ABSTRACT
Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life. Here, we report on how a synthetically constructed minimal cell contends with the forces of evolution compared to a non-minimized cell from which it was derived. Genome streamlining was costly, but 80% of fitness was regained in 2000 generations. Although selection acted upon divergent sets of mutations, the rates of adaptation in the minimal and non-minimal cell were equivalent. The only apparent constraint of minimization involved epistatic interactions that inhibited the evolution of cell size. Together, our findings demonstrate the power of natural selection to rapidly optimize fitness in the simplest autonomous organism, with implications for the evolution of cellular complexity.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Corrected typographical error