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ABSTRACT20

Microbial population genetics models often assume that all lineages are constrained by the same21

population size dynamics over time. However, many neutral and selective events can invalidate this22

assumption, and can contribute to the clonal expansion of a specific lineage relative to the rest of23

the population. Such differential phylodynamic properties between lineages result in asymmetries24

and imbalances in phylogenetic trees that are sometimes described informally but which are difficult25

to analyse formally. To this end, we developed a model of how clonal expansions occur and affect26

the branching patterns of a phylogeny. We show how the parameters of this model can be inferred27

from a given dated phylogeny using Bayesian statistics, which allows us to assess the probability28

that one or more clonal expansion events occurred. For each putative clonal expansion event we29

estimate their date of emergence and subsequent phylodynamic trajectories, including their long-term30

evolutionary potential which is important to determine how much effort should be placed on specific31

control measures. We demonstrate the usefulness of our methodology on simulated and real datasets.32
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INTRODUCTION33

In a microbial population, a clonal expansion event happens when a single individual (or clone) acquires34

an advantage relative to the rest of the population. This advantage could be selective, for example35

a mutation conferring antimicrobial resistance (Blair et al. 2015; Holmes et al. 2016), or neutral, for36

example a founder effect when the clone reaches a new population of susceptible hosts (Peter and37

Slatkin 2015). Whatever the mechanism, clonal expansion causes a single lineage to grow suddenly,38

leading to what were described as “epidemic clones” based on bacterial genotyping data (Maynard-39

Smith et al. 1993; Smith et al. 2003; Feil et al. 2004; Fraser et al. 2005). Since the advent of whole40

genome sequencing, clonal expansions have often been observed and described informally in pathogen41

phylogenetic trees, when a branch suddenly seems to split into multiple branches (McVicker et al.42

2014; Holden et al. 2013; Eldholm et al. 2015; Shapiro 2016; Stoesser et al. 2016; Ledda et al. 2017).43

Phylodynamics can be used to infer past population size changes given pathogen genetic data (Ho44

and Shapiro 2011; Volz et al. 2013). However, most phylodynamic methods assume that the same45

population size function applies to the whole population, which is inappropriate if a clonal expansion46

event affected only a subset of the sampled population. Differences between the branching observed in47

a phylogeny and the branching expected in the absence of any population structure can be used to test48

this assumption (Dearlove and Frost 2015; Volz et al. 2020). This principle provides a non-parametric49

approach to the detection of hidden population structure, based on rejection of the null hypothesis of50

an unstructured population. By contrast, here we develop and apply an explicit phylodynamic model51

for how structure arises through one or more clonal expansion events.52

We describe a phylogenetic model of clonal expansion which is an extension of the coalescent framework53

(Kingman 1982; Donnelly and Tavare 1995; Rosenberg and Nordborg 2002), and more specifically an54

extension of the dated coalescent with heterochronous sampling and varying effective population size55

(Griffiths and Tavare 1994; Donnelly and Tavare 1995; Drummond et al. 2002, 2003; Biek et al. 2015).56

In brief, our population model consists of several subpopulations, including a “background” component57

of constant size, plus an unknown number of additional components each of which corresponds to a58

clonal expansion event, with an associated time of emergence, growth rate and maximum population59

size (carrying capacity). We also describe how to perform Bayesian inference under this model, taking60

as input a dated phylogeny, such that can be reconstructed using BEAST (Suchard et al. 2018),61
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BEAST2 (Bouckaert et al. 2019), treedater (Volz and Frost 2017), TreeTime (Sagulenko et al. 2018)62

or BactDating (Didelot et al. 2018). In this inferential setting, our methodology allows us to detect63

putative clonal expansions, assess their statistical significance and the specific parameters controlling64

their growth. We performed inference on simulated datasets, where the correct clonal expansions that65

took place are known, in order to benchmark the specificity and sensitivity of our methodology. We66

also analysed several real datasets from recent studies on infectious diseases, and show that our new67

method can reveal important features in pathogen evolutionary epidemiology that would otherwise be68

difficult to analyse.69

MATERIALS AND METHODS70

Mathematical model description71

We consider the ancestry of a sample of N individuals indexed by i ∈ {1, ..., N}, with sampling times72

denoted t = {ti}i∈{1,...,N}. Here and elsewhere in this article, time is measured backward in time so73

that for example if t1 < t2 then sample 1 is more recent than sample 2. The population is structured74

into M ≥ 1 subpopulations indexed by j ∈ {1, ...,M}: the subpopulations j ∈ {1, ...,M−1} correspond75

to M−1 “clonal expansion” subpopulations whereas the population j = M is called the “background”76

subpopulation. Each individual has the same probability θj of belonging to subpopulation j, with77

θθθ = {θ1, ..., θM} and
∑M
j=1 θj = 1. This population structure therefore partitions the sampled78

individuals {1, ..., N} into M mutually disjoint subsets f = {f1, ...fM−1, fM} with
M⋃
i=1

fi = {1, ..., N}.79

The background subpopulation (j = M) is assumed to be ruled by the coalescent process with constant80

population size NM (Kingman 1982). Each of the other subpopulations (j = 1, ...,M −1) on the other81

hand is ruled by a coalescent model with its own varying population size function (Griffiths and Tavare82

1994). For each of these clonal expansion subpopulations we define a time of emergence texpj , a carrying83

capacity Nj and the time hj it takes to reach half of the carrying capacity. Together these parameters84

determine the size αj(t) of the subpopulation j at time t as follows:85
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αj(t) =


Nj(t

exp
j − t)2

h2j + (texpj − t)2
if t ≤ texpj

0 otherwise

(1)

Note that this function has the property αj(t
exp
j ) = 0 so that the population size reaches zero, when86

the expansion begins at texpj . This forces the coalescent rate for a lineage to diverge to infinity as87

t → texpj . As such all lineages from the subpopulation are forced to coalesce before texpj . From a88

modelling perspective this can be interpreted as the population being negligible at the time of the89

lineage diverging. Furthermore, αj(t) → Nj when t → −∞ in accordance with the definition of a90

carrying capacity being the size reached in the long term. Finally we note that αj(t
exp
j − hj) = Nj/2,91

which means that hj is indeed the time it takes to reach half of the carrying capacity. This function92

represents a qualitative approximation to the population dynamics of a clonal expansion.93

To complete the definition of the joint ancestral process for all N individuals, we consider that each94

of the clonal expansions originated from either the background subpopulation or from one of the95

preexisting clonal expansions. Let dj denote the origin of an expansion j ∈ {1, ...,M − 1}. Therefore96

dj ∈ {1, ...,M} with the condition that if dj < M then texpj < texpdj
(if the origin is not the background97

subpopulation, it is another clonal expansion that much have emerged beforehand). Since each98

expansion starts with a negligible population size, this implies that the group of leaves sampled from99

a subpopulation is either monophyletic (if this subpopulation is not the origin of another one) or100

paraphyletic (otherwise) in the phylogeny of all N individuals.101

Parameter description Prior

Number of clonal expansions π(M − 1) = poisson(φ)
Subpopulation membership probabilities π(θθθ|M) = dirichlet(ψ)

Subpopulation membership π(f |θθθ) =
M∏
j=1

θ
|fj |
j

Background population size π(NM ) = lognorm(µanc, σanc)
Carrying capacities π(Nj |NM ) = lognorm(NM , σexp)

Times of clonal expansion emergence π(texpj |NM ) = gamma
(
ν2

κ2 ,
κ2NM

ν

)
Time to reach half of carrying capacity π(hj |NM ) = exponential(λr/NM )

Origin of each clonal expansion π(dj |texp1..M ) = uniform({i ∈ {1, ...,M} : texpi > texpj })

Table 1: Summary of parameters and priors used for Bayesian inference

Table 1 summarises the parameters involved in this model, and lists the priors which were used to102
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perform Bayesian inference under this model. The background population size effectively acts as a103

scale parameter on the entire process. First of all, we assume that the final effective population sizes104

of the individual expansions are in the same order of magnitude as the background population size,105

as defined by the prior probability π(Nj | NM ). Furthermore, by affecting the expected time to most106

recent ancestor of the phylogeny, the background population size strongly determines which clonal107

expansions will be detectable and which will not. An expansion which occurred in the distant past,108

or whose growth rate is slow is very likely to fully coalesce while its effective population size remains109

near constant, making it undetectable. As such we condition both texpj and hj on NM , leading to the110

prior distributions π(texpj |NM ) and π(hj |NM ).111

Bayesian inference112

Performing inference under the clonal expansion model above for a given dated phylogeny g requires113

estimation of the value of all the underlying parameters of this model, including the unknown number114

of subpopulations M . We consider the prior distributions summarised in Table 1. For convenience, let115

ααα denote the combination of the parameters NM for the background population and (Nj , t
exp
j , hj , dj)116

for each of the j = 1, ...,M − 1 clonal expansions. The joint prior on ααα is therefore:117

π(ααα|M) = π(NM )

M−1∏
j=1

π(Nj |NM )π(texpj |NM )π(hj |NM )π(dj |texp1..M ) (2)

We can decompose the posterior probability of the model parameters given the dated phylogeny as118

follows:119

p(M, f , θθθ,ααα|g) ∝ p(g|M, f ,ααα)π(M, f , θθθ,ααα)

= p(g|M, f ,ααα)π(M − 1)π(ααα|M)π(f |θθθ)π(θθθ|M)

(3)

All other terms correspond to prior densities given in Table 1 and Equation 2, except for the first term120

p(g|M, f ,ααα) which is the likelihood of the dated phylogeny when all parameters are known, including121

which leaves belong to which subpopulations, the population size function of each subpopulation, and122

the origin of each clonal expansion subpopulation. In these conditions the likelihood is simply the123

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.07.01.450370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450370
http://creativecommons.org/licenses/by/4.0/


product of likelihoods of the coalescent process in each of the subpopulations. Let gj denote the part124

of the dated phylogeny that corresponds to the subpopulation j.125

Knowledge of (M, f ,ααα) allows us to decompose exactly the genealogy g into each of the gj components.126

Note in particular that a component gj contains all the leaves indexed in fj plus a leaf dated at texpa127

for each subpopulation a such that dj = a, meaning that the origin of a is j. With these notations,128

the likelihood is therefore decomposed as:129

p(g|M, f ,ααα) = p(gM |NM )
M−1∏
j=1

p(gj |Nj , texpj , hj) (4)

The first term corresponds to the coalescent process in the background subpopulation, with constant130

population size αM (t) = NM , and the remaining terms correspond to the coalescent process in the131

clonal expansion subpopulations, each with their own population size function αj(t) as defined in132

Equation 1. These terms can be computed using standard coalescent theory (Griffiths and Tavare133

1994; Donnelly and Tavare 1995; Drummond et al. 2002). Briefly, if a population has size α(t) and134

A(t) extent lineages at time t, then the probability of a dated phylogeny g with n−1 coalescent events135

at times c1, ..., cn−1 is given by:136

p(g|α(t)) = exp

(
−
∫ ∞
−∞

1[A(t) ≥ 2]

(
A(t)

2

)
1

α(t)
dt

) n−1∏
i=1

1

α(ci)
(5)

Note the absence of the
∏n−1
i=1

(
A(ci)

2

)
term as this is the likelihood of the entire genealogy, meaning137

both the branch lengths and the topology, so that this term from the probability of the waiting times138

cancel out with its reciprocal from the probability of the topology.139

The computation in Equation 5 requires us to calculate the integral of the reciprocal of the population140

size function, for each interval of time in which A(t) is constant and greater than one. This is141

straightforward for the background subpopulation, and for each clonal expansion subpopulation j142

with the population size function given in Equation 1 we can use the primitive function:143

∫
1

αj(t)
dt =

t

Nj
+

h2j
Nj(t

exp
j − t)

(6)
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This completes the definition of the posterior probability in Equation 3. In order to sample from this144

posterior distribution, we use a Reversible jump Markov Chain Monte-Carlo (Green 1995; Hastie and145

Green 2012), since the dimensionality of the parameter space depends on the unknown parameter M .146

The details of the updates used in this procedure are given in Supplementary Material. Unless otherwise147

stated, during inference on all real and simulated datasets, we used the following hyperparameters:148

θ = 1, φ = 1, µanc = 3, σanc = 3, σexp = 1, ν = 1/2, κ = 1/2, λ = 5.149

Simulation of testing data150

The process characterised above represents a standard Continuous Time Markov Chain (CTMC) and as151

such can be simulated directly via Gillespie’s algorithm (Gillespie 1976). The waiting times are sampled152

through inverse transform sampling with the inverse of the total process rate being approximated153

numerically.154

For the simulation of the genealogy in the first illustrative dataset presented, we used the following155

hyperparameters: θ = 1, φ = 2, µanc = 4, σanc = 1/2, σexp = 1, ν = 1/2, κ = 1/4, λ = 5. For all other156

simulated genealogies we used: θ = 1, φ = 2, µanc = 5, σanc = 1/2, σexp = 1/2, ν = 1/3, κ = 1/4,157

λ = 5.158

Implementation159

We implemented the simulation and inference methods described in this paper into a new R package160

entitled CaveDive which is available at https://github.com/dhelekal/CaveDive . The package uses161

ape (Paradis and Schliep 2019) as a backend for handling phylogenies and ggtree (Yu et al. 2017) for162

handling the visualisation of results. We also used the coda package (Plummer et al. 2006) to assess163

the convergence and mixing properties of our MCMC algorithm, and found them to be satisfactory164

with Gelman-Rubin statistics being less than 1.1 and the effective sample sizes in excess of 200 for all165

parameters in the runs presented below. All runs were performed on a single core of Intel(R) Core(TM)166

i7-3770 CPU with 8GB RAM.167
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RESULTS168

Illustration of the clonal expansion model169

In order to illustrate the concepts behind our clonal expansion model, we simulated from it the scenario170

shown in Figure 1. In this example the population was made of M = 4 components: a background171

subpopulation (pink) and three clonal expansions (blue, orange, green). Figure 1A shows the effective172

population size of the four subpopulations as a function of time. The background subpopulation173

remains of a constant size throughout, whereas each of the clonal expansions is characterised by a time174

when the expansion started, a carrying capacity and a time to reach half of this carrying capacity.175

The blue clonal expansion was the first one to have emerged, it has a large carrying capacity but this176

potential is almost fully realised. The orange clonal expansion emerged next and very quickly reached177

a relatively small carrying capacity. Finally, the green clonal expansion emerged and at the present178

time it is still growing and far from having reached its capacity.179

Figure 1B shows the corresponding dated phylogeny that was simulated in this example. Each point on180

this dated phylogeny belongs to one of the subpopulations and is coloured accordingly as in Figure 1A.181

A change of colour (highlighted by stars) therefore corresponds to the emergence of a clonal expansion.182

A B

Figure 1: A realisation from the clonal expansion model. (A) Population size functions for each of the
subpopulations. (B) Dated phylogeny coloured according to subpopulation as in part (A).
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The blue and orange clonal expansions emerged out of the background subpopulation, whereas the183

green expansion emerged out of the preexisting blue expansion, as can be seen from the transition184

from blue to green.185

For each of the four subpopulations, the population size function (Figure 1A) determines the branching186

pattern in the corresponding part of the phylogeny (Figure 1B). For example, the background187

subpopulation (pink) had a constant population size and the corresponding branches are therefore188

consistent with expectation under the standard coalescent model. By contrast, the three clonal189

expansions have been growing in size more or less suddenly resulting in star-like branchings soon after190

their times of emergence. The orange and blue clonal expansions have almost reached their carrying191

capacities so that recent branchings are similar to the expectation under a constant population size as192

for the background subpopulation. The green clonal expansion on the other hand is still growing and193

remains very small giving it a more linear structure.194

Application to a single simulated dataset195

We attempted to reconstruct the clonal expansion structure underlying the example shown in Figure 1.196

In this inferential setting, the input data is therefore the dated phylogeny shown in Figure 1B, without197

the colouring or location of stars that correspond to the emergence of clonal expansions. The aim is198

to infer the correct number of clonal expansions (three in this case), their locations on the phylogeny199

(stars in Figure 1B) as well as the demographic properties of each subpopulation (Figure 1A).200

The priors used during the inference were the same as used for the simulation of this phylogeny.201

The MCMC algorithm was run for 107 iterations with sampling every 1000 iterations, which took202

approximately 3 hours. The results are shown in Figures 2 and S1. The correct number of three203

clonal expansions was inferred with 67.5% of the posterior probability mass concentrated there, and204

the majority of the remainder of the posterior probability mass shared between four and five clonal205

expansions (Figure 2B). This suggests that although the phylogenetic data is informative about the206

three correct expansions, it is not possible to rule out the existence of other expansions that would207

have left little effect on the phylogeny, for example if they were very recent and if they would have208

concerned only a small number of leaves. The correct position for the clonal expansions was inferred209
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A B

C D

E F G

Figure 2: Application to the simulated dataset shown in Figure 1. (A) Posterior distribution of
the background population size. (B) Posterior distribution of the number of clonal expansions. (C-
D) Posterior probabilities of having a clonal expansions on different branches of the tree, with the
indexes of three branches of interest shown. (E-G) Posterior reconstruction of the expansion population
dynamics. 95% credible intervals in grey. Median in solid orange for past population dynamics and
dashed blue for future prediction of the population dynamics. True population dynamics in dotted
green.
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with high probability, although it was not always possible to distinguish with certainty between the210

correct branch or the ones directly above or below (Figure 2C-D). The demographic parameters of the211

three clonal expansions (carrying capacity and time to reach half of it) were also correctly inferred,212

resulting in posterior distributions for the effective population size of each expansion over time similar213

to the ones used in the simulation (Figure 2E-G). The only exception concerned the carrying capacity214

parameter of the orange expansion which was slightly overestimated (branch 49, cf Figure 2F), because215

of the difficulty in correctly inferring such a sudden and self-limiting expansion.216

Application to multiple simulated datasets217

Firstly we performed inference based on 100 simulated dated phylogenies in which no clonal expansion218

event occurred, so that the whole phylogeny is ruled by a single coalescent process with constant219

population size. This allowed us to evaluate the false discovery rate of our methodology. For each220

dataset in this test, the MCMC was run for 106 iterations with sampling every 100 iterations. We221

found that in 98% of the replicates, the highest posterior probability was of having no clonal expansion,222

corresponding to a 2% false positive rate. Such occasional false positive detection of clonal expansion223

events is to be expected due to the fact that such events can leave little phylogenetic signature, and224

therefore be difficult to rule out.225

Secondly we performed inference based on 200 simulated dated phylogenies in which a single clonal226

expansion event occurred, and the results are shown in Figure 3. In this benchmark, the MCMC was227

run for 107 iterations with sampling every 1000 iterations. For nearly 74.5% of the simulated datasets228

a single clonal expansion was found to be most likely (Figure 3A), as was indeed correct. In 15.5% of229

the replicates no clonal expansion was found to be most likely, indicating a false negative case. This230

result reflects the fact that some clonal expansion events are hard to infer if they left little phylogenetic231

signature, for example if they occurred very recently, were sampled only a small number of times, or232

occurred so long ago that almost all coalescent events occur before the period of rapid growth. Finally,233

in 10% of the simulated datasets two clonal expansions were found to be most likely, representing a234

relatively low rate of false positive detection, for the same reasons as in the previous simulations where235

no clonal expansion had happened.236
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A B C

D E

F G

Figure 3: Application to 200 simulated trees containing one expansion. (A) Histogram of posterior
modes for the number of expansions. (B) Histogram of probability to have a clonal expansion on the
correct branch. (C) Histogram of Jaccard distances between the true expansion and the expansion
corresponding to the mode branch. (D-G) Scatter plots showing posterior median and 95% credible
interval for individual expansion parameters, with correct values on the x-axis and inferred values on
the y-axis. Parts B-G only include simulations where the inferred mode of the number of expansions
was one.
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When a single clonal expansion was inferred, the probability of having this inferred event on the correct237

branch was typically high (Figure 3B). However, when that was not the case, the clonal expansion was238

almost always inferred on a very closely related branch, as can be seen when computing the Jaccard239

distance between the correct and inferred expansion memberships (Figure 3C). The inferred effective240

population size of the background population was highly consistent with the correct values (Figure241

3D), and the same was true for the carrying capacity of the clonal expansion (Figure 3E). The time242

taken to reach half of the carrying capacity was harder to infer, with little correlation between the243

correct and inferred values (Figure 3F). The dating of the emergence of the clonal expansion was often244

very precisely estimated (Figure 3G), although in some cases the credible interval on this parameter245

was larger, which would be expected for example if the clonal expansion happened on a long branch.246

Finally we performed inference based on 100 simulated dated phylogenies in which two or more clonal247

expansion events occurred. We have simulated four sets of 25 phylogenies, with each set having248

two, three, four, and five expansions respectively. The phylogenies were simulated using 60 tips plus249

additional 40 per expansion. In this benchmark, the MCMC was run for 2×107 iterations with sampling250

every 2000 iterations. The expected posterior (Figure 4A) marginals for the number of expansions show251

a clear trend in probability mass being located on a greater number of putative clonal expansions as the252

number of simulated expansions increases. We observe a slight tendency to underestimate the number253

A B

Figure 4: Application to 100 simulated datasets, with 25 per each scenario with 2, 3, 4 and 5 expansions.
(A) Expected posterior distributions for the number of expansions for each scenario. (B) Box plots of
the posterior mean number of expansions for each simulation by scenario.
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of expansions relative to their true number. In terms of the posterior expectation of the number of254

expansions (Figure 4B) we observe a clear increasing trend in terms of the medians, which initially255

closely follow the true number of expansions in the case of two and three expansion phylogenies, and256

underestimates the number of expansions for phylogenies with four and five expansions. This result257

reflects our relatively conservative prior on the number of expansions, and the fact that they become258

harder to detect as more and more occur on the same phylogeny, frequently with some expansions259

originating from within another.260

Application to Streptococcus pneumoniae dataset GPSC18261

As the first real dataset to demonstrate our method, we used a global collection of genomes from the262

Global Pneumococcal Sequence Cluster 18 (GPSC18) from a previously published study (Gladstone263

et al. 2019). In this study, the authors described increased invasiveness in serotype 14 compared264

to the background genotypes in the GPSC18 cluster. Indeed, serotype 14 is one of the leading265

causes of invasive pneumococcal disease (Song et al. 2013), and its prevalence was reported to have266

increased in recent years, despite its inclusion in pneumococcal conjugate vaccines (He et al. 2015).267

This dataset consists of 228 genomes collected between 1991 and 2015, for which a dated phylogeny268

has been previously published (Gladstone et al. 2020). Running our software for 108 iterations took269

approximately 40 hours. The results are shown in Figures 5 and S2. The posterior inferred under270

our model includes a single clonal expansion with very high certainty (Figure 5A), although other less271

certain expansions can not be completely ruled out. The model therefore separates the genomes into272

two categories, with about 80% of them belonging to the expansion and the remainder belonging to273

the background population (Figure 5B). Notably, the expansion contains the vast majority of serotype274

14 isolates, while containing only very few isolates corresponding to other serotypes (Figure 5C).275

Conversely, the background population contained few isolates of serotype 14, with most of them being276

of serotype 7C, 16F, 19A or 19F (Figure 5C). The inferred population size dynamics of clonal expansion277

suggests that currently the expansion is of a slightly smaller size than the background population of278

the GPSC18 cluster, but that it it is still growing and might increase beyond the size of the background279

population in the future (Figure 5D). This result is consistent with the fact that more genomes belonged280

to the clonal expansion than to the background population: since serotype 14 is more associated with281

disease, it would tend to be overrepresented in isolate collections (Didelot and Maiden 2010).282
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A

B
C

D

Figure 5: Application to GPSC18 Streptococcus pneumoniae phylogeny. (A) Dated phylogeny with
branches colored according to the inferred probability of clonal expansion. (B) Pairwise matrix showing
the posterior probabilities of any two samples belonging to the same subpopulation. (C) Color map
showing serotype values. (D) Posterior summary of the inferred effective population size functions.
The colored regions represent 95% credible interval and the lines represent median. Solid denotes past
effective population size inference and dashed represents prediction of future effective population size.
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Application to methicillin-resistant Staphylococcus aureus dataset283

We reanalysed a previously published dataset of genomes of methicillin-resistant Staphylococcus aureus284

(MRSA) from the USA300 lineage (Uhlemann et al. 2014). This lineage was first reported in the early285

2000s but quickly spread throughout the United States to become a leading cause of community-286

acquired skin infections (Challagundla et al. 2018). The dataset consists of 347 genomes isolated287

between 2006 and 2011, for which we constructed a dated phylogeny using BactDating (Didelot et al.288

2018) under the additive relaxed clock model (Didelot et al. 2021). The run time for our clonal289

expansion analysis software was just under 54 hours for 108 iterations. The results are shown in290

Figures 6 and S3. The posterior mean for the number of clonal expansions was 3.04, with 28%, 42%291

A

B
C

Figure 6: Application to Methicillin Resistant Staphylococcus aureus dataset. (A) Dated phylogeny
with branches colored according to the inferred probability of clonal expansion. (B) Pairwise matrix
showing the posterior probabilities of any two genomes belonging to the same subpopulation. (C)
Color map showing the presence of phenotypes associated with virulence.
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and 27% posterior probability assigned to having 2, 3 and 4 clonal expansions, respectively. The292

most probable posterior population structure therefore consists of three expansions which are nested293

into one another. The first expansion occurs at branch 374, which then gives rise to an expansion294

associated with branch 84 and which finally gives rise to expansion starting from branch 217 (Figure295

6). The first expansion on branch 374 is the most certain one, and also the most significant one since296

it splits from the background population which is of a constant population size. This result therefore297

suggests that it is not the whole of the USA300 MRSA lineage that expanded, but rather a large298

subset of it which is associated almost perfectly with the presence of the arginine catabolic mobile299

element (ACME) (Figure 6). ACME provides polyamine resistance as well as other functions (Joshi300

et al. 2011). An association between ACME and the expansion within USA300 has been suggested301

before (Uhlemann et al. 2014; Challagundla et al. 2018) but here for the first time we have detected it302

using a well-suited model of clonal expansion. A previous phylodynamic analysis showed the temporal303

association between the USA300 growth rate and the consumption of β-lactams assumed that the304

whole population followed the same dynamic function (Volz and Didelot 2018). We show here that305

this is not correct but this previous analysis remains approximately valid since the vast majority of306

genomes are part of the ACME-associated clonal expansion. The other two putative expansions that307

are nested within the first one do not seem associated with a clear genetic change that would provide a308

selective advantages, but are more likely to correspond to founder effects occurring as USA300 spread309

in different parts of the human population (Challagundla et al. 2018).310

Application to Streptococcus pneumoniae dataset GPSC9311

We also analysed a previously described global collection of genomes from the Global Pneumococcal312

Sequence Cluster 9 (GPSC9) (Gladstone et al. 2020). This dataset consists of 277 genomes collected313

between 1995 and 2016 for which a dated phylogeny has been previously published (Gladstone et al.314

2020). The MCMC was run for 108 iterations and terminated within 51 hours. The results are shown315

in Figures 7 and S4. The posterior mean for the number of expansions was approximately 3, with316

56% of the posterior probability mass on this number. Approximately 25% of the probability mass317

rests on a two expansion scenario, and the remainder is distributed between cases with four or more318

expansions. The most certain clonal expansion occurred on branch 389 and corresponds to isolates319

from all over the world, but are unique within GPSC9 in containing the ermB1 erythromycin resistance320
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A
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D E F

Figure 7: Application to GPSC9 Streptococcus pneumoniae phylogeny. (A) Dated phylogeny with
branches colored according to the probability of clonal expansion. (B) Pairwise matrix showing the
posterior probabilities of any two samples belonging to the same subpopulation. (C) Color map showing
geographical sampling location, erm gene presence, and whether the serotype is covered by the vaccine.
(D-F) Posterior summary of the inferred effective population size functions.
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gene and being of a serotype not covered by the pneumococcal conjugate vaccines (Figure 7). This321

clade therefore represents a clear example of vaccine escape by replacement of the capsular locus322

(Mostowy et al. 2017), followed by worldwide spread. Other identified groups of genomes correspond323

to locally successful clades as previously described (Gladstone et al. 2020). For example the expansion324

on branch 288 corresponds to a clade that has successfully established itself throughout the African325

continent as well as India, with around 50% posterior support to separate the Indian component326

within this expansion. The background population corresponds to the first South African clade327

previously identified (Gladstone et al. 2020). These results showcase once again how differences in328

the phylodynamic trajectories of sublineages are not always caused by a selective advantage of the329

pathogen, but often linked with the structure of the host population.330

DISCUSSION331

Detecting emerging microbial populations is a persistent and critical public health challenge.332

However, robust solutions to this problem have been little explored. In this work, we describe a333

novel, computationally tractable Bayesian approach to finding expanding populations within dated334

phylogenies. Using simulated phylogenies, we estimated the false positive rate of the approach,335

which was about 2% in the simulations performed. We also estimated the sensitivity of detection336

of clonal expansions, which was of the order or 75%, with limited sensitivity attributable to the337

limited phylogenetic signature left by expansions occurring in antiquity, very recently, or with limited338

sampling. Importantly, in an analysis of real data from three separate microbial populations causing339

high burdens of human disease, we identified clonal expansions associated with known virulent factors,340

drug resistance loci, and absence from vaccine coverage, all biologically credible determinants of341

clonal expansion. Thus, the application of the approach on both simulated and real world microbial342

populations indicate the approach described may have wide application. To allow widespread use of343

our new methodology, we provide an implementation in the form of a R package.344

Our methodology has a number of limitations, inherent in the assumptions we have made in our345

model. Firstly, we assume that the background population, before any clonal expansion occurred, has346

a constant population size. This assumption would be invalidated for example if the whole population347
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under analysis has been expanding. However, in this case a clonal expansion event would be inferred348

close to the root. Furthermore, the choice of a constant background population size is convenient from349

a statistical point of view since it allows scaling of many parameters against the size of the background350

population (see Table 1). Another choice we made concerns the form of the demographic function after351

a clonal expansion occurs (Equation 1). Once again this is a choice of convenience, since this function352

starts at zero when the expansion starts, plateaus at a well-defined carrying capacity value and its353

reciprocal has an analytical primitive as needed (Equation 6). Our function approximates well the354

logistic growth behaviour we seek to model and which arises for example in a susceptible-infectious-355

susceptible SIS model (Allen 2008). Future work could seek to investigate other choices of functions,356

but choosing another function with similar properties would probably not make much difference to357

inference results. Our model also assumes that clonal expansions are the only type of phylodynamic358

events to occur, disallowing for example the possibility for any population size reduction. This is partly359

because the effect of reduction on phylogenies is less dramatic than sudden growth, so that such events360

would be harder to detect, but also and mostly because our aim was to provide a method for clonal361

expansion analysis rather. Further work should seek to expand on our method and develop a more362

complete framework for the analysis of differential phylodynamic trajectories between lineages.363

There are few previous methods to which our approach can be compared, as this is a first-in-class364

principled approach to the key problem of detecting clonal expansions, whereas the vast majority365

of existing phylodynamic methods assumes that all lineages follow the same demographic function366

(Ho and Shapiro 2011). A recent study proposed a non-parametric test of this assumption which367

can be used to split a phylogeny into separate components but which does not allow further analysis368

of the phylodynamic properties of each component (Volz et al. 2020). Perhaps the closest existing369

method is the recently proposed multi-type birth-death (MTBD) model (Barido-Sottani et al. 2020)370

which is based on the birth-death model (Stadler 2010). In both cases the aim is to model the effect371

of population heterogeneities in dated phylogenies. However, the model we present is based on a372

coalescent process as opposed to a birth-death type process, and as such makes fewer assumptions373

about sampling (Volz and Frost 2014). Furthermore the scenario being modelled is quite different, and374

is underpinned by a completely different set of assumptions. Since our focus is specifically on clonal375

expansions, an equivalent to birth-death changes only occurs when all members of a given clonal376

expansion have coalesced, which is not the case with the MTBD model (Barido-Sottani et al. 2020).377
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Some comparison may also be drawn with genetic clustering based on fitting a Markov-modulated378

Poisson process (MMPP) (McCloskey and Poon 2017), although this method focuses on detecting379

small scale outbreaks, whereas we are interested in a phylodynamic behaviour on a significantly larger380

scale. Furthermore, the assumptions are completely different: our model is phylodynamic and does381

not represent an approximation of a transmission tree. Finally, our method is related with approaches382

to detecting structure which are not based only on the phylogeny, but exploit integration with other383

type of data (Baele et al. 2016), for example using the distribution of a phenotype (Ansari and Didelot384

2016) or the geographical origin of the samples (Bloomquist et al. 2010).385
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