Hybridization alters the fitness landscape

1	Hybridization alters the shape of the genotypic fitness landscape, increasing
2	access to novel fitness peaks during adaptive radiation
3	
4	Austin H. Patton ^{1,2} , Emilie J. Richards ^{1,2} , Katelyn J. Gould ³ , Logan K. Buie ³ , Christopher H.
5	Martin ^{1,2}
6	
7	¹ Department of Integrative Biology, University of California, Berkeley, CA
8	² Museum of Vertebrate Zoology, University of California, Berkeley, CA
9	³ Department of Biology, University of North Carolina, Chapel Hill, NC
10	
11	
12	
13	Keywords: fitness landscape; genotypic fitness network; adaptive radiation; introgression;
14	standing genetic variation; de novo mutation
15	Correspondence: austinhpatton@berkeley.edu, chmartin@berkeley.edu
16	

Hybridization alters the fitness landscape

17 Abstract

Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive 18 19 landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting 20 genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood 21 and processes for surmounting fitness valleys remain controversial. One outstanding system for 22 addressing these connections is a recent adaptive radiation of ecologically and morphologically 23 novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, 24 Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field 25 fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, 26 and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 SNPs 27 that were significantly associated with fitness in field enclosures. Six out of the 13 regions most 28 strongly associated with fitness contained differentially expressed genes and fixed SNPs between 29 trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a 30 potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from 31 adaptive alleles and show that scale-eating specialists are the most isolated of the three species on 32 these networks. Intriguingly, introgressed and *de novo* variants reduced fitness landscape 33 ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness 34 paths from generalist to specialists. Our results suggest that adaptive introgression and *de novo* mutations alter the shape of the fitness landscape, providing key connections in adaptive walks 35 36 circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.

Hybridization alters the fitness landscape

37 Introduction

38 First conceptualized by Sewell Wright in 1932, the adaptive landscape describes the complex 39 relationship between genotype or phenotype and fitness (1). The landscape is a concept, a 40 metaphor, and an empirical measurement that exerts substantial influence over all evolutionary 41 dynamics (2–6). Fitness landscapes were originally depicted as high-dimensional networks 42 spanning genotypic space in which each genotype is associated with fitness (1). Simpson (7) 43 later described phenotypic evolution of populations through time on a rugged landscape, in 44 which isolated clusters of fitness peaks represent 'adaptive zones' relative to adjacent regions of 45 low fitness (8). Lande and Arnold formalized the analysis of selection and estimation of 46 phenotypic fitness landscapes (9–11), leading to empirical studies of fitness landscapes in 47 numerous systems (12-18). Fitness surfaces are also central components of speciation models 48 and theory (19-21).

49 A central focus of fitness landscape theory is the characterization of the shape of the 50 fitness landscape. Theoretical and empirical studies frequently attempt to describe its 51 topography, such as quantifying the number of fitness peaks, one component of landscape 52 ruggedness that affects the predictability of evolution (5, 22-24). Importantly, the existence of 53 multiple peaks and valleys on the fitness landscape implies epistasis for fitness, or non-additive 54 effects on fitness resulting from genotypic interactions (23, 25–28). Fitness epistasis reduces the 55 predictability of evolution because the resultant increase in the number of peaks increases the 56 number of viable evolutionary outcomes (8, 29). Increasing fitness epistasis also increases landscape ruggedness, thus reducing the probability of converging on any one fitness peak and 57 58 ultimately diversifying potential evolutionary outcomes (8, 30).

Hybridization alters the fitness landscape

59	This leads to a fundamental concept in fitness landscape theory: Not all genotypic
60	pathways are evolutionarily accessible (5, 26, 31–36). In large populations, paths through
61	genotype space that monotonically increase in fitness at each mutational step are favored over
62	alternatives with neutral or deleterious steps (37). These accessible genotypic paths can be
63	considered adaptive walks under Fisher's geometric model, by which adaptation proceeds
64	towards a phenotypic optimum via additive mutations of small phenotypic effect (37, 38). On
65	rugged landscapes as originally envisioned by Wright (23), greater numbers of peaks (i.e. the
66	ruggedness) increase the mean length of potential adaptive walks to any one fitness optimum,
67	while decreasing the length of accessible paths to the nearest peak. Ultimately, this leads to a
68	decrease in the probability that any one fitness optimum is reached. Simultaneously, increasing
69	landscape ruggedness decreases the length of adaptive walks to the nearest local optimum, owing
70	to the corresponding increase in peak density.
70 71	to the corresponding increase in peak density. There are a growing number of experimental studies of adaptive walks in nature,
71	There are a growing number of experimental studies of adaptive walks in nature,
71 72	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in
71 72 73	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in Drosophila (40, 41), and host-shift in aphids (42). Likewise, the accessibility of genotypic fitness
71 72 73 74	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in Drosophila (40, 41), and host-shift in aphids (42). Likewise, the accessibility of genotypic fitness networks has now been explored in numerous microbial systems, including the evolution of
 71 72 73 74 75 	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in Drosophila (40, 41), and host-shift in aphids (42). Likewise, the accessibility of genotypic fitness networks has now been explored in numerous microbial systems, including the evolution of antibiotic resistance (31), metabolism (43), citrate exploitation (44), and glucose limitation in <i>E</i> .
 71 72 73 74 75 76 	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in Drosophila (40, 41), and host-shift in aphids (42). Likewise, the accessibility of genotypic fitness networks has now been explored in numerous microbial systems, including the evolution of antibiotic resistance (31), metabolism (43), citrate exploitation (44), and glucose limitation in <i>E.</i> <i>coli</i> (45), and adaptation to salinity in yeast via evolution of heat shock protein <i>Hsp90</i> (22).
 71 72 73 74 75 76 77 	There are a growing number of experimental studies of adaptive walks in nature, including the evolution of toxin resistance in monarch butterflies (39), alcohol tolerance in Drosophila (40, 41), and host-shift in aphids (42). Likewise, the accessibility of genotypic fitness networks has now been explored in numerous microbial systems, including the evolution of antibiotic resistance (31), metabolism (43), citrate exploitation (44), and glucose limitation in <i>E.</i> <i>coli</i> (45), and adaptation to salinity in yeast via evolution of heat shock protein <i>Hsp90</i> (22). However, these studies are still limited to the investigation of specific coding substitutions and

81 represent significant advances, but extension of fitness landscape theory to empirical systems

Hybridization alters the fitness landscape

82 including multiple species remains an underexplored area of future research at the intersection of 83 micro- and macroevolution. Such studies can provide insight into the topography of fitness landscapes in natural systems, the accessibility of interspecific adaptive walks, and ultimately the 84 85 predictability of evolution. 86 One promising system for estimating fitness landscapes is a recent adaptive radiation of 87 Cyprinodon pupfishes endemic to San Salvador Island, Bahamas (17, 18, 47, 48). This radiation 88 is comprised of two trophic specialists, a molluscivore (durophage: *Cyprinodon brontotheroides*) 89 and a scale-eater (lepidophage: C. desquamator), derived from a Caribbean-wide generalist (C. 90 variegatus) which also coexists in the same habitats. These three species all occur in sympatry in 91 the hypersaline lakes of San Salvador Island, Bahamas (Fig 1a). Found in the benthic littoral 92 zone of each lake, all three species forage within the same benthic microhabitat; indeed, no 93 habitat segregation has been observed in 14 years of field studies. Originating less than 10,000 94 years ago (based on geological age estimates for the lakes: (49)), the functional and trophic 95 novelty harbored within this radiation is the product of exceptional rates of craniofacial 96 morphological evolution (50–53). Furthermore, species boundaries persist across multiple lake 97 populations, despite persistent admixture among species (54, 55). We previously estimated 98 fitness landscapes in these hypersaline lakes from two independent field experiments measuring 99 the growth and survival of hybrids placed in field enclosures (Figure 1b). Selection analyses 100 revealed a multi-peaked phenotypic fitness landscape that is stable across lake populations, year 101 of study, and manipulation of the frequency of rare hybrid phenotypes (17, 18, 48)). One of the 102 strongest and most persistent trends across studies and treatments was that hybrid phenotypes 103 resembling the scale-eater were isolated in the lowest fitness region for both growth and survival 104 relative to the other two species (17, 18). In contrast, hybrids resembling the generalist occupied

Hybridization alters the fitness landscape

105	a fitness peak and were separated by a smaller fitness valley from hybrids resembling the
106	molluscivore, which occurred on a second peak of higher fitness.

107 Evolutionary trajectories through regions of low fitness should be inaccessible to natural 108 selection. How then did an ancestral generalist population cross these phenotypic fitness valleys 109 to reach new fitness peaks and adapt to novel ecological niches? A growing theoretical and 110 empirical literature on fitness landscapes has demonstrated the limited conditions for crossing 111 fitness valleys (56–59). Fitness peaks and valleys in morphospace may result only from the 112 reduction of the adaptive landscape to two phenotypic dimensions (60). Additional phenotypic 113 and genotypic dimensions may reveal fitness ridges that entirely circumvent fitness valleys (48, 114 61, 62). Indeed, owing to nonlinearity in the association between phenotype and fitness (63, 64), 115 even a single-peaked phenotypic fitness landscape may be underlaid by a multi-peaked genotypic 116 fitness landscape (65, 66). In this respect, investigating the high-dimensional genotypic fitness 117 landscape is key to understanding the origins of novelty in this system, particularly given the rare 118 evolution of lepidophagy (scale-eating), a niche occupied by less than 0.3% of all fishes (67). 119 Furthermore, the relative contributions of standing genetic variation, de novo mutations, 120 and adaptive introgression to the tempo and mode of evolution are now of central interest to the 121 field of speciation genomics (68–72). The three-dimensional adaptive landscape metaphor is 122 often invoked to explain how the genetic, phenotypic, and ecological diversity introduced to 123 populations by hybridization facilitates the colonization of neighboring fitness peaks that are 124 unoccupied by either hybridizing species (73–75). However, extension of these ideas to more 125 high-dimensional genotypic fitness landscapes remains underexplored. For instance, we have yet 126 to learn how the appearance of novel adaptive genetic variation through introgressive 127 hybridization or *de novo* mutation alters the realized epistatic interactions among loci, thus

Hybridization alters the fitness landscape

- 128 potentially altering the shape of the fitness landscape and the accessibility of interspecific
- 129 adaptive walks.

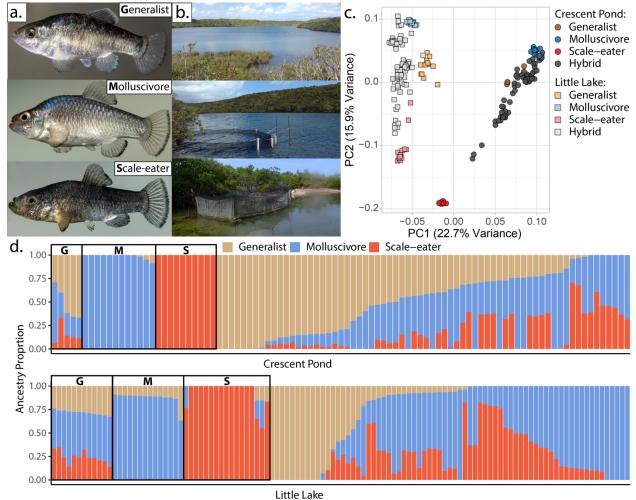
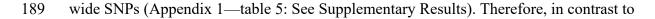


Figure 1. San Salvador Island pupfishes and their hybrids. a. From top to bottom: the generalist, *Cyprinodon variegatus*, the molluscivore *C. brontotheroides*, and the scale-eater *C. desquamator*. b. Representative images of experimental field enclosures. c. Principal component analysis of 1,129,771 LDpruned SNPs genotyped in hybrids and the three parental species. d. Unsupervised ADMIXTURE analyses for Crescent Pond (top) and Little Lake (bottom). G, M and S indicate individual samples of Generalists (G), Molluscivores (M), and Scale-eaters (S), respectively, followed by all resequenced hybrid individuals from field experiments. Colors indicate ancestry proportions in each population (K = 3).

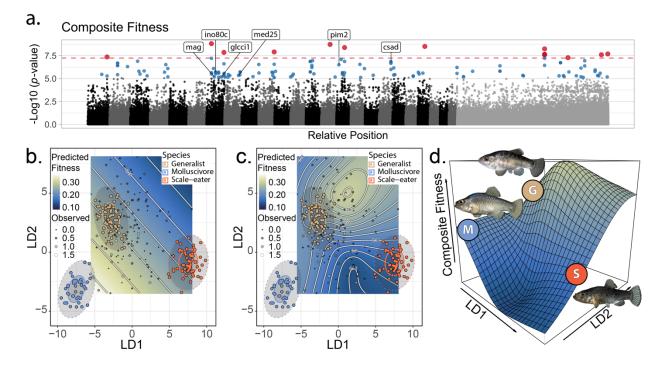
B The adaptive radiation of San Salvador Island pupfishes, like many others (76–80),

- 139 appears to have originated from a complex interplay of abundant standing genetic variation,
- 140 adaptive introgression from neighboring islands, and several *de novo* single-nucleotide mutations
- 141 and deletions found only in the scale-eater (55, 81). Notably, both specialists harbor numerous

Hybridization alters the fitness landscape


142	introgressed SNPs showing evidence of hard selective sweeps in the regulatory regions of known
143	craniofacial genes (55, 81). In contrast, hard selective sweeps of <i>de novo</i> mutations only appear
144	in the scale-eating species, C. desquamator. Here, we leverage whole genome sequencing of 139
145	hybrids measured in field experiments to identify the genomic basis of fitness differences, infer
146	genotypic fitness networks, summarize their topography, and quantify the accessibility of novel
147	fitness peaks and the influence of each source of genetic variation on interspecific adaptive
148	walks.
149	
150	Results
151	Sample collection and genomic resequencing
152	We resequenced 139 hybrids (86 survivors, 56 deaths (Appendix 1-table 1)) from two
153	independent field experiments across a total of six field enclosures and two lake populations
154	(2011: two high-density 3 m diameter enclosures exposed for three months: Crescent Pond $n =$
155	796; Little Lake $n = 875$ F2 hybrids (17); 2014/2015: four high-density 4 m diameter enclosures
156	exposed for three months in Crescent Pond, $n = 923$ F4/F5 hybrids and eleven months in Little
157	Lake, $n = 842$ F4/F5 hybrids (18)). We then characterized patterns of genetic variation among
158	parental species in each lake and their lab-reared hybrids used in field experiments. We
159	genotyped 1,129,771 SNPs with an average coverage of 9.79x per individual.
160	
161	Population structure and ancestry associations with fitness
162	Principal components analysis (PCA) of genetic variation strongly differentiated pupfishes

- 163 sampled from Little Lake/Osprey Lake and Crescent Pond (PC1: 22.7% variance explained) and
- among species within each lake (PC2: 15.9% variance explained: Figure 1d; Figure 1—figure
- 165 supplement 1-2). These results were supported by ADMIXTURE analyses (82, 83) (Figure 1e).


Hybridization alters the fitness landscape

166	However, some hybrids were genotypically transgressive, falling outside the genotypic
167	distributions of the three parental species (Figure 1-figure supplement 2), leading
168	ADMIXTURE to assign the third cluster to these hybrids, rather than generalists which often
169	contain segregating variation found in trophic specialists (67). This pattern persisted in a
170	supervised ADMIXTURE analysis, in which we assigned individuals from the three parental
171	species a priori to their own population and estimated admixture proportions for the remaining
172	hybrids (Figure 1—figure supplement 3). Pairwise genetic distances did not predict pairwise
173	morphological distances (Figure 1—figure supplement 4).
174	We analyzed three measures of fitness (growth, survival, and their composite: see
175	Methods and Supplement for details), but focus herein on composite fitness, which is equal to
176	growth for survivors and zero for non-survivors. Growth could not be measured for tagged
177	hybrids that died in field enclosures and thus were not recovered. Because reproductive success
178	was not possible to quantify in field experiments (due to continuous egg-laying and very small,
179	newly hatched fry), composite fitness included only measurements of growth and survival.
180	Interestingly, in no case were genome-wide patterns of parental ancestry in hybrids
181	(estimated from unsupervised ADMIXTURE analyses) associated with hybrid composite fitness
182	(generalist $P = 0.385$; scale-eater $P = 0.439$; molluscivore $P = 0.195$), growth (generalist $P =$
183	0.119; scale-eater $P = 0.283$; molluscivore $P = 0.328$), or survival probability (generalist $P =$
184	0.440; scale-eater $P = 0.804$; molluscivore $P = 0.313$) while controlling for effects of lake and
185	experiment (Figure 1—figure supplement 5; Appendix 1—table 2). Similar results were obtained
186	when repeating these analyses using admixture proportions estimated from a supervised
187	ADMIXTURE analysis (Appendix 1-table 3), using only samples from the second field
188	experiment (Appendix 1-table 4), or using principal component axes estimated from genome-

Hybridization alters the fitness landscape

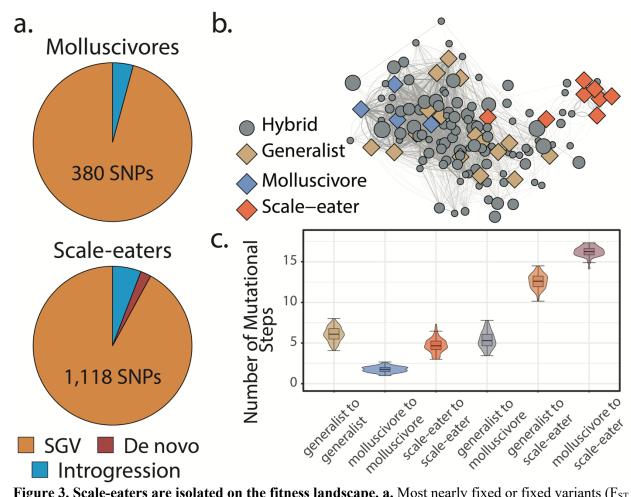
- 190 previous studies (84–86), in this system genome-wide ancestry is not consistently associated
- 191 with fitness, highlighting the complex nonlinear relationship between genotype, phenotype, and
- 192 fitness within this nascent adaptive radiation. We must look to local ancestry to understand
- 193 fitness relationships (e.g. (87)).

194 195 Figure 2. The genetic basis of fitness variation and improved inference of adaptive landscapes. a) Per-196 SNP log10 p-values from a genome-wide association test with GEMMA for composite fitness (survival x 197 growth). Lake and experiment were included as covariates in the linear mixed model. SNPs that were 198 significant at FDR < 0.05 are indicated in blue; red SNPs above dashed red line cross the threshold for 199 Bonferroni significance at $\alpha = 0.05$. The first twenty-four scaffolds are sorted from largest to smallest and 200 remaining scaffolds were pooled. The six genes associated with composite fitness which were both strongly 201 differentiated ($F_{ST} > 0.95$) and differentially expressed between specialists (88) are annotated. **b-c**) Best-fit 202 adaptive landscape for composite fitness using either morphology alone (b: flat surface with only 203 directional selection) or morphology in combination with fitness-associated SNPs (c: highly nonlinear 204 surface). Best-fit model in c was a generalized additive model (GAM) including a thin-plate spline for both 205 LD axes, fixed effects of experiment and lake, and fixed effects of the seven (see supplementary methods) 206 SNPs most strongly associated with fitness shown in red in panel a. d) Three-dimensional view of c with 207 relative positions of the three parental phenotypes indicated.

Hybridization alters the fitness landscape

208 Genome-wide association mapping of fitness

209	From our LD-pruned dataset we used a linear mixed model in GEMMA to identify 132 SNPs in
210	regions that were strongly associated with composite fitness, including 13 which remained
211	significant at the conservative Bonferroni-corrected threshold (Figure 2a, Appendix 1-table 6-
212	7; see supplement for results for survival and growth alone [Appendix 1—table 8-9; Figure 2—
213	figure supplement 1]). Gene ontologies for these 132 fitness-associated regions were
214	significantly enriched for synaptic signaling and chemical synaptic transmission [False discovery
215	rate (FDR) rate < 0.01; Figure 2—figure supplement 2; Appendix 1—table 7]. Ontologies
216	enriched at an FDR rate < 0.05 were related to signaling and regulation of cell communication
217	(for growth, see Figure 2—figure supplement 3). We did not identify any enrichment for
218	ontologies related to craniofacial development which have previously been identified to play a
219	significant role in the adaptive divergence of these fishes (55, 81, 88). This suggests that fitness-
220	associated regions in our field experiments captured additional components of fitness beyond the
221	external morphological phenotypes measured in previous studies.
222	We characterized whether genes in or near fitness-associated regions were implicated in
223	adaptive divergence of the specialists. Surprisingly, no fitness-associated regions overlapped
224	with regions showing significant evidence of a hard selective sweep (55). However, six fitness-
225	associated genes were previously shown to contain either fixed divergent SNPs (csad, glccil,
226	ino80c, mag, pim2, mettl21e), or a fixed deletion between specialists (med25) (88). Med25
227	(Mediator Complex Subunit 25) is a craniofacial transcription factor associated with cleft palate
228	in humans and zebrafish (89, 90); a precursor of mag (Myelin Associated Glycoprotein) was also
229	associated with the parallel evolution of the thick-lipped phenotype in Midas cichlids based on
230	differential expression among morphs (91). Three of the six remaining fitness-associated genes


Hybridization alters the fitness landscape

001	
231	containing divergent SNPs (88) were associated with growth and/or body size measurements in
232	other fishes. First, csad plays an important role in synthesizing taurine which is a rate-limiting
233	enzyme affecting growth rate in parrotfishes (92), rainbow trout (93), and Japanese flounder
234	(94). Second, glccil is associated with the body depth/length ratio in yellow croaker (95). Third,
235	ino80c is associated with measures of body size in Nile tilapia (96). Finally, mettl21e was
236	differentially expressed among specialists and also misexpressed in F1 hybrids between scale-
237	eaters and molluscivores at eight days post-fertilization and thus is a putative genetic
238	incompatibility in this system that may impact their fitness in field enclosures (88, 97). Although
239	it has not been associated with growth or body size in fishes, mettl21e is associated with
240	intramuscular fat deposition in cattle (98). Taken together, these findings support the
241	interpretation that fitness-associated regions are associated with unmeasured traits, particularly
242	physiological growth rate, or craniofacial shape in the case of the deletion in med25, that affect
243	fitness in our hybrid field experiments. However, the fitness associated loci we identified appear
244	not to have the subject of selective sweeps in either specialist.
245	
246	Fitness-associated SNPs improve inference of the adaptive landscape
247	Fitness landscapes in past studies were estimated using slightly different sets of morphological
248	traits; thus, to enable inclusion of all hybrids on a single fitness landscape, a single observer
249	(AHP) remeasured all sequenced hybrids for 31 morphological trats (Figure 2-figure
250	supplement 4; Appendix 1-table 10). We used linear discriminant axes and generalized additive
251	modelling (GAM) to estimate phenotypic fitness landscapes for the sequenced hybrids on a two-
252	dimensional morphospace indicating similarity to each of the three parental populations
253	following previous studies (17, 18)(Figure 2—figure supplements 5; Appendix 1—table 11-13).

Hybridization alters the fitness landscape

254	We then tested whether the inclusion of the 13 genomic regions most strongly associated with
255	fitness (red: Figure 2a) in GAM models improved our inference of the underlying adaptive
256	landscape. Models including fitness-associated SNPs were invariably favored over models with
257	external morphology alone ($\Delta AICc > 8.6$: Appendix 1—table 14-15). Morphology-only models
258	predicted a flat fitness surface (Figure 2b, Figure 2-figure supplement 6; predictions restricted
259	to observed hybrid morphospace). In contrast, models including fitness-associated SNPs
260	predicted a complex and nonlinear fitness landscape, despite our limited dataset of 139
261	sequenced hybrids relative to samples in previous morphology-only studies of around 800
262	hybrids per enclosure.
263	To reduce complexity of the full model estimated from 31 morphological traits including
264	all 13 fitness-associated SNPs, we fit an additional model including only the seven most
265	significant fitness-associated SNPs in the full model. This reduced model was the best-fit; the
266	inferred adaptive landscape was complex and characterized by a fitness peak near hybrids
267	resembling the generalist phenotype separated by a small fitness valley from a second region of
268	high fitness for hybrids resembling the molluscivore phenotype. Hybrids resembling the scale-
269	eater phenotype again occurred in a large fitness valley (Figure 2b-2d: For results pertaining to
270	growth or survival see Appendix 1: Figure 2—figure supplement 6, Appendix 1—table 11-15).
271	Each of these fitness peaks and valleys were frequently recovered across 10,000 bootstrap
272	replicates; landscapes inferred from bootstrap replicates were often more complex with increased
273	curvature relative to inferences from our observed dataset (Figure 2—figure supplement 7).
274	Thus, the fitness landscape estimated from our observed dataset appears robust to sampling
275	uncertainty.

Hybridization alters the fitness landscape

276 277 Figure 3. Scale-eaters are isolated on the fitness landscape. a. Most nearly fixed or fixed variants (F_{ST} 278 > 0.95) experiencing hard selective sweeps (hereafter 'adaptive alleles') originated as standing genetic 279 variation (SGV: molluscivores = 96%, scale-eaters = 92%), followed by introgression (molluscivores = 280 4%, scale-eaters = 6%), and *de novo* mutation (scale-eaters = 2%)(55). Pie charts show adaptive alleles 281 retained in our study for each species; networks are constructed from either set of adaptive alleles. b. 282 Genotypic network constructed from a random sample of ten SNPs, sampled from all SNPs shown in **a**. 283 Each edge between nodes is up five mutational steps away; edge width is proportional to mutational 284 distance: wider edges connect closer haplotypes; hybrid node size is proportional to fitness (larger nodes 285 are of greater fitness value). c. Median number of mutational steps within or between species (e.g. Figure 286 4a). All pairwise comparisons using Tukey's HSD test (after FDR correction) were significant.

- 287 Compared to previous studies, the highest fitness optimum was shifted from the
- 288 molluscivore to the generalist phenotype. This suggests that fitness-associated SNPs increased
- the fitness of hybrids resembling generalists beyond expectations based on their morphology
- alone, consistent with the hypothesis that fitness-associated SNPs are associated with
- 291 unmeasured non-morphological traits affecting fitness. Indeed, visualization of observed
- 292 haplotypes in hybrids across the fitness landscape supported this interpretation; one of the most

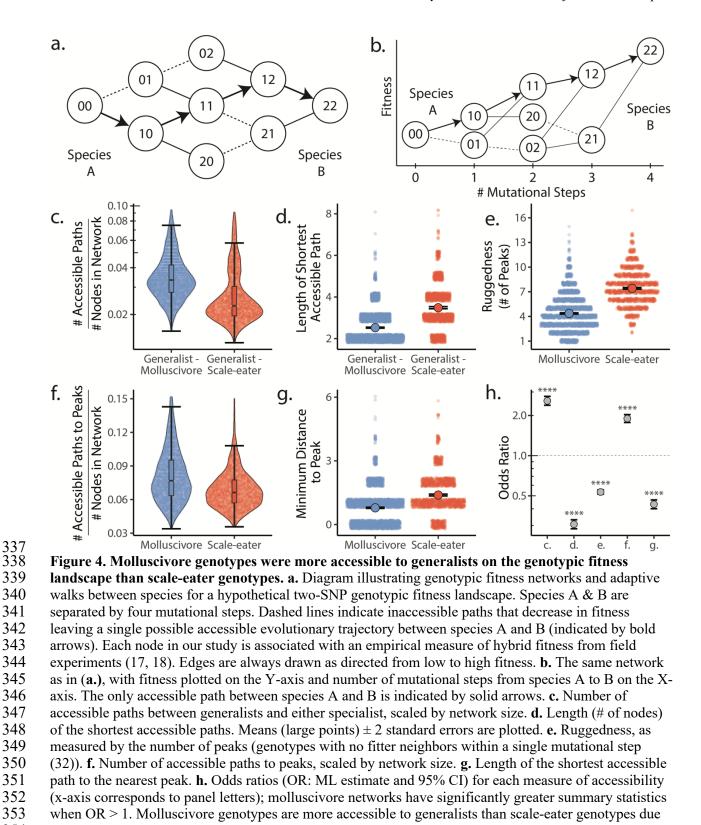
Hybridization alters the fitness landscape

293	common haplotypes was most frequent in hybrids resembling generalists near the peak of high
294	fitness and rare in hybrids resembling either trophic specialist (Figure 2—figure supplement 8).
295	Regardless, this two-dimensional phenotypic fitness landscape did not reveal fitness ridges
296	connecting generalists to specialists, further emphasizing the need to investigate the genotypic
297	fitness landscape.
298	
299	Trophic novelty is associated with isolation on the genotypic fitness network
300	The adaptive radiation of pupfishes on San Salvador island originated within the last 10,000
301	years through a combination of selection on standing genetic variation, adaptive introgression,
302	and <i>de novo</i> mutations (55). However, it is unclear how each source of genetic variation aided in
303	the traversal of fitness paths or contributed to the colonization of novel fitness peaks. To address
304	this knowledge gap, we first sought to visualize genotypic fitness networks and gain insight into
305	how isolated the three species are in genotypic space. Understanding the relative isolation of
306	each specialist from the generalist can reveal the relative accessibility of their respective adaptive
307	walks on the genotypic fitness landscape.
308	To accomplish this, we reconstructed genotypic fitness networks from 1,498 candidate
309	adaptive alleles previously identified in this system (e.g. Figure 3a (55)). These regions displayed
310	significant evidence of a hard selective sweep using both site frequency spectrum and LD-based
311	methods, SweeD (99) and OmegaPlus (100), and contained fixed or nearly fixed SNPs (F_{ST} >

312 0.95) differentiating trophic specialists across lakes (55). Adaptive alleles were classified as

313 standing variation, introgressed, or *de novo* mutations based on extensive sampling of focal and

314 related *Cyprinodon* pupfish species across San Salvador Island and neighboring Caribbean


315 islands, as well as North and South American outgroups (55). We note, however, that adaptive

Hybridization alters the fitness landscape

316	alleles designated as de novo on San Salvador Island may be segregating at low frequencies in
317	other sampled populations or present in unsampled populations.

318	These fitness networks depict both hybrids and parental species in genotypic space, with
319	nodes representing SNP haplotypes and edges connecting mutational neighbors (Figure 3b).
320	Genotypic space is immense; using SNPs coded as homozygous reference, heterozygote, or
321	homozygous alternate, the number of potential haplotypes is equal to $3^{\# SNPs \text{ in network}}$. For
322	instance, to construct a reduced network of 100 SNPs, there are a total of $3^{100} = 5.17 X 10^{57}$
323	possible nodes. Thus, unlike experimental studies of individual proteins in haploid E. coli (31,
324	45) or yeast (22), it is not possible for us to investigate the full breadth of genotypic space.
325	Instead, to understand the distribution of parental species and their hybrids in genotypic
326	space, we began by using a random sample of ten SNPs drawn from our set of candidate adaptive
327	alleles in this system. Here, we plotted edges between nodes up to five mutational steps away
328	(e.g. Figure 3b) and found that generalists and molluscivores are closer on the genotypic fitness
329	network than either is to scale-eaters (Figure 3c), as expected based on their genetic distance.
330	Most scale-eaters appear quite isolated in genotypic space, separated from the generalist cluster
331	of nodes by 12.6 ± 0.091 (mean \pm SE: $P < 0.001$) mutational steps and from molluscivores by
332	16.3 ± 0.060 steps ($P < 0.001$). In contrast, molluscivores were separated from generalists by
333	5.37 ± 0.103 steps ($P < 0.001$). Generalists show the greatest intrapopulation distances, separated
334	from each other by 6.08 ± 0.088 steps ($P < 0.001$). In contrast, molluscivores exhibited the
335	smallest intrapopulation distances, separated by 1.75 ± 0.021 steps ($P < 0.001$). Scale-eater
336	intrapopulation distances were intermediate (4.71 ± 0.088 steps: $P < 0.001$).

Hybridization alters the fitness landscape

to a significantly greater number of accessible paths separating them (c.) that are significantly shorter (d.). Molluscivore genotypic networks were also less rugged, i.e. they contained significantly fewer peaks (e.),

356 each of which were in turn more accessible from the generalist genotypes (f., g.).

Hybridization alters the fitness landscape

357 Molluscivore genotypes are more accessible to generalists than scale-eater genotypes on the

358 genotypic fitness landscape

359 The most accessible paths through genotypic fitness networks are characterized by

360 monotonically increasing fitness at each mutational step and the smallest possible number of

361 steps between two states (5, 31, 33) (Figure 4a-b). Furthermore, as described earlier, the

362 accessibility of individual fitness peaks is predicted to be reduced on increasingly rugged fitness

landscapes that are characterized by a greater number of fitness peaks (8, 30, 33, 101). This

364 provides three useful metrics of evolutionary accessibility for genotypic trajectories: 1) the total

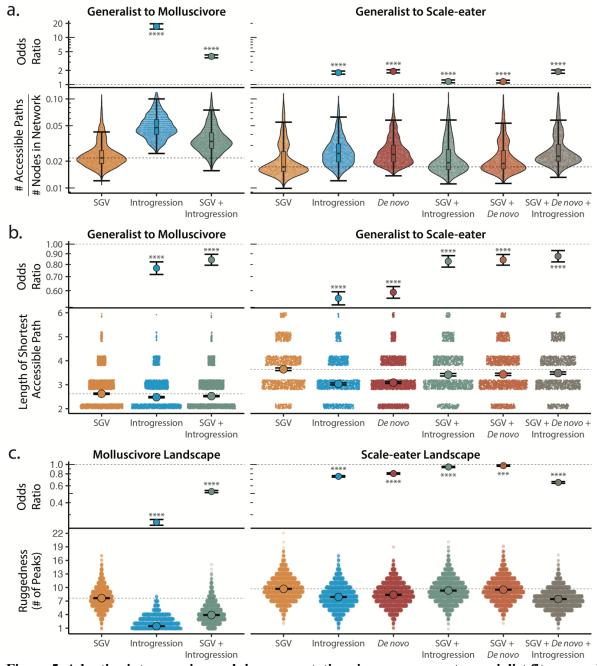
365 number of accessible paths relative to network size (Figure 4—figure supplement 1; Appendix

366 1—table 16), 2) the length of the shortest accessible paths, and 3) the number of fitness peaks

367 (ruggedness). Here, we define peaks as genotypes with no fitter neighbors and within a single

368 mutational step (32). With these three metrics, we can quantify the accessibility of interspecific

369 genotypic pathways.


We used these measures of accessibility to ask: 1) whether molluscivore or scale-eater genotypes were more accessible to generalists on the fitness landscape (Figure 4c-d), and 2) whether molluscivore and scale-eater genotypic fitness networks differed in their ruggedness, characterized by peak number (Figure 4e-g). These measures provide insight into the predictability of evolution and the role that epistasis plays in their evolution (8, 23, 29, 102).

We constructed 5,000 genotypic fitness networks from a random sample of five speciesspecific candidate adaptive SNPs (Figure 3a) for either molluscivores or scale-eaters, requiring that at least one SNP of each source of genetic variation be present in the sample. We used odds ratios to compare the relative accessibility and ruggedness of molluscivore fitness networks

Hybridization alters the fitness landscape

379	compared to scale-eater networks (Figure 4h). Thus, odds ratios (OR) greater than 1 imply
380	summary statistics are greater for molluscivores than for scale-eaters.
381	We found that molluscivore genotypes were significantly more accessible to generalists
382	on the fitness landscape than scale-eaters (Appendix 1-table 17); molluscivore networks had
383	significantly more accessible paths [OR: (95% CI)= 2.095: (1.934, 2.274)] that were
384	significantly shorter [OR and 95% $CI = 0.253$: (0.231, 0.277)]. Not only were molluscivore
385	genotypes more accessible to generalists, but molluscivore fitness networks were significantly
386	less rugged than scale-eater networks, comprised of fewer peaks [OR and 95% $CI = 0.604$:
387	(0.575, 0.634)], and connected by significantly more accessible paths [OR and 95% CI = 1.514:
388	(1.404, 1.635)], that contained fewer mutational steps [OR and 95% CI = 0.539: $(0.500, 0.579)$].
389	
390	Adaptive introgramion and do nove mutations increases accossibility of novel fitness nogles
	Adaptive introgression and de novo mutations increase accessibility of novel fitness peaks
391	We further used our two metrics of accessibility and landscape ruggedness to ask how different
391 392	
	We further used our two metrics of accessibility and landscape ruggedness to ask how different
392	We further used our two metrics of accessibility and landscape ruggedness to ask how different sources of adaptive genetic variation may influence the topography of the fitness landscape, the
392 393	We further used our two metrics of accessibility and landscape ruggedness to ask how different sources of adaptive genetic variation may influence the topography of the fitness landscape, the traversal of fitness paths separating generalists from specialists, and ultimately colonization of
392 393 394	We further used our two metrics of accessibility and landscape ruggedness to ask how different sources of adaptive genetic variation may influence the topography of the fitness landscape, the traversal of fitness paths separating generalists from specialists, and ultimately colonization of novel fitness peaks. We constructed genotypic fitness networks limited to only one of the three
392393394395	We further used our two metrics of accessibility and landscape ruggedness to ask how different sources of adaptive genetic variation may influence the topography of the fitness landscape, the traversal of fitness paths separating generalists from specialists, and ultimately colonization of novel fitness peaks. We constructed genotypic fitness networks limited to only one of the three main sources of adaptive genetic variation: standing genetic variation, introgression from one of
 392 393 394 395 396 	We further used our two metrics of accessibility and landscape ruggedness to ask how different sources of adaptive genetic variation may influence the topography of the fitness landscape, the traversal of fitness paths separating generalists from specialists, and ultimately colonization of novel fitness peaks. We constructed genotypic fitness networks limited to only one of the three main sources of adaptive genetic variation: standing genetic variation, introgression from one of four focal Caribbean generalist populations, or <i>de novo</i> mutations unique to San Salvador Island.

Hybridization alters the fitness landscape

400

401 Figure 5. Adaptive introgression and *de novo* mutations increase access to specialist fitness peaks. 402 Odds ratios (maximum likelihood estimate and 95% CI) indicate the effect of each source of variation on 403 accessibility compared to networks estimated from standing variation alone. Asterisks denote significance 404 (p < 0.0001 = ****, < 0.001 = ***). **a.** The number of accessible (i.e. monotonically increasing in fitness) 405 paths per network, scaled by the size of the network (# of nodes in network). Significance was assessed 406 using a likelihood ratio test, corrected for the false discovery rate (reported in Appendix 1-table 18). 407 Dashed lines correspond to the median estimate for standing genetic variation to aid comparison to other 408 sources of adaptive variation. **b.** Number of mutational steps in the shortest accessible path. Means are 409 plotted as large circles, with two standard errors shown; dashed horizontal lines correspond to the mean 410 for standing genetic variation. c. Ruggedness of molluscivore and scale-eater genotypic fitness networks 411 constructed from each source of genetic variation measured by the number of peaks (genotypes with no 412 fitter neighbors).

Hybridization alters the fitness landscape

413	We compared sets of 5,000 random 5-SNP genotypic networks drawn from different
414	sources of adaptive variation (Figure 4a) and compared the effect of each source of variation on
415	measures of accessibility and landscape ruggedness relative to standing genetic variation. We
416	treated standing variation as our basis for comparison because this is the source of genetic
417	variation first available to natural selection (103).
418	We discovered that genotypic trajectories between generalists and either trophic specialist
419	in genotypic fitness networks constructed from introgressed or <i>de novo</i> adaptive mutations were
420	significantly more accessible than networks constructed from standing genetic variation (Figure
421	5). Specifically, random networks that included alternate sources of adaptive variation contained
422	significantly more accessible fitness paths from generalist to specialists than networks
423	constructed from standing genetic variation alone, while controlling for differences in overall
424	network size (Figure 5a; Appendix 1-table 18). Furthermore, accessible paths between
425	generalists and specialists in networks constructed from introgressed or de novo adaptive loci
426	were significantly shorter in length (Figure 5b). We recovered the same pattern whether
427	constructing fitness networks from these sources of variation alone or in combination. These
428	results held across all measures of fitness and for analyses repeated using only hybrids sampled
429	from the second field experiment (Figure 5—figure supplement 1-2, Appendix 1—table 18-19).
430	Our finding of increased accessibility of interspecific genotypic trajectories suggests that
431	fitness landscapes constructed from adaptive standing genetic variation alone are more rugged
432	than networks including adaptive loci originating from either introgression or <i>de novo</i> mutation.
433	Quantification of landscape ruggedness supported this hypothesis in all cases (Figure 5c;
434	Appendix 1-table 18-19). Additionally, increasing landscape ruggedness significantly

Hybridization alters the fitness landscape

435	decreased the length of accessible paths to the nearest local peak [glm(Min. Path Length ~ $\#$ of
436	Peaks, family = "poisson"): $P < 0.0001$, $\beta = -0.088$, 95% CI = $-0.095 - 0.081$].
437	Scale-eater fitness genotypic fitness landscapes constructed from a combination of
438	adaptive loci sourced from standing variation, introgression, and de novo mutations had
439	significantly more accessible paths (scaled by network size) separating generalists from scale-
440	eaters [OR and 95% CI = 1.879: (1.743, 2.041); LRT <i>P</i> < 0.0001; Figure 5a] and these paths
441	were significantly shorter in length compared to networks constructed from standing variation
442	alone [OR and 95% CI = 0.876: (0.823, 0.932); LRT $P < 0.0001$; Figure 5b]. The only exception
443	to this pattern across all three fitness measures was for growth rate in genotypic fitness networks
444	constructed for molluscivore adaptive loci; no significant difference was observed in the length
445	of the shortest accessible path between networks constructed using standing variation alone or
446	those constructed using introgressed alleles [OR and 95% CI = 0.994: (0.915, 1.079); LRT P =
447	0.8826; Appendix 1-table 18]. Interestingly, however, for networks constructed from standing
448	variation and introgressed alleles, we again observed a significant reduction in length of the
449	shortest accessible paths [OR and 95% CI = 0.897: (0.835, 0.962); LRT P = 0.0050; Appendix
450	1—table 18].

451

452 **Discussion**

We developed a new approach for estimating genotypic fitness landscapes for diploid organisms
and applied it to a system in which phenotypic fitness landscapes have been extensively
investigated. We were able to address long-standing questions posed by fitness landscape theory
in an empirical system and assess the extent to which the shape of the fitness landscape and
accessibility of adaptive walks are contingent upon the source of adaptive genetic variation. We

Hybridization alters the fitness landscape

458	show that not only are scale-eaters more isolated than molluscivores from generalists on the
459	fitness landscape, but that the scale-eater fitness landscape is more rugged than molluscivores.
460	This indicates that epistasis is more pervasive on the scale-eater fitness landscape, leading to less
461	predictable evolutionary outcomes and fewer accessible trajectories from generalist to scale-eater
462	genotypes. Overall, we found that most genotypic trajectories were inaccessible and included one
463	or more mutational steps that decreased in fitness from generalist to specialist. This finding is
464	consistent with the patterns observed by Weinreich et al. (31), who constructed combinatorially
465	complete fitness networks for five mutations contributing to antibiotic resistance in E. coli and
466	found that only 18 of 120 possible genotypic trajectories were evolutionarily accessible. In
467	contrast, Khan et al. (45) estimated that over half of all trajectories were accessible on a complete
468	fitness landscape constructed using the first five adaptive mutations to fix in an experimental
469	population of <i>E. coli</i> .

470 We also show that fitness landscapes are most rugged, and therefore epistasis is most 471 pervasive, when constructed from standing genetic variation alone, ultimately leading to a 472 reduction in the accessibility of fitness peaks on these landscapes (Figure 5). This finding has 473 significant implications for the predictability of evolution in the earliest stages of the speciation 474 process. Adaptation from standing genetic variation is thought to initially be more rapid due to 475 its initial availability and potentially reduced genetic load within a population (103–105). In 476 contrast, we consistently found that networks constructed from a combination of adaptive 477 standing variation, introgression, and *de novo* mutations reduced the ruggedness of fitness 478 landscapes and thus increased accessibility of interspecific evolutionary trajectories (Figure 5). 479 This would suggest that adaptive introgression or *de novo* mutations reduce the impacts of 480 epistasis, resulting in a smoother fitness landscape with a greater number of accessible adaptive

Hybridization alters the fitness landscape

481	walks, facilitating the colonization of new adaptive zones. Future studies testing the generality of
482	these findings will be invaluable for our understanding of the speciation process.
483	Furthermore, our results shed light on the classic problem of crossing fitness valleys on
484	three-dimensional phenotypic fitness landscapes. We show that phenotypic fitness valleys may
485	be circumvented by rare accessible paths on the genotypic fitness landscape. These results are
486	consistent with increasing recognition that three-dimensional depictions of the fitness landscape
487	may lead to incorrect intuitions about how populations evolve (3, 5, 106).
488	Our study represents a significant contribution to the growing body of work applying
489	fitness landscape theory to empirical systems (39, 46, 107–109). Unlike previous studies that
490	experimentally generated combinatorically complete fitness landscapes (22, 31, 45), we
491	subsampled loci across the genome, enabling us to quantify aspects of the genotypic fitness
492	landscape, despite the limitations imposed by large genome sizes and non-model vertebrates.
493	One limitation of this approach is that subsampled fitness networks may not directly correspond
494	to the full landscape (5, 110). For instance, a given subsampled fitness landscape may be present
495	on multiple global, fully sampled fitness landscapes (110). Secondly, nodes (here, SNP
496	haplotypes) can appear disconnected in a subsampled fitness landscape, but may be connected in
497	the full fitness landscape (5). Nevertheless, given that there are more possible genotypes for a
498	gene of 1,000 base-pairs than particles in the known universe (1, 111), nearly all empirical
499	fitness landscapes must necessarily be subsampled at some scale.
500	Although inferences from subsampled fitness networks have their limitations, so too do
501	those obtained from combinatorically complete fitness landscapes, which may themselves be
502	misleading (102). By including mutations that are not segregating in natural populations, the
503	shape of the "complete" fitness landscape and thus accessibility of fitness peaks may be quite

Hybridization alters the fitness landscape

504	different from what occurs in nature. The shape of fitness landscapes in nature is dictated by the
505	"realized" epistasis that occurs among naturally segregating loci (102). Changes to "realized"
506	epistasis induced by introgression or <i>de novo</i> mutations appears to be the mechanism altering the
507	shape of the fitness landscape and thus accessibility of fitness peaks. Our findings that adaptive
508	introgression and <i>de novo</i> mutations make fitness peaks more accessible points towards a
509	pervasive role of epistasis in determining the predictability of evolution and the speciation
510	process (5, 8, 22–24, 30).
511	In the present study we have taken snapshots of the fitness landscape from loci that have
512	already undergone hard selective sweeps. Consequently, we cannot directly assess the influence
513	of each adaptive allele on the fitness landscape through time as it increases in frequency.
514	However, so far we have failed to detect evidence of frequency-dependent selection in this
515	system after experimental manipulations, at least for morphological traits (18). Future
516	experimental or simulation studies may track how novel adaptive alleles affect fitness landscape
517	topography as they increase in frequency.
518	
519	Conclusion
520	Our findings are consistent with a growing body of evidence that <i>de novo</i> and introgressed
521	adaptive variation may contribute to rapid speciation and evolution towards novel fitness peaks
522	(44, 70, 78, 112–116). We demonstrate that adaptive introgression smooths the fitness landscape

523 and increases the accessibility of fitness peaks. This provides an alternative mechanism to

524 explain why hybridization appears to play such a pervasive role in adaptive radiation and

525 speciation. There are many examples of hybridization promoting or inducing rapid speciation

and adaptive radiation. Whether in Galapagos finches (117), African cichlids (77, 78, 113, 118,

Hybridization alters the fitness landscape

527 119), or *Heliconius* butterflies (75, 120), hybridization has been shown to play a generative role 528 in adaptive radiation and the evolution of novelty. One mechanism is the increased genotypic, 529 phenotypic, and ecological diversity generated by hybridization in the form of transgressive 530 phenotypes (74, 121–124). This diversity in turn facilitates the colonization of novel fitness 531 peaks and ecological niches, particularly after colonization of a new environment rich in 532 ecological opportunity (73, 74, 125). However, this model often assumes that the fitness 533 landscape remains static after adaptive introgression. Here we show that adaptive introgression 534 directly alters the shape of the fitness landscape, making novel fitness peaks more accessible to 535 natural selection. Thus, hybridization not only generates genetic diversity, but this diversity can 536 alter the shape of the fitness landscape, changing which genotypic combinations are favored by 537 natural selection along with the adaptive walks that lead to them.

538

539 Acknowledgements:

540 We thank Michelle St. John, David Tian, Jacqueline Galvez, and Maria Fernanda Palominos for 541 insightful discussion of the results; the Gerace Research Centre and Troy Day for logistical 542 support; the BEST Commission and the government of the Bahamas for permission to collect, 543 import, and export samples; the Vincent J. Coates Genomics Sequencing Center and Functional 544 Genomics Laboratory at UC Berkeley for performing whole genome library preparation and 545 sequencing (supported by NIH S10 OD018174 Instrumentation Grant), and the University of 546 California, Berkeley and University of North Carolina at Chapel Hill for computational 547 resources. This work was funded by the National Science Foundation DEB CAREER grant 548 #1749764, National Institutes of Health grant 5R01DE027052-02, the University of North 549 Carolina at Chapel Hill, and the University of California, Berkeley to CHM, graduate research

Hybridization alters the fitness landscape

550	funding from the Museum of Vertebrate Zoology to EJR, and an NSF Postdoctoral Research
551	Fellowship in Biology under Grant No. 2109838 to AHP.
552	
553	Data availability:
554	Genomic data are archived at the National Center for Biotechnology Information BioProject
555	Database (Accessions: PRJNA690558; PRJNA394148, PRJNA391309). Sample metadata
556	including morphological measurements and admixture proportions have been uploaded to Dryad:
557	https://doi.org/10.5061/dryad.0vt4b8h0m.
558	
559	Methods:
560	Sampling
561	Our final genomic dataset was comprised of 139 hybrid samples used in two separate field
562	experiments (17, 18) on San Salvador Island. Experiments were conducted in two lakes: Little
563	Lake (N = 71) and Crescent Pond (N = 68). Hybrids used in the first field experiment (17) were
564	comprised of F2 and backcrossed outbred juveniles resulting from crosses between all three
565	species. Juveniles were raised for 2 months in the lab, individually tagged by injecting a stainless
566	steel sequential coded wire tag (Northwest Marine Technologies, Inc.) into their left dorsal
567	musculature, and photographed pre-release for morphometric analyses. Experimental field
568	enclosures consisted of high- and low-density treatments; density was varied by the number of
569	tagged juveniles released into each enclosure. Hybrids in the second field experiment (18) were
570	comprised of F4-F5 outbred juveniles resulting from crosses between all three species.
571	Individuals were spawned, raised, tagged, and photographed in the same way prior to release.
572	The second field experiment consisted of high- and low-frequency treatments of approximately

Hybridization alters the fitness landscape

573	equal densities. The frequency of rare transgressive hybrid phenotypes was manipulated between
574	treatments in each lake, such that the high- and low-frequency treatments harbored an artificially
575	increased and decreased frequency of transgressive phenotypes, respectively (18).
576	All hybrids were measured for 32 external morphological traits (see below). Additionally,
577	we sequenced parental species of the generalist ($N = 17$), molluscivores ($N = 27$), and scale-
578	eaters ($N = 25$) sampled from these two lakes and previously included in Richards et al. (55).
579	Note that we treated samples from Little Lake and Osprey Lake as the same population because
580	these two lakes are connected through a sand bar and fish from these populations are genetically
581	undifferentiated (54, 55). For morphological analyses, we additionally measured samples of 60
582	generalists, 38 molluscivores, and 60 scale-eaters raised in the same laboratory common garden
583	environment as the hybrids used in field experiments. A full list of samples is included in the
584	supplement (Appendix 1—table 1).

585

586 Sequencing, genotyping, and filtering

587 Raw reads from a combined set of 396 samples (see supplement) were first mapped to the C. 588 *brontotheroides* reference genome (genome size = 1.16 Gb; scaffold N50 = 32 Mb) (55) using 589 bwa-mem (v. 0.7.2). Duplicate reads were identified using MarkDuplicates and BAM indices 590 were subsequently generated using the Picard software package (126). Samples were genotyped 591 following Richards et al. (55) according to GATK best practices (127). Specifically, Single 592 Nucleotide Polymorphisms (SNPs) were called and filtered using hard-filtering criteria in 593 HaplotypeCaller. We used the following criteria in our filtering approach: QD < 2.0; QUAL < 594 20; FS < 60; MQRankSum < -12.5; ReadPosRankSum < -8 (127–129).

Hybridization alters the fitness landscape

595	Following initial genotyping with GATK, we subsequently filtered our data further using
596	VCFtools (130). Specifically, we filtered using the following flags:maf 0.05;min-alleles 2;
597	max-alleles 2;min-meanDP 7;max-meanDP 100;max-missing 0.85. Indels were removed.
598	To reduce non-independence among sites in our final dataset, we conservatively removed sites in
599	strong linkage disequilibrium using plink v1.9 (indep-pairwise 10['kb'] 50 0.5: (131)). This
600	resulted in the retention of 1,129,771 SNPs across 139 hybrid samples and the 69 wild-caught
601	samples from Richards et al (55). Unless otherwise specified, these SNPs were used for all
602	downstream analyses.
603	

604 Hybrid fitness measures

605 We used three proxies for fitness: survival, growth, or a composite measure of the two. Survival 606 was a binary trait indicating whether a fish survived (i.e. a tagged fish was recovered) or not 607 during its exposure period in field enclosures. Growth was a continuous measure, defined as the proportional increase in Standard Length $\left(\frac{Final SL-Starting SL}{Starting SL}\right)$. Lastly, we defined composite 608 609 fitness as survival * growth, similar to the metric used in (132), and analogous to composite 610 fitness in Hereford (133) who used fecundity as their second fitness measure, rather than growth. 611 Composite fitness is equal to growth for survivors and equals zero for non-survivors because 612 growth could not be assessed for non-surviving individuals. Because composite fitness represents 613 the most information-rich metric of fitness, we report composite fitness results in the main text; 614 results for growth and survival are included in the supplement.

Hybridization alters the fitness landscape

615 **Population genetic variation**

616	To visualize genetic variation present in hybrids and across lakes (Crescent Pond and Little
617	Lake), we first used a Principal Components Analysis (PCA) of genetic variation using plink
618	v1.90 ((131), Figure 1), plotting the first two principal component axes using R (version 3.6.3 (R
619	Core team 2020). We then estimated admixture proportions in hybrids using ADMIXTURE
620	v1.3.0 (82). Populations of each species were substantially differentiated between Crescent Pond
621	and Little Lake (54, 55); thus, independent ADMIXTURE analyses were conducted for each
622	lake. Because we were primarily interested in admixture proportions of hybrids, we set $K = 3$ in
623	these analyses, corresponding to the three parental species used in hybrid crosses. Using
624	admixture proportions of hybrid individuals, we tested the hypothesis that ancestry predicts
625	hybrid composite fitness in experimental field enclosures by fitting a generalized additive model
626	including either 1) scale-eater ancestry or 2) molluscivore ancestry with fixed effects for
627	experiment and lake. This was repeated for survival and growth separately. Composite fitness
628	was analyzed using a tobit (zero-censored) model to account for zero-inflation using the censReg
629	R package (134), survival was analyzed using a binomial model, and growth was analyzed using
630	a gaussian model. We conducted additional ADMIXTURE analyses that either 1) were
631	supervised, with generalist, molluscivore, and scale-eater parentals a priori assigned to one of
632	three populations, with only hybrid ancestry proportions being estimated by admixture, or 2)
633	using only samples from the second field experiment. The same linear models described above
634	were subsequently repeated using these alternative admixture proportions.

Hybridization alters the fitness landscape

635 Genome-wide association tests

636	To identify SNPs that were most strongly associated with fitness (survival, growth, or
637	composite), we implemented the linear mixed model (LMM) approach in GEMMA (v. 0.98.1:
638	(135)). This analysis was repeated using each fitness measure as the response variable. To
639	account for relatedness among samples we estimated the kinship matrix among all 139 hybrid
640	samples, which in turn were used in downstream LMMs. To account for the potentially
641	confounding effect of year/experiment and lake on estimated fitness measures, we included each
642	as covariates in the LMMs. To ensure rare variants were not included in these analyses, we only
643	included sites that had a minor allele frequency greater than 5% across all hybrids. A total of
644	933,520 SNPs were analyzed; 196,251 SNPS were excluded due to allele frequency change
645	following removal of parental species. SNPs strongly associated with fitness were identified with
646	1) a False Discovery Rate (FDR: Benjamini and Hochberg 1995) less than 0.05, or a 2) P-value
647	< 0.05 following Bonferroni correction. We focused primarily on the sites identified by the
648	conservative Bonferroni correction, however.
649	

650 Gene ontology enrichment

We annotated sites that were significantly associated with fitness using snpEff (136) and the annotated *C. brontotheroides* reference genome (55). We constructed a custom database within snpEff using the functional annotations originally produced by Richards et al. (55), and subsequently extracted information on the annotations and putative functional consequences of each variant.

Using genes identified for each SNP that was significantly associated with one of the
fitness measures, we performed Gene Ontology (GO) enrichment analyses using ShinyGO v0.61

Hybridization alters the fitness landscape

658	(137). For genes identified as being intergenic, we included both flanking genes. As in Richards
659	et al. (2021), the gene symbol (abbreviation) database that had the greatest overlap with ours was
660	that of the human database; thus, we tested for enrichment of biological process ontologies
661	curated for human gene functions, based on annotations from Ensembl. Results are reported for
662	biological processes that were significantly enriched with $FDR < 0.05$. We then compared this
663	list of candidate loci to those identified in past studies of San Salvador Island pupfishes (55, 88,
664	138).

665

666 Morphometrics

667 We measured 31 external morphological traits for all 139 hybrids and 69 parental individuals 668 from Crescent Pond (30 generalists, 19 molluscivores, and 30 scale-eaters) and 85 from Little 669 Lake (30 generalists, 25 molluscivores, and 30 scale-eaters). We digitally landmarked dorsal and 670 lateral photographs (both sides) of each lab-reared hybrid (pre-release) or parent using DLTdv8 671 (139). Measurements included 27 linear distances and three angles. For nearly all individuals, 672 lateral measurements were collected from both lateral photographs and averaged. Morphological 673 variables were size-corrected using the residuals of a log10(trait) ~ log10(standard length) 674 regression standardized for selection analyses as outlined in the supplement. We used these 31 675 morphological traits to estimate two linear discriminant (LD) axes that best distinguished the 676 generalist, molluscivore, and scale-eater using the LDA function in the mass package in R. We 677 then used the resultant LD model to predict LD-scores for the 139 sequenced hybrids for later 678 use in generalized additive models.

679

Hybridization alters the fitness landscape

680 Estimation of adaptive landscapes

681 We fit generalized additive models (GAMs) using the mgcv package v. 1.8.28 (140) in R to 682 estimate fitness landscapes for the two discriminant axes (LD1-2) and fitness. All models 683 included a thin-plate spline fit to the two linear discriminant axes and we included both lake and 684 experiment in all models as fixed effects. Lake by experiment interaction terms were also 685 included in some models. Models were ranked using the corrected Akaike Information Criterion 686 for small sample sizes (AICc) and were considered to be a substantially worse fit to the data if 687 $\Delta AICc > 4$ from the best-fit model (141). The best-fit model from the above approach was in 688 turn used to visualize fitness landscapes, plotting predicted values of fitness measures on the two 689 discriminant axes in R (Figure 2). 690 Using these results, we tested whether inclusion of SNPs that were strongly associated 691 with fitness (i.e., those that surpassed the 0.05 Bonferroni threshold) improved estimation of 692 fitness landscapes. We first extracted genotypes for the highly significant SNPs identified by 693 GEMMA (13 for composite fitness, four for only growth: see section *Fitness-genotype* 694 association test), and coded these as either reference, single, or double mutants using VCFtools 695 (130). We then used the best-fit models identified above and fit a range of models that included 696 one or all SNPs. Individual fitness-associated SNPs were treated as ordered factors (i.e. transition 697 from homozygous reference to heterozygote to homozygous alternate) and modeled using a

factor-smooth in the generalized additive models. Note that factor "smooths" are effectivelymodeled as step-functions.

To quantify whether the local features of the complete fitness landscape constructed using all morphological variables and the most strongly fitness-associated SNPs were robust to sampling uncertainty, we conducted a bootstrapping procedure for this model. Specifically, we

Hybridization alters the fitness landscape

703	resampled hybrids with replacement 10,000 times and refit the full model. We then calculated
704	the mean predicted composite fitness for each linear discriminant (LD) axis in slices across the
705	fitness landscape, both for our observed dataset, and for each bootstrap replicate. Slices divided
706	the fitness landscape into thirds for each LD axis. We then quantified the mean and standard
707	deviation of the predicted composite fitness for each position along the other LD axis.
708	We quantified uncertainty (mean \pm SD) around local features of the bootstrapped fitness
709	landscapes as compared to the observed values of predicted fitness for the same 'slice' of the
710	fitness landscape. We predicted values at the same 30 points along each LD axis. We then
711	plotted the locations of parents along the x-axis (LD1 or LD2) to enable relation of features on
712	the fitness landscape to parental phenotypic distributions.
713	
714	Estimation of genotypic fitness networks
714 715	<i>Estimation of genotypic fitness networks</i> We first estimated genotypic networks using sites previously shown to be highly divergent (F _{ST}
715	We first estimated genotypic networks using sites previously shown to be highly divergent (F _{ST}
715 716	We first estimated genotypic networks using sites previously shown to be highly divergent (F_{ST} > 0.95) and showing significant evidence of a hard selective sweep in one of the trophic
715 716 717	We first estimated genotypic networks using sites previously shown to be highly divergent (F_{ST} > 0.95) and showing significant evidence of a hard selective sweep in one of the trophic specialists (based on evidence from both SweeD and OmegaPlus: (55, 99, 100)). We identified
715716717718	We first estimated genotypic networks using sites previously shown to be highly divergent (F_{ST} > 0.95) and showing significant evidence of a hard selective sweep in one of the trophic specialists (based on evidence from both SweeD and OmegaPlus: (55, 99, 100)). We identified the SNPs in our unpruned full dataset overlapping with sites inferred to have undergone selective
 715 716 717 718 719 	We first estimated genotypic networks using sites previously shown to be highly divergent (F_{ST} > 0.95) and showing significant evidence of a hard selective sweep in one of the trophic specialists (based on evidence from both SweeD and OmegaPlus: (55, 99, 100)). We identified the SNPs in our unpruned full dataset overlapping with sites inferred to have undergone selective sweeps (55), resulting in 380 SNPs for molluscivores and 1,118 SNPs for scale-eaters. We
 715 716 717 718 719 720 	We first estimated genotypic networks using sites previously shown to be highly divergent (F _{ST} > 0.95) and showing significant evidence of a hard selective sweep in one of the trophic specialists (based on evidence from both SweeD and OmegaPlus: (55, 99, 100)). We identified the SNPs in our unpruned full dataset overlapping with sites inferred to have undergone selective sweeps (55), resulting in 380 SNPs for molluscivores and 1,118 SNPs for scale-eaters. We subsequently constructed genotypic fitness networks in igraph v. 1.2.4.1 (142) following the
 715 716 717 718 719 720 721 	We first estimated genotypic networks using sites previously shown to be highly divergent ($F_{ST} > 0.95$) and showing significant evidence of a hard selective sweep in one of the trophic specialists (based on evidence from both SweeD and OmegaPlus: (55, 99, 100)). We identified the SNPs in our unpruned full dataset overlapping with sites inferred to have undergone selective sweeps (55), resulting in 380 SNPs for molluscivores and 1,118 SNPs for scale-eaters. We subsequently constructed genotypic fitness networks in igraph v. 1.2.4.1 (142) following the procedure outlined in the supplement.

Hybridization alters the fitness landscape

species pairs (in number of mutational steps). We used pairwise Tukey's HSD tests to test whether
 inter-species distances differed.

727

728 Estimation of evolutionary accessibility

729 We tested whether the evolutionary accessibility of genotypic fitness trajectories through 730 observed hybrid genotypes from generalist to each specialist species differed based on the source 731 of genetic variation. We restricted our investigation to networks composed of adaptive loci as 732 previously described (Figure 3A: Richards et al. 2021). This included a total of 380 SNPs in the 733 molluscivores, and 1,118 in the scale-eaters. The reduced number of adaptive SNPs sites in our 734 dataset as compared to that of (55) is due primarily to the increased stringency of our filtering. 735 We further partitioned these SNPs by their respective sources: standing genetic variation 736 (molluscivore N = 364; scale-eater N = 1,029), *de novo* mutation (scale-eater N = 24), or 737 introgression (molluscivore N = 16; scale-eater N = 65), again using the assignments from 738 Richards et al. (55). For analyses of trajectories between generalists and molluscivores, we 739 included only SNPs found to be sweeping in molluscivores; likewise, we included only SNPs 740 sweeping in scale-eaters for analysis of trajectories between generalists and scale-eaters. 741 The full procedure for constructing genotypic fitness networks, identifying accessible 742 paths, and quantifying accessibility is outlined in the supplement. Briefly, we randomly 743 generated 5,000 datasets of five SNPs comprised of either 1) standing genetic variation, 2)

adaptive introgression, 3) *de novo* mutation (scale-eaters only), 4) standing genetic variation +

adaptive introgression, 5) standing genetic variation + *de novo* mutation, or 6) standing genetic

variation + adaptive introgression + *de novo* mutation (scale-eaters only). We additionally

747 repeated this procedure using both classes of SNPs for molluscivores to determine whether

Hybridization alters the fitness landscape

748	genotypic trajectories separating generalists to molluscivores are more accessible than those
749	between generalists and scale-eaters. Because different sets of sites are sweeping in each
750	specialist, we conducted these analyses separately for each species. We then constructed
751	genotypic networks, in which nodes are haplotypes of SNPs encoded in 012 format ($0 =$
752	homozygous reference, 1 = heterozygote, 2 = homozygous alternate), and edges link mutational
753	neighbors. When determining whether a path was accessible or not, we only included paths for
754	which each mutational step (i.e. each intervening haplotype) between generalist to specialist was
755	observed in at least one hybrid sample.
756	With these networks, we sought to ask 1) whether molluscivores or scale-eaters are more
757	accessible to generalists on their respective genotypic fitness landscapes, 2) whether the
758	ruggedness of the genotypic fitness landscape varied among specialists, and 3) whether
759	accessibility is contingent upon the source of genetic variation available to natural selection. For
760	each random network sampled and for each measure of fitness we calculated 1) the minimum
761	length of accessible paths between a random generalist and specialist sampled from our
762	sequenced individuals, 2) the number of accessible paths between the same generalist and
763	specialist pair, 3) the number of nodes, 4) the number of edges in the network, 5) the number of
764	peaks on the landscape (genotypes with no fitter neighbors (32)), 6) the distance of parental
765	nodes to these peaks, and 7) the number of accessible paths separating them. Larger networks
766	often have a greater number of potential paths, including both accessible and inaccessible paths
767	(Figure 4—figure supplement 1), and we were interested in the relative availability of accessible
768	adaptive pathways. Consequently, we divided the number of accessible paths in each random
769	network sampled by the number of nodes. Using our six summary statistics, we tested whether
770	accessibility and landscape ruggedness differed between networks constructed from

Hybridization alters the fitness landscape

771	SGV/Introgression/De novo mutations (for scale-eaters) or SGV/Introgression (for
772	molluscivores). To do so, we calculated the mean and standard error of each summary statistic
773	across all 5,000 replicates. We then modeled the association between each summary statistic and
774	species using a logistic regression, whereby species was modeled as a binary response variable
775	(i.e. scale-eater networks = 0, molluscivore networks = 1), with each measure of accessibility as
776	the predictor. We arbitrarily treated scale-eater networks as the control, and using the estimated
777	coefficients obtained an odds ratio (OR) that corresponds to the extent to which molluscivore
778	networks either have increased (OR $>$ 1) or decreased (OR $<$ 1) accessibility measures relative to
779	scale-eater networks. Significance was similarly assessed using a likelihood ratio test. Additional
780	details on this procedure may be found in the supplement. Using the fitted logistic model, we
781	conducted a likelihood ratio test to quantify significance. To explicitly test the hypothesis that
782	increasing landscape ruggedness reduced the length of accessible paths to the nearest fitness
783	peak, we fit a Poisson regression model in R in which the number of fitness peaks predicts the
784	length of the shortest accessible path between any generalist or specialist node and any fitness
785	peak on that landscape: glm(Min. Distance to Peak ~ Number of Peaks, family = "poisson").
786	A similar procedure was used to assess whether measures of accessibility (scaled number
787	of accessible paths, length of the shortest accessible path) and landscape ruggedness (number of
788	peaks) differed within species among networks constructed from different sources of genetic
789	variation. Here, networks constructed from SGV were treated as the control, to which all other
790	networks were compared. For example, to test whether accessibility of the generalist-to-scale-
791	eater paths are greater in networks constructed from <i>de novo</i> mutations than those from SGV, a
792	logistic model was fitted wherein the response variable for SGV networks was assigned to be 0,
793	and 1 for <i>de novo</i> networks. As before, significance was similarly assessed using a likelihood

37

- ratio test, but here *P*-values were corrected for multiple testing using the false discovery rate
- 795 (143). We assessed whether differences in these measures among the two alternate generalist to
- specialist trajectories in networks constructed from all three sources of variation were significant
- vising an ANOVA in R (144). Due to the highly skewed nature of these distributions, post-hoc
- pairwise significance was assessed using a nonparametric Kruskal-Wallis one-way analysis of
- variance in the agricolae package (145) in R.

Hybridization alters the fitness landscape

800 Literature Cited

- S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution.
 Sixth Int. Congr. Genet., 356–366 (1932).
- 803 2. S. Gavrilets, Evolution and speciation on holey adaptive landscapes. *Trends Ecol. Evol.*804 12, 307–312 (1997).
- 805 3. S. Gavrilets, "High-dimensional fitness landscapes and speciation" in *Evolution—the*806 *Extended Synthesis*, M. Pigliucci, G. B. Müller, Eds. (MIT Press, 2010), pp. 51–64.
- 807 4. E. Svensson, R. Calsbeek, *The adaptive landscape in evolutionary biology*, E. Svensson,
 808 R. Calsbeek, Eds. (Oxford University Press, 2012).
- I. Fragata, A. Blanckaert, M. A. Dias Louro, D. A. Liberles, C. Bank, Evolution in the
 light of fitness landscape theory. *Trends Ecol. Evol.* 34, 69–82 (2019).
- 811 6. K. K. Fear, T. Price, The adaptive surface in ecology. *Oikos* 82, 440–448 (1998).
- 812 7. G. G. Simpson, *Tempo and mode in evolution* (Columbia University Press, 1944).
- 8. S. Kauffman, S. Levin, Towards a general theory of adaptive walks on rugged landscapes.
 814 *J. Theor. Biol.* 128, 11–45 (1987).
- 815 9. R. Lande, S. J. Arnold, The measurement of selection on correlated characters. *Evolution*816 37, 1226 (1983).
- 817 10. S. J. Arnold, M. E. Pfrender, A. G. Jones, "The adaptive landscape as a conceptual bridge
 818 between micro- and macroevolution" in *Microevolution Rate, Pattern, Process*, (Springer,
 819 Dordrecht, 2001), pp. 9–32.
- 820 11. S. J. Arnold, Performance surfaces and adaptive landscapes. *Integr. Comp. Biol.* 43, 367–
 821 375 (2003).
- B. Schluter, P. R. Grant, Determinants of morphological patterns in communities of
 Darwin's finches. *Am. Nat.* 123, 175–196 (1984).
- B24 13. D. Schluter, Estimating the form of natural selection on a quantitative trait. *Evolution* 42, 849–861 (1988).
- A. P. Hendry, S. K. Huber, L. F. De León, A. Herrel, J. Podos, Disruptive selection in a
 bimodal population of Darwin's finches. *Proc. R. Soc. B Biol. Sci.* 276, 753–759 (2009).
- M. O. Beausoleil, *et al.*, Temporally varying disruptive selection in the medium ground
 finch (Geospiza fortis). *Proc. R. Soc. B Biol. Sci.* 286 (2019).
- 830 16. C. W. Benkman, Divergent selection drives the adaptive radiation of crossbills. *Evolution*831 57, 1176–1181 (2003).
- 832 17. C. H. Martin, P. C. Wainwright, Multiple fitness peaks on the adaptive landscape drive
 833 adaptive radiation in the wild. *Science* 339, 208–211 (2013).
- 18. C. H. Martin, K. J. Gould, Surprising spatiotemporal stability of a multi-peak fitness
 landscape revealed by independent field experiments measuring hybrid fitness. *Evol. Lett.*4, 530–544 (2020).
- 837 19. S. Gavrilets, *Fitness landscapes and the origin of species* (Princeton University Press,
 838 2004).
- 839 20. M. Turelli, N. H. Barton, J. A. Coyne, Theory and speciation. *Trends Ecol. Evol.* 16, 330–343 (2001).
- 841 21. M. R. Servedio, J. W. Boughman, The role of sexual selection in local adaptation and
 842 speciation. *Annu. Rev. Ecol. Evol. Syst.* 48, 85–109 (2017).
- C. Bank, S. Matuszewski, R. T. Hietpas, J. D. Jensen, On the (un)predictability of a large intragenic fitness landscape. *Proc. Natl. Acad. Sci. U. S. A.* 113, 14085–14090 (2016).
- 845 23. S. Wright, Evolution in Mendelian Populations. *Genetics* 16, 97–159 (1931).

- T. Aita, M. Iwakura, Y. Husimi, A cross-section of the fitness landscape of dihydrofolate
 reductase. *Protein Eng. Des. Sel.* 14, 633–638 (2001).
- 848 25. M. C. Whitlock, P. C. Phillips, F. B. G. Moore, S. J. Tonsor, Multiple fitness peaks and 849 epistasis. *https://doi.org/10.1146/annurev.es.26.110195.003125* **26**, 601–629 (1995).
- F. J. Poelwijk, D. J. Kiviet, D. M. Weinreich, S. J. Tans, Empirical fitness landscapes
 reveal accessible evolutionary paths. *Nature* 445, 383–386 (2007).
- F. J. Poelwijk, S. Tănase-Nicola, D. J. Kiviet, S. J. Tans, Reciprocal sign epistasis is a
 necessary condition for multi-peaked fitness landscapes. *J. Theor. Biol.* 272, 141–144
 (2011).
- F. J. Poelwijk, S. Tănase-Nicola, D. J. Kiviet, S. J. Tans, Reciprocal sign epistasis is a
 necessary condition for multi-peaked fitness landscapes. *J. Theor. Biol.* 272, 141–144
 (2011).
- 858 29. J. Neidhart, I. G. Szendro, J. Krug, Adaptation in tunably rugged fitness landscapes: The
 859 Rough Mount Fuji model. *Genetics* 198, 699–721 (2014).
- 30. J. Neidhart, I. G. Szendro, J. Krug, Adaptation in tunably rugged fitness landscapes: The
 Rough Mount Fuji model. *Genetics* 198, 699–721 (2014).
- B. M. Weinreich, N. F. Delaney, M. A. DePristo, D. L. Hartl, Darwinian evolution can
 follow only very few mutational paths to fitter proteins. *Science* 312, 111–114 (2006).
- 864 32. L. Ferretti, D. Weinreich, F. Tajima, G. Achaz, Evolutionary constraints in fitness
 865 landscapes. *Heredity (Edinb).* 121, 466–481 (2018).
- 33. J. Franke, A. Klözer, J. A. G. M. de Visser, J. Krug, Evolutionary accessibility of
 mutational pathways. *PLoS Comput. Biol.* 7, 1002134 (2011).
- 34. J. A. G. M. De Visser, J. Krug, Empirical fitness landscapes and the predictability of
 evolution. *Nat. Rev. Genet. 2014 157* 15, 480–490 (2014).
- 35. J. Maynard Smith, Natural selection and the concept of a protein space. *Nat. 1970* 2255232 225, 563–564 (1970).
- 872 36. C. Brandon Ogbunugafor, A reflection on 50 years of John Maynard Smith's "Protein
 873 Space." *Genetics* 214, 749–754 (2020).
- 874 37. R. A. Fisher, *The genetical theory of natural selection* (Oxford University Press, 1930).
- 875 38. H. A. Orr, The genetic theory of adaptation: A brief history. *Nat. Rev. Genet.* 6, 119–127
 876 (2005).
- 877 39. M. Karageorgi, *et al.*, Genome editing retraces the evolution of toxin resistance in the
 878 monarch butterfly. *Nature* 574, 409–412 (2019).
- M. A. Siddiq, D. W. Loehlin, K. L. Montooth, J. W. Thornton, Experimental test and
 refutation of a classic case of molecular adaptation in Drosophila melanogaster. *Nat. Ecol. Evol.* 1, 25 (2017).
- M. A. Siddiq, J. W. Thornton, Fitness effects but no temperature-mediated balancing
 selection at the polymorphic Adh gene of Drosophila melanogaster. *Proc. Natl. Acad. Sci. U. S. A.* 116, 21634–21640 (2019).
- K. S. Singh, *et al.*, The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. *Sci. Adv.* 6, eaba1070 (2020).
- F. Peng, *et al.*, Effects of beneficial mutations in pykF gene vary over time and across
 replicate populations in a long-term experiment with bacteria. *Mol. Biol. Evol.* 35, 202–
 210 (2018).
- 44. Z. D. Blount, C. Z. Borland, R. E. Lenski, Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. *Proc. Natl. Acad. Sci.*

		$-j \in \{1, \dots, n\}$
892		<i>U. S. A.</i> 105 , 7899–7906 (2008).
893	45.	A. I. Khan, D. M. Dinh, D. Schneider, R. E. Lenski, T. F. Cooper, Negative epistasis
894		between beneficial mutations in an evolving bacterial population. <i>Science</i> 332 , 1193–1196
895		(2011).
896 897	46.	P. Nosil, <i>et al.</i> , Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour. <i>Nat. Ecol. Evol.</i> 4 , 1673–1684 (2020).
898	47.	C. H. Martin, P. C. Wainwright, A remarkable species flock of Cyprinodon pupfishes
899		endemic to San Salvador Island, Bahamas. Bull. Peabody Museum Nat. Hist. 54, 231–241
900		(2013).
901	48.	C. H. Martin, Context dependence in complex adaptive landscapes: frequency and trait-
902		dependent selection surfaces within an adaptive radiation of Caribbean pupfishes.
903		<i>Evolution</i> 70 , 1265–1282 (2016).
904	49.	B. J. Turner, D. D. Duvernell, T. M. Bunt, M. G. Barton, Reproductive isolation among
905		endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: Microsatellite
906		evidence. Biol. J. Linn. Soc. 95, 566–582 (2008).
907	50.	C. H. Martin, P. C. Wainwright, Trophic novelty is linked to exceptional rates of
908		morphological diversification in two adaptive radiations of cyprinodon pupfish. Evolution
909		65 , 2197–2212 (2011).
910	51.	M. E. St. John, K. E. Dixon, C. H. Martin, Oral shelling within an adaptive radiation of
911		pupfishes: Testing the adaptive function of a novel nasal protrusion and behavioural
912		preference. J. Fish Biol. 97, 163–171 (2020).
913	52.	C. H. Martin, J. A. McGirr, E. J. Richards, M. E. St. John, How to investigate the origins
914		of novelty: Insights gained from genetic, behavioral, and fitness perspectives. Integr. Org.
915		<i>Biol.</i> 1 (2019).
916	53.	M. E. St. John, R. Holzman, C. H. Martin, Rapid adaptive evolution of scale-eating
917		kinematics to a novel ecological niche. J. Exp. Biol. 223 (2020).
918	54.	C. H. Martin, L. C. Feinstein, Novel trophic niches drive variable progress towards
919		ecological speciation within an adaptive radiation of pupfishes. Mol. Ecol. 23, 1846–1862
920		(2014).
921	55.	E. J. Richards, et al., A vertebrate adaptive radiation is assembled from an ancient and
922		disjunct spatiotemporal landscape. Proc. Natl. Acad. Sci. 118, e2011811118 (2021).
923	56.	D. B. Weissman, M. W. Feldman, D. S. Fisher, The rate of fitness-valley crossing in
924		sexual populations. Genetics 186, 1389–1410 (2010).
925	57.	D. B. Weissman, M. M. Desai, D. S. Fisher, M. W. Feldman, The rate at which asexual
926		populations cross fitness valleys. Theor. Popul. Biol. 75, 286-300 (2009).
927	58.	Y. Iwasa, F. Michor, M. A. Nowak, Stochastic tunnels in evolutionary dynamics. Genetics
928		166 , 1571–1579 (2004).
929	59.	A. F. Bitbol, D. J. Schwab, Quantifying the role of population subdivision in evolution on
930		rugged fitness landscapes. PLoS Comput. Biol. 10, e1003778 (2014).
931	60.	A. Wagner, "High-dimensional adaptive landscapes facilitate evolutionary innovation" in
932		The Adaptive Landscape in Evolutionary Biology, E. I. Svensson, R. Calsbeek, Eds.
933		(Oxford University Press, 2012), pp. 271–282.
934	61.	M. Conrad, The geometry of evolution. Biosystems 24, 61-81 (1990).
935	62.	A. C. Whibley, <i>et al.</i> , Evolutionary paths underlying flower color variation in
936		Antirrhinum. <i>Science</i> 313 , 963–966 (2006).
937	63.	G. Martin, S. F. Elena, T. Lenormand, Distributions of epistasis in microbes fit predictions

938		from a fitness landscape model. Nat. Genet. 2007 394 39, 555-560 (2007).
939	64.	P. A. Gros, H. Le Nagard, O. Tenaillon, The evolution of epistasis and its links with
940		genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics
941		182 , 277–293 (2009).
942	65.	S. Hwang, S. C. Park, J. Krug, Genotypic complexity of Fisher's Geometric Model.
943		Genetics 206, 1049–1079 (2017).
944	66.	S. C. Park, S. Hwang, J. Krug, Distribution of the number of fitness maxima in Fisher's
945		geometric model. J. Phys. A Math. Theor. 53, 385601 (2020).
946	67.	R. Froese, D. Pauldy, FishBase. <i>FishBase</i> (2021).
947	68.	O. Seehausen, others, Genomics and the origin of species. <i>Nat. Rev. Genet.</i> 15 , 176–192
948	00.	(2014).
949	69.	
	09.	S. H. Martin, C. D. Jiggins, Interpreting the genomic landscape of introgression. <i>Curr</i> .
950 051	70	<i>Opin. Genet. Dev.</i> 47 , 69–74 (2017).
951	70.	D. A. Marques, J. I. Meier, O. Seehausen, A Combinatorial View on Speciation and
952		Adaptive Radiation. Trends Ecol. Evol. 34, 531–544 (2019).
953	71.	T. C. Nelson, W. A. Cresko, Ancient genomic variation underlies repeated ecological
954		adaptation in young stickleback populations. Evol. Lett. 2, 9–21 (2018).
955	72.	K. A. Thompson, M. M. Osmond, D. Schluter, Parallel genetic evolution and speciation
956		from standing variation. Evol. Lett. 3, 129–141 (2019).
957	73.	J. Mallet, Hybrid speciation. Nature 446, 279-83 (2007).
958	74.	O. Seehausen, Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207
959		(2004).
960	75.	C. Pardo-Diaz, et al., Adaptive introgression across species boundaries in Heliconius
961		butterflies. PLoS Genet. 8, e1002752 (2012).
962	76.	J. B. Pease, D. C. Haak, M. W. Hahn, L. C. Moyle, Phylogenomics reveals three sources
963		of adaptive variation during a rapid radiation. PLoS Biol. 14, e1002379 (2016).
964	77.	E. J. Richards, J. W. Poelstra, C. H. Martin, Don't throw out the sympatric speciation with
965		the crater lake water: fine-scale investigation of introgression provides equivocal support
966		for causal role of secondary gene flow in one of the clearest examples of sympatric
967		speciation. Evol. Lett. 2, 524–540 (2018).
968	78.	J. I. Meier, <i>et al.</i> , Ancient hybridization fuels rapid cichlid fish adaptive radiations. <i>Nat.</i>
969	70.	<i>Commun.</i> 8 , 14363 (2017).
909 970	79.	
970 971	79.	M. D. McGee, <i>et al.</i> , The ecological and genomic basis of explosive adaptive radiation.
	20	Nature 586 , 75–79 (2020).
972	80.	I. Irisarri, <i>et al.</i> , Phylogenomics uncovers early hybridization and adaptive loci shaping the
973	0.1	radiation of Lake Tanganyika cichlid fishes. <i>Nat. Commun.</i> 9, 1–12 (2018).
974	81.	E. J. Richards, C. H. Martin, Adaptive introgression from distant Caribbean islands
975		contributed to the diversification of a microendemic adaptive radiation of trophic
976		specialist pupfishes. PLoS Genet. 13, e1006919 (2017).
977	82.	D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in
978		unrelated individuals. Genome Res. 19, 1655–1664 (2009).
979	83.	D. H. Alexander, K. Lange, Enhancements to the ADMIXTURE algorithm for individual
980		ancestry estimation. BMC Bioinformatics 12, 1-6 (2011).
981	84.	M. E. Arnegard, et al., Genetics of ecological divergence during speciation. Nature 511,
982		307–311 (2014).
983	85.	S. Wang, J. J. Hard, F. Utter, Genetic variation and fitness in salmonids. Conserv. Genet.

984		3 , 321–333 (2002).
985	86.	R. Leimu, P. Mutikainen, J. Koricheva, M. Fischer, How general are positive relationships
986		between plant population size, fitness and genetic variation? J. Ecol. 94, 942–952 (2006).
987	87.	D. Schluter, et al., Fitness maps to a large-effect locus in introduced stickleback
988		populations. Proc. Natl. Acad. Sci. U. S. A. 118, 1914889118 (2021).
989	88.	J. A. McGirr, C. H. Martin, Ecological divergence in sympatry causes gene misexpression
990		in hybrids. <i>Mol. Ecol.</i> 29 , 2707–2721 (2020).
991	89.	Y. Nakamura, et al., Wwp2 is essential for palatogenesis mediated by the interaction
992	0.0	between Sox9 and mediator subunit 25. Nat. Commun. 2, 1–10 (2011).
993	90.	L. Mork, G. Crump, "Zebrafish craniofacial development: A Window into early
994		patterning" in Current Topics in Developmental Biology, Y. Chai, Ed. (Academic Press
995 006	01	Inc., 2015), pp. 235–269.
996 007	91.	T. Manousaki, <i>et al.</i> , Parsing parallel evolution: ecological divergence and differential
997 998		gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from $Mathematical Mathematical Mathematicae Mathematicae Mathematicae Mathemati$
998 999	92.	Nicaragua. <i>Mol. Ecol.</i> 22 , 650–669 (2013). S. J. Lim, <i>et al.</i> , Taurine is an essential nutrient for juvenile parrot fish Oplegnathus
1000	92.	fasciatus. Aquaculture 414–415, 274–279 (2013).
1000	93.	T. G. Gaylord, A. M. Teague, F. T. Barrows, Taurine supplementation of all-plant protein
1001	<i>))</i> .	diets for rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 37, 509–517 (2006).
1002	94.	M. Yokoyama, T. Takeuchi, G. S. Park, J. Nakazoe, Hepatic cysteinesulphinate
1003	<i>y</i> 1.	decarboxylase activity in fish. Aquac. Res. 32, 216–220 (2001).
1005	95.	Z. Zhou, <i>et al.</i> , Genome-wide association study of growth and body-shape related traits in
1006	201	large yellow croaker (Larimichthys crocea) using ddRAD sequencing. <i>Mar. Biotechnol.</i>
1007		21 , 655–670 (2019).
1008	96.	G. M. Yoshida, J. M. Yáñez, Multi-trait GWAS using imputed high-density genotypes
1009		from whole-genome sequencing identifies genes associated with body traits in Nile tilapia.
1010		BMC Genomics 22, 1–13 (2021).
1011	97.	J. Kulmuni, A. M. Westram, Intrinsic incompatibilities evolving as a by-product of
1012		divergent ecological selection: Considering them in empirical studies on divergence with
1013		gene flow. Mol. Ecol. 26, 3093–3103 (2017).
1014	98.	L. F. S. Fonseca, et al., Gene expression profiling and identification of hub genes in
1015		Nellore cattle with different marbling score levels. Genomics 112, 873–879 (2020).
1016	99.	P. Pavlidis, D. Živković, A. Stamatakis, N. Alachiotis, SweeD: Likelihood-based
1017		detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224-2234
1018		(2013).
1019	100.	N. Alachiotis, A. Stamatakis, P. Pavlidis, OmegaPlus: A scalable tool for rapid detection
1020		of selective sweeps in whole-genome datasets. <i>Bioinformatics</i> 28, 2274–2275 (2012).
1021	101.	J. A. G. M. De Visser, J. Krug, Empirical fitness landscapes and the predictability of
1022	100	evolution. Nat. Rev. Genet. 2014 157 15, 480–490 (2014).
1023	102.	M. C. Whitlock, P. C. Phillips, F. B. G. Moore, S. J. Tonsor, Multiple fitness peaks and
1024	102	epistasis. https://doi.org/10.1146/annurev.es.26.110195.003125 26 , 601–629 (1995).
1025	103.	R. D. H. Barrett, D. Schluter, Adaptation from standing genetic variation. <i>Trends Ecol.</i>
1026	104	Evol. 23, 38–44 (2008).
1027	104.	J. Hermisson, P. S. Pennings, Soft sweeps and beyond: understanding the patterns and
1028 1029		probabilities of selection footprints under rapid adaptation. <i>Methods Ecol. Evol.</i> 8 , 700–716 (2017).
1029		(10(2017)).

1030	105.	P. W. Hedrick, Adaptive introgression in animals: examples and comparison to new
1031		mutation and standing variation as sources of adaptive variation. Mol. Ecol. 22, 4606-
1032		4618 (2013).
1033	106.	J. Kaplan, The end of the adaptive landscape metaphor? Biol. Philos. 2008 235 23, 625-
1034		638 (2008).
1035	107.	V. O. Pokusaeva, et al., An experimental assay of the interactions of amino acids from
1036		orthologous sequences shaping a complex fitness landscape. PLOS Genet. 15, e1008079
1037		(2019).
1038	108.	L. I. Gong, M. A. Suchard, J. D. Bloom, Stability-mediated epistasis constrains the
1039		evolution of an influenza protein. <i>Elife</i> 2013 (2013).
1040	109.	L. I. Gong, J. D. Bloom, Epistatically interacting substitutions are enriched during
1041		adaptive protein evolution. PLOS Genet. 10, e1004328 (2014).
1042	110.	F. Blanquart, T. Bataillon, Epistasis and the structure of fitness landscapes: Are
1043		experimental fitness landscapes compatible with fisher's geometric model? Genetics 203,
1044		847–862 (2016).
1045	111.	I. G. Szendro, M. F. Schenk, J. Franke, J. Krug, J. A. G. M. De Visser, Quantitative
1046		analyses of empirical fitness landscapes. J. Stat. Mech. Theory Exp., P01005 (2013).
1047	112.	T. C. Nelson, et al., Ancient and recent introgression shape the evolutionary history of
1048		pollinator adaptation and speciation in a model monkeyflower radiation (Mimulus section
1049		Erythranthe). PLoS Genet. 17, e1009095 (2021).
1050	113.	H. Svardal, et al., Ancestral hybridization facilitated species diversification in the lake
1051		malawi cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).
1052	114.	S. Lamichhaney, et al., Rapid hybrid speciation in Darwin's Finches. Science 359, 224-
1053		228 (2018).
1054	115.	P. R. Grant, B. R. Grant, Hybridization increases population variation during adaptive
1055		radiation. Proc. Natl. Acad. Sci. U. S. A. 116, 23216-23224 (2019).
1056	116.	N. B. Edelman, J. Mallet, Prevalence and adaptive impact of introgression. Annu. Rev.
1057		<i>Genet.</i> 55 , 265–283 (2021).
1058	117.	P. R. Grant, B. R. Grant, Hybridization increases population variation during adaptive
1059		radiation. Proc. Natl. Acad. Sci. U. S. A. 116, 23216-23224 (2019).
1060	118.	J. I. Meier, et al., The coincidence of ecological opportunity with hybridization explains
1061		rapid adaptive radiation in Lake Mweru cichlid fishes. Nat. Commun. 10 (2019).
1062	119.	
1063		secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids.
1064		<i>Mol. Ecol.</i> 27 , 4270–4288 (2018).
1065	120.	M. Moest, et al., Selective sweeps on novel and introgressed variation shape mimicry loci
1066		in a butterfly adaptive radiation. PLoS Biol. 18, e3000597 (2020).
1067	121.	R. C. Lewontin, L. C. Birch, Hybridization as a Source of Variation for Adaptation to
1068		New Environments. <i>Evolution</i> 20 , 315–336 (1966).
1069	122.	L. H. Rieseberg, M. A. Archer, R. K. Wayne, Transgressive segregation, adaptation and
1070		speciation. Heredity (Edinb). 83, 363 (1999).
1071	123.	K. Kagawa, G. Takimoto, Hybridization can promote adaptive radiation by means of
1072		transgressive segregation. Ecol. Lett. 21, 264–274 (2018).
1073	124.	R. Abbott, et al., Hybridization and speciation. J. Evol. Biol. 26, 229-46 (2013).
1074	125.	N. B. Edelman, J. Mallet, Prevalence and adaptive impact of introgression. Annu. Rev.
1075		<i>Genet.</i> 55 , 265–283 (2021).

Hybridization alters the fitness landscape

1076 126. Broad Institute, Picard Toolkit (2018). 1077 127. M. A. Depristo, et al., A framework for variation discovery and genotyping using next-1078 generation DNA sequencing data. Nat. Genet. 43, 491-501 (2011). 1079 128. R. Poplin, et al., Scaling accurate genetic variant discovery to tens of thousands of 1080 samples. bioRxiv, 201178 (2017). 1081 C. D. Marsden, et al., Diversity, differentiation, and linkage disequilibrium: Prospects for 129. 1082 association mapping in the malaria vector anopheles arabiensis. G3 Genes, Genomes, 1083 Genet. 4, 121–131 (2014). 1084 P. Danecek, et al., The variant call format and VCFtools. Bioinformatics 27, 2156-2158 130. 1085 (2011). 1086 131. S. Purcell, et al., PLINK: A tool set for whole-genome association and population-based 1087 linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007). 1088 C. T. DiVittorio, et al., Natural selection maintains species despite frequent hybridization 132. 1089 in the desert shrub Encelia. Proc. Natl. Acad. Sci. U. S. A. 117, 33373-33383 (2021). 1090 133. J. Hereford, A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173, 1091 579-588 (2009). 1092 134. A. Henningsen, censReg: Censored regression (Tobit) models. (2020). 1093 X. Zhou, M. Stephens, Genome-wide efficient mixed-model analysis for association 135. 1094 studies. Nat. Genet. 44, 821-824 (2012). 1095 P. Cingolani, et al., Using Drosophila melanogaster as a model for genotoxic chemical 136. 1096 mutational studies with a new program, SnpSift. Front. Genet. 3 (2012). 1097 S. X. Ge, D. Jung, D. Jung, R. Yao, ShinyGO: A graphical gene-set enrichment tool for 137. animals and plants. Bioinformatics 36, 2628-2629 (2020). 1098 1099 J. A. McGirr, C. H. Martin, Few fixed variants between trophic specialist pupfish species 138. 1100 reveal candidate cis-regulatory alleles underlying rapid craniofacial divergence. Mol. Biol. 1101 Evol. 38, 405-423 (2021). 1102 T. L. Hedrick, Software techniques for two- and three-dimensional kinematic 139. 1103 measurements of biological and biomimetic systems. *Bioinspiration and Biomimetics* **3**, 1104 034001 (2008). 1105 S. N. Wood, Fast stable restricted maximum likelihood and marginal likelihood estimation 140. 1106 of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol. 1107 73, 3–36 (2011). K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference (Springer 1108 141. 1109 New York, 2002). 1110 G. Csardi, T. Nepusz, The igraph software package for complex network research. 142. 1111 InterJournal Complex Syst. 1695, 1–9 (2006). 1112 Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful 143. 1113 approach to multiple testing. J. R. Stat. Soc. Ser. B, 289-300 (1995). 1114 144. R. C. Team, R: A language and environment for statistical computing. (2019). 1115 145. F. de Mendiburu, agricolae: Statistical procedures for agricultural research (2020). 1116 146. T. Guillerme, dispRity: A modular R package for measuring disparity. Methods Ecol. 1117 Evol. 9, 1755–1763 (2018). B. J. Knaus, N. J. Grünwald, VCFR: a package to manipulate and visualize variant call 1118 147. 1119 format data in R. Mol. Ecol. Resour. 17, 44-53 (2017). 1120 148. S. Der Yang, T. S. Lin, F. G. Liu, C. H. Liou, Influence of dietary phosphorus levels on 1121 growth, metabolic response and body composition of juvenile silver perch (Bidyanus

- 1122 bidyanus). *Aquaculture* **253**, 592–601 (2006).
- 1123 149. J. M. Costa, *et al.*, Inadequate dietary phosphorus levels cause skeletal anomalies and alter 1124 osteocalcin gene expression in Zebrafish. *Int. J. Mol. Sci.* **19**, 364 (2018).
- 1125 150. H. Yu, et al., Effects of stocking density and dietary phosphorus levels on the growth
- 1126 performance, antioxidant capacity, and nitrogen and phosphorus emissions of juvenile
- 1127 blunt snout bream (Megalobrama amblycephala). *Aquac. Nutr.* **27**, 581–591 (2021).
- 1128

Hybridization alters the fitness landscape

1129 **Appendix 1:**

1130 Supplementary Methods

1131 Sampling of hybrid individuals

1132 Samples of hybrid *Cyprinodon* pupfish included herein were first collected following two

separate fitness experiments, conducted on San Salvador Island in 2011 (17) and 2016 (18)

- 1134 respectively. Experiments were carried out in two lakes: Little Lake (LL), and Crescent Pond
- 1135 (CP). Following their initial collection at the conclusion of their respective experiments (see (17)
- and (18) for protocols), samples were stored in ethanol. In late 2018, 149 hybrid samples were
- selected for use in this experiment. Of these, 27 are from the experiment conducted in 2011 (14
- from LL, 13 from CP), and the remaining 122 are from the 2016 experiment (58 from LL, 64
- 1139 from CP). Due to reduced sample size for some species within Little Lake, we include fish
- obtained from Osprey Lake for downstream analyses comparing hybrids to Little Lake, as the two comprise a single, interconnected body of water.
- 1142

1143 Genomic Library Prep

- 1144 DNA was extracted from the muscle tissue of hybrids using DNeasy Blood and Tissue kits
- 1145 (Qiagen, Inc.); these extractions were then quantified using a Qubit 3.0 fluorometer (Thermo
- 1146 Scientific, Inc). Genomic libraries were prepared by the Vincent J. Coates Genomic Sequencing
- 1147 Center (QB3) on the automated Apollo 324 system (WaterGen Biosystems, Inc.). Samples were
- 1148 fragmented using a Covaris sonicator, and barcoded with Illumina indices. Samples were quality
- 1149 checked using a Fragment Analyzer (Advanced Analyical Technologies, Inc.). All samples were
- 1150 sequenced to approximately 10x raw coverage on an Illumina NovaSeq.
- 1151

1152 Genotyping and filtering

- 1153 Because we are interested in genomic variants found not only within our hybrid samples but
- across San Salvador island and the Caribbean, we conducted genotyping including all 247
- samples from Richards et al. (55). These samples include members of the three species (C.
- 1156 variegatus, C. brontotheroides, C. desquamator) found on San Salvador Island, as well as
- 1157 individuals of *C. variegatus* found throughout the Caribbean, and numerous outgroups (*C.*
- 1158 laciniatus, C. higuey, C. dearborni, Megupsilon aporus, and Cualac tesselatus). We then
- excluded *M. aporus* and *C. tesselatus* along with 18 additional samples for which necessary data
- 1160 for downstream analyses were missing (e.g. quality photographs for the collection of
- 1161 morphological data). This approach led to the retention of a total of 4,206,786 total SNPs and
- 1162 139 hybrid individuals.
- 1163

1164 Morphometrics

- 1165 Because the morphological measurements used in the 2013 and 2016 experiments differ slightly,
- 1166 we remeasured all sequenced hybrid individuals and up to 30 individuals of each parent species
- 1167 for the 30 morphological characters described in Martin & Gould (18), as well as for standard 1168 length (SL).
- 1169 For each photograph, unit-scale was obtained by additionally landmarking points on a
- 1170 regular grid included in each photograph using DLTdv8a (139). Landmark data (x-y coordinates
- 1171 in units of pixels) were subsequently uploaded into R and converted to millimeters (in the case of
- 1172 linear measurements) or degrees (for angular measurements) using a custom script.
- 1173 We then assessed, for each trait, the need for size-correction. That is, we sought to avoid 1174 an outsized role of body size in downstream interpretation. Thus, if a trait was colinear with SL,

Hybridization alters the fitness landscape

1175 we regressed the two (treating SL as the predictor) and took the residuals. In each case, both SL 1176 and the response were Log-10 transformed. Subsequently, residuals were scaled such that their 1177 distribution had a mean of 0, and a standard deviation of 1. Traits that did not need size 1178 correction were also Log-transformed and unit-scaled.

1179 We used these morphological measurements to estimate two linear discriminant (LD) 1180 axes that distinguish the generalist, molluscivore, and scale-eater using the LDA function in R. 1181 That is, we used morphological data from the 165 parental fish to estimate LD scores for each 1182 individual. Doing so, we were able to correctly assign individual fish to their corresponding 1183 species with 99.4% accuracy (Figure 2—figure supplement 4-5). Attempting to predict species 1184 assignment by lake did not improve this prediction accuracy (instead reducing prediction 1185 accuracy to 98.7%); consequently, we proceeded with the LD axes estimated without accounting 1186 for lake.

1187 We additionally asked whether 1) specialists were more morphologically constrained 1188 than generalists and 2) if hybrids were less constrained than the three parental species. To do so, 1189 we calculated morphological disparity per group using the dispRity.per.group function 1190 implemented in the R package dispRity v1.3.3 (146). Specifically, this function calculates the 1191 median distance between each row (sample) and the centroid of the matrix per group. By 1192 bootstrapping the data 100 times, we tested the hypothesis that each of the three parental species 1193 differed significantly in their morphological disparity, first using an ANOVA, followed by a 1194 post-hoc pairwise t-test to assess pairwise significance in R. We corrected for multiple tests 1195 using an FDR correction.

1196 To test whether genetic distance predicts morphological distance, we calculated two 1197 distance matrices. First, we calculated pairwise Euclidean distances between all hybrids using all 1198 morphological variables. Then, we calculated pairwise genetic distances between all hybrids 1199 using the final set of SNPs described above with the genet.dist function implemented in vcfR 1200 (147). We then fit a simple linear model, regressing genetic distance on morphological distance.

1201

1202 Estimation of Adaptive Landscapes

1203 We sought to characterize the extent to which the three measures of fitness are predicted by 1204 morphology alone and to, in turn, visualize fitness landscapes for our sequenced hybrids. To do 1205 so, we fitted six generalized additive models (GAMs) using the mgcv package v. 1.8.28 (140) in 1206 R. All models included a thin-plate spline fitted for the two linear discriminant axes. Because we 1207 have strong *a priori* knowledge that fitness outcomes will be contingent to some extent on 1208 experiment year and on the lake in which hybrids were placed, we include experiment and lake 1209 in all fitted models, modeled either as fixed effects, or as an interaction term between the two. 1210 Additionally, we fitted models that included individual splines for each linear discriminant axis, 1211 either with or without experiment or lake as a factor smooth. The full list of models and their

- 1212 respective fits are included in the supplement (Appendix 1—table 11-13).
- For composite fitness, we excluded three SNPs that were within close proximity (i.e. < 1214 1000bp) to a SNP that was more significantly associated. Because of the reduced number of 1215 significantly associated SNPs identified for growth (four) as compared to composite fitness (ten),
- 1216 we were able to fit and compare all combinations of significantly associated SNPs for the former.
- 1217 The best-fit model for composite fitness was also the most complex, including all fitness
- 1218 associated SNPs. Thus, to reduce model complexity, we fit one additional model, excluding any
- 1219 of the three SNP (fixed effect) that was not significant in the full model. The full range of models

Hybridization alters the fitness landscape

and their associated fits are reported in Appendix 1—table 14-15. As before, predicted fitness

- values across LD space were extracted from the best-fit model and plotted using R.
- 1222

1223 Genotypic Fitness Networks

1224 Recent work has shown that the adaptive radiation of the pupfish of San Salvador island involved selection on standing genetic variation, adaptive introgression, and de novo mutation (55). 1225 1226 Furthermore, the specialists on San Salvador Island received approximately twice as much 1227 adaptive introgression as did generalists on neighboring islands. These findings imply that each 1228 source of genetic variation may exert a unique influence on the fitness landscape, in turn 1229 facilitating the radiation. We sought to explore this possibility and so estimated genotypic fitness 1230 networks using sites previously shown to have undergone hard selective sweeps in specialists. To 1231 do so, we identified the SNPs in our un-thinned dataset overlapping with sites inferred to have 1232 undergone selective sweeps (55) to produce two datasets (one for each specialist). We then 1233 constructed networks using the following procedure:

- 1234
- 1235 1) Target SNPs were extracted from the vcf file of all sequenced hybrids and parental species 1236 from Crescent Pond and Little Lake in 0/1/2 format using VCFtools. That is, individuals 1237 genotyped as homozygote reference were coded as 0, heterozygotes as 1, and homozygote 1238 alternatives as 2. Note again that the reference genome used was that of the molluscivore, 1239 *C. brontotheroides.*
- 1240
 2) These SNPs were subsequently loaded into R, and concatenated into haplotypes, such that
 1241
 1242
 1242
 1243
 assignment as hybrid or one of the three parental species, and lake of origin.
- 1244
 3) Each haplotype was subsequently collapsed and summarized, such that mean survival,
 1245
 1246
 1246
 1247
 1247
 1247
 1248
 1249
 1249
 1249
 1249
 1240
 1240
 1241
 1241
 1241
 1242
 1242
 1243
 1244
 1244
 1244
 1245
 1245
 1246
 1246
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247
 1247</li
- 1248
 1249
 1250
 4) The distance, in number of mutational steps was then calculated for each pairwise combination of haplotypes. For example, the distance between haplotype 000 and 001 is a single mutational step, whereas haplotypes 000 and 002 are two steps away.
- 1251 5) Lastly, we constructed networks using the R package igraph v. 1.2.4.1 (142). Specifically, nodes represent haplotypes, and edges are drawn between haplotypes that are mutational neighbors (i.e. are a single mutational step away). Nodes present in hybrids were colored and sized proportional to their respective mean fitness. Nodes present only in parental species were colored according to the species in which that haplotype is unique to.
- 1256

1257 Estimation of evolutionary accessibility

The large number of SNPs in our dataset above raises numerous challenges in the visualization and summarization of fitness networks. Perhaps most significant, is that as the number of sites assessed increases, the sequence space increases vastly; the number of potential haplotypes is defined by 3 to the power of the number of SNPs, and the number of potential edges is defined by the number of haplotypes choose 2. Consequently, networks constructed from a larger number of focal SNPs are comprised of haplotypes that are separated on average by more mutational steps than those constructed from fewer SNPs. Because we can only interpret the

1265 fitness consequences of evolutionary trajectories for which we have data along each mutational

Hybridization alters the fitness landscape

step, we restricted analysis to haplotypes that are mutational neighbors (i.e., separated by a singlemutational step).

1268 To do so, we developed a permutation approach to construct fitness networks from SNPs 1269 that were sourced from the three sources of genetic variation defined above as well as all possible combinations including standing variation (i.e. standing genetic variation + adaptive 1270 1271 introgression and/or de novo mutation). Specifically, from each set we sampled five SNPs up to 1272 5000 times. For networks constructed from combinations of sources (e.g. SGV + introgression), 1273 we ensured that at least one of each source was present. To do so, we generated 1000 random 1274 sets of SNPs for all possible combinations (e.g. 1 SGV - 4 introgression, 2 SGV - 31275 introgression, etc). Then, we sampled up to 5000 of these combinations; these samples comprise 1276 our permutations. Then, from each permutation, we constructed fitness networks using the five 1277 steps defined above; these networks served as the subsequent assessment of evolutionary 1278 accessibility of genotypic trajectories separating the generalists from either specialist. Edges 1279 were only drawn such that the network is directed; that is, edges were drawn from low to higher 1280 or equal fitness nodes.

1281 We constructed networks using both parental species and hybrids. For each trajectory 1282 under consideration (generalist \rightarrow molluscivore & generalist \rightarrow scale-eater), we first identified 1283 all generalist to specialist trajectories that are connected by accessible (monotonically increasing) 1284 paths. From these connected generalist-specialist node pairs, we randomly sampled a single pair. 1285 We then identified the number and length of accessible paths separating the generalist node from 1286 the specialist node and recorded these values using the "all simple paths" function in igraph and 1287 excluded any paths that traversed through haplotypes not found in any hybrid (i.e., exclusive to 1288 parental species) and thus had no information on fitness.

1289 Specifically, two node paths (a single mutational step from generalist to specialist) were 1290 allowed only if both parental nodes (SNP haplotypes) were also observed in hybrids, with fitness 1291 data. Three-node paths were allowed if hybrid fitness data was present for at least one of the 1292 parental nodes and the intervening node between the two parental nodes. Paths that were four 1293 nodes or longer were allowed only if all intervening nodes between parental nodes had 1294 associated hybrid fitness data.

We additionally calculated the number of peaks on the genotypic fitness landscape, as well as the number of accessible paths between parental nodes and these peaks, and the minimum distance from parental nodes to a peak on the landscape. We define 'peaks' on the genotypic fitness landscape as genotypes (SNP haplotypes) with no-fitter neighboring genotype, follow the definition of Ferretti et al. (32). This definition is inclusive of nodes/genotypes that are equal in fitness to their neighbors, which may be fitter than all other neighboring nodes. We conservatively excluded nodes that shared only a single neighbor.

1302

1303 Supplementary Results

- 1304 Population ancestry associations with fitness
- 1305 When repeating our test for an association between fitness measures and ancestry proportions as
- 1306 estimated from a supervised ADMIXTURE analyses, we recovered similar results with one
- 1307 exception; generalist ancestry was significantly associated with growth rate (generalist: P =
- 1308 0.021). Admixture proportions estimated from an unsupervised analysis did not significantly
- 1309 predict any measure of fitness when only using hybrids from the second field experiment
- 1310 (Appendix 1—table 4) (18). Genome-wide PC1 was associated with composite fitness (P =
- 1311 0.004) and survival (P < 0.001), whereas PC2 was not (Appendix 1—table 5). However, PC1

Hybridization alters the fitness landscape

- 1312 largely explains differences among lakes (Figure 1c); thus, the positive correlation between PC1
- and fitness is likely explained by the previously described overall differences in survival
- 1314 observed between the two lakes in past experiments (17, 18).
- 1315
- 1316 Genomic associations recovered for composite fitness and growth, not survival
- 1317 Whereas we identified 132 SNPs that were associated with composite fitness, only 58 were
- associated with growth and none were associated with survival. Of the SNPs associated with
- growth, only four remained significant using the conservative Bonferroni threshold. Across all
 significant sites (either via FDR or Bonferroni correction) a total of 11 were shared across
- 1321 analyses. The only gene proximate to a growth associated SNP was *csad*. Lastly, we found a
- 1321 analyses. The only gene proximate to a growth associated SINF was *CSuu*. Las
- single gene shared between our study and the 125 ecological DMIs (putative genetic
 incompatibilities that are differentially expressed among specialists and misexpressed in F1
- 1324 hybrids) presented in McGirr & Martin (88). This gene, associated with growth (but not
- 1325 composite fitness) in our study, is *mettl21e*.
- 1326 When considering SNPs found to be associated with growth, we did not identify any gene 1327 ontologies that were significantly enriched at a False Discovery Rate < 0.01. However, looking 1328 at those enriched at an FDR < 0.05, we do observe a number of ontologies related to biosynthetic 1329 processes, and regulation of metabolic processes (Figure 2-figure supplement 3). Specifically, 1330 the greatest (and most significant) enrichment was for that of phosphorus and phosphate 1331 containing compound metabolic processes and their regulation. Phosphorous deficiencies have 1332 previously been associated with poor growth in silver perch (Bidyanus bidyanus: (148)) and 1333 skeletal deformaties (including vertebral compression and craniofacial deformaties) in zebrafish 1334 (Danio rerio: (149)). Similarly, blunt snout bream (Megalobrama amblycephala) exhibited 1335 greater growth rates with increasing phosphorous levels in their diets (150). In short, enrichment 1336 of growth-associated SNPs for ontologies pertaining to phosphorous metabolism is consistent 1337 with the substantial literature documenting that phosphorous availability and metabolism is a 1338 determinant of growth in fishes.
- 1339

1340 Morphological variation within sampled hybrids

- 1341 As in the previous two experiments, there is a relative paucity of hybrids exhibiting the
- 1342 morphologies that characterize either specialist. Rather, most hybrids fall near the generalists,
- 1343 with a number exhibiting transgressive morphologies (Figure 2—figure supplement 5a). As
- 1344 expected, both specialists exhibit reduced morphological disparity as compared to generalists,
- and hybrids show the greatest (Figure 2—figure supplement 5b. That is, the specialists appear
- 1346 more morphologically constrained than generalists, falling on average closer to the group
- 1347 centroid. Interestingly molluscivores exhibit the least disparity, even less so than scale-eaters.
- 1348
- 1349 Fitness-associated SNPs influence shape of the adaptive landscape
- 1350 Using morphology alone, the best fit generalized additive model for survival, growth, and
- 1351 composite fitness were simpler than the model for composite fitness using both morphology and
- 1352 fitness-associated SNPs (Appendix 1—table 11-13). For survival and composite fitness (Figure
- 1353 2—figure supplement 6a-6b), this model included a thin-plate spline for LD1 & LD2, with
- 1354 experiment and lake included as fixed effects. The resultant landscape was also similar for these
- two analyses, supporting an interpretation of directional selection, favoring molluscivores. For
- 1356 growth, the best-fit model had the thin-plate spline for LD1 & LD2, but included an interaction
- 1357 term between experiment and lake (Figure 2—figure supplement 6c; Appendix 1—table 12). In

- 1358 contrast to the previous two models, the landscape predicted using growth as our proxy of fitness
- 1359 supported an interpretation of directional selection in favor or hybrids most similar to generalists,
- 1360 and to a lesser extent, scale-eaters.
- 1361 Notably, model selection using AICc invariably supported the inclusion of fitness
- 1362 associated SNPs for growth and composite fitness (Appendix 1—table 14-15). For growth, the
- 1363 best-fit model including genotypes was an improvement of 22.99 AICc over the model including
- 1364 morphology alone, whereas for composite fitness, the improvement was 94.527 AICc.
- 1365 Interestingly, the best-fit models and growth including associated SNPs was similar to that of the
- 1366 landscape without fitness-associated SNPs, but largely supported an interpretation of directional
- 1367 selection in favor of scale-eaters, and to a lesser extent generalists.

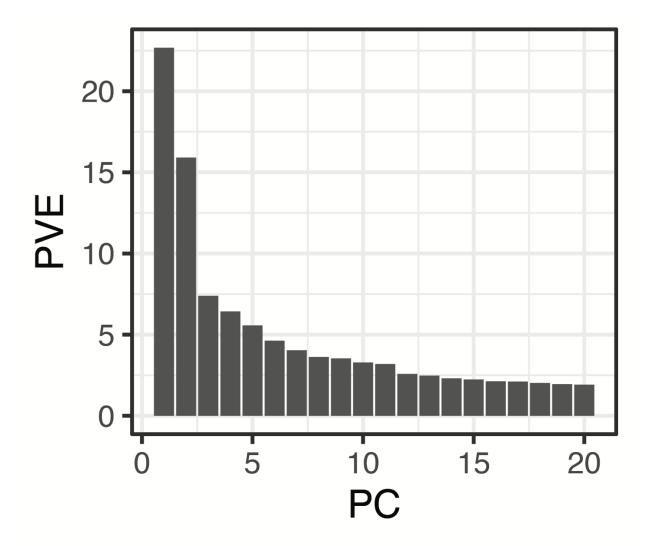


Figure 1—figure supplement 1. Proportion (%) genetic variance explained by the first 20 Principal Components obtained using all SNPs and individuals from Crescent Pond, Little Lake, and Osprey Lake, as well as experimental hybrids. The first two principal component axes are plotted in Figure 1.

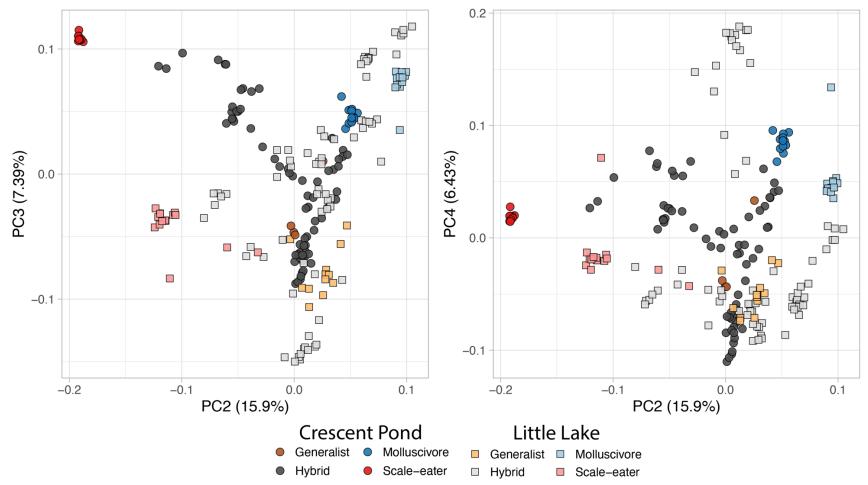


Figure 1—figure supplement 2. Principal components two, three, and four.

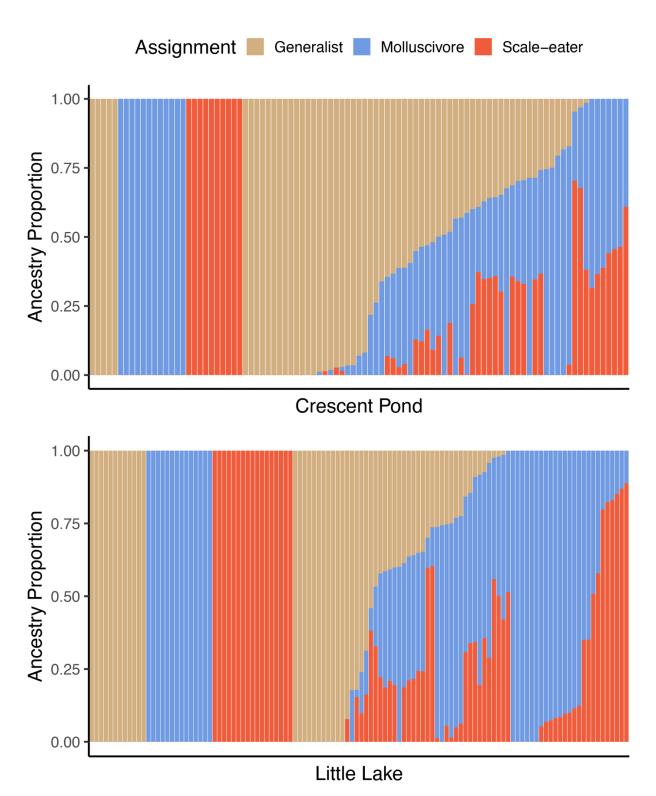


Figure 1—figure supplement 3. Supervised ADMIXTURE analyses for Crescent Pond (top) and Little Lake (bottom). Sampled individuals of each species (leftmost) individuals were assigned to one of three populations, whereas ancestry proportions were estimated for all resequenced hybrid individuals from field experiments. Colors correspond to probability of assignment to one of three assumed populations/species (K = 3) in this analysis).

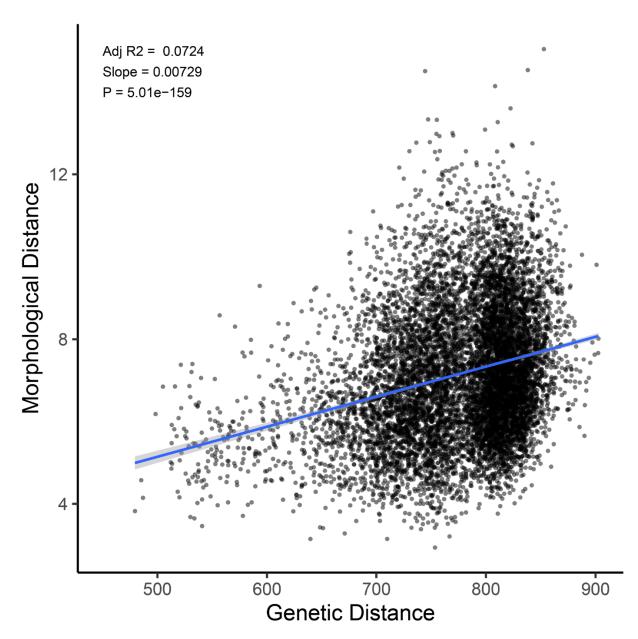


Figure 1—figure supplement 4. Genetic distance predicts morphological distance among sampled hybrids.

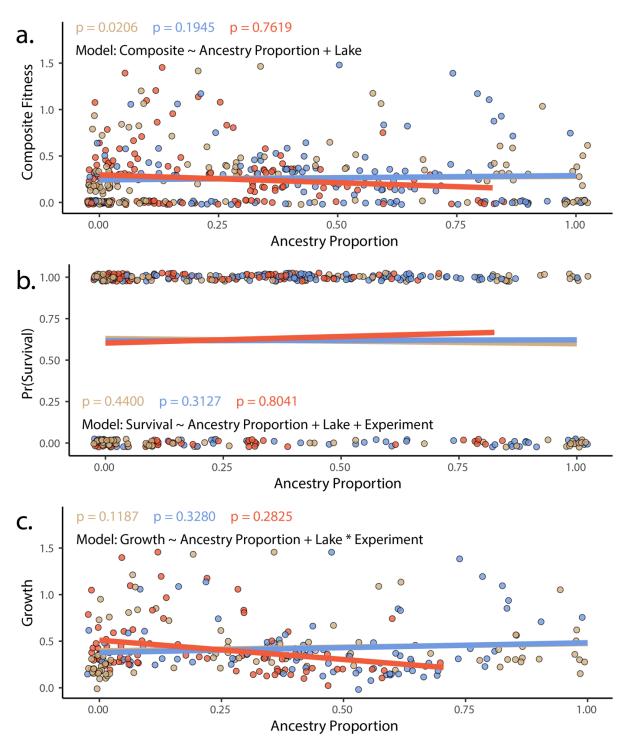


Figure 1—figure supplement 5. The proportion of generalist or specialist ancestry in hybrids did not predict in experimental hybrids using either A) composite fitness (tobit/zero-censored), B) survival (binomial) or C) growth (gaussian). Results of a generalized in which survival (modeled as a binomial) is predicted by ancestry proportion, including lake and experiment as fixed effects. Points represent individual hybrids, with each individual represented by two points, one indicating their respective scale-eater (salmon, and molluscivore (blue) ancestry proportions. *P*-values correspond to the effect of each type of ancestry (scale-eater – red, molluscivore – blue) on survival probability. Lines are predicted values and are colored according to species.

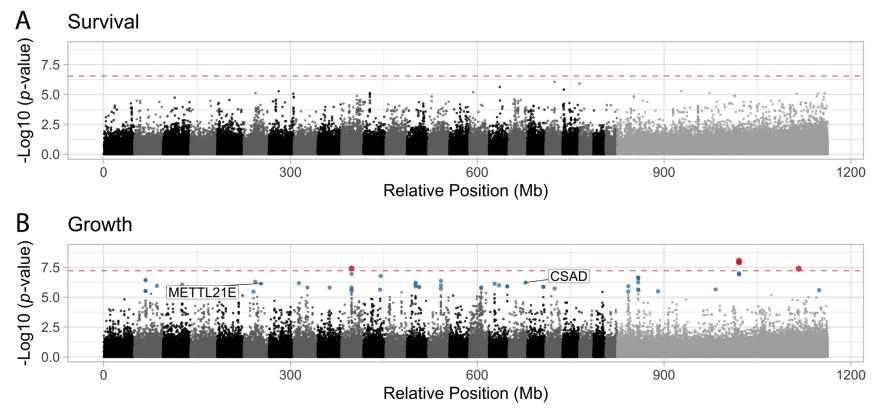
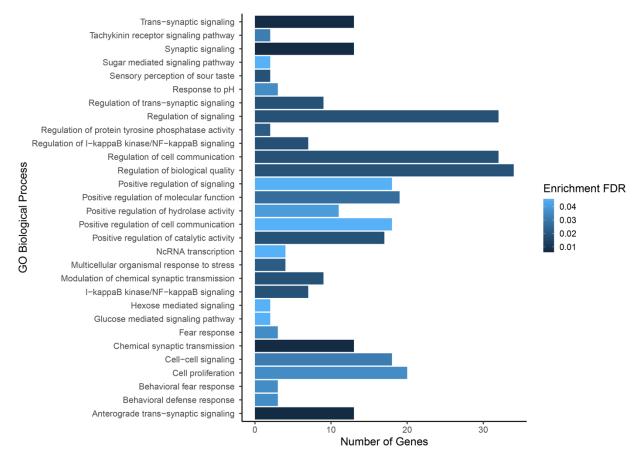
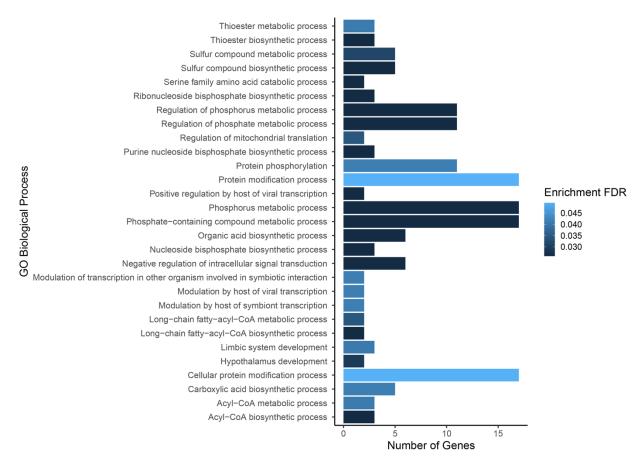




Figure 2—figure supplement 1. Manhattan plots illustrating the strength of association between individual SNPs and either Survival (A) or Growth (B) as inferred by GEMMA. Significant associations are highlighted in blue (FDR < 0.05) or red (Bonferroni correction P < 0.05). The dashed red line indicates the threshold for significance following Bonferroni p-value adjustment. METTL21E and CSAD are both highly differentiated ($F_{ST} > 0.95$) among specialists, differentially expressed. METTL21E is also misexpressed in F1 hybrids, meaning it exhibits gene expression that is higher or lower than observed in both parental species (88), indicating it is involved in intrinsic incompatibilities.

Figure 2—figure supplement 2. Gene ontology enrichment for SNPs found to be associated with composite fitness. Darker colors indicate ontologies that are more significantly enriched following FDR correction. Length of bar is proportional to the number of genes assigned to an ontology.

Figure 2—figure supplement 3. Gene ontology enrichment for SNPs found to be associated with growth. Darker colors indicate ontologies that are more significantly enriched following FDR correction. Length of bar is proportional to the number of genes assigned to an ontology.

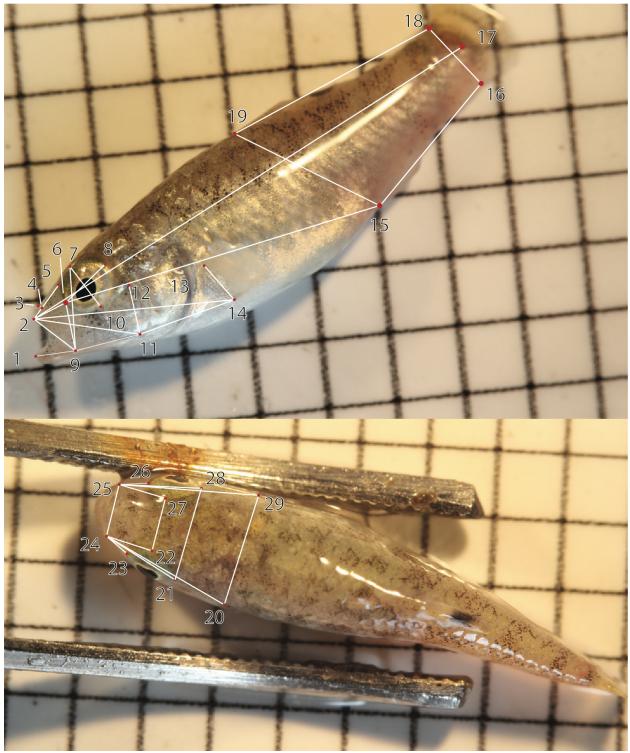


Figure 2—figure supplement 4. The 29 landmarks used to digitally measure thirty traits plus standard length using DLTDV8a (139). The corresponding traits are shown in Appendix 1—table 7.

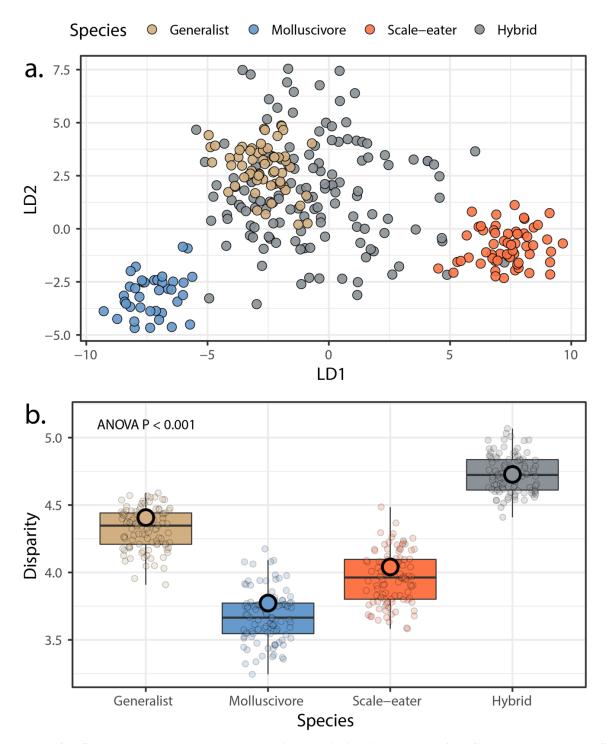


Figure 2—figure supplement 5. Morphological variation in the three San Salvador Island pupfish species and their experimentally produced hybrids. A. Linear discriminant (LD) morphospace. Parent species and hybrids are plotted using the two LD axes that together serve to distinguish species with 99.4% accuracy. B. Within-group disparity calculated as the median distance between each individual and the groups centroid. Small, semitransparent points are the result of 100 bootstrap replicates, and are summarized by box plots, which in turn show the median and interquartile ranges of these bootstrap replicates. Large, opaque points are the observed disparities using the full dataset per group. All pairwise comparisons using t-tests following correction for the false discovery rate were significant (P < 0.001).

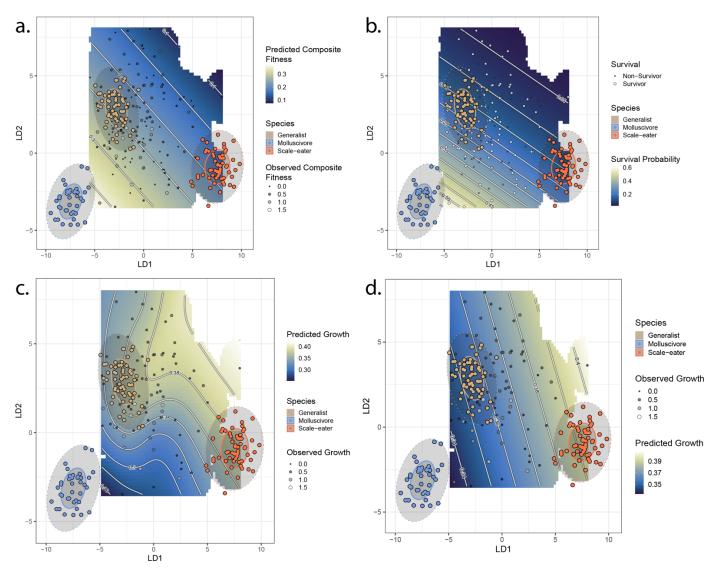


Figure 2—figure supplement 6. Best-fit fitness landscapes for composite fitness (a) survival (b), and growth without associated SNPs (c) and growth including associated SNPs (d). Colored points indicate locations of parent species in LD morphospace, and ellipses indicate their 50% (solid) and 95% (dotted) confidence intervals. Grey points indicate location of hybrid individuals, with size proportional to their fitness measure. Cooler colors on the adaptive landscape indicate lower predicted fitness.

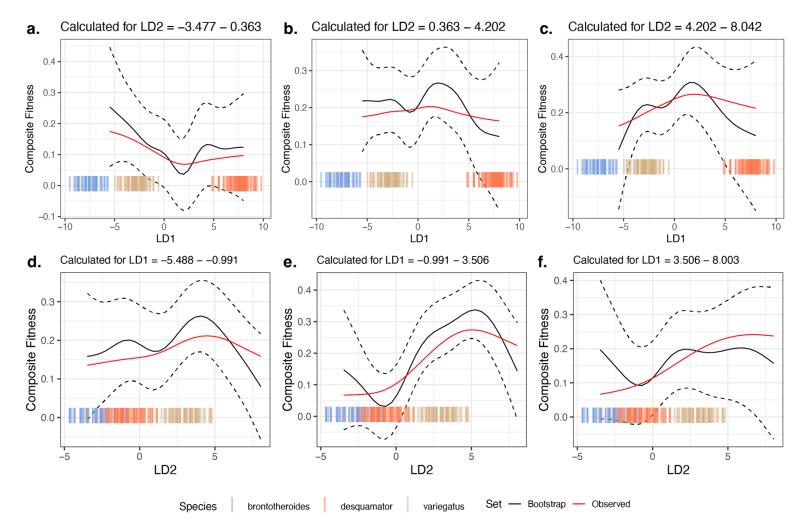
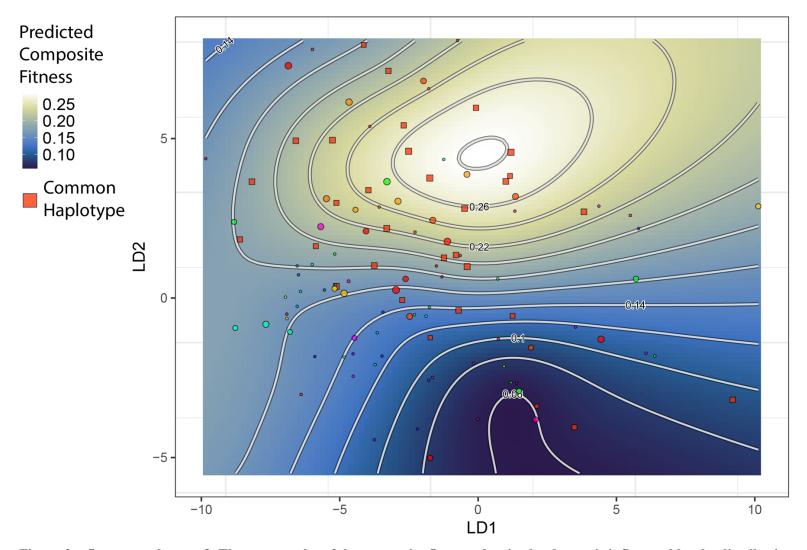
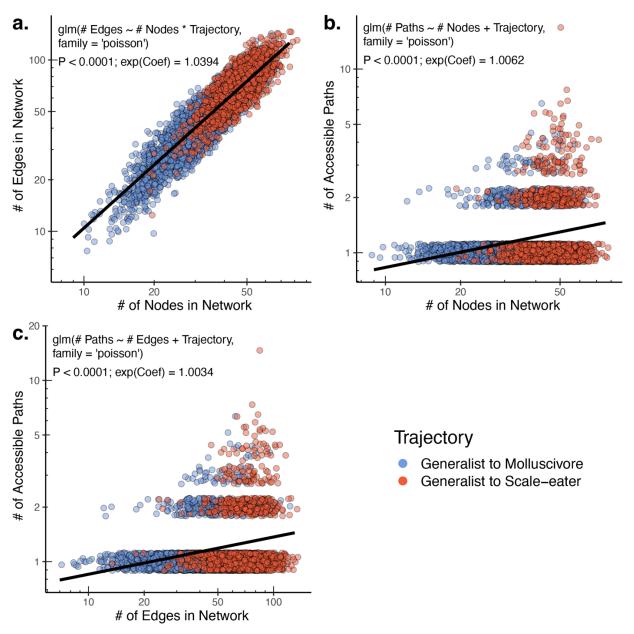




Figure 2—figure supplement 7. Comparison of 10,000 bootstrapped estimates of predicted mean composite fitness to estimations from observed data across slices of the fitness landscape. The focal fitness landscape (Figure 3c-d) was estimated using composite fitness, linear discriminant axes obtained from all morphological traits, and the most-strongly fitness associated SNPs. The mean value of predicted fitness across all bootstrap replicates is plotted as a solid black line; the dashed black line indicates ± 1 standard deviation. The observed predicted fitness is plotted as the solid red line. Observed parental morphological LD scores are plotted as colored vertical hashes: see legend at bottom. Subplots **a.**, **b.**, and **c.**, are estimates along LD1, as calculated from the bottom, middle and top third of LD2 values respectively. Subplots **d.**, **e.**, and **f.**, are estimates along LD2, as calculated from the bottom, middle and top third of LD1 values respectively.

Figure 2—figure supplement 8. The topography of the composite fitness adaptive landscape is influenced by the distribution of a common SNP haplotype. Shown is the same landscape as in Figure 2, but the plotted points are unique SNP haplotypes for the thirteen most strongly fitness-associated SNPs. One haplotype is particularly frequent among hybrids; individuals with this haplotype are closer in morphospace to generalists and drive the emergence of a local fitness optimum for generalists. All other haplotypes (points) are plotted with a distinct color per haplotype.

Figure 4—figure supplement 1. The raw number of accessible paths increases with network size. The number of edges (and thus number of potential paths) is strongly positively correlated with the observed number of nodes (unique SNP haplotypes) in a network (**a**.). Correspondingly, both the number of nodes (b.) and number of edges (c.) positively correlate with the number of accessible paths between generalists and specialists in a given network. Only results for composite fitness are plotted; results are consistent across fitness measures. Models correspond to those in Appendix 1—table 13. Poisson regression was chosen as each response variable correspond to count-data. Because Poisson regression models are log-linear, we report the exponentiated coefficient which corresponds to the expected multiplicative increase in the mean of Y per unit-value of X.

Hybridization alters the fitness landscape

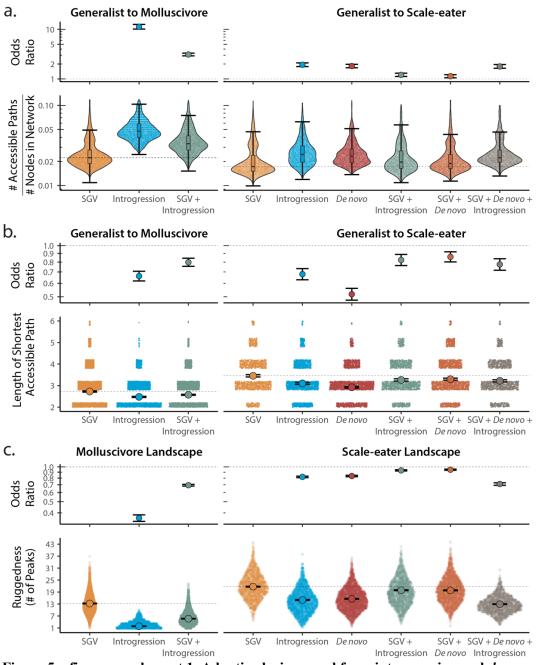


Figure 5—figure supplement 1. Adaptive loci sourced from introgression and *de novo* mutation reduce fitness landscape ruggedness and increase accessibility as compared to standing genetic variation (SGV) using survival as our proxy for fitness. Odds ratios (maximum likelihood estimate and 95% CI) indicate the effect of each source of variation on accessibility as compared to networks estimated from standing variation alone. **a.** The number of accessible (i.e. monotonically increasing in fitness) paths per network, scaled by the size of the network (# of nodes in network). Significance was assessed using a likelihood ratio test, corrected for the false discovery rate (reported in Appendix 1—table 13). Dashed lines correspond to the median estimate for standing genetic variation to aid comparison to other sources of adaptive variation. **b.** Number of mutational steps in the shortest accessible path. Means are plotted as large circles, with two standard errors shown; dashed horizontal lines correspond to the mean for standing genetic variation. **c.** Ruggedness of molluscivore and scale-eater fitness landscapes constructed from each source of genetic variation as measured by the number of peaks (genotypes with no fitter neighbors).

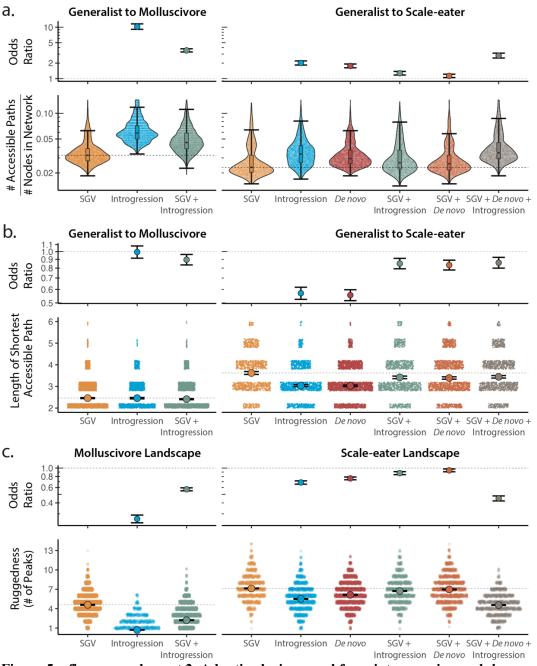


Figure 5—figure supplement 2. Adaptive loci sourced from introgression and *de novo* mutation reduce fitness landscape ruggedness and increase accessibility as compared to standing genetic variation (SGV) using growth as our proxy for fitness. Odds ratios (maximum likelihood estimate and 95% CI) indicate the effect of each source of variation on accessibility as compared to networks estimated from standing variation alone. **a.** The number of accessible (i.e. monotonically increasing in fitness) paths per network, scaled by the size of the network (# of nodes in network). Significance was assessed using a likelihood ratio test, corrected for the false discovery rate (reported in Appendix 1—table 13). Dashed lines correspond to the median estimate for standing genetic variation to aid comparison to other sources of adaptive variation. **b.** Number of mutational steps in the shortest accessible path. Means are plotted as large circles, with two standard errors shown; dashed horizontal lines correspond to the mean for standing genetic variation. **c.** Ruggedness of molluscivore and scale-eater fitness landscapes constructed from each source of genetic variation as measured by the number of peaks (genotypes with no fitter neighbors).

Hybridization alters the fitness landscape

Appendix 1—Table 1. Samples of hybrids and parental studies used either in genomic or morphological analyses, along with associated metadata.

ID	Sequenced	Morphology	Survivorship	Experiment	Lake	Species
CP04E02	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP07F05	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP08H06	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP09C02	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP09D01	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP09F10	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10B05	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11C10	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP13E03	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP13F01	This study	Yes	Non-Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
LL01F03	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL01F05	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL01G05	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL02A08	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL02D09	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL02D0)	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL02D11 LL02E04	This study	Yes	Non-Survivor	Martin & Gould 2020 Martin & Gould 2020	Little Lake	Hybrid
LL02E04	This study	Yes	Non-Survivor	Martin & Gould 2020 Martin & Gould 2020	Little Lake	Hybrid
LL02E07	This study This study	Yes	Non-Survivor	Martin & Gould 2020 Martin & Gould 2020	Little Lake	Hybrid
LL02E09 LL04E03	This study This study	Yes	Non-Survivor	Martin & Gould 2020 Martin & Gould 2020	Little Lake	Hybrid
LL04E03	This study This study	Yes	Non-Survivor	Martin & Gould 2020 Martin & Gould 2020	Little Lake	Hybrid
	•					-
LL04F02	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL04F07	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05A01	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05C06	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05C09	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05C10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05D10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05E06	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05E08	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL05H10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06A10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06B03	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06C10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06D12	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06E10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06F08	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08B09	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08B11	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08G07	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08G10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08H01	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09A09	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09A10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09B05	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09C03	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09D01	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09D10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09E01	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09F03	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09H07	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL09H10	This study	Yes	Non-Survivor	Martin & Gould 2020	Little Lake	Hybrid

CP06G01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP06H09	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP07E08	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP07H01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP07H11	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP08F07	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP08G08	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP09D02	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10A03	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10C04	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10C07	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10C12	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10F12	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP10H01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11B03	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11C08	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11D04	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11G06	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP11G12	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP12E05	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP12E07	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP12H04	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP13B02	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP13B08	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP14C04	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP15A10	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP15B08	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP15E01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP15E03	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP17A01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP18B11	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP19B02	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP19C02	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP19C07	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP19F01	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CP19G03	This study	Yes	Survivor	Martin & Gould 2020	Crescent Pond	Hybrid
CPH01	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH02	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH03	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH04	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH05	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH07	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH08	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH09	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH10	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH100	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH11	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
CPH123	This study	Yes	Survivor	Martin & Wainwright 2013	Crescent Pond	Hybrid
LL01H04	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL02G09	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06B06	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL06E04	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL07E12	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL07G04	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
LL08A09	This study	Yes	Survivor	Martin & Gould 2020	Little Lake	Hybrid
1100004	This standay	V	Commission	Martin & Carl 12020	T into T alas	TT-d

LL175	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LL23	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LL247	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LL251	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LL271	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LLH12	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LLH34	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LLH41	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LLH51	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
LLH94	This study	Yes	Survivor	Martin & Wainwright 2013	Little Lake	Hybrid
CRPA1	Richards et al. 2021	No	NA	NA	Crescent Pond	Generalist
CRPA1000	Richards et al. 2021	No	NA	NA	Crescent Pond	Generalist
CRPA1001	Richards et al. 2021	No	NA	NA	Crescent Pond	Generalist
CRPA1003	Richards et al. 2021	No	NA	NA	Crescent Pond	Generalist
CRPA3	Richards et al. 2021	No	NA	NA	Crescent Pond	Generalist
LILA1	Richards et al. 2021	No	NA	NA	Little Lake	Generalist
OSPA1	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA1000	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA1001	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA11	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA12	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA12 OSPA13	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA4	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
	Richards et al. 2021 Richards et al. 2021		NA			
OSPA5		No		NA	Osprey Pond (Little Lake)	Generalist Generalist
OSPA6	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	
OSPA8	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
OSPA9	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Generalist
CRPM1	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM10	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM1000	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM1001	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM11	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM2	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM3	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM5	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM6	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM7	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM8	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
CRPM9	Richards et al. 2021	No	NA	NA	Crescent Pond	Molluscivore
LILM-QTL	Richards et al. 2021	No	NA	NA	Little Lake	Molluscivore
LILM3	Richards et al. 2021	No	NA	NA	Little Lake	Molluscivore
LILM4	Richards et al. 2021	No	NA	NA	Little Lake	Molluscivore
LILM5	Richards et al. 2021	No	NA	NA	Little Lake	Molluscivore
OSPM1	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM1000	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM1001	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM11	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM2	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM3	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM4	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM5	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM7	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM8	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
OSPM9	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Molluscivore
CRPP-QTL	Richards et al. 2021	No	NA	NA	Crescent Pond	Scale-eater
CDDD1000	Distants et al. 2021	N.	NT A	NT A	Concernent Devid	Geele ester

LILP4	Richards et al. 2021	No	NA	NA	Little Lake	Scale-eater
LILP5	Richards et al. 2021	No	NA	NA	Little Lake	Scale-eater
OSPP1	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP10	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP1000	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP1001	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP11	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP2	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP3	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP4	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP5	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP7	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
OSPP9	Richards et al. 2021	No	NA	NA	Osprey Pond (Little Lake)	Scale-eater
CPA01	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA03	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA05	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA07	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA09	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA11	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA13	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA15	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA17	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA19	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA21	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA23	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA25	NA	Yes	Parental	NA	Crescent Pond Crescent Pond	Generalist
				NA	Crescent Pond	Generalist
CPA27 CPA29	NA NA	Yes Yes	Parental Parental	NA	Crescent Pond Crescent Pond	Generalist
CPA31	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA33	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA35 CPA35	NA		Parental	NA	Crescent Pond Crescent Pond	Generalist
CPA35 CPA37	NA	Yes Yes	Parental	NA	Crescent Pond Crescent Pond	Generalist
					Crescent Pond Crescent Pond	
CPA39	NA	Yes	Parental	NA		Generalist
CPA41	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA43	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA45	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA47	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA49	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA51	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA53	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA55	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA57	NA	Yes	Parental	NA	Crescent Pond	Generalist
CPA59	NA	Yes	Parental	NA	Crescent Pond	Generalist
LLA20	NA	Yes	Parental	NA	Little Lake	Generalist
LLA21	NA	Yes	Parental	NA	Little Lake	Generalist
LLA22	NA	Yes	Parental	NA	Little Lake	Generalist
LLA23	NA	Yes	Parental	NA	Little Lake	Generalist
LLA24	NA	Yes	Parental	NA	Little Lake	Generalist
LLA25	NA	Yes	Parental	NA	Little Lake	Generalist
LLA26	NA	Yes	Parental	NA	Little Lake	Generalist
LLA27	NA	Yes	Parental	NA	Little Lake	Generalist
LLA28	NA	Yes	Parental	NA	Little Lake	Generalist
LLA29	NA	Yes	Parental	NA	Little Lake	Generalist
LLA30	NA	Yes	Parental	NA	Little Lake	Generalist
LLA31	NA	Yes	Parental	NA	Little Lake	Generalist
11 4 2 2	NT A	V	Dementel	NT A	T :441. T -1	Committeet

LLA43	NA	Yes	Parental	NA	Little Lake	Generalist
LLA44	NA	Yes	Parental	NA	Little Lake	Generalist
LLA45	NA	Yes	Parental	NA	Little Lake	Generalist
LLA46	NA	Yes	Parental	NA	Little Lake	Generalist
LLA47	NA	Yes	Parental	NA	Little Lake	Generalist
LLA48	NA	Yes	Parental	NA	Little Lake	Generalist
LLA49	NA	Yes	Parental	NA	Little Lake	Generalist
CPM01	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM02	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM03	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM04	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM05	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM06	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM07	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM08	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM09	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM10	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM11	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM12	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM13	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM14	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM15	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM16	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM17	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM18	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM19	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
CPM20	NA	Yes	Parental	NA	Crescent Pond	Molluscivore
LLM01	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM02	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM03	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM04	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM05	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM06	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM07	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM08	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM09	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM10	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM11	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM12	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM13	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM14	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM15	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM16	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM17	NA	Yes	Parental	NA	Little Lake	Molluscivore
LLM18	NA	Yes	Parental	NA	Little Lake	Molluscivore
CPP01	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP02	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP03	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP04	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP05	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP06	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP07	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP08	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP09	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP10	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CDD11	A A	V	University	N. A	() we are set D and	Marla raken

CPP22	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP23	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP24	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP25	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP26	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP27	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP28	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP29	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
CPP30	NA	Yes	Parental	NA	Crescent Pond	Scale-eater
LLP01	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP02	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP03	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP04	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP05	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP06	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP07	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP08	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP09	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP10	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP11	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP12	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP13	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP14	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP15	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP16	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP17	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP18	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP19	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP20	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP21	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP22	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP23	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP24	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP25	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP26	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP27	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP28	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP29	NA	Yes	Parental	NA	Little Lake	Scale-eater
LLP30	NA	Yes	Parental	NA	Little Lake	Scale-eater

Hybridization alters the fitness landscape

Appendix 1—Table 2. Models tested to assess the extent to which specialist ancestry predicts measures of fitness and their respective fits using all samples and an unsupervised admixture analysis. Best-fit models are bolded.

itness Measure	Model Family	Species	Model	AIC	Ancestry Coefficient	Ancestry P-value
			Composite ~ AncestryProp	202.40	0.02	0.8525
			Composite ~ AncestryProp + Lake	196.02	-0.11	0.3847
		Generalist	Composite ~ AncestryProp + Experiment	203.38	0.08	0.5223
			Composite ~ AncestryProp + Lake + Experiment	197.56	-0.06	0.6610
			Composite ~ AncestryProp + Lake * Experiment	197.77	-0.10	0.5071
			Composite ~ AncestryProp	202.26	0.06	0.6745
			Composite ~ AncestryProp + Lake	195.08	0.20	0.1945
Composite	Tobit	Molluscivore	Composite ~ AncestryProp + Experiment	203.74	0.03	0.8131
			Composite ~ AncestryProp + Lake + Experiment	196.54	0.17	0.2700
			Composite ~ AncestryProp + Lake * Experiment	196.66	0.20	0.2129
			Composite ~ AncestryProp	201.64	-0.17	0.3725
			Composite ~ AncestryProp + Lake	196.69	-0.06	0.7619
		Scale-eater	Composite ~ AncestryProp + Experiment	201.62	-0.33	0.1463
			Composite ~ AncestryProp + Lake + Experiment	196.90	-0.22	0.3595
			Composite ~ AncestryProp + Lake * Experiment	197.61	-0.19	0.4393
			Growth ~ AncestryProp	42.47	0.08	0.4084
			Growth ~ AncestryProp + Lake	18.85	0.32	0.0010
		Generalist	Growth ~ AncestryProp + Experiment	13.43	-0.32	0.0032
			Growth ~ AncestryProp + Lake + Experiment	-23.42	-0.07	0.4413
			Growth ~ AncestryProp + Lake * Experiment	-89.90	0.10	0.1187
			Growth ~ AncestryProp	42.52	0.11	0.4231
			Growth ~ AncestryProp + Lake	29.24	-0.13	0.3383
Growth	Gaussian	Molluscivore	Growth ~ AncestryProp + Experiment	13.91	0.35	0.0041
			Growth ~ AncestryProp + Lake + Experiment	-23.57	0.09	0.3932
			Growth ~ AncestryProp + Lake * Experiment	-88.32	-0.07	0.3280
			Growth ~ AncestryProp	36.71	-0.41	0.0122
			Growth ~ AncestryProp + Lake	12.25	-0.64	0.0000
		Scale-eater	Growth ~ AncestryProp + Experiment	21.98	0.14	0.4870
			Growth ~ AncestryProp + Lake + Experiment	-22.80	0.00	0.9950
			Growth ~ AncestryProp + Lake * Experiment	-88.53	-0.11	0.2825
			Survival ~ AncestryProp	188.70	-0.13	0.7769
			Survival ~ AncestryProp + Lake	151.13	-1.59	0.0144
		Generalist	Survival ~ AncestryProp + Experiment	159.06	0.92	0.0793
			Survival ~ AncestryProp + Lake + Experiment	123.49	-0.54	0.4400
			Survival ~ AncestryProp + Lake * Experiment	125.49	-0.54	0.4400
			Survival ~ AncestryProp	188.78	0.03	0.9643
			Survival ~ AncestryProp + Lake	155.11	1.13	0.0936
Survival	Binomial	Molluscivore	Survival ~ AncestryProp + Experiment	161.41	-0.53	0.3709
			Survival ~ AncestryProp + Lake + Experiment	123.06	0.76	0.3127
			Survival ~ AncestryProp + Lake * Experiment	125.06	0.76	0.3127
			Survival ~ AncestryProp	188.61	0.34	0.6756
			Survival \sim AncestryProp + Lake	154.93	1.60	0.0852
		Scale-eater	Survival ~ AncestryProp + Experiment	158.99	-1.69	0.0828
			Survival ~ AncestryProp + Lake + Experiment	124.04	-0.28	0.8041
			Survival ~ AncestryProp + Lake * Experiment	126.04	-0.28	0.8041

Hybridization alters the fitness landscape

Appendix 1—Table 3. Models tested to assess the extent to which specialist ancestry predicts measures of fitness and their respective fits using all samples and a supervised admixture analysis. Best-fit models are bolded.

itness Measure	Model Family	Species	Model	AIC	Ancestry Coefficient	Ancestry P-value
			Composite ~ AncestryProp	201.70	0.09	0.3883
			Composite ~ AncestryProp + Lake	196.79	0.00	0.9774
		Generalist	Composite ~ AncestryProp + Experiment	201.56	0.19	0.1375
		Composite ~ AncestryProp + Lake + Experiment	197.39	0.08	0.5475	
		Composite ~ AncestryProp + Lake * Experiment	198.06	0.06	0.6961	
			Composite ~ AncestryProp	202.39	-0.03	0.8382
			Composite ~ AncestryProp + Lake	196.49	0.08	0.5870
Composite	Tobit	Molluscivore	Composite ~ AncestryProp + Experiment	203.59	-0.06	0.6576
			Composite ~ AncestryProp + Lake + Experiment	197.68	0.04	0.7787
			Composite ~ AncestryProp + Lake * Experiment	198.03	0.07	0.6638
			Composite ~ AncestryProp	201.06	-0.22	0.2395
		Composite ~ AncestryProp + Lake	196.33	-0.13	0.4993	
		Scale-eater	Composite ~ AncestryProp + Experiment	200.40	-0.41	0.0717
			Composite ~ AncestryProp + Lake + Experiment	195.82	-0.32	0.1705
			Composite ~ AncestryProp + Lake * Experiment	196.60	-0.29	0.2091
			Growth ~ AncestryProp	39.30	0.17	0.0525
			$Growth \sim AncestryProp + Lake$	11.24	0.37	0.0000
		Generalist	Growth ~ AncestryProp + Experiment	19.52	-0.18	0.091
			Growth ~ AncestryProp + Lake + Experiment	-22.80	0.01	0.9525
			Growth ~ AncestryProp + Lake * Experiment	-93.03	0.14	0.0200
			Growth ~ AncestryProp	43.11	-0.03	0.8005
			$Growth \sim AncestryProp + Lake$	26.45	-0.23	0.0581
Growth	Gaussian	Molluscivore	Growth ~ AncestryProp + Experiment	18.62	0.23	0.0541
			Growth ~ AncestryProp + Lake + Experiment	-22.89	0.03	0.7653
			Growth ~ AncestryProp + Lake * Experiment	-89.91	-0.10	0.1177
			Growth ~ AncestryProp	32.80	-0.50	0.001
			$Growth \sim AncestryProp + Lake$	6.53	-0.69	0.0000
		Scale-eater	Growth ~ AncestryProp + Experiment	22.48	-0.02	0.9330
			Growth ~ AncestryProp + Lake + Experiment	-23.14	-0.09	0.5710
			Growth ~ AncestryProp + Lake * Experiment	-89.59	-0.15	0.1427
			Survival ~ AncestryProp	188.75	-0.09	0.8445
			Survival ~ AncestryProp + Lake	152.86	-1.30	0.0292
		Generalist	Survival ~ AncestryProp + Experiment	157.53	1.13	0.0334
			Survival ~ AncestryProp + Lake + Experiment	124.09	-0.08	0.9038
			Survival ~ AncestryProp + Lake * Experiment	126.09	-0.08	0.9038
			Survival ~ AncestryProp	188.78	-0.05	0.9246
			Survival ~ AncestryProp + Lake	156.09	0.89	0.1683
Survival	Binomial	Molluscivore	Survival ~ AncestryProp + Experiment	160.74	-0.70	0.2264
			Survival ~ AncestryProp + Lake + Experiment	123.85	0.36	0.6142
			Survival ~ AncestryProp + Lake * Experiment	125.85	0.36	0.6142
			Survival ~ AncestryProp	188.58	0.35	0.6522
			Survival ~ AncestryProp + Lake	155.46	1.36	0.1160
		Scale-eater	Survival ~ AncestryProp + Experiment	158.78	-1.70	0.0770
			Survival ~ AncestryProp + Lake + Experiment	123.77	-0.64	0.5753
			Survival ~ AncestryProp + Lake * Experiment	125.77	-0.64	0.5753

Hybridization alters the fitness landscape

Appendix 1—Table 4. Models tested to assess the extent to which specialist ancestry predicts measures of fitness and their respective fits using only samples from the second field experiment (Martin and Gould 2020) and an unsupervised admixture analysis. Best-fit models are bolded.

Fitness Measure	Model Family	Species	Model	AIC	Ancestry Coefficient	Ancestry <i>P</i> -value
			Composite ~ AncestryProp	187.62	0.11	0.5151
		Generalist	Composite ~ AncestryProp + Lake	179.83	-0.13	0.5004
			Composite ~ AncestryProp * Lake	181.65	-0.04	0.8924
			Composite ~ AncestryProp	188.04	0.02	0.9170
Composite	Tobit	Molluscivore	Composite ~ AncestryProp + Lake	178.97	0.24	0.2536
			Composite ~ AncestryProp * Lake	179.95	-0.04	0.9036
			Composite ~ AncestryProp	186.12	-0.43	0.1743
		Scale-eater	Composite ~ AncestryProp + Lake	179.90	-0.20	0.5361
			Composite ~ AncestryProp * Lake	180.85	0.28	0.6288
			Growth ~ AncestryProp	27.50	-0.34	0.0070
		Generalist	Growth ~ AncestryProp + Lake	-51.14	0.08	0.2452
			Growth ~ AncestryProp * Lake	-53.47	0.01	0.9339
			Growth ~ AncestryProp	28.21	0.38	0.0103
Growth	Gaussian	Molluscivore	Growth ~ AncestryProp + Lake	-50.78	-0.08	0.3149
			Growth ~ AncestryProp * Lake	-49.16	-0.05	0.6565
			Growth ~ AncestryProp	34.00	0.29	0.3072
		Scale-eater	$Growth \sim AncestryProp + Lake$	-50.03	-0.08	0.5823
			Growth ~ AncestryProp * Lake	-52.24	0.09	0.5772
			Survival ~ AncestryProp	157.06	0.92	0.0793
		Generalist	Survival ~ AncestryProp + Lake	121.49	-0.54	0.4400
			Survival ~ AncestryProp * Lake	123.46	-0.36	0.7660
			Survival ~ AncestryProp	159.41	-0.53	0.3709
Survival	Binomial	Molluscivore	Survival ~ AncestryProp + Lake	121.06	0.76	0.3127
			Survival ~ AncestryProp * Lake	122.70	-0.04	0.9788
			Survival ~ AncestryProp	156.99	-1.69	0.0828
		Scale-eater	Survival ~ AncestryProp + Lake	122.04	-0.28	0.8041
			Survival ~ AncestryProp * Lake	123.24	2.00	1.0000

Hybridization alters the fitness landscape

Appendix 1—Table 5. Models tested to assess the extent to which genome-wide variation (PC1/PC2) predicts measures of fitness and their respective fits using all samples and an **unsupervised admixture analysis.** Best-fit models are bolded.

Fitness Measure	Model Family	Principle Component	Model	AIC	Ancestry Coefficient	Ancestry P-value
			Composite ~ PC1	193.80	1.67	0.004.
			Composite ~ PC1 + Lake	195.52	3.07	0.258
		PC1	Composite $\sim PC1 + Experiment$	194.27	1.80	0.003
Composite Tobit		$Composite \sim PC1 + Lake + Experiment$	195.36	4.52	0.123	
	Tabit		Composite ~ PC1 + Lake * Experiment	197.07	3.62	0.283
	TODIC		Composite ~ PC2	202.44	-0.01	0.990
			Composite ~ PC2 + Lake	195.45	1.20	0.245
		PC2	Composite ~ PC2 + Experiment	203.75	0.21	0.829
			Composite ~ PC2 + Lake + Experiment	195.21	1.79	0.113
			Composite ~ PC2 + Lake * Experiment	196.35	1.57	0.173
			Growth ~ PC1	30.97	-1.62	0.000
			Growth ~ PC1 + Lake	29.37	1.57	0.372
		PC1	Growth ~ PC1 + Experiment	-32.37	-2.92	0.000
			Growth ~ PC1 + Lake + Experiment	-30.92	-3.87	0.005
Growth	Gaussian		Growth ~ PC1 + Lake * Experiment	-87.40	0.33	0.763
Growth	Gaussian		Growth $\sim PC2$	23.61	2.88	0.000
			Growth ~ PC2 + Lake	23.61	2.00	0.011
		PC2	Growth ~ PC2 + Experiment	14.04	2.04	0.004
			$Growth \sim PC2 + Lake + Experiment$	-23.65	-0.61	0.367
			Growth ~ PC2 + Lake * Experiment	-87.49	0.20	0.672
			Survival ~ PC1	156.24	15.09	0.000
			Survival ~ PC1 + Lake	157.87	6.04	0.694
		PC1	Survival ~ PC1 + Experiment	121.52	17.78	0.000
			Survival ~ PC1 + Lake + Experiment	123.51	15.92	0.438
Suminal	Pinomial		Survival ~ PC1 + Lake * Experiment	125.51	15.92	0.438
Survival Binomial	Dinomal		Survival ~ PC2	157.96	-9.44	0.026
			Survival ~ PC2 + Lake	157.96	-1.21	0.798
		PC2	Survival ~ PC2 + Experiment	160.72	-5.63	0.224
			Survival ~ PC2 + Lake + Experiment	123.39	4.89	0.404
			Survival ~ PC2 + Lake * Experiment	125.39	4.89	0.404

Scaffold	Position	Significance	REF	ALT	Variant Type	Gene Identifier	Gene Card
HiC_scaffold_1	32071263	FDR	А	С	intergenic	CBRO_00000660-CBRO_00000661	Znf250-Ptgdr2
HiC_scaffold_1	43866598	Bonferroni	G	Α	intergenic	CBRO_00000910-CBRO_00000911	PPM1K-OVCH2
HiC_scaffold_1	43867614	FDR	С	Т	intergenic	CBRO_00000910-CBRO_00000911	PPM1K-OVCH2
HiC_scaffold_3	2658774	FDR	Т	А	intergenic	CBRO_00017856-CBRO_00017857	KMT2E-Magi2
HiC_scaffold_3	2658775	FDR	Т	С	intergenic	CBRO_00017856-CBRO_00017857	KMT2E-Magi2
HiC_scaffold_3	2658793	FDR	С	А	intergenic	CBRO_00017856-CBRO_00017857	KMT2E-Magi2
HiC_scaffold_4	18899496	FDR	Т	С	intergenic	CBRO_00012427-CBRO_00012428	UNKNOWN-edc4
HiC_scaffold_5	18306419	FDR	С	G	upstream; intergenic	CBRO_00001232; CBRO_00001231- CBRO_00001232 CBRO_00001232; CBRO_00001231-	xlrs1; PPEF2-xlrs1
HiC_scaffold_5	18306428	FDR	А	Т	upstream; intergenic	CBRO_00001232	xlrs1; PPEF2-xlrs1
HiC_scaffold_5	18307019	FDR	G	Т	intronic	CBRO_00001232	xlrs1
HiC_scaffold_5	18307030	FDR	G	А	intronic	CBRO_00001232	xlrs1
HiC_scaffold_5	18311696	FDR	С	Т	intronic	CBRO_00001232	xlrs1
HiC_scaffold_5	40475116	FDR	Т	А	intergenic	CBRO_00001627-CBRO_00001628 CBRO_00009717; CBRO_00009716-	SLC25A44-UBE2Q2
HiC_scaffold_7	10290141	FDR	Т	С	downstream; intergenic	CBRO_00009717 CBRO_00009717; CBRO_00009716-	Nfkbie; SLC35B2-Nfkbie
HiC_scaffold_7	10290142	FDR	G	С	downstream; intergenic	CBRO_00009717 CBRO_00009717; CBRO_00009716-	Nfkbie; SLC35B2-Nfkbie
HiC_scaffold_7	10290165	FDR	А	G	downstream; intergenic	CBRO_00009717 CBRO_00009717; CBRO_00009716-	Nfkbie; SLC35B2-Nfkbie
HiC_scaffold_7	10290166	FDR	Т	С	downstream; intergenic	CBRO_00009717 CBRO_00009717; CBRO_00009716-	Nfkbie; SLC35B2-Nfkbie
HiC_scaffold_7	10290168	FDR	Т	С	downstream; intergenic synonymous;	CBRO_00009717	Nfkbie; SLC35B2-Nfkbie
HiC scaffold 7	13815058	FDR	А	G	downstream	CBRO 00009805; CBRO 00009804	Aloxe3; UNKNOWN
HiC_scaffold_7	13815326	FDR	С	Т	intronic	CBRO_00009805	Aloxe3
HiC_scaffold_7	15349830	FDR	С	А	intergenic	CBRO_00009834-CBRO_00009835	Adcy8-efr3b

Appendix 1—Table 6. SNPs found to be strongly associated with composite fitness using SnpEff (136). SNPs that were identified as being strongly associated with both growth and composite fitness are italicized, and those that remain significant after a Bonferroni correction are bolded.

HiC_scaffold_7	18378061	FDR	Т	А	intergenic	CBRO_00009902-CBRO_00009903 CBRO_00010647; CBRO_00010647-	Fam84a-DDX1
HiC_scaffold_8	20263964	Bonferroni	G	А	upstream; intergenic	CBRO_00010648	Srcin1; Srcin1-Srcin1
HiC scaffold 8	31539262	FDR	G	А	upstream; intergenic	CBRO_00010835; CBRO_00010834- CBRO_00010835	Gjd3; Gjd3-Gjd3
HiC scaffold 11	3106766	FDR	T	A	intronic	CBRO 00013361	prkdc
HiC scaffold 11	3138733	FDR	G	A	intergenic	CBRO 00013361-CBRO 00013362	prkdc-arhgap29
HiC scaffold 11	5658921	FDR	A	G	intronic	CBRO 00013404	KAZN
HiC scaffold 14	17556007	FDR	C	T	intergenic	CBRO 00014134-CBRO 00014135	UNKNOWN-Abr
HiC scaffold 14	17556026	FDR	C	A	intergenic	CBRO 00014134-CBRO 00014135	UNKNOWN-Abr
HiC scaffold 16	32837191	FDR	T	C	intronic	CBRO 00003226	KIF1B
HiC scaffold 16	35727503	FDR	G	C C	intergenic	CBRO 00003289-CBRO 00003290	Pip5k1c-Polr2e
HiC scaffold 16	40215889	FDR	G	A	intergenic	CBRO 00003383-CBRO 00003384	chst10-UNKNOWN
HiC scaffold 16	40300592	FDR	C	A	intergenic	CBRO 00003384-CBRO 00003385	UNKNOWN-Carmil3
HiC scaffold 18	26969972	FDR	T	G	intronic	CBRO 00013239	CSAD
HiC scaffold 18	26970123	FDR	C	T	synonymous	CBRO 00013239	CSAD
HiC scaffold 18	26970601	FDR	T	A	intronic	CBRO 00013239	CSAD
HiC scaffold 18	26978410	FDR	G	A	intronic	CBRO 00013240	Znf740
HiC scaffold 20	332642	FDR	G	A	missense	CBRO 00016084	GTF3C4
HiC scaffold 20	332689	FDR	А	G	missense	CBRO 00016084	GTF3C4
HiC scaffold 20	14820437	FDR	А	Т	intronic	CBRO 00016304	MALT1
HiC scaffold 20	14820448	FDR	Т	С	intronic	CBRO_00016304	MALT1
HiC scaffold 24	1469530	FDR	G	Т	intergenic	CBRO 00014375-CBRO 00014376	UNKNOWN-UNKNOWN
HiC scaffold 24	3223583	FDR	Т	А	intergenic	CBRO 00014421-CBRO 00014422	Gal3st3-RIN2
HiC scaffold 24	11618442	FDR	Т	G	intronic	CBRO 00014601	ABCA4
HiC_scaffold_24	15964553	Bonferroni	С	Т	intergenic	CBRO 00014635-CBRO 00014636	Lrfn2-SNX15
					_	CBRO_00005887; CBRO_00005886-	
HiC_scaffold_27	1898180	FDR	G	А	downstream; intergenic	CBRO_00005887	UNKNOWN; hoxb13a-UNKNOWN
HiC_scaffold_27	8137335	FDR	G	Т	intronic	CBRO_00005998	SMARCA4
HiC_scaffold_27	9065056	FDR	С	А	intergenic	CBRO_00006026-CBRO_00006027	ANKFN1-ccdc134
HiC_scaffold_27	12370585	FDR	С	Т	intergenic	CBRO_00006131-CBRO_00006132	SHISA9-Desi1

HiC_scaffold_27	32078665	FDR	С	G	intergenic	CBRO_00006685-CBRO_00006686	med25-Lrrc4b
HiC_scaffold_27	34904388	FDR	А	С	intergenic	CBRO_00006756-CBRO_00006757	Grin2c-nog3
HiC_scaffold_27	35431570	FDR	G	С	intergenic	CBRO_00006756-CBRO_00006757	Grin2c-nog3
HiC_scaffold_27	35431578	FDR	С	Т	intergenic	CBRO_00006756-CBRO_00006757	Grin2c-nog3
HiC_scaffold_27	35431585	FDR	А	G	intergenic	CBRO_00006756-CBRO_00006757	Grin2c-nog3
HiC_scaffold_34	16654675	FDR	G	С	intergenic	CBRO_00001997-CBRO_00001998	MDFIC2-foxp1b
						CBRO_00002027; CBRO_00002027-	
HiC_scaffold_34	19393244	FDR	А	Т	upstream; intergenic	CBRO_00002028	SUOX; SUOX-SUOX
HiC_scaffold_34	22010499	FDR	С	Т	intronic	CBRO_00002117	GNAI2
UC seeffeld 24	21220016	EDD	т	•		CBRO_00002389; CBRO_00002388-	OTTNIDDONIL V and OTTNIDDONI
HiC_scaffold_34	31220916	FDR	Т	A	upstream; intergenic	CBRO_00002389	CTTNBP2NL; Kcnd3-CTTNBP2NL
HiC_scaffold_34	37769304	FDR	A	C	intergenic	CBRO_00002519-CBRO_00002520	ASIC2-asic1
HiC_scaffold_37	5963405	FDR	T	C	intergenic	CBRO_00011020-CBRO_00011021	C14orf93-pim2
HiC_scaffold_37	11017168	FDR	G	А	intergenic	CBRO_00011155-CBRO_00011156	GALNT12-elp2
HiC scaffold 37	13822135	FDR	А	G	upstream; intergenic	CBRO_00011221; CBRO_00011220- CBRO_00011221	SATB1; KCNH8-SATB1
	15022155	IDK	Λ	U	upstream, mergeme	CBRO 00011221; CBRO 00011220-	SAIDI, KENIIO-SAIDI
HiC scaffold 37	13823678	FDR	G	А	upstream; intergenic	CBRO 00011221	SATB1; KCNH8-SATB1
HiC_scaffold_37	13832007	FDR	Т	А	missense	CBRO_00011221	SATB1
HiC_scaffold_37	16920863	FDR	Т	С	intergenic	CBRO_00011259-CBRO_00011260	CSMD1-UNKNOWN
HiC_scaffold_37	18591438	Bonferroni	G	Α	intergenic	CBRO_00011301-CBRO_00011302	cck-trim71
HiC_scaffold_37	18591463	FDR	С	Т	intergenic	CBRO_00011301-CBRO_00011302	cck-trim71
HiC_scaffold_37	18596716	FDR	А	Т	intergenic	CBRO_00011301-CBRO_00011302	cck-trim71
						CBRO_00016614; CBRO_00016613-	C14orf93 homolog; HTR2A-
HiC_scaffold_40	5885291	FDR	G	Т	downstream; intergenic	CBRO_00016614	C14orf93 homolog
HiC_scaffold_43	2568535	FDR	А	G	intergenic	CBRO_00008246-CBRO_00008247	UNKNOWN-Gpr68
HiC_scaffold_44	25886134	FDR	А	С	intergenic	CBRO_00007276-CBRO_00007277	RAPGEF2-QDPR
II'C 00.11.45	005024			G	, . , .	CBRO_00018766; CBRO_00018766-	
HiC_scaffold_45	885834	FDR	A	С	upstream; intergenic	CBRO_00018767	Mog; Mog-EPHB4
HiC_scaffold_45	2213441	FDR	G	T	intronic	CBRO_00018814	Nlrp12
HiC_scaffold_46	856248	FDR	А	G	intergenic	CBRO_00007439-CBRO_00007440	UNKNOWN-NLRP12
HiC_scaffold_46	1232350	FDR	G	А	intronic	CBRO_00007448	NEB

HiC_scaffold_46	30183758	FDR	С	G	intergenic	CBRO_00008059-CBRO_00008060	TFRC-Rgs11
HiC_scaffold_46	32048848	FDR	А	С	intronic	CBRO_00008105	Hsd17b7
HiC_scaffold_46	32050109	FDR	G	Т	synonymous	CBRO_00008105	Hsd17b7
						CBRO_00008165; CBRO_00008165-	
HiC_scaffold_46	35151009	Bonferroni	Т	С	downstream; intergenic	CBRO_00008166	Klf9; Klf9-Tsen15
	25162601		т	C	downstream;	CBRO_00008166; CBRO_00008167;	Tsen15; UNKNOWN; Tsen15-
HiC_scaffold_46	35163681	FDR	Т	С	downstream; intergenic downstream;	CBRO_00008166-CBRO_00008167 CBRO_00008166; CBRO_00008167;	UNKNOWN Tsen15; UNKNOWN; Tsen15-
HiC_scaffold_46	35164267	FDR	А	G	downstream; intergenic	CBRO 00008166-CBRO 00008167	UNKNOWN
	55101207	IDR	11	U	do whistream, meergeme	CBRO 00008838; CBRO 00008837-	
HiC_scaffold_47	787141	FDR	Т	G	upstream; intergenic	CBRO_00008838	Nlrc3; NLRC3-Nlrc3
						CBRO_00008933; CBRO_00008933-	
HiC_scaffold_47	4300295	FDR	G	А	downstream; intergenic	CBRO_00008934	NEK6; NEK6-Psmb7
HiC_scaffold_47	6767766	FDR	Т	С	intergenic	CBRO_00008991-CBRO_00008992	TACR1-Grk5
HiC_scaffold_52	20791197	FDR	Т	А	upstream; intronic	CBRO_00011892; CBRO_00011891	rabl3; GTF2E1
HiC_scaffold_52	22551701	FDR	G	С	intergenic	CBRO_00011922-CBRO_00011923	ALS2-Serp2
HiC_scaffold_52	31021517	FDR	С	Т	intergenic	CBRO_00012051-CBRO_00012052	Tmeff2-slc39a10
HiC_scaffold_53	11317840	Bonferroni	Α	G	intergenic	CBRO_00005178-CBRO_00005179	Fucolectin-1-Fucolectin-5
HiC_scaffold_53	11326035	FDR	С	Т	intergenic	CBRO_00005178-CBRO_00005179	Fucolectin-1-Fucolectin-5
HiC_scaffold_53	11326410	FDR	G	А	intergenic	CBRO_00005178-CBRO_00005179	Fucolectin-1-Fucolectin-5
HiC_scaffold_53	11331079	FDR	А	G	intergenic	CBRO_00005178-CBRO_00005179	Fucolectin-1-Fucolectin-5
					upstream; downstream;	CBRO_00005235; CBRO_00005234;	Tmem222; WDTC1; WDTC1-
HiC_scaffold_53	15966447	FDR	G	А	intergenic	CBRO_00005234-CBRO_00005235	Tmem222
HiC_scaffold_53	17413090	FDR	А	G	missense	CBRO_00005274	Mag
HiC_scaffold_53	20715576	FDR	С	А	intergenic	CBRO_00005380-CBRO_00005381	Scrt2-Ino80c
HiC_scaffold_53	20715623	FDR	G	А	intergenic	CBRO_00005380-CBRO_00005381	Scrt2-Ino80c
HiC_scaffold_53	20715851	FDR	А	G	intergenic	CBRO_00005380-CBRO_00005381	Scrt2-Ino80c
HiC_scaffold_53	27386094	FDR	G	Т	intronic	CBRO_00005625	Arhgef1
HiC_scaffold_53	27396961	FDR	Т	А	intronic	CBRO_00005625	Arhgef1
						CBRO_00005625; CBRO_00005625-	
HiC_scaffold_53	27398605	FDR	Т	G	downstream; intergenic	CBRO_00005626	Arhgef1; Arhgef1-CD79A
HiC_scaffold_53	33282501	FDR	А	G	intergenic	CBRO_00005732-CBRO_00005733	mios-GLCCI1

HiC_scaffold_53	39228193	FDR	Т	С	intergenic	CBRO_00005830-CBRO_00005831	UNKNOWN-GnRHR2
HiC_scaffold_53	39228264	Bonferroni	С	Т	intergenic	CBRO_00005830-CBRO_00005831	UNKNOWN-GnRHR2
HiC_scaffold_53	39228942	FDR	А	Т	intergenic	CBRO_00005830-CBRO_00005831	UNKNOWN-GnRHR2
HiC_scaffold_53	39279263	FDR	G	Т	intronic	CBRO_00005832	IGDCC3
HiC_scaffold_53	39770914	FDR	А	Т	intronic	CBRO_00005849	Cpne4
HiC_scaffold_611	5621	FDR	А	Т	intergenic	CHR_START-CBRO_00020243	CHR_START-fzdz-a
HiC_scaffold_611	5625	FDR	G	Т	intergenic	CHR_START-CBRO_00020243	CHR_START-fzdz-a
HiC_scaffold_611	5634	FDR	Т	А	intergenic	CHR_START-CBRO_00020243	CHR_START-fzdz-a
HiC_scaffold_1053	3494	FDR	А	G	downstream; intergenic	CBRO_00020503; CHR_START-CBRO_00020503	UBE2G2; CHR_START-UBE2G2
HiC_scaffold_1133	9946	FDR	А	G	intergenic		
HiC_scaffold_1371	7318	FDR	С	Т	upstream; intergenic	CBRO_00021026; CHR_START-CBRO_00021026	UNKNOWN; CHR_START- UNKNOWN
HiC_scaffold_1848	40119	Bonferroni	С	Α	intergenic		
HiC_scaffold_1848	40465	Bonferroni	Т	Α	intergenic		
HiC_scaffold_1848	40590	Bonferroni	Т	С	intergenic		
HiC_scaffold_1848	40877	FDR	Т	С	intergenic		
HiC_scaffold_1848	41351	FDR	Т	С	intergenic		
HiC_scaffold_2220	10128	FDR	G	Т	intergenic		
HiC_scaffold_4461	12939	Bonferroni	Т	Α	intergenic		
HiC_scaffold_4665	13941	FDR	С	Т	intergenic		
HiC_scaffold_6275	6000	FDR	С	А	intergenic		
HiC_scaffold_6337	5745	FDR	Т	G	intronic	CBRO_00021217	PKP3
HiC_scaffold_6769	2796	FDR	G	А	intergenic		
HiC_scaffold_6963	5970	FDR	С	А	intergenic		
HiC_scaffold_6963	6101	FDR	А	G	intergenic		
HiC_scaffold_9280	3448	FDR	G	А	intergenic		
HiC_scaffold_9949	52	FDR	С	Т	intergenic		
HiC_scaffold_10928	3575	FDR	G	А	downstream; intergenic	CBRO_00021896; CHR_START-CBRO_00021896	CYP2A10; CHR_START-CYP2A10
HiC_scaffold_11921	5560	FDR	А	Т	intergenic		
HiC_scaffold_12068	2929	FDR	G	Т	intergenic		

	HiC_scaffold_1277 8	1456	Bonferroni	Т	A	missense	CBRO_00022026	COL8A1
	HiC_scaffold_17578	180	FDR	Т	G	intergenic		
_	HiC_scaffold_18999	1084	Bonferroni	Α	G	intergenic		•

Appendix 1—Table 7. Gene ontology term enrichment for genes associated with composite fitness	Appendix 1—Table 7.	Gene ontology ter	m enrichment for genes	associated with con	nposite fitness.
---	---------------------	-------------------	------------------------	---------------------	------------------

Functional Category	Enrichment FDR Gene	es in list Tot	al genes Genes
Anterograde trans-synaptic signaling	0.0060	13	746 GRIN2C, SHISA9, ALS2, KIF1B, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2, ASIC2, PIP5K1C
Synaptic signaling	0.0060	13	762 GRIN2C, SHISA9, ALS2, KIF1B, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2, ASIC2, PIP5K1C
Trans-synaptic signaling	0.0060	13	756 GRIN2C, SHISA9, ALS2, KIF1B, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2, ASIC2, PIP5K1C
Chemical synaptic transmission	0.0060	13	746 GRIN2C, SHISA9, ALS2, KIF1B, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2, ASIC2, PIP5K1C
Regulation of I-kappaB kinase/NF-kappaB signaling	0.0179	7	241 NEK6, SLC35B2, MALT1, NLRP12, NLRC3, DDX1, PIM2
Regulation of trans-synaptic signaling	0.0185	9	468 GRIN2C, SHISA9, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2
			NEK6, SLC35B2, MALT1, NLRP12, PPEF2, GRIN2C, NLRC3, SLC39A10, SHISA9, ALS2, RAPGEF2, SMARCA4, MAGI2, RGS11, ARHGEF1, DDX1, PIM2, ASIC1, GNA12, TACR1, ADCY8,
Regulation of cell communication	0.0185	32	3903 LRFN2, ABR, PTGDR2, CCK, GPR68, MIOS, SCRT2, PSMB7, ARHGAP29, PIP5K1C, GRK5
			NEK6, SLC35B2, MALT1, NLRP12, PPEF2, GRIN2C, NLRC3, SLC39A10, SHISA9, ALS2, RAPGEF2, SMARCA4, MAGI2, RGS11, ARHGEF1, DDX1, PIM2, ASIC1, GNAI2, TACR1, ADCY8,
Regulation of signaling	0.0185	32	3952 LRFN2, ABR, PTGDR2, CCK, GPR68, MIOS, SCRT2, PSMB7, ARHGAP29, PIP5K1C, GRK5
Iodulation of chemical synaptic transmission	0.0185	9	467 GRIN2C, SHISA9, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, RAPGEF2
ensory perception of sour taste	0.0185	2	5 ASIC2, ASIC1
			GRIN2C, KCNH8, SLC39A10, SHISA9, PRKDC, TACR1, SMARCA4, KCND3, ABCA4, TRIM71, KMT2E, TFRC, PIM2, MAG, ASIC2, ASIC1, GNAI2, LRRC4B, HSD17B7, WDTC1, ADCY8,
egulation of biological quality	0.0185	34	4319 LRFN2, ABR, ALOXE3, CSMD1, CCK, SRCIN1, ALS2, GPR68, RAPGEF2, NEB, PSMB7, NFKBIE, PIP5K1C
kappaB kinase/NF-kappaB signaling	0.0185	7	280 NEK6, SLC35B2, MALT1, NLRP12, NLRC3, DDX1, PIM2
ositive regulation of catalytic activity	0.0185	17	1514 PPM1K, ALS2, RAPGEF2, MAGI2, SRCIN1, RGS11, ARHGEF1, GNAI2, GTF3C4, RIN2, ARHGAP29, ABR, CCK, SLC39A10, MALT1, ADCY8, NLRP12
egulation of protein tyrosine phosphatase activity	0.0216	2	6 GNAI2, SLC39A10
Iulticellular organismal response to stress	0.0216	4	74 ALS2, ASIC1, TACR1, CCK
ositive regulation of molecular function	0.0270	19	1901 PPM1K, MALT1, ALS2, RAPGEF2, SMARCA4, MAGI2, SRCIN1, RGS11, ARHGEF1, GNAI2, GTF3C4, RIN2, ARHGAP29, ADCY8, ABR, CCK, SLC39A10, MED25, NLRP12
Cell-cell signaling	0.0311	18	1774 GRIN2C, SHISA9, ALS2, KIF1B, ASIC1, GNAI2, TACR1, ADCY8, LRFN2, ABR, GRK5, GPR68, SMARCA4, RAPGEF2, MAGI2, ASIC2, PSMB7, PIP5K1C
achykinin receptor signaling pathway	0.0314	2	8 TACR1, GRK5
ell proliferation	0.0355	20	2165 TFRC, PIM2, RAPGEF2, CD79A, GNAI2, TACR1, COL8A1, MALT1, SATB1, PTGDR2, CCK, SLC39A10, TRIM71, PRKDC, MED25, KLF9, GRK5, NLRC3, MAGI2, ARHGEF1
ehavioral fear response	0.0355	3	39 ALS2, ASIC1, CCK
esponse to pH	0.0355	3	41 ASIC1, ASIC2, GPR68
ehavioral defense response	0.0355	3	40 ALS2, ASIC1, CCK
ear response	0.0355	3	41 ALS2, ASIC1, CCK
ositive regulation of hydrolase activity	0.0401	11	833 ALS2, RAPGEF2, MAGI2, RGS11, ARHGEF1, RIN2, ARHGAP29, ABR, CCK, SLC39A10, NLRP12
cRNA transcription	0.0457	4	110 GTF3C4, SMARCA4, POLR2E, GTF2E1
exose mediated signaling	0.0457	2	13 SMARCA4, ADCY8
ugar mediated signaling pathway	0.0457	2	13 SMARCA4, ADCY8
lucose mediated signaling pathway	0.0457	2	13 SMARCA4, ADCY8
ositive regulation of cell communication	0.0457	18	1937 NEK6, SLC35B2, MALT1, GRIN2C, SLC39A10, ALS2, RAPGEF2, SMARCA4, NLRP12, DDX1, PIM2, GNAI2, TACR1, ADCY8, PTGDR2, GPR68, MIOS, PSMB7
Positive regulation of signaling	0.0457	18	1945 NEK6, SLC35B2, MALT1, GRIN2C, SLC39A10, ALS2, RAPGEF2, SMARCA4, NLRP12, DDX1, PIM2, GNAI2, TACR1, ADCY8, PTGDR2, GPR68, MIOS, PSMB7

Scaffold	Position	Significance	REF	ALT	Variant Type	Gene Identifier	Gene Card
HiC_scaffold_4	8897671	FDR	А	Т	intergenic	CBRO_00012254-CBRO_00012255	Megf10-UNKNOWN
HiC_scaffold_4	16057698	FDR	С	А	intergenic	CBRO_00012386-CBRO_00012387	CCND2-Mlycd
HiC_scaffold_4	29273446	FDR	Т	С	synonymous	CBRO_00012620	CKAP5
HiC_scaffold_4	29273458	FDR	С	Т	synonymous	CBRO_00012620 CBRO_00001229; CBRO_00001229-	CKAP5
HiC_scaffold_5	18259775	FDR	С	А	upstream; intergenic	CBRO_00001230 CBRO_00001232; CBRO_00001231-	AP1S2; AP1S2-phka2
HiC_scaffold_5	18306419	FDR	С	G	upstream; intergenic	CBRO_00001232 CBRO_00001232; CBRO_00001231-	xlrs1; PPEF2-xlrs1
HiC_scaffold_5	18306428	FDR	A	Т	upstream; intergenic	CBRO_00001232	xlrs1; PPEF2-xlrs1
HiC_scaffold_5	18307019	FDR	G	Т	intronic	CBRO_00001232	xlrs1
HiC_scaffold_5	18307030	FDR	G	A	intronic	CBRO_00001232	xlrs1
HiC_scaffold_5	36619253	FDR	Т	С	intergenic	CBRO_00001583-CBRO_00001584	Chst12-ZDHHC13
HiC_scaffold_7	13815058	FDR	A	G	synonymous; downstream	CBRO_00009805; CBRO_00009804	Aloxe3; UNKNOWN
HiC_scaffold_7	13823565	FDR	Т	С	intronic	CBRO_00009806	Fbxo30
HiC_scaffold_7	13824467	FDR	А	G	missense	CBRO_00009806 CBRO_00009922; CBRO_00009921-	Fbxo30
HiC_scaffold_7	19371997	FDR	С	Т	upstream; intergenic	CBRO_00009922 CBRO_00009922; CBRO_00009921-	ELOVL4; TENT5A-ELOVL4
HiC_scaffold_7	19372002	FDR	Т	G	upstream; intergenic	CBRO_00009922 CBRO_00010647; CBRO_00010647-	ELOVL4; TENT5A-ELOVL4
HiC_scaffold_8	20265076	FDR	Т	С	upstream; intergenic	CBRO_00010647; CBRO_00010647-	Srcin1; Srcin1-Srcin1
HiC scaffold 8	20265098	FDR	G	С	upstream; intergenic	CBRO 00010648	Srcin1; Srcin1-Srcin1
HiC_scaffold_8	20278571	FDR	G	А	intergenic	CBRO_00010647-CBRO_00010648	Srcin1-Srcin1
HiC_scaffold_9	15585466	FDR	С	G	missense	CBRO_00004552	Tmem260
HiC_scaffold_9	18453213	FDR	А	G	intergenic	CBRO_00004639-CBRO_00004640	Bub1b-PAK6
HiC_scaffold_9	28127377	FDR	С	Т	intergenic	CBRO_00004857-CBRO_00004858	METTL21E-RASA3
HiC_scaffold_10	193812	FDR	С	G	intergenic	CBRO_00018931-CBRO_00018932	Spsb4-UNKNOWN

Appendix 1—Table 8. SNPs found to be strongly associated with growth SnpEff (136). SNPs that were identified as being strongly associated with both growth and composite fitness are italicized, and those that remain significant after a Bonferroni correction are bolded.

HiC_scaffold_11	25632195	FDR	С	Т	intergenic	CBRO_00013717-CBRO_00013718	CDH10-Cdh6
HiC_scaffold_11	25632258	FDR	С	Т	intergenic	CBRO_00013717-CBRO_00013718	CDH10-Cdh6
HiC_scaffold_11	25632641	FDR	А	G	intergenic	CBRO_00013717-CBRO_00013718	CDH10-Cdh6
HiC_scaffold_14	14624430	FDR	Т	С	intergenic	CBRO_00014084-CBRO_00014085	KDM6B-FGF11
HiC_scaffold_18	26970449	FDR	С	Т	intronic	CBRO_00013239	CSAD
HiC_scaffold_27	8137335	FDR	G	Т	intronic	CBRO_00005998	SMARCA4
HiC_scaffold_27	21919164	FDR	G	Т	synonymous	CBRO_00006396	SSTR2
	0106546			T	, . , .	CBRO_00016347; CBRO_00016347-	
HiC_scaffold_29	2136546	FDR	А	Т	upstream; intergenic	CBRO_00016348	RAPGEF6; RAPGEF6-ACSL6
HiC_scaffold_29	2147361	FDR	С	Т	intergenic	CBRO_00016347-CBRO_00016348	RAPGEF6-ACSL6
HiC_scaffold_31	6226140	FDR	А	С	intronic	CBRO_00017224	ranbp9
HiC_scaffold_34	7439419	FDR	G	Т	intergenic	CBRO_00001828-CBRO_00001829	rnf152-CAMTA1
HiC_scaffold_34	30571660	FDR	С	А	intronic	CBRO_00002374	SHMT2
HiC_scaffold_40	4693917	FDR	G	А	intronic	CBRO_00016589	SLC37A1
HiC_scaffold_40	4694015	FDR	Т	С	synonymous	CBRO_00016589	SLC37A1
HiC_scaffold_40	4723358	FDR	А	G	intronic	CBRO_00016591	UBXN4
HiC_scaffold_40	4732538	FDR	Т	С	intronic	CBRO_00016591	UBXN4
HiC_scaffold_40	4734825	FDR	G	Т	intronic	CBRO_00016591	UBXN4
HiC_scaffold_40	4780518	FDR	G	С	intronic	CBRO_00016592	ITGB2
						CBRO_00016599; CBRO_00016599-	
HiC_scaffold_40	5016538	FDR	С	А	upstream; intergenic	CBRO_00016600	RRP1B; RRP1B-ITGB2
HiC_scaffold_43	26869231	FDR	С	G	synonymous	CBRO_00008677	lrpprc
UC coeffeit 42	27800569	FDR	C	Т		CBRO_00008685; CBRO_00008685-	time 2. time 2 ETVG
HiC_scaffold_43			C		downstream; intergenic	CBRO_00008686	timp3; timp3-ETV6
HiC_scaffold_44	19344526	FDR	C	Т	intergenic	CBRO_00007178-CBRO_00007179	ATP11C-sox3
HiC_scaffold_46	16495639	FDR	G	А	intronic	CBRO_00007743	PHLPP1
HiC_scaffold_46	16510323	FDR	G	А	intronic	CBRO_00007743	PHLPP1
HiC_scaffold_46	16512668	FDR	Т	А	intronic	CBRO_00007743	PHLPP1
HiC_scaffold_46		Bonferroni	Т	Α	intronic	CBRO_00007743	PHLPP1
HiC_scaffold_46	16513809	FDR	Т	С	synonymous	CBRO_00007743	PHLPP1
HiC_scaffold_52	19031083	FDR	Т	А	intergenic	CBRO_00011872-CBRO_00011873	NRP2-MREG

HiC_scaffold_52	19031216	FDR	А	Т	intergenic	CBRO_00011872-CBRO_00011873	NRP2-MREG
HiC_scaffold_1848	40119	Bonferroni	С	A	intergenic		
HiC_scaffold_1848	40465	Bonferroni	Τ	A	intergenic		
HiC_scaffold_1848	40590	FDR	Т	C	intergenic		
HiC_scaffold_1848	40877	FDR	Т	С	intergenic		
HiC_scaffold_1848	41351	FDR	Т	C	intergenic		
HiC_scaffold_7644	5971	Bonferroni	Т	G	intergenic		
							UNKNOWN; UNKNOWN-
HiC_scaffold_12681	4019	FDR	Т	С	upstream; intergenic	CBRO_00022068; CBRO_00022068-CHR_END	CHR_END

Functional Category	Enrichment FDR	Genes in list	Tot	al genes Genes
Negative regulation of intracellular signal transduction	0.0259	6	5	537 PPEF2, RNF152, RASA3, RANBP9, PHLPP1, TIMP3
				PHLPP1, CCND2, PAK6, PPEF2, SHMT2, MLYCD, RRP1B, ITGB2, SRCIN1, PHKA2, ELOVL4, BUB1B,
Phosphorus metabolic process	0.0259	17	7	3597 RANBP9, TIMP3, CAMTA1, ACSL6, RASA3
				PHLPP1, CCND2, PAK6, PPEF2, SHMT2, MLYCD, RRP1B, ITGB2, SRCIN1, PHKA2, ELOVL4, BUB1B,
Phosphate-containing compound metabolic process	0.0259	17	7	3570 RANBP9, TIMP3, CAMTA1, ACSL6, RASA3
Serine family amino acid catabolic process	0.0259	2	2	17 SHMT2, CSAD
Organic acid biosynthetic process	0.0259	6	5	466 ELOVL4, SHMT2, MLYCD, CHST12, ALOXE3, CSAD
Regulation of phosphate metabolic process	0.0259	11	1	1870 PHLPP1, CCND2, PAK6, PPEF2, SHMT2, RRP1B, ITGB2, SRCIN1, RANBP9, TIMP3, CAMTA1
Nucleoside bisphosphate biosynthetic process	0.0259	3	3	82 MLYCD, ELOVL4, ACSL6
Ribonucleoside bisphosphate biosynthetic process	0.0259	3	3	82 MLYCD, ELOVL4, ACSL6
Purine nucleoside bisphosphate biosynthetic process	0.0259	3	3	82 MLYCD, ELOVL4, ACSL6
Long-chain fatty-acyl-CoA biosynthetic process	0.0259	2	2	19 ELOVL4, ACSL6
Thioester biosynthetic process	0.0259	3	3	66 MLYCD, ELOVL4, ACSL6
Positive regulation by host of viral transcription	0.0259	2	2	18 SMARCA4, RRP1B
Sulfur compound biosynthetic process	0.0259	5	5	207 MLYCD, CHST12, ELOVL4, CSAD, ACSL6
Regulation of phosphorus metabolic process	0.0259	11	1	1872 PHLPP1, CCND2, PAK6, PPEF2, SHMT2, RRP1B, ITGB2, SRCIN1, RANBP9, TIMP3, CAMTA1
Acyl-CoA biosynthetic process	0.0259	3	3	66 MLYCD, ELOVL4, ACSL6
Hypothalamus development	0.0291	2	2	22 NRP2, SOX3
Sulfur compound metabolic process	0.0312	5	5	393 MLYCD, CHST12, ELOVL4, CSAD, ACSL6
Long-chain fatty-acyl-CoA metabolic process	0.0343	2	2	26 ELOVL4, ACSL6
Regulation of mitochondrial translation	0.0343	2	2	26 LRPPRC, SHMT2
Limbic system development	0.0405	3	3	115 NRP2, KDM6B, SOX3
Acyl-CoA metabolic process	0.0406	3	3	119 MLYCD, ELOVL4, ACSL6
Thioester metabolic process	0.0406	3	3	119 MLYCD, ELOVL4, ACSL6
Protein phosphorylation	0.0412	11	1	2093 PHLPP1, CCND2, PAK6, PPEF2, ITGB2, SRCIN1, PHKA2, BUB1B, RANBP9, TIMP3, RASA3
Modulation by host of viral transcription	0.0412	2	2	33 SMARCA4, RRP1B
Carboxylic acid biosynthetic process	0.0412	5	5	465 ELOVL4, SHMT2, MLYCD, CHST12, ALOXE3
Modulation of transcription in other organism involved in				
symbiotic interaction	0.0412	2	2	34 SMARCA4, RRP1B
Modulation by host of symbiont transcription	0.0412	2	2	33 SMARCA4, RRP1B
				PHLPP1, CCND2, PAK6, PPEF2, RNF152, ITGB2, SPSB4, SRCIN1, PHKA2, FBXO30, KDM6B, BUB1B, RANBP9,
Cellular protein modification process	0.0495	17	7	4434 TIMP3, CAMTA1, SHMT2, RASA3
				PHLPP1, CCND2, PAK6, PPEF2, RNF152, ITGB2, SPSB4, SRCIN1, PHKA2, FBXO30, KDM6B, BUB1B, RANBP9,
Protein modification process	0.0495	17	7	4434 TIMP3, CAMTA1, SHMT2, RASA3

Appendix 1—Table 9. Gene ontology term enrichment for genes associated with growth.

Hybridization alters the fitness landscape

Trait			
Index	Trait Description	Trait Shorthand	Points
1	Nasal protrusion	nose	3-4
2	Nasal length	foresnout	2-5
3	Orbit to anal fin insertion	bellylen	6-15
4	Lateral facial length	snoutlen	2-6
5	Upper jaw to pectoral girdle	jaw2pect	2-14
6	Lateral skull length	pmx2add	2-11
7	Premaxilla length	pmxlen	2-9
8	Lower mandible length	jawlen	1-9
9	Jaw joint to orbit	foreeyewidth	6-9
10	Horizontal orbit diameter	eyewidth	6-8
11	Vertical orbit diameter	eyeht	7-10
12	Head height	headht	7-9
13	Suspensorium length	suspensorium	9-11
14	Adductor height	adductorht	11-12
15	Subopercle to pectoral girdle	ad2pect	11-14
16	Pectoral fin insertion width	pectinsertion	13-14
17	Anal to caudal distance	analtocaudal	15-16
18	Caudal peduncle height	caudalpedht	16-18
19	Dorsal to caudal distance	dorsaltocaudal	18-19
20	Body depth	bodydepth	15-19
21	Nasal protrusion angle	nasalangle	7-5-3
22	Premaxilla to orbit angle	topeyeangle	7-2-10
23	Premaxilla to adductor angle	lowereyeangle	7-2-11
24	Dorsal facial length	dorsalsnoutlen	23-24, 25-26
25	Adductor to premaxilla	eyetosnout	21-24, 25-28
26	Neurocranium to premaxilla	headlen	24-20, 25-29
27	Orbit to premaxilla	innereyetosnout	22-24, 25-27
28	Interorbital width	cranialwidth	22-27
29	Orbital neurocranium width	hindeyewidth	21-28
30	Max. neurocranium width	headwidth	20-29
31	Standard length (SL)	SL	2-17

Appendix 1—Table 10. List of the 31 morphological traits measured for this study, and standard length; corresponding landmark ID's match those shown in Figure 2—figure supplement 3.

Appendix 1—Table 11. Generalized additive models fitted to composite fitness. Model fit was assessed using AICc, and Akaike Weights represent proportional model support. A thin plate spline for the two linear discriminant axes s(LD1, LD2) is always included, as is a fixed effect of either experiment (i.e. Martin & Wainwright 2013, Martin and Gould 2020) or Lake (Crescent Pond/Little Lake) or an interaction between the two. In the last two models, Experiment and Lake are included as splines, modeled using a factor smooth (bs = "fs"). The best fit model had 5 estimated degrees of freedom.

Model	AICc	ΔAICc	Akaike Weights
$Composite \sim s(LD1, LD2) + Experiment + Lake$	99.114	0.000	0.825
Composite ~ s(LD1, LD2) + Experiment * Lake	102.210	3.096	0.175
Composite $\sim s(LD1, LD2) + s(LD1) + s(LD2) + Experiment + Lake$	131.456	32.342	< 0.001
Composite \sim s(LD1, LD2) + s(LD1) + s(LD2) + Experiment * Lake	135.894	36.781	< 0.001
Composite ~ s(LD1, LD2) + s(LD1, Experiment, bs = "fs") + s(LD2, Experiment, bs = "fs") + Lake	230.428	131.314	< 0.001
Composite ~ s(LD1, LD2) + s(LD1, Lake, bs = "fs") + s(LD2, Lake, bs = "fs") + Experiment	230.868	131.754	< 0.001

Appendix 1—Table 12.

Generalized additive models fitted to growth. Model fit was assessed using AICc, and Akaike Weights represent proportional model support. A thin plate spline for the two linear discriminant axes s(LD1, LD2) is always included, as is a fixed effect of either experiment (i.e. Martin & Wainwright 2013, Martin and Gould 2020) or Lake (Crescent Pond/Little Lake) or an interaction between the two. In the last two models, Experiment and Lake are included as splines, modeled using a factor smooth (bs = "fs"). The best fit model had 8.93 estimated degrees of freedom.

Model	AICc	ΔAICc	Akaike Weights
Growth $\sim s(LD1, LD2) + Experiment * Lake$	-44.658	0.000	1
Growth \sim s(LD1, LD2) + Experiment + Lake	3.904	48.562	< 0.001
Growth ~ $s(LD1, LD2) + s(LD1) + s(LD2) + Experiment * Lake$	46.249	90.907	< 0.001
Growth ~ $s(LD1, LD2) + s(LD1) + s(LD2) + Experiment + Lake$	89.121	133.779	< 0.001
Growth ~ s(LD1, LD2) + s(LD1, Lake, bs = "fs") + s(LD2, Lake, bs = "fs") + Experiment	690.379	735.038	< 0.001
$Growth \sim s(LD1, LD2) + s(LD1, Experiment, bs = "fs") + s(LD2, Experiment, bs = "fs") + Lake$	693.748	738.406	< 0.001

Appendix 1—Table 13. Generalized additive models fitted to survival. Model fit was assessed using AICc, and Akaike Weights represent proportional model support. A thin plate spline for the two linear discriminant axes s(LD1, LD2) is always included, as is a fixed effect of either experiment (i.e. Martin & Wainwright 2013, Martin and Gould 2020) or Lake (Crescent Pond/Little Lake) or an interaction between the two. In the last two models, Experiment and Lake are included as splines, modeled using a factor smooth (bs = "fs"). The best fit model had 5 estimated degrees of freedom.

Model	AICc	ΔAICc	Akaike Weights
Survival $\sim s(LD1, LD2) + Experiment + Lake$	141.057	0.000	0.849
Survival ~ s(LD1, LD2) + Experiment * Lake	144.504	3.447	0.151
Survival \sim s(LD1, LD2) + s(LD1) + s(LD2) + Experiment + Lake	173.399	32.342	< 0.001
Survival \sim s(LD1, LD2) + s(LD1) + s(LD2) + Experiment * Lake	178.189	37.132	< 0.001
Survival ~ s(LD1, LD2) + s(LD1, Experiment, bs = "fs") + s(LD2, Experiment, bs = "fs") + Lake	273.547	132.490	< 0.001
Survival ~ s(LD1, LD2) + s(LD1, Lake, bs = "fs") + s(LD2, Lake, bs = "fs") + Experiment	273.694	132.637	< 0.001

Appendix 1—Table 14. Generalized additive models fitted to growth including SNPs most strongly associated with composite fitness. Model fit was assessed using AICc, and Akaike Weights represent proportional model support. The best fit model for composite fitness using morphology alone (see Table 8) was used as the base model. The SNPs that were most strongly associated with composite fitness (following a Bonferroni correction) were included as fixed effects, modeled as splines using a factor smooth, treating genotype as an ordered factor. Note that three SNPs were excluded due to their close proximity to other SNPs that were more strongly associated. All SNPs were considered individually, as well as all SNPs together. We were unable to assess all possible combinations of SNPs due to the vast number of potential models given the number of SNPs under consideration; rather, we fit one final model that only included SNPs found to be significant in the full model. In turn this model led to a substantial improvement in AICc. The best fit model had 20.29 estimated degrees of freedom.

Model	AICc	ΔAICc	Akaike Weights
$Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site1) + s(Site2) + s(Site6) + s(Site7) + s(Site8) + s(Site9) + s(Site10)$	4.586	0.000	0.999
$ \begin{array}{l} Composite \ Fitness \sim s(LD1, \ LD2) + Experiment + Lake + s(Site1) + s(Site2) + s(Site3) + s(Site4) \\ + s(Site5) + s(Site6) + s(Site7) + s(Site8) + s(Site9) + s(Site10) \end{array} $	40.876	36.290	< 0.001
Composite Fitness ~ s(LD1, LD2) + Experiment + Lake + s(Site3)	55.588	51.001	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site7)	58.386	53.800	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site4)	65.453	60.867	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site2)	71.245	66.658	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site5)	72.329	67.743	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site1)	73.671	69.085	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site8)	74.413	69.827	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site9)	74.680	70.094	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake + s(Site10)	88.977	84.391	< 0.001
Composite Fitness ~ s(LD1, LD2) + Experiment + Lake + s(Site6)	90.427	85.841	< 0.001
Composite Fitness \sim s(LD1, LD2) + Experiment + Lake	99.114	94.527	< 0.001

Note: Site1 = HiC_Scaffold_1:43866598, Site2 = HiC_Scaffold_53:11317840, Site3 = HiC_Scaffold_46:35151009, Site4 = HiC_Scaffold_8:20263964, Site5 = 37:18591438, Site5 = HiC_Scaffold_37:18591438, Site6 = HiC_Scaffold_24:15964553, Site7 = HiC_Scaffold_1848:40590, Site8 = HiC_Scaffold_4461:12939, Site9 = HiC_Scaffold_12778:1456, Site10 = HiC_Scaffold_18999:1084.

Appendix 1—Table 15. Generalized additive models fitted to growth including SNPs most strongly associated with growth. Model fit was assessed using AICc, and Akaike Weights represent proportional model support. The best fit model for growth using morphology alone (see Table 9) was used as the base model. Each of the four SNPs that were most strongly associated with growth (following a Bonferroni correction) were included as fixed effects, modeled as splines using a factor smooth, treating genotype as an ordered factor. All SNPs were considered individually, as well as all possible combinations. This was only feasible due to the small number of SNPs assessed (four). The best fit model had 7.97 estimated degrees of freedom.

Model	AICc	ΔAICc	Akaike Weights
Growth \sim s(LD1, LD2) + Experiment * Lake + s(Site3) + s(Site4)	-67.649	0.000	0.490
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site3)	-65.634	2.015	0.179
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1)	-64.161	3.488	0.086
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site3)	-63.926	3.723	0.076
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site2)	-63.861	3.788	0.074
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site2) + s(Site4)	-63.503	4.146	0.062
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site2)	-61.849	5.800	0.027
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site4)	-58.044	9.604	0.004
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site4)	-56.068	11.581	0.001
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site3) + s(Site4)	-54.878	12.770	< 0.001
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site2) + s(Site4)	-54.509	13.140	< 0.001
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site2) + s(Site3)	-47.602	20.047	< 0.001
Growth ~ s(LD1, LD2) + Experiment * Lake	-44.658	22.990	< 0.001
Growth ~ s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site2) + s(Site3)	-41.689	25.960	< 0.001
$Growth \sim s(LD1, LD2) + Experiment * Lake + s(Site1) + s(Site2) + s(Site3) + s(Site4)$	-29.801	37.847	< 0.001

Note: Site1 = HiC_Scaffold_46:16512886, Site2 = HiC_Scaffold_1848:40119, Site3 = HiC_Scaffold_1848:40465, Site4 = HiC_Scaffold_7644:5971

Appendix 1—Table 16. General linear models fitted to examine the relationship between aspects of network size (i.e. number of nodes, number of edges linking neighboring nodes) and the number of accessible paths between generalists and specialists. Models were fitted using each of the three different fitness measures; bolded lines correspond to the best-fit model for each response variable, within each measure of fitness. Poisson regression was chosen as each response variable correspond to count-data. Because Poisson regression models are log-linear, we report both the estimated coefficient, as well as it's exponentiated value which corresponds to the expected multiplicative increase in the mean of Y per unit-value of X.

Fitness Measure	Model	Family	AIC	Coefficient exp	o(Coefficient)	P-value
	# Edges in Network ~ # Nodes in Network	Poisson	34260.63	0.0342	1.0348	< 0.0001
	# Edges in Network ~ # Nodes in Network + Trajectory	Poisson	34260.93	0.0344	1.0350	< 0.0001
	# Edges in Network ~ # Nodes in Network * Trajectory	Poisson	33599.17	0.0386	1.0394	< 0.0001
	# Accessible Paths ~ # Nodes In Network	Poisson	12207.29	0.0082	1.0083	< 0.0001
Composite	# Accessible Paths ~ # Nodes In Network + Trajectory	Poisson	12203.83	0.0061	1.0062	< 0.000
	# Accessible Paths ~ # Nodes In Network * Trajectory	Poisson	12204.89	0.0071	1.0071	< 0.000
	# Accessible Paths ~ # Edges In Network	Poisson	12203.07	0.0044	1.0044	< 0.000
	# Accessible Paths ~ # Edges In Network + Trajectory	Poisson	12200.31	0.0034	1.0034	< 0.000
	# Accessible Paths ~ # Edges In Network * Trajectory	Poisson	12201.69	0.0039	1.0039	< 0.000
	# Edges in Network ~ # Nodes in Network	Poisson	26739.96	0.0478	1.0489	< 0.000
	# Edges in Network ~ # Nodes in Network + Trajectory	Poisson	26711.02	0.0489	1.0501	< 0.000
	# Edges in Network ~ # Nodes in Network * Trajectory	Poisson	26507.72	0.0532	1.0546	< 0.000
	# Accessible Paths ~ # Nodes In Network	Poisson	10162.51	0.0106	1.0107	< 0.000
Growth	# Accessible Paths ~ # Nodes In Network + Trajectory	Poisson	10160.39	0.0083	1.0083	0.000
	# Accessible Paths ~ # Nodes In Network * Trajectory	Poisson	10162.28	0.0088	1.0089	0.001
	# Accessible Paths ~ # Edges In Network	Poisson	10159.39	0.0062	1.0062	< 0.000
	# Accessible Paths ~ # Edges In Network + Trajectory	Poisson	10157.09	0.0050	1.0050	< 0.000
	# Accessible Paths ~ # Edges In Network * Trajectory	Poisson	10159.09	0.0050	1.0050	0.001
	# Edges in Network ~ # Nodes in Network	Poisson	32986.67	0.0346	1.0352	< 0.000
	# Edges in Network ~ # Nodes in Network + Trajectory	Poisson	32978.31	0.0350	1.0356	< 0.000
	# Edges in Network ~ # Nodes in Network * Trajectory	Poisson	32437.55	0.0384	1.0392	< 0.000
	# Accessible Paths ~ # Nodes In Network	Poisson	11725.19	0.0058	1.0058	< 0.000
Survival	# Accessible Paths ~ # Nodes In Network + Trajectory	Poisson	11727.13	0.0056	1.0056	0.000
	# Accessible Paths ~ # Nodes In Network * Trajectory	Poisson	11727.11	0.0068	1.0068	< 0.000
	# Accessible Paths ~ # Edges In Network	Poisson	11722.24	0.0032	1.0032	< 0.000
	# Accessible Paths ~ # Edges In Network + Trajectory	Poisson	11724.23	0.0031	1.0031	< 0.000
	# Accessible Paths ~ # Edges In Network * Trajectory	Poisson	11725.27	0.0036	1.0036	< 0.000

Appendix 1—Table 17. Accessibility of specialists to generalists and the ruggedness of their respective fitness landscapes. Odds ratios were obtained by modelling the association between each summary statistic and the species from which adaptive loci were used to construct the fitness network. Scale-eaters were treated as the baseline of comparison in the comparison of odds ratios; thus, positive odds ratios imply that summary statistics for molluscivore fitness networks are greater than those constructed from scale-eater adaptive loci and vice versa. For generalist to specialist comparisons, accessible paths were identified between one randomly sampled generalist node and one randomly sampled specialist node. For comparison of the peaks in networks, these summary statistics were calculated from either molluscivore or scale-eater fitness networks, identifying the number of peaks (nodes with no fitter neighbors – see Methods), and the scaled (total divided by number of nodes in the network) number of accessible paths separating all focal specialist nodes and all peaks in the network.

Comparison	Summary Statistic	Mean / SE	Mean / SE	Odds Ratio: (95% CI)	LRT <i>P</i> -value	
Comparison	Summary Statistic	Molluscivore Network	Scale-Eater Network	Molluscivore / Scale Eater		
	Number of nodes in network	22.994 / 0.106	31.000 / 0.177	0.818: (0.807, 0.829)	< 0.0001	
Generalist	Number of accessible paths	1.105 / 0.007	1.268 / 0.018	0.515: (0.449, 0.588)	< 0.0001	
to Specialist	Scaled number of accessible paths	0.051 / 0.001	0.042 / 0.001	2.095: (1.934, 2.274)	< 0.0001	
	Length of shortest accessible path	2.410 / 0.012	3.444 / 0.029	0.253: (0.231, 0.277)	< 0.0001	
	Number of peaks	3.274 / 0.035	4.637 / 0.046	0.604: (0.575, 0.634)	< 0.0001	
Peaks in Network	Scaled number of accessible paths to peaks	0.095 / 0.001	0.087 / 0.001	1.514: (1.404, 1.635)	< 0.0001	
	Length of shortest accessible path to nearest peak	0.823 / 0.022	1.482 / 0.029	0.539: (0.500, 0.579)	< 0.0001	

Appendix 1—Table 18. Influence of different sources of adaptive genetic variation on accessibility of fitness paths separating either generalists from molluscivores, or generalists and scale-eaters using all samples. Results for networks using all three measures of fitness (composite fitness, survival, and growth) are reported. Networks were constructed from random draws of five SNPs from either Standing genetic variation (SGV), introgression, or *de novo* mutations, as well as their combinations. Odds ratios were obtained by modelling the association between each accessibility measure and the source of genetic variation used to construct the fitness network, relative to networks constructed from standing variation. Thus, positive odds ratios imply that networks from standing variation have measures of accessibility that are smaller as compared to the alternative (e.g. introgression, *de novo* mutations, etc).

Trajectory	Source	Accessibility	Composite Fitness			Growth			Survival		
Tajectory			Mean / SE	LRT P-value	Odds Ratio: (95% CI)	Mean / SE	LRT P-value	Odds Ratio: (95% CI)	Mean / SE	LRT P-value	Odds Ratio: (95% CI)
Generalist to Molluscivore		# Nodes in network	22.095 / 0.118	< 0.0001	0.627: (0.606, 0.646)	17.630 / 0.098	< 0.0001	0.556: (0.535, 0.577)	21.845 / 0.108	< 0.0001	0.628: (0.608, 0.646)
		# Accessible paths	1.071 / 0.005	< 0.0001	0.442: (0.378, 0.515)	1.099 / 0.007	< 0.0001	0.721: (0.613, 0.842)	1.039 / 0.004	< 0.0001	0.214: (0.174, 0.259)
	Introgression	# Accessible paths / # nodes in network	0.052 / 0.0004	< 0.0001	17.131: (15.076, 19.556)	0.066 / 0.0006	< 0.0001	10.272: (9.105, 11.636)	0.051 / 0.0003	< 0.0001	11.256: (10.121, 12.560)
		Length of shortest accessible path	2.480 / 0.013	< 0.0001	0.768: (0.717, 0.823)	2.457 / 0.016	0.8826	0.994: (0.915, 1.079)	2.475 / 0.012	< 0.0001	0.662: (0.619, 0.707)
		Ruggedness (# of peaks)	1.444 / 0.025	< 0.0001	0.250: (0.234, 0.268)	0.706 / 0.018	< 0.0001	0.252: (0.233, 0.271)	1.863 / 0.033	< 0.0001	0.397: (0.378, 0.416)
		# Nodes in network	32.167 / 0.146	< 0.0001	0.820: (0.813, 0.827)	22.994 / 0.106	< 0.0001	0.777: (0.768, 0.786)	32.386 / 0.144	< 0.0001	0.826: (0.819, 0.833)
	SGV +	# Accessible paths	1.117 / 0.007	< 0.0001	0.694: (0.624, 0.771)	1.105 / 0.006	< 0.0001	0.773: (0.684, 0.873)	1.140 / 0.007	< 0.0001	0.666: (0.608, 0.728)
	Introgression	# Accessible paths / # nodes in network	0.037 / 0.0002	< 0.0001	3.974: (3.707, 4.266)	0.051 / 0.0003	< 0.0001	3.538: (3.297, 3.802)	0.038 / 0.0003	< 0.0001	3.108: (2.922, 3.309)
	ind ogi ession	Length of shortest accessible path	2.524 / 0.012	< 0.0001	0.843: (0.793, 0.894)	2.410 / 0.011	0.0050	0.897: (0.835, 0.962)	2.573 / 0.012	< 0.0001	0.798: (0.755, 0.843)
		Ruggedness (# of peaks)	3.906 / 0.034	< 0.0001	0.523: (0.509, 0.537)	2.218 / 0.028	< 0.0001	0.556: (0.539, 0.574)	5.651 / 0.056	< 0.0001	0.690: (0.680, 0.700)
		# Nodes in network	45.783 / 0.261	< 0.0001	0.866: (0.858, 0.874)	33.569 / 0.232	< 0.0001	0.838: (0.827, 0.849)	45.423 / 0.270	< 0.0001	0.870: (0.862, 0.879)
		# Accessible paths	1.190 / 0.012	< 0.0001	0.632: (0.564, 0.706)	1.178 / 0.013	< 0.0001	0.637: (0.556, 0.728)	1.191 / 0.012	< 0.0001	0.668: (0.593, 0.751)
	Introgression	# Accessible paths / # nodes in network	0.027 / 0.0003	< 0.0001	1.790: (1.658, 1.936)	0.037 / 0.0004	< 0.0001	2.011: (1.837, 2.206)	0.028 / 0.0003	< 0.0001	1.931: (1.778, 2.101)
		Length of shortest accessible path	3.033 / 0.021	< 0.0001	0.552: (0.513, 0.593)	3.040 / 0.023	< 0.0001	0.570: (0.525, 0.618)	3.103 / 0.021	< 0.0001	0.679: (0.629, 0.733)
		Ruggedness (# of peaks)	7.879 / 0.036	< 0.0001	0.752: (0.739, 0.766)	5.516 / 0.033	< 0.0001	0.724: (0.709, 0.740)	15.020 / 0.088	< 0.0001	0.838: (0.831, 0.845)
		# Nodes in network	46.292 / 0.177	< 0.0001	0.835: (0.826, 0.844)	35.650 / 0.129	< 0.0001	0.796: (0.783, 0.808)	46.251 / 0.199	< 0.0001	0.844: (0.835, 0.854)
		# Accessible paths	1.234 / 0.012	< 0.0001	0.736: (0.673, 0.803)	1.196 / 0.011	< 0.0001	0.686: (0.612, 0.766)	1.172 / 0.011	< 0.0001	0.628: (0.559, 0.703)
	De novo	# Accessible paths / # nodes in network	0.027 / 0.0002	< 0.0001	1.908: (1.770, 2.061)	0.034 / 0.0003	< 0.0001	1.764: (1.622, 1.922)	0.026 / 0.0002	< 0.0001	1.818: (1.678, 1.972)
		Length of shortest accessible path	3.088 / 0.018	< 0.0001	0.589: (0.553, 0.628)	3.029 / 0.018	< 0.0001	0.555: (0.515, 0.597)	2.920 / 0.017	< 0.0001	0.518: (0.477, 0.560)
		Ruggedness (# of peaks)	8.381 / 0.034	< 0.0001	0.806: (0.792, 0.819)	6.145 / 0.031	< 0.0001	0.809: (0.792, 0.825)	15.615 / 0.079	< 0.0001	0.836: (0.829, 0.843)
		# Nodes in network	56.559 / 0.272	< 0.0001	0.952: (0.945, 0.959)	40.858 / 0.238	< 0.0001	0.925: (0.915, 0.935)	55.717 / 0.302	< 0.0001	0.950: (0.943, 0.957)
Generalist to	SGV +	# Accessible paths	1.331 / 0.019	0.0199	0.904: (0.831, 0.981)	1.304 / 0.021	0.1646	0.928: (0.835, 1.031)	1.312 / 0.022	0.1469	0.932: (0.850, 1.018)
Scale-eater	Introgression	# Accessible paths / # nodes in network	0.024 / 0.0003	< 0.0001	1.167: (1.089, 1.252)	0.033 / 0.0005	< 0.0001	1.270: (1.172, 1.379)	0.024 / 0.0004	< 0.0001	1.209: (1.121, 1.304)
Stale-catel		Length of shortest accessible path	3.415 / 0.026	< 0.0001	0.828: (0.777, 0.882)	3.419 / 0.031	< 0.0001	0.851: (0.793, 0.913)	3.263 / 0.026	< 0.0001	0.823: (0.763, 0.887)
		Ruggedness (# of peaks)	9.319 / 0.036	< 0.0001	0.943: (0.928, 0.957)	6.731 / 0.030	< 0.0001	0.912: (0.895, 0.930)	19.924 / 0.089	< 0.0001	0.954: (0.948, 0.960)
		# Nodes in network	56.723 / 0.214	< 0.0001	0.947: (0.941, 0.954)	42.261 / 0.177	< 0.0001	0.936: (0.926, 0.946)	56.488 / 0.230	< 0.0001	0.951: (0.943, 0.958)
		# Accessible paths	1.344 / 0.019	0.0522	0.931: (0.865, 1.001)	1.287 / 0.018	0.0473	0.901: (0.816, 0.994)	1.315 / 0.023	0.1632	0.949: (0.879, 1.021)
	SGV + De novo	# Accessible paths / # nodes in network	0.024 / 0.0003	< 0.0001	1.155: (1.081, 1.235)	0.031 / 0.0004	0.0017	1.128: (1.046, 1.218)	0.024 / 0.0004	0.0004	1.134: (1.057, 1.218)
		Length of shortest accessible path	3.431 / 0.024	< 0.0001	0.842: (0.794, 0.892)	3.391 / 0.027	< 0.0001	0.834: (0.780, 0.891)	3.299 / 0.023	< 0.0001	0.859: (0.802, 0.920)
		Ruggedness (# of peaks)	9.525 / 0.035	0.0006	0.973: (0.958, 0.988)	6.975 / 0.029	0.0006	0.967: (0.949, 0.986)	19.849 / 0.085	< 0.0001	0.950: (0.944, 0.956)
	SGV + De novo + Introgression	# Nodes in network	46.882 / 0.200	< 0.0001	0.826: (0.816, 0.837)	31.000 / 0.177	< 0.0001	0.722: (0.703, 0.739)	46.875 / 0.222	< 0.0001	0.835: (0.823, 0.845)
		# Accessible paths	1.322 / 0.019	0.0125	0.896: (0.824, 0.971)	1.268 / 0.018	0.0102	0.855: (0.762, 0.956)	1.247 / 0.018	0.0001	0.811: (0.726, 0.900)
		# Accessible paths / # nodes in network	0.029 / 0.0004	< 0.0001	1.879: (1.734, 2.041)	0.042 / 0.0006	< 0.0001	2.798: (2.511, 3.128)	0.027 / 0.0004	< 0.0001	1.785: (1.640, 1.948)
		Length of shortest accessible path	3.484 / 0.026	< 0.0001	0.876: (0.823, 0.932)	3.444 / 0.029	< 0.0001	0.861: (0.800, 0.925)	3.221 / 0.024	< 0.0001	0.775: (0.716, 0.838)
		Ruggedness (# of peaks)	7.440 / 0.029	< 0.0001	0.650: (0.637, 0.664)	4.555 / 0.025	< 0.0001	0.485: (0.471, 0.500)	12.933 / 0.062	< 0.0001	0.725: (0.716, 0.734)

Appendix 1—Table 19. Influence of different sources of adaptive genetic variation on accessibility of fitness paths separating either generalists from molluscivores, or generalists and scale-eaters using only samples from the second field experiment (Martin & Gould 2021). Results for networks using all three measures of fitness (composite fitness, survival, and growth) are reported. Networks were constructed from random draws of five SNPs from either Standing genetic variation (SGV), introgression, or *de novo* mutations, as well as their combinations. Odds ratios were obtained by modelling the association between each accessibility measure and the source of genetic variation used to construct the fitness network, relative to networks constructed from standing variation. Thus, positive odds ratios imply that networks from standing variation have measures of accessibility that are smaller as compared to the alternative (e.g. introgression, *de novo* mutations, etc).

Tusiaatawa	Source	A annuality	Composite Fitness			Growth			Survival		
Trajectory		Accessibility	Mean / SE	LRT P-value	Odds Ratio: (95% CI)	Mean / SE	LRT P-value	Odds Ratio: (95% CI)	Mean / SE I	RT P-value	Odds Ratio: (95% CI)
Generalist to Molluscivore		# Nodes in network	22.062 / 0.118	< 0.0001	0.628: (0.608, 0.648)	17.632 / 0.099	< 0.0001	0.556: (0.535, 0.577)	21.836 / 0.107	< 0.0001	0.617: (0.596, 0.637)
		# Accessible paths	1.067 / 0.005	< 0.0001	0.402: (0.341, 0.471)	1.107 / 0.008	< 0.0001	0.721: (0.618, 0.836)	1.039 / 0.004	< 0.0001	0.205: (0.167, 0.248)
	Introgression	# Accessible paths / # nodes in network	0.052 / 0.0004	< 0.0001	16.263: (14.350, 18.515)	0.066 / 0.0006	< 0.0001	9.411: (8.375, 10.617)	0.051 / 0.0003	< 0.0001	10.698: (9.642, 11.907)
		Length of shortest accessible path	2.483 / 0.013	< 0.0001	0.751: (0.700, 0.804)	2.465 / 0.016	0.7601	0.987: (0.908, 1.073)	2.473 / 0.013	< 0.0001	0.652: (0.610, 0.695)
		Ruggedness (# of peaks)	1.437 / 0.025	< 0.0001	0.247: (0.230, 0.264)	0.702 / 0.018	< 0.0001	0.257: (0.238, 0.276)	1.853 / 0.033	< 0.0001	0.405: (0.386, 0.425)
		# Nodes in network	32.301 / 0.146	< 0.0001	0.824: (0.818, 0.831)	23.042 / 0.103	< 0.0001	0.769: (0.760, 0.779)	32.488 / 0.144	< 0.0001	0.826: (0.819, 0.832)
	SGV +	# Accessible paths	1.134 / 0.007	< 0.0001	0.753: (0.681, 0.832)	1.115 / 0.007	< 0.0001	0.778: (0.693, 0.871)	1.146 / 0.008	< 0.0001	0.664: (0.609, 0.723)
	Introgression	# Accessible paths / # nodes in network	0.037 / 0.0002	< 0.0001	3.929: (3.671, 4.210)	0.051 / 0.0003	< 0.0001	3.505: (3.267, 3.765)	0.037 / 0.0002	< 0.0001	3.053: (2.874, 3.245)
	Introgression	Length of shortest accessible path	2.538 / 0.012	< 0.0001	0.842: (0.793, 0.893)	2.426 / 0.011	0.0136	0.907: (0.846, 0.974)	2.597 / 0.013	< 0.0001	0.819: (0.777, 0.863)
		Ruggedness (# of peaks)	3.954 / 0.034	< 0.0001	0.518: (0.504, 0.532)	2.243 / 0.028	< 0.0001	0.560: (0.542, 0.577)	5.742 / 0.056	< 0.0001	0.690: (0.680, 0.700)
		# Nodes in network	45.775 / 0.254	< 0.0001	0.864: (0.855, 0.872)	33.658 / 0.219	< 0.0001	0.837: (0.826, 0.849)	45.306 / 0.264	< 0.0001	0.862: (0.853, 0.870)
		# Accessible paths	1.202 / 0.013	< 0.0001	0.723: (0.647, 0.803)	1.180 / 0.013	< 0.0001	0.733: (0.639, 0.835)	1.208 / 0.013	< 0.0001	0.743: (0.661, 0.830)
	Introgression	# Accessible paths / # nodes in network	0.027 / 0.0003	< 0.0001	1.959: (1.809, 2.125)	0.037 / 0.0004	< 0.0001	2.243: (2.038, 2.476)	0.028 / 0.0003	< 0.0001	2.087: (1.916, 2.279)
		Length of shortest accessible path	3.108 / 0.022	< 0.0001	0.605: (0.564, 0.648)	3.063 / 0.022	< 0.0001	0.568: (0.523, 0.615)	3.132 / 0.022	< 0.0001	0.713: (0.662, 0.768)
		Ruggedness (# of peaks)	7.928 / 0.036	< 0.0001	0.760: (0.747, 0.773)	5.572 / 0.033	< 0.0001	0.727: (0.712, 0.743)	15.072 / 0.087	< 0.0001	0.838: (0.831, 0.845)
		# Nodes in network	46.510 / 0.177	< 0.0001	0.843: (0.834, 0.851)	35.882 / 0.129	< 0.0001	0.808: (0.796, 0.820)	46.454 / 0.196	< 0.0001	0.843: (0.833, 0.852)
		# Accessible paths	1.223 / 0.011	< 0.0001	0.775: (0.708, 0.846)	1.202 / 0.011	0.0002	0.806: (0.723, 0.896)	1.168 / 0.010	< 0.0001	0.639: (0.566, 0.717)
	De novo	# Accessible paths / # nodes in network	0.027 / 0.0002	< 0.0001	2.010: (1.861, 2.176)	0.034 / 0.0003	< 0.0001	1.934: (1.768, 2.121)	0.026 / 0.0002	< 0.0001	1.874: (1.730, 2.034)
		Length of shortest accessible path	3.100 / 0.018	< 0.0001	0.602: (0.566, 0.640)	3.049 / 0.018	< 0.0001	0.564: (0.524, 0.605)	2.935 / 0.017	< 0.0001	0.553: (0.512, 0.596)
		Ruggedness (# of peaks)	8.336 / 0.034	< 0.0001	0.798: (0.784, 0.812)	6.147 / 0.030	< 0.0001	0.803: (0.787, 0.820)		< 0.0001	0.837: (0.830, 0.844)
		# Nodes in network	56.208 / 0.268	< 0.0001	0.952: (0.946, 0.959)	41.204 / 0.243	< 0.0001	0.937: (0.928, 0.947)	55.697 / 0.277	< 0.0001	0.948: (0.940, 0.955)
Generalist to	SGV +	# Accessible paths	1.339 / 0.021	0.6195	0.980: (0.907, 1.060)	1.285 / 0.020	0.922	0.985: (0.885, 1.097)	1.307 / 0.020	0.256	0.946: (0.866, 1.031)
Scale-eater	Introgression	# Accessible paths / # nodes in network	0.024 / 0.0004	< 0.0001	1.234: (1.151, 1.325)	0.032 / 0.0005	< 0.0001	1.299: (1.196, 1.413)	0.024 / 0.0004	< 0.0001	1.231: (1.144, 1.327)
Statt-tatti		Length of shortest accessible path	3.465 / 0.026	< 0.0001	0.860: (0.809, 0.914)	3.460 / 0.030	< 0.0001	0.860: (0.802, 0.922)	3.306 / 0.025	0.0001	0.867: (0.807, 0.932)
		Ruggedness (# of peaks)	9.231 / 0.036	< 0.0001	0.930: (0.915, 0.944)	6.666 / 0.030	< 0.0001	0.902: (0.885, 0.920)		< 0.0001	0.951: (0.945, 0.957)
		# Nodes in network	56.259 / 0.212	< 0.0001	0.947: (0.940, 0.953)	41.991 / 0.173	< 0.0001	0.936: (0.925, 0.946)	56.339 / 0.224	< 0.0001	0.949: (0.942, 0.956)
		# Accessible paths	1.329 / 0.017	0.4575	0.966: (0.895, 1.042)	1.290 / 0.020	0.922	0.995: (0.905, 1.097)	1.329 / 0.018	0.5596	0.976: (0.900, 1.059)
	SGV + De novo	# Accessible paths / # nodes in network	0.024 / 0.0003	< 0.0001	1.233: (1.153, 1.319)	0.031 / 0.0004	< 0.0001	1.225: (1.133, 1.326)	0.024 / 0.0003	< 0.0001	1.243: (1.158, 1.335)
		Length of shortest accessible path	3.452 / 0.023	< 0.0001	0.851: (0.803, 0.902)	3.379 / 0.025	< 0.0001	0.800: (0.748, 0.856)	3.288 / 0.022	< 0.0001	0.852: (0.797, 0.912)
		Ruggedness (# of peaks)	9.406 / 0.035	< 0.0001	0.953: (0.938, 0.968)	6.898 / 0.029	< 0.0001	0.948: (0.930, 0.966)		< 0.0001	0.947: (0.941, 0.953)
	SGV + De novo + Introgression	# Nodes in network	47.220 / 0.207	< 0.0001	0.841: (0.831, 0.851)	31.051 / 0.183	< 0.0001	0.740: (0.723, 0.757)		< 0.0001	0.840: (0.829, 0.850)
		# Accessible paths	1.298 / 0.018	0.074	0.918: (0.842, 0.998)	1.289 / 0.022	0.922	0.994: (0.894, 1.104)	1.221 / 0.016	< 0.0001	0.790: (0.705, 0.879)
		# Accessible paths / # nodes in network	0.028 / 0.0004	< 0.0001	()		< 0.0001	3.307: (2.936, 3.741)		< 0.0001	1.784: (1.639, 1.946)
		Length of shortest accessible path	3.497 / 0.025	< 0.0001	0.879: (0.827, 0.935)	3.479 / 0.030	0.0001	0.869: (0.809, 0.933)	3.269 / 0.024	< 0.0001	0.826: (0.766, 0.891)
		Ruggedness (# of peaks)	7.361 / 0.031	< 0.0001	0.650: (0.637, 0.664)	4.530 / 0.026	< 0.0001	0.490: (0.475, 0.504)	12.869 / 0.062	< 0.0001	0.725: (0.716, 0.734)