proportion of TP among all mutations found by 
the given method. F1 score: harmonic mean of recall and precision. PC (profile change): mutations detected on 
positions with a profile change in convergent clades with a posterior probability >0.8  (Rey et al. 2018). FADE 
(INFINITY): mutations showing evolution under directional selection, with a Bayes Factor >100 (or INFINITY, i.e., 
>1016). Emergence: mutations showing a number of EEMs statistically higher than expected at a p-value <0.1 
after Holm-Bonferroni correction for multiple testing. Correlation: mutations positively correlated with the 
treatment status, with a log Bayes factor >20. ConDor: combination of Emergence and Correlation. In bold: best 
result for each indicator, when using the best substitution matrix (HIVb).  
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 Figure 4: DRMs detection and convergent candidates on HIV data. We display all DRMs (black) and the non-
DRM mutation (white) obtained using ConDor and FADE INFINITY on the HIV-1 group M reverse transcriptase 
dataset. If these mutations were found on positions associated with a shift in profile using PC, the bar is 
surmounted with an asterisk. If they were found associated with an INFINITY BF using FADE, the bar is surmounted 
with a circle. Mutations found by ConDor are present in the ‘ConDor detection zone’, corresponding to the upper-
right white rectangle. Mutations are sorted by their p-value (Emergence component) on the x-axis. The dashed 
lines represent various thresholds of adjusted p-values using a Holm-Bonferroni correction. We report on the y-
axis the log Bayes Factor as obtained with BayesTraits. The plain horizontal line represents the threshold for 
strong evidence of dependence between a mutation and the treatment status (log Bayes factor >20). Mutations 
that display a bar below the x-axis were found to be independent or negatively correlated with treatment status. 
FP PC in the upper-left indicates the number of false positives found with PC.  

FADE with a default Bayes Factor threshold of 100 and with the HIVb substitution matrix has 
excellent recall but also detects many non-DRM mutations (66, Table 2), leading to a mild F1-score 
(0.38). Focusing on the detections with the highest BF (noted INFINITY in FADE’s outputs), FADE has a 
significantly higher F1 score (0.54). Overall, FADE’s performance on this dataset is good, which is 
consistent since the EDEPS and MEDS models (now replaced by FADE) were designed for drug 
resistance detection in HIV (Murrell et al. 2012). Running FADE with the JTT matrix (instead of HIVb), 
leads to similar recall, precision and F1 score, showing that FADE is robust to model misspecification. 

The null substitution model inferred for this dataset using ModelFinder (Kalyaanamoorthy et 
al. 2017) is HIVb (Nickle et al. 2007), with ‘freerates’ (Soubrier et al. 2012) rates-across-site model and 
4 rate categories. Using the Emergence component of ConDor, we detect 87 mutations with more 
EEMs than expected, after applying a Holm-Bonferroni correction for multiple testing (adjusted p-value 
<10%). Of these detections, 20 are DRMs, which represents a recall of 69% and is higher than expected 
by chance (Fisher’s exact test p-value = 2e-4). However, 67 mutations are non-DRMs events (column 
FP Table 2) and we do not know whether these are false positives or possible convergent candidates 
associated with phenotypes different from drug resistance (background mutations). The mutation-
phenotype correlation, at a log Bayes factor greater than 20, detects 19 mutations including 16 DRMs 
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(TPs). With this data, the Correlation component of ConDor is therefore sufficient, with similar results 
(slightly more sensitive, but slightly less precise) to those obtained using both components (F1 score = 
0.67 vs 0.65 with ConDor; Table 2). As expected, the correlation between DRM and treatment status 
is strong, and treatment status is a good proxy for the resistance phenotype. We shall see in the 
following section that this configuration does not occur on the rhodopsin dataset, where both 
components are needed. With both ConDor components, 15 DRMs are detected as well as 2 mutations 
(T48S and L228R) that could be true convergent mutations. In particular, L228R (also detected by PC 
and FADE, Fig. 4) has previously been described  as an accessory mutation occurring in response to 
certain HIV treatments (Rhee 2003; Blassel et al. 2021). In the case of model misspecification 
(illustrated by the JTT row in Table 2), the number of FP increases slightly, and lowers our precision 
(from 0.23 to 0.21). However, the Correlation component smooths this effect, showing that our 
method as a whole is robust to model misspecification. On this dataset, the Emergence component 
and FADE with BF >100 have similar performance in terms of accuracy and F1 score, even though the 
Emergence component does not have phenotype information. With both components, ConDor detects 
more DRMs and less non-DRMs (F1 score = 0.65) than FADE with INFINITY threshold (F1 score = 0.54). 
Both offer better accuracy than PC (F1 score = 0.41). 

Regarding the ConDor false negatives (FN, undetected DRMs), we see (Fig. 4) that 5 of them 
are not detected because they do not pass the threshold limit of the log Bayes factor even though they 
have a significant p-value in terms of EEMs (K219E, M230L, V90I, E138A and P225H). However, 3 of 
them have a significant log Bayes factor (>10, K219E, V90I and P225H). Moreover, Sluis-Cremer et al. 
(2014) showed that FN E138A (with negative log BF) is a polymorphic mutation found naturally in naive 
patients and particularly in subtype C. This subtype happens to be the main subtype sampled in this 
dataset and mainly from naive patients (Villabona-Arenas et al. 2016). The false negative E138A is 
therefore prevalent in our dataset with no significant difference between treated and naïve patients, 
which explains our findings. Lastly, the false negative M230L is present in a small number of sequences 
(n=14) and the correlation with the phenotype is difficult to establish with such a small number. 
However, this DRM is significant for the Emergence component. There are 9 additional false negatives 
that were not detected by the Emergence component, 8 of which were also not detected by the 
Correlation component. Most of these mutations have a small number of EEMs and, as expected, both 
ConDor components here lack detection power.  

 The Emergence component of ConDor is mostly driven by the number of EEMs and the 
exchangeability between amino acids. A mutation with a high number of observed EEMs, and 
corresponding to amino acids with low exchangeability, will rarely emerge in the simulations and will 
be detected by the Emergence component. Conversely, mutations between highly exchangeable 
amino acids, such as V and I, will often occur in simulations, which explains why DRM V108I is only 
detected by the Correlation component. This dataset contains several examples of DRMs involving 
highly exchangeable amino acids (some of which are TP detected by ConDor: K70R, M41L and, almost, 
V90I) demonstrating that convergent mutations with effects on phenotype can occur even between 
amino acids sharing highly similar biochemical properties. In this case, the PC component of PCOC may 
not be appropriate because it is designed to detect changes in amino acid profiles. 

In this dataset, there is a strong correlation between most of the DRMs and the phenotype 
(treated/naive), hence the success of Correlation that has the best F1 score among all tested methods. 
In fact, with such HIV data, this genotype/phenotype correlation makes it possible to identify DRMs 
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using simple association tests, with additional controls to account for the phylogenetic correlation 
between the sequences (Villabona-Arenas et al. 2016). We shall see that this is not the case for the 
Rhodopsin dataset where the proxy for the phenotype correlates less well with convergent mutations. 
In this case, both ConDor components are needed.  

Rhodopsin data 

Rhodopsin is a photosensitive protein pigment responsible for the eye's sensitivity to light. It 
is found in many vertebrates and has been shown to be under positive (or relaxed purifying) selection 
among species that evolve in different environments (Spady et al. 2005; Li and He 2009). Depending 
on the habitat and the amount of available light, different amino acids are observed at the same 
position, resulting in variations in structure of the rhodopsin and different maximum absorption 
wavelength (λmaxs). Mutagenesis experiments of engineered pigments revealed that the difference 
of λmaxs between most rhodopsins could be explained by 9 amino-acid mutations (Yokoyama 2008). 
In particular D83N, E122Q, F261Y and A292S (using similar substitution encoding as with HIV and PEPC) 
occurred several times independently and resulted into functional changes.  

The dataset we used comes from a study in which the authors characterized substitution F261Y 
as convergent in fish rhodopsin, as a possible result of a transition from marine to brackish or fresh 
water environments (Hill et al. 2019). This dataset contains an alignment of 2,047 sequences with 308 
amino-acid positions. The sequences have been classified by the authors into two groups: species 
found only in marine water and species that can live (exclusively or not) in brackish or fresh water. 
Some of the species associated with the habitat brackish/fresh water can therefore also be found in 
marine water. The proxy for the λmax is thus given by the environmental condition, depending on 
whether the fish species are found exclusively in marine water (43%) or not (57%). This approximation 
of the phenotype is rather imprecise, and we expect the correlation component to work less well on 
this dataset than for the sedge PEPC and HIV datasets. The reconstructed tree is well supported with 
75% of the ultrafast bootstrap supports (Hoang et al. 2018) above 70%. We tested 358 substitutions, 
the ones present in at least 11 sequences and with more than 2 EEMs. In addition to D83N, E122Q, 
F261Y and A292S, the E122I and Y102F mutations have emerged several times in this dataset (Hill et 
al. 2019), and have been shown experimentally to affect absorption wavelength (Yokoyama 2008). We 
considered these mutations as well as their reversions as our true positives and explored their 
emergence for both habitats (marine and brackish/fresh water). Indeed, in the case of successive 
changes in the environment, we may find the reversion to the ancestral amino acid as convergent, 
when it emerged several times independently (i.e., N83D, Q122E, Y261F and S292A). All of this allowed 
us to study 10 mutations as truly convergent (F102Y and I122E did not appear 3 times in the data set). 
Because we were interested in adaptations to both the marine environment and brackish/fresh water, 
all programs were launched twice with each of the two conditions as the target. 

We applied PC (profile change) and OC (one change) components of PCOC on this dataset for 
both environmental annotations. In total, 12 positions (corresponding to 27 mutations) were found to 
be associated with PC, 1 of which present mutations involved in a change of absorption wavelength of 
rhodopsin (E122I, E122Q and its reversion Q122E). This resulted in a low F1 score of 0.16 (Tab. 3). 
Moreover, as for the HIV dataset, no position was significant for OC and by extension for PCOC.  

FADE with BF >100 showed a large number of detections, with 74 mutations under directional 
selection when the foreground branches lead to the taxa in brackish/fresh water and 55 mutations 
with marine water. This is hardly surprising given that the environment used as a proxy for the 
phenotype is very vague. A large proportion of the branches are labeled as foreground, which reduces  
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Marine and Brackish/Fresh 
358 mutations tested TP FP FN TN Recall Precision F1 score 

PC 3 24 7 324 0.3 0.11 0.16 
FADE 100 6 103 4 245 0.6 0.06 0.10 
FADE JTT 100 6 101 4 247 0.6 0.06 0.10 
FADE 1000 6 72 4 276 0.6 0.08 0.14 
Emergence 4 56 6 292 0.4 0.07 0.11 
Emergence JTT 4 72 6 276 0.4 0.05 0.09 
Correlation 6 67 4 281 0.6 0.09 0.14 
Correlation JTT 6 61 4 287 0.6 0.09 0.16 
ConDor 4 14 6 334 0.4 0.22 0.29 
ConDor JTT 4 14 6 334 0.4 0.22 0.29 

Table 3: Method comparison on fish rhodopsin dataset. Several performance indicators on the detection of 
convergent mutations are displayed for PC, FADE, ConDor, and ConDor sub-components. We display the results 
using the second-best model (LG) for comparison purpose and, when possible, with JTT that figures out a form of 
model misspecification. TP: mutations affecting maximum absorption wavelength found by the given method. 
FN: mutations affecting maximum absorption wavelength not found by the given method. FP: mutations found 
by the given method, which are not experimentally demonstrated to affect absorption wavelength. TN: non 
detected mutations which do not affect absorption wavelength. Recall: proportion of TP among all mutations 
affecting maximum absorption wavelength (10 tested). Precision: proportion of TP among all mutations found by 
the given method. F1 score: harmonic mean between recall and precision. PC (profile change): mutations detected 
on positions with a profile change in convergent clades with a posterior probability >0.8  (Rey et al. 2018). FADE 
(1000): mutations showing evolution under directional selection, with a Bayes Factor >100 (or >1000). 
Emergence: mutations showing a number of EEMs statistically higher than expected at a p-value <0.1 after Holm-
Bonferroni correction for multiple testing. Correlation: mutations positively correlated with the proxy of the 
phenotype, with a log Bayes factor >20. ConDor: combination of Emergence and Correlation. In bold: best result 
for each indicator.  

the specificity of the method. Given this low specificity, mutations A292S, S292A, D83N, N83D, F261Y 
and E122I are detected by FADE, which has the best recall of all methods (0.6). However, FADE also 
has a low precision, resulting in a F1 score of 0.10, which is the lowest of all methods tested. With a 
more conservative threshold (BF >1000), FADE detects 40 and 49 mutations associated with marine 
and brackish/fresh environments, respectively, still including A292S, S292A, D83N, N83D, E122I and 
F261Y and resulting in a F1 score of 0.14. The F1 score decreases at higher thresholds. Similarly to the 
HIV dataset, FADE results are little affected by model misspecification (Tab. 3, FADE JTT). 

The neutral model inferred by ModelFinder on this dataset was ‘MtZoa’ and ‘freerates’ with 8 
rate categories. However, we analyzed the data using LG (second best substitution model) to ensure a 
fair comparison with FADE (MtZOA is not an available option). On this dataset, 60 mutations exhibit a 
number of EEMs significantly higher than expected as shown in Table 3. Using the Correlation 
component alone with a log Bayes factor of 20, one detects 73 mutations (40 correlated with 
brackish/fresh water and 33 with marine water) among which 6 are TP, resulting in a F1 score of 0.14. 
Combining both ConDor components, we find 18 convergent mutations that are correlated with the 
environment (9 with brackish/fresh water and 9 with marine water). Although predicting a few 
mutation candidates, ConDor still detects 4 out of the 10 convergent mutations experimentally 
confirmed by (Yokoyama 2008), which corresponds to the best F1 score (0.29) and precision (0.22) of 
all methods (Tab. 3).  In case of model misspecification (Tab. 3, ConDor JTT), we see that the Emergence 
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component is sensitive to this effect with more FP detected. However, ConDor is not affected by the 
change of model.  

As illustrated in Figure 5, ConDor retrieves mutations F261Y, D83N, A292S, and reversion 
N83D. E122Q is not found as convergent (adjusted p-value of ~1 and log Bayes factor of 6 associated 
with the marine environment) because glutamine (Q) independently emerged only 3 times according 
to ACR, but emerged up to 11 times in simulations. Similarly, mutations E122I (3 EEMs) and Y102F 
(3EEMs) and reversions Q122E (3 EEMs), Y261F (3 EEMs) and S292A (11 EEMs) are not detected by 
ConDor as their number of EEMs was not significantly higher than expected. With this dataset, both 
components are needed to focus on a reasonable number of convergent candidates (PC and FADE with 
BF >1000 exhibit respectively 24 and 72 FP).  

Interestingly, convergent candidate mutation A166S is detected by the three methods (Fig. 5). 
This mutation is found by ACR to have 48 EEMs whereas on simulations it emerged at most 38 times. 
Following previous results from (Malinsky et al. 2015; O’Reilly et al. 2016), it might be associated with 
a blue-shifting absorption wavelength.  

 

Figure 5: Detection of convergent mutations affecting maximum absorption wavelength on rhodopsin data. 
We display all mutations affecting maximum absorption wavelength (black) and the other detections (white) 
obtained using ConDor on the rhodopsin dataset. This figure combines both the detections correlated with 
brackish/fresh water and those correlated with marine water. If these mutations were found on positions 
associated with a shift in profile using PC, the bar is surmounted with an asterisk. If they were found associated 
with BF >1000 using FADE, the bar is surmounted with a circle. Mutations found by ConDor are present in the 
‘ConDor detection zone’, corresponding to the upper-right white rectangle. Mutations are sorted by their p-value 
(Emergence component) on the x-axis. The dashed lines represent various thresholds of adjusted p-values using 
a Holm-Bonferroni correction. We report on the y-axis the log Bayes Factor as obtained with BayesTraits. The 
plain horizontal line represents the threshold for strong evidence of dependence between a mutation and the 
treatment status (log Bayes factor >20). Mutations that display a bar below the x-axis were found to be 
independent or negatively correlated with treatment status. FP PC in the upper-left indicates the number of false 
positives found with PC and FADE 1000. 
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Discussion  

In this work, we developed the ConDor approach, which detects evolutionary convergence at 
the amino-acid mutation level using two components: Emergence and Correlation. Convergent (versus 
original) phenotypic annotations are given by users for extant taxa, without the need to define 
convergent clades and infer the phenotypic annotations of ancestral nodes. As we developed this 
method for the study of viruses and microorganisms for which the phenotype is difficult to access, 
ConDor allows the use of environmental conditions (or other selection pressures) as a proxy for the 
phenotype. Thus, convergent mutations can be found even if they are present in only a subset of the 
convergent taxa and if they are found in some taxa that do not possess the convergent phenotype. 
This is particularly suitable to the analysis of large datasets with several thousand sequences, where 
inference of convergent clades and ancestral phenotypes are especially challenging. For example, we 
were able to find more than half of the DRMs on a large HIV dataset where the application of PCOC 
was not appropriate because the underlying assumptions (OC and PC) were poorly satisfied. We also 
detected more DRMs with ConDor than using FADE while the assumptions of this software were made 
for DRM detection in HIV. Although it was primarily developed for the analysis of large datasets of 
viruses and microorganisms, ConDor was able to detect several convergent mutations involved in the 
change in metabolism in a small data set of sedge PEPC protein, and in the change in absorption 
wavelength in a large data set of fish rhodopsin. For the latter, its accuracy was markedly better than 
that of PCOC and FADE. These results confirm that ConDor detects a realistic signal of convergent 
molecular evolution and that it can be applied to a wide range of organisms and data sets.  

 We tested the robustness of the Emergence component of ConDor to model violation by using 
the JTT substitution matrix (Jones et al. 1992) instead of HIVb (Nickle et al. 2007) as the neutral 
evolutionary model for the HIV dataset study. A similar experiment was performed with fish rhodopsin 
where JTT was used again, instead of LG. In doing so, the sensitivity of Emergence remained high, we 
still detected the most frequent convergent mutations, but the number of false positives slightly 
increased. However, with the addition of the Correlation component, ConDor proved to be robust to 
these model violations. Since we never know the true evolutionary model, we expect that a substantial 
number of false positives may be observed with Emergence, even when using the best substitution 
matrix (as selected by IQ-TREE using BIC in our experiments). This behavior was observed in (Goldstein 
et al. 2015; Zou and Zhang 2015a), where the authors showed the difficulty to account for background 
convergent mutations using standard null models. More advanced substitution models based on CAT 
or CAT-JTT profile models (Lartillot and Philippe 2004; Le, Gascuel, et al. 2008), on mixture of matrix 
models accounting for structural features and rates of the positions (Le, Lartillot et al. 2008;  Le et al. 
2012), or on Markov modulated Markov models as in (Escalera-Zamudio et al. 2020), should likely 
improve the Emergence component, make simulations more realistic, and decrease the number of 
background convergent mutation detections in this component. However, these approaches are 
resource-intensive, and the Correlation component already complements the Emergence component 
well. 

 The two components of Condor can be used independently of each other. When using the 
Emergence component alone, there is no need to specify the taxa with the convergent phenotype. On 
the other hand, using the Correlation component alone, one loses the multiplicity constraint and 
cannot determine whether the detected correlation comes from a single founder event or from 
multiple independent emergences. Only the latter case corresponds to evolutionary convergence, 
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which means that when using Correlation alone, we still have to perform an a posteriori check of the 
multiplicity of emergences.  

 ConDor was developed to detect convergent amino-acid mutations, not convergent positions, 
which makes it difficult to compare with existing approaches based on convergent position detection 
(e.g., PCOC (Rey et al. 2018)). An adaptation of ConDor to work at the position level could be an 
interesting feature to add to the program. Our approach is made possible because we work at the scale 
of a single protein with thousands of sequences, which provides sufficient signal and detection power. 
Working on thousands or even millions of positions (e.g., with bacterial genomes), ConDor would 
probably not have the statistical power to work at the scale of a single mutation due to multiple testing. 
An extension of ConDor to work at the gene level (similarly to (Chabrol et al. 2018)), or to detect 
convergence in a sliding window, would certainly be a useful development, allowing for the discovery 
of adaptive mutational patterns involving multiple sites in the protein alignment, rather than isolated 
sites as with the current version of ConDor. 

Other improvements could concern the Correlation component that currently uses discrete 
trait evolution models in a Bayesian framework, which requires a lot of computing resources (~30 min 
per mutation on the rhodopsin dataset). This computational burden could be greatly reduced using a 
similar maximum-likelihood approach (e.g., based on the 'ace' routine from APE; Paradis et al. 2004). 
In the same sense, simulations of the Emergence component are computationally expensive, and 
analytical approaches, inspired by to those used in (Chabrol et al. 2018), would also significantly reduce 
the computational burden of the approach.  

Materials and Methods  

Sedge PEPC protein dataset 

Protein data of sedge PEPC, associated phylogeny, and “genotypic” C3/C4 annotation were 
downloaded from https://github.com/CarineRey/pcoc/tree/master/data/det. The protein data 
consists of a multiple sequence alignment of 79 protein sequences and 458 positions. The sequences 
are highly conserved, except for a few long deletions, and well aligned with no problematic gappy 
regions. We used the sequence Chrysithr as outgroup to root the tree and then removed it from the 
analysis (as Rey et al. 2018), resulting in an alignment of 78 protein sequences . Following (Besnard et 
al. 2009), 23 sequences have a convergent "genotypic" annotation (i.e. C4), based on the presence of 
the A780S mutation. For the “phenotypic” annotation, we annotated each gene using the annotation 
of the plant species it was sequenced from (Bruhl and Wilson 2007), and we removed the 7 genes from 
Eleocharis baldwinii and Eleocharis vivipara that perform both C3 and C4 metabolisms. This resulted 
in a multiple sequence alignment of 71 proteins and 458 positions, with 22 sequences annotated as 
convergent. The 7 sequences from Eleocharis baldwinii and Eleocharis vivipara were pruned from the 
provided phylogeny.  

HIV dataset 

The HIV reverse transcriptase dataset we analyzed is based on the nucleotide alignment of 
(Villabona-Arenas et al. 2016), which was also studied in (Blassel et al. 2021), and is available from 
https://github.com/lucblassel/HIV-DRM-machine-learning/tree/main/data/African_dataset. This is a 
high quality alignment, thanks to the fact that the HIV proteins are highly conserved, with very few 
indels (see Villabona-Arenas et al. for details). This alignment consists of 3,990 HIV-1 group M partial 
reverse transcriptase sequences, divided into treatment-naive and treated sequences, along with a 
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metadata file indicating the treatment status, whether the sequence has one or more DRMs and the 
subtype or CRF. The subtype annotation indicates that 2,247 sequences are recombinant forms, which 
we removed if the recombinant breakpoints were found within the reverse transcriptase (if so, we 
cannot reconstruct a sound phylogeny, n= 2,008). For example, 1,477 sequences were CRF02_AG, 
which recombines within the reverse transcriptase gene (Kusagawa et al. 2001). We then ran jpHMM 
(version of March 2015) (Schultz et al. 2012) to identify other possible recombinant forms. We used 
the default settings for HIV -v HIV and the priors provided in the jpHMM folder: -a 
priors/emissionPriors_HIV.txt -b priors/transition_priors.txt. Based on 
jpHMM analysis, we removed 124 additional recombinant sequences with breakpoints in the reverse 
transcriptase gene. 

To root the tree, we added to this nucleotide MSA 3 reference sequences from the N group, 
which we downloaded from https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html 
(reverse transcriptase: user-defined range 2550 – 3297).  

The tree was inferred from the nucleotide MSA with IQ-TREE 1.6.8 while selecting the model 
(GTR+R10 in this case) with Model Finder (IQ-TREE option -m MFP). After rooting the tree, the 3 
reference sequences of group N were removed from the analysis. The resulting alignment contains 
1,858 group M sequences of 747 nucleotides that we translated into 249 amino acids. DRMs were 
identified in the translated MSA using the 2019 HIV-1 DRM list (Wensing et al. 2019). 571 sequences 
were annotated as treated and 1,287 sequences as naive. The tree branch lengths were re-optimized 
by ConDor using the protein MSA (see ConDor Pipeline Description below). 

Rhodopsin dataset 

Rhodopsin protein data and fish habitat were downloaded from 
https://github.com/Clupeaharengus/rhodopsin/tree/master/phylogeny_habitat. We extracted from 
the “final_alignment.translated.fullrhodopsin.fasta”  alignment file 2,056 sequences corresponding to 
the identifiers indicated in the “spp_to_keep.txt” file. After a quick tree reconstruction with FastTree 
(Price et al. 2009), we removed 7 badly aligned sequences (based on their aberrant branch lengths). 
We checked the quality of the resulting alignment with TCS (Chang et al. 2014) and obtained a score 
of 997/1000 demonstrating high reliability. Rhodopsin phylogeny was reconstructed from this protein 
MSA, using Model Finder (IQ-TREE 1.6.8 option -m MFP) to select the evolutionary model (MtZOA+R8) 
and IQ-TREE with option --bb 1000 for ultrafast bootstrap approximation (Hoang et al. 2018). We 
rooted the tree using the same sequences as in (Hill et al. 2019) (Huso huso and Polyodon spathula) 
and removed them from the phylogeny for the analysis. This resulted in an alignment of 2,047 
sequences, 883 annotated with marine water and 1,164 with brackish/fresh water. Habitat was 
provided in the “rabo_allele_hab.tsv” file from the repository provided in (Hill et al. 2019).  

PCOC  

We used PCOC v1.0.1 (Rey et al. 2018) to detect convergent positions based on knowledge of 
genotype/phenotype (C3 vs C4), treatment status (treated vs naive), and habitat (marine vs 
brackish/fresh water). We used the C10 profile (-CATX_est 10) with 4 gamma categories  
(--gamma) and set the posterior probability threshold >0.8 for all models (PC, OC, PCOC) and data 
sets (-f 0.8). As described in the user guide (https://github.com/CarineRey/pcoc), the convergent 
scenario (-m) corresponds to the list of the maximal clades that exhibit the convergent phenotype. 
Each clade corresponds to an independent emergence event. Since it cannot be known exactly where 
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the convergent transition occurred in the tree, the clades are first reconstructed by retrieving the tips 
with the convergent phenotype (C4 metabolism, treated, brackish/fresh water, marine water). Then, 
the internal nodes are recursively annotated with the convergent phenotype if the two child nodes 
also have the convergent phenotype.  

FADE 

 We used FADE 0.2 (unpublished to date) from the HyPhy package (Pond et al. 2005) to detect 
mutations under directional selection. FADE requires as input a rooted tree with annotations for the 
set of foreground branches suspected to have undergone directional selection. We annotated the 
foreground branches using http://phylotree.hyphy.org/. This software allows us to select terminal 
branches leading to tips with a convergent phenotype as foreground branches. Then, we can label 
internal nodes as foreground based on several methods (maximum parsimony, conjunction and 
disjunction). We labeled the internal nodes using conjunction, which is based on logical “AND” (a node 
is labeled foreground if all its children are foreground). This follows, in fact, the same labeling process 
as for PCOC. FADE was then run using the same substitution matrices as ConDor (JTT, HIVb, LG) and 
providing the same amino-acid alignments as for PCOC and ConDor. 

ConDor Pipeline Description 

The ConDor Pipeline consists of several processes shown in Figure 1. Here, we describe the 
implementation details of IQ-TREE 1.6.8  (Nguyen et al. 2015) for the re-optimization step, PastML 
1.9.33 (Ishikawa et al. 2019) for the ancestral reconstruction step, and BayesTaits 3.0.1 (Pagel 1994; 
Pagel & Meade 2006) for the correlation step.  

Model selection, branch-length and evolutionary rate estimation  

Given an input protein MSA and the corresponding phylogeny, we estimate the best 
evolutionary model and re-optimize the branch lengths and evolutionary rates for the protein MSA, 
using the -m MFP option of IQ-TREE, while fixing the topology using the –te option. This phylogeny 
with optimized branch lengths is used by ConDor, but also for PCOC and FADE analyses. In ConDor, 
site-specific evolutionary rates are retrieved from IQ-TREE with the -wsr option. For all analyses, we 
used the equilibrium frequencies corresponding to the substitution matrix, except for the model 
misspecification experiment with JTT on the HIV dataset, where we re-optimized the equilibrium 
frequencies (option +FO), in order to obtain a reasonable fit with the data, using a standard procedure. 
The best substitution model for each dataset was JTT+R3 (Sedge), HIVb+R4 (HIV) and MtZOA+R8 
(Rhodospin). For the rhodopsin analysis with ConDor, we used LG+R8 to allow a fair comparison with 
FADE.  

Ancestral character reconstruction by maximum likelihood 

Ancestral character reconstruction in the ConDor pipeline is performed using PastML with 
option --prediction_method MAP (i.e. maximum a posteriori). PastML takes as input a 
parameter file (option --parameters) per position, containing (1) the amino acid frequencies for 
the entire alignment, and (2) a scaling factor for the position under study, corresponding to the 
evolutionary rate of the site, as estimated by IQ-TREE. This scaling factor (evolutionary rate) is used by 
PastML to re-scale the branch lengths while computing the tree likelihood. The selected substitution 
matrix (JTT, HIVb, LG) was given as input (--rate_matrix) using PastML option  
-m CUSTOM_RATE.  
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Correlation measurement using BayesTraits 

Correlations between the convergent phenotype and mutations occurring more often than 
expected were measured using the BayesTraits ‘discrete dependent’ model. The convergent 
phenotype was annotated as 1 and the non-convergent phenotype as 0. Similarly, for a given position, 
the mutated amino acid of interest had value 1, and the other amino acids at that position had value 
0. To assess whether dependence between the two traits was more likely than their independence, 
we followed http://www.evolution.rdg.ac.uk/ BayesTraitsV3/Files/BayesTraitsV3.Manual.pdf. The 
dependence hypothesis was retained if the logarithm of the Bayes factor was greater than 2 for the 
sedge PEPC dataset and greater than 20 for the others. Thresholds of 2, 5, and 10 are given, 
respectively, as positive, strong, and very strong evidence against H0 in (Kass and Raftery 1995). Priors 
for transition rates were defined as uniform with a range between 0 and 100, as described in the user 
guide. Mutations that were found to be dependent of the phenotype by BayesTraits, were retained as 
convergent if the correlation was positive. To do this, we checked that the mutation frequency was 
greater in sequences with the convergent phenotype than in sequences with the non-convergent 
phenotype. More formally, let us denote: 𝑚𝑚𝐶𝐶the number of sequences that have the mutation M and 
are annotated with the convergent phenotype; 𝑚𝑚𝑁𝑁𝐶𝐶the number of sequences that also have the 
mutation M but are annotated with the non-convergent phenotype; 𝐶𝐶 the total number of sequences 
annotated with the convergent phenotype; and 𝑁𝑁𝐶𝐶 the total number of sequences annotated with the 
non-convergent phenotype. If 𝑚𝑚𝐶𝐶 𝐶𝐶⁄ > 𝑚𝑚𝑁𝑁𝐶𝐶 𝑁𝑁𝐶𝐶⁄ , then the correlation is positive, and M is considered 
as a convergent mutation by ConDor. 

Implementation 

ConDor method is implemented in a Nextflow DSL1 v20.10.0 pipeline (Tommaso et al. 2017), taking as 
input an amino-acid alignment, a rooted tree, a file containing outgroup sequence identifiers and a file 
containing the list of sequences with the convergent phenotype. The python libraries numpy (Harris 
et al. 2020), pandas (McKinney 2010), and scipy (Virtanen et al. 2020) were used for data frames 
and matrices manipulations and for the statistics tools they provide. We used biopython (Cock et 
al. 2009) for sequence and alignment manipulations. Tree traversals and analyses were achieved with 
ETE 3 (Huerta-Cepas et al. 2016). Graphs were obtained using the matplotlib (Hunter 2007) and 
seaborn libraries. All MSAs (translation to amino acids, subalignments, etc.) and tree manipulations 
(pruning, rooting, etc.) were performed using goalign and gotree (Lemoine and Gascuel 2021). 
Simulations and counting of EEMs were computed using homemade python scripts. Mutations 
emerging more frequently than expected were selected based on their p-value (with pseudo-count) 
after Holm-Bonferroni multiple testing correction, with an alpha risk of 0.1 This pipeline is available on 
Github at github.com/mariemorel/condor, via a webserver at condor.pasteur.cloud  and as standalone 
in a docker. A user guide provides full details on the input and output formats, including explanations 
on the statistics provided for each mutation tested (p-value, Log-BF, genetic barrier, etc.). 

Data, results and tool availability 

Our MSAs, phylogenetic trees, scripts and results analysis are accessible from the Github repository 
https://github.com/mariemorel/condor-analysis.  
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