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Abstract 12 

In bacterial TnSeq experiments, a library of transposons insertion mutants is generated, selected under 13 

various growth conditions, and sequenced to determine the profile of insertions at different sites in the 14 

genome, from which the fitness of mutant strains can be inferred. The widely used Himar1 transposon is 15 

known to be restricted to insertions at TA dinucleotides, but otherwise, few site-specific biases have been 16 

identified. As a result, most analytical approaches assume that insertion counts are expected a priori to 17 

be randomly distributed among TA sites in non-essential regions. However, recent analyses of 18 

independent Himar1 Tn libraries in M. tuberculosis have identified a local sequence pattern that is non-19 

permissive for Himar1 insertion. This suggests there are site-specific biases that affect the frequency of 20 

insertions of the Himar1 transposon at different TA sites. In this paper, we use statistical and machine 21 

learning models to characterize patterns in the nucleotides surrounding TA sites associated with high and 22 

low insertion counts. We not only affirm that the previously discovered non-permissive pattern 23 

(CG)GnTAnC(CG) suppresses insertions, but conversely show that an A in the -3 position or T in the +3 24 

position from the TA site encourages them. We demonstrate that these insertion preferences exist in 25 
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Himar1 TnSeq datasets other than M. tuberculosis, including mycobacterial and non-mycobacterial 26 

species. We build predictive models of Himar1 insertion preferences as a function of surrounding 27 

nucleotides. The final predictive model explains about half of the variance in insertion counts, presuming 28 

the rest comes from stochastic variability between libraries or due to sampling differences during 29 

sequencing. Based on this model, we present a new method, called the TTN-Fitness method, to improve 30 

the identification of conditionally essential genes or genetic interactions, i.e., to better distinguish true 31 

biological fitness effects by comparing the observed counts to expected counts using a site-specific model 32 

of insertion preferences.  Compared to previous methods like Hidden Markov Models, the TTN-Fitness 33 

method can make finer distinctions among genes whose disruption causes a fitness defect (or advantage), 34 

separating them out from the large pool of non-essentials, and is able to classify the essentiality of many 35 

smaller genes (with few TA sites) that were previously characterized as uncertain. 36 

 37 

Introduction 38 

 TnSeq has become a popular tool for evaluating gene essentiality in bacteria under various 39 

conditions (Cain, Barquist et al. 2020). The most widely used transposons for bacterial TnSeq are those in 40 

the mariner family, such as Himar1 (Sassetti, Boyd et al. 2003). To date, it has generally been assumed 41 

that the Himar1 transposon, frequently used to generate the transposon libraries, inserts randomly at TA 42 

dinucleotide sites in non-essential regions across the genome (Lampe, Akerley et al. 1999). The abundance 43 

of transposon insertions at each TA site can be quantified efficiently using next-generation sequencing 44 

(Long, DeJesus et al. 2015). Genes or loci with an absence of insertions are considered to be essential, as 45 

disruption in these regions are not tolerated (Sassetti, Boyd et al. 2003). Genes or loci with a reduced 46 

mean insertion count are considered mutants with growth defects, as disruptions in these regions are not 47 

fatal but cause growth impairments or fitness defects (van Opijnen, Bodi et al. 2009). Genes that have 48 
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significant changes in mean counts between conditions are deemed as conditionally essential (Gawronski, 49 

Wong et al. 2009).  50 

 There are several sources of noise in TnSeq experiments, including stochastic variations in the 51 

library generation process as well as instrument and sampling-error in DNA sequencing, resulting in a high 52 

variability in insertion counts. Statistical methods developed thus far to assess gene essentiality typically 53 

assume that insertions occur randomly at TA sites in non-essential regions, and the reason some sites 54 

have more insertions than others is largely due to stochastic differences in abundance in the library. 55 

However, some studies suggest that transposon insertions at non-essential sites is influenced by the 56 

surrounding nucleotides or genomic context. Transposons Tn5 and Mu (not restricted to TA dinucleotides) 57 

showed a bias towards insertions in GC-rich regions and resulted in a less uniform distribution of insertions 58 

in the A-T rich genome (61% AT) of C. glabrata than their notably less-biased counterpart Tn7 (Green, 59 

Bouchier et al. 2012). In addition, Lampe (Lampe, Akerley et al. 1999) showed that local bendability of the 60 

DNA strand can affect the probability of Himar1 insertion at different chromosomal locations in E. coli. 61 

Furthermore, an analysis of 14 independent transposon libraries in M. tuberculosis (Mtb) H37Rv identified 62 

a local sequence pattern around certain TA sites that was non-permissive for Himar1 insertions 63 

(CG)GnTAnC(CG) (DeJesus, Gerrick et al. 2017). This sequence pattern extended to ~9% of sites in non-64 

essential regions which almost always had counts of zero (DeJesus, Gerrick et al. 2017).  65 

 In this paper, we use statistical and machine learning models to identify patterns in the 66 

nucleotides surrounding TA sites associated with high and low insertion counts. We discover nucleotide 67 

biases within a ±4-base pair window around the TA site that suppress Himar1 insertions, and other 68 

patterns that appear to select for them (i.e., associated with high insertion counts). We capture these 69 

biases in a predictive model of Himar1 insertion preferences that can be used to predict expected insertion 70 

counts at any TA site as a function of the surrounding nucleotide context. We demonstrate that these 71 

insertion preferences exist in other Himar1 TnSeq datasets from Mtb, as well as other mycobacterial and 72 
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non-mycobacterial species. The final predictive model explains about half of the variance in insertion 73 

counts, presuming the rest comes from stochastic variability between libraries or due to sampling 74 

differences during sequencing. We demonstrate that this model can be used to improve the assessment 75 

of genes’ fitness by comparing the observed counts to expected counts using a site-specific model of 76 

insertion preferences.  77 

 78 

Results  79 

Insertion counts at TA sites are correlated between libraries 80 

  Variability in insertion counts at TA sites can be attributed to various sources, including 81 

abundance in library, experimental randomness, and local sequence biases, as well as genuine biological 82 

significance (fitness effects). To attempt to differentiate these, we re-analyzed a previously published 83 

collection of 14 independent Himar1 TnSeq libraries grown in standard laboratory medium (DeJesus, 84 

Gerrick et al. 2017). An extended HMM analysis the 14 datasets (see Methods) suggests that 85 

approximately 11.6% of the organism’s TA sites are essential for growth, and insertions in approximately 86 

3.5% of the sites can cause a growth defect. In addition, 9% of sites in non-essential regions have few to 87 

no insertions due to a non-permissive sequence pattern (DeJesus, Gerrick et al. 2017). Insertions at TA 88 

sites in regions other than these are generally expected to occur randomly. If true, the insertion counts at 89 

the same TA site in different libraries would be expected to be uncorrelated on average. However, our 90 

analysis of the 14 H37Rv Tn libraries shows that there is substantial correlation of counts at individual TA 91 

sites, suggesting that some TA sites have a higher propensity for Himar1 insertion than others. Figure 1 92 

shows the distribution of log10 insertions counts from each library in a genomic region with 75 TA sites 93 

(the log of counts was taken to better fit a Gaussian distribution). Each library was TTR-normalized to 94 

make counts from datasets of different total size comparable (DeJesus, Ambadipudi et al. 2015). Panel A 95 

shows that mean insertion counts differ widely among non-essential TA sites, and the variability between 96 
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TA sites is more than within each site. Thus, high counts at a TA site in one library tend to have high counts 97 

in other libraries and similarly, sites with low counts occur symmetrically across the libraries. As a 98 

comparison, insertion counts at TA sites (excluding those marked essential or following the non-99 

permissive pattern) were randomized within each library. Panel B shows the same 75 consecutive TA sites 100 

in this randomized dataset. When randomized, the distribution of counts at sites in non-essential regions 101 

is much more uniform. The average variance of all insertions within a TA site is 0.430, significantly lower 102 

(p-value < 0.001) than the variance of 0.929 found in the randomized dataset. This makes it evident that 103 

the correlation of log insertion counts across libraries is greater than expected. In fact, pairwise 104 

correlations of the randomized datasets range from 0.15 to 0.33, averaging to 0.28. Pairwise correlations 105 

of 14 libraries are considerably higher, ranging from 0.5 to 0.97, averaging to 0.62 (see Supplemental 106 

Figure S1). 80 of the 90 pairwise correlations had significant p-values (< 0.01) from comparison by a two-107 

tailed t-test (see Supplemental Table T1). A significant high correlation across libraries suggests there are 108 

site-specific influences, in addition to those previously observed, on insertion probabilities at different TA 109 

sites. 110 

 111 

Modeling Insertion Counts using Linear Regression 112 

 To determine whether the nucleotides surrounding a TA site influence the probability of 113 

insertion, we examined the association of proximal nucleotides on insertion counts, averaged over all non-114 

essential TA sites in the genome. Figure 2 presents evidence of site-specific nucleotide effects that 115 

influence the relative abundance of insertions at TA sites. Panel A shows overall nucleotide probabilities 116 

±20 bp from the TA site. Most of the deviation in nucleotide probabilities occurs within 4 bp of the central 117 

TA site, with probabilities varying up to 20% for some nucleotides. Further insight can be gained by 118 

dividing the TA sites into thirds: sites with lowest counts, sites with medium counts, and sites with highest 119 

counts. Panel B, depicting the lowest third of the range of insertion counts, shows an increase in 120 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.01.450749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450749
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

probabilities of nucleotides C and G and a decrease in probabilities of nucleotides ‘A’ and ‘T’ especially at 121 

positions ±2 and ±3. Panel D, depicting the highest third of insertion counts, also shows drastic changes in 122 

nucleotide probability, with a notable increase in propensity for ‘A’ at -3 and ‘T’ at +3. These observations 123 

suggest a correlation between the magnitude of insertion counts and nucleotides surrounding TA sites. 124 

Thus, insertion counts at a TA site could be affected by the surrounding nucleotides. 125 

 We trained a linear regression model on the 40 nucleotides surrounding the TA site (positions -126 

20...+20) to predict insertion counts in known non-essential regions (67,670 TA sites) using the mean 127 

counts from the 14 libraries of H37Rv. The input to the model was a one-hot-encoding of the nucleotides, 128 

where each nucleotide at each position was represented by 4 bits and concatenated into a bit vector, 129 

totaling 160 binary features. The resulting linear model was: 130 

𝑙𝑙𝑙𝑙𝑙𝑙10(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼 𝐶𝐶𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼) = 𝑤𝑤0 +  � � 𝑤𝑤𝑖𝑖𝑖𝑖
𝑖𝑖=𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇𝑖𝑖=−20..+20

⋅ 𝐼𝐼𝐶𝐶𝑛𝑛𝑖𝑖𝑖𝑖   131 

where nucij=1 if nuc[i] = j, nuc[i] is the nucleotide at position i relative to the TA site and weights wij 132 

correspond to each of the 160 binary features. This formula is equivalent to a dot-product a 160-bit 133 

vector (plus an intercept) with a vector of weights, log10 (Insertion Count) = w0 + w1 b-20=A + w2 b-20=C +w3 134 

b-20=T + w4 b-20=G +…+ w157 b+20=A + w158 b+20=C +w159 b+20=T + w160 b+20=G , where every four bits encode the 135 

nucleotide at a position ± 20 bp from the TA site.  The model was trained and evaluated using 10-fold 136 

cross validation. Figure 3 shows the average correlation between predicted and observed log10 insertion 137 

counts. The model has some predictive power (R2 value of 0.32), but also has high variance. A slight bias 138 

can be seen in the figure, where the low counts are predicted too high, and the high counts too low. This 139 

is a consequence of the regression model making predictions that do not span as wide of a range as the 140 

actual data, due to inaccurate predictions for the sites with the most extreme (largest or smallest 141 

counts). The accuracy of predictions made by this initial simplified regression will increase with 142 

improved models (below) and thus this effect will be reduced. 143 
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 In Figure 3B, nucleotides with highest coefficients in the trained model are located within a 144 

window of ±4 bp around the TA site. The pattern created by the nucleotides of these coefficients are 145 

consistent with the non-permissive pattern (CG)GnTAnC(CG) previously reported (DeJesus, Gerrick et al. 146 

2017). Nucleotide ‘G’ has the highest absolute coefficient value in the -2 position and ‘C’ has the highest 147 

absolute coefficient value in the +2 position. Moreover, both ‘C’ and ‘G’ have similarly high absolute 148 

coefficients in the -3 and +3 positions. In addition to the confirmation of the non-permissive pattern (large 149 

negative coefficients for ‘G’ at -3 and ‘C’ at +3), the figure shows nucleotides ‘A’ and ‘T’ with relatively 150 

high positive coefficients in positions -3 and +3 from the TA site. These patterns reinforce the observations 151 

made in Figure 1 and provide further evidence of previously undetected site-specific nucleotide biases 152 

that affect Himar1 insertion counts. 153 

 154 

Prediction of insertion counts at TA sites relative to local average counts 155 

 We assume that insertion counts are proportional to the permissiveness of a site i.e., a site with 156 

a less permissive pattern will have lower counts than a site with a more permissive pattern. However, 157 

insertion counts are also affected by biological fitness. It is likely that a TA site with a specific nucleotide 158 

pattern in a fitness-defect gene will have a lower insertion count than a TA site with the same pattern in 159 

a non-essential gene. But this effect (decrease or increase in counts) should be shared by multiple TA sites 160 

locally. We can compare the insertion count observed at a site to the observed counts at other TA sites in 161 

the region, the level of which should reflect the general fitness effect of disrupting the gene. Thus, 162 

modeling this relative (or local) change in insertion counts would allow us to factor out biological effects 163 

on counts and focus on the effect of nucleotide patterns on the insertion counts. 164 

 This change in insertion counts is quantified for every TA site as a log-fold-change (LFC) value. 165 

The local average was calculated for each site by taking the mean insertion counts from the previous 5 166 

and next 5 TA sites from the site of interest (i.e., using a sliding window of 11 consecutive TA sites).  167 
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𝐿𝐿𝑙𝑙𝑛𝑛𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿𝑙𝑙𝐼𝐼(𝐼𝐼) =
1

10
��𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐶𝐶𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼(𝐼𝐼)
𝑖𝑖−1

𝑖𝑖−5

+ �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐶𝐶𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼(𝐼𝐼)
𝑖𝑖+5

𝑖𝑖+1

�  168 

The local mean excludes the central site itself and any locations marked as essential during pre-processing. 169 

The LFC for each TA site was calculated by taking the log insertion count at that site plus a pseudo count 170 

of 10 (to smooth out high variability of LFCs for sites with low counts) and dividing it by the local average:  171 

𝐿𝐿𝐿𝐿𝐶𝐶(𝐼𝐼) =  𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐶𝐶𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼(𝐼𝐼) + 10
𝐿𝐿𝑙𝑙𝑛𝑛𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿𝑙𝑙𝐼𝐼(𝐼𝐼) + 10

� 172 

 As with the previous model, this linear model was trained and tested using 10-fold cross 173 

validation. The resulting model (see Supplemental Figure S2) has an average R2 value of 0.38, indicating 174 

that training the model to predict changes in insertion counts (relative to local mean) rather than absolute 175 

insertion counts greatly reduces the noise due to local fitness effects (e.g., in a gene where insertion cause 176 

growth defects, systematically reducing abundance of insertions in the region). This allows the model to 177 

better capture the effect of nucleotides surround TA sites on Himar1 insertion preferences.  178 

 179 

A neural network model explains up to 50% of the variability in insertion counts 180 

 As they can capture non-linear patterns, neural networks are considered to be some of the most 181 

powerful predictors in Machine Learning (Rumelhart, Hinton et al. 1986). To see if we could increase the 182 

accuracy of our model, we tried using our data to train a fully connected multi-layer feed-forward Neural 183 

Network. The model contained one hidden layer of 50 nodes. This parameter along with other hyper 184 

parameters of the network were tuned using a grid search (see details in Methods and Materials). A 185 

random subset of 70% of the data was used to find the ideal hyper parameters through cross validation, 186 

with the remaining 30% of the data used to test the final hyper parameters. A 10-fold cross-validation of 187 

the entire dataset was used to train and test the model i.e., judge the model accuracy using our data. The 188 

input to the model consisted of bit-vectors encoding nucleotides surrounding each TA site in the dataset, 189 

totaling to 160 features. The target value was LFCs (log-fold-changes of insertion counts relative to local 190 
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mean). The model performed better than the previous models with an average R2 of 0.51 (R2 of 0.509 on 191 

the hyper parameter test data) (see Supplemental Figure S3). Thus, the neural network can explain around 192 

half of the variability in insertion counts at TA sites based on surrounding nucleotides; presumably, the 193 

remaining differences in counts still reflect stochastic differences in abundance between libraries (or other 194 

influences on TA insertion preferences for which we have not yet accounted). However, as is typical for 195 

neural networks, this model (as a matrix of connection weights) does not provide us much insight into 196 

nucleotide patterns that led to the predictions for the TA sites. 197 

 198 

Certain Nucleotides Surrounding TA Sites are Associated with High or Low Insertion Frequencies  199 

 It has been previously noted that there are biases in distributions of nucleotides surrounding 200 

TA sites, making them more permissive or less permissive. If a site has a pattern that is considered more 201 

permissive, it should have a higher insertion count than its neighbors and thus a positive LFC. The opposite 202 

is true for sites with a less permissive pattern. They should have lower counts than their neighbors and 203 

thus negative LFCs. The heatmap in Figure 4 was generated to visualize any additional nucleotide biases 204 

that may result in unusually high or low insertion counts. For each nucleotide N and position P within ±20 205 

bp of a TA site, the mean LFC was calculated over the subset of TA sites having nucleotide N at position P 206 

(Methods and Materials). The heatmap reinforces the idea illustrated in Figure 2 of the correlation 207 

between nucleotide biases and insertion count magnitudes. A ‘G’ in position -2 and its symmetric 208 

counterpart ‘C’ in position +2, as well as ‘C’ in the -3 position and its counterpart ‘G’ in +3 position are 209 

associated with low mean LFCs. This indicates that TA sites with at least one of these nucleotides in their 210 

relative positions tend to have lower insertion counts than their neighbors, consistent with the nucleotide 211 

bias represented by the non-permissive pattern (CG)GnTAnC(CG) observed in (DeJesus, Gerrick et al. 212 

2017). Similarly, there is a distinctive pattern for positive mean LFCs: an ‘A’ in position -3 and its 213 

counterpart ‘T’ in position +3 are both associated with higher mean LFCs, and hence can be interpreted 214 
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as being more permissive for Himar1 insertions (associated with increased counts). However, the effects 215 

of multiple biases appearing in a single sequence are not additive. For instance, a ‘C’ in the -2 and an ‘A’ 216 

in the -3 position do not “cancel” each other out; they are interdependent. We quantify how effects like 217 

these combine in the tetra-nucleotide model below.  218 

 There appears to be a slight periodic pattern of the G and C nucleotides surrounding the TA site, 219 

between 20 and 4 bp from the TA site in Figure 4 (also evident in Figure 2). The nucleotides show an 220 

increase in mean LFC for every third position in the sequence. Representing this pattern in a simplistic 221 

manner and comparing it to the LFC target variable showed little correlation. Thus, this periodic sequence 222 

was not incorporated in our model. 223 

 224 

Symmetric Tetra-nucleotide Linear Model (STLM) 225 

 To gain more insight into the nucleotide patterns observed through the heatmaps, we 226 

devised a variant of the linear model, called the STLM (Symmetric Tetra-Nucleotide Linear Model). In the 227 

linear models previously mentioned, the pattern associated with individual nucleotide was implicitly 228 

assumed to be additive, and thus each nucleotide position was treated as an independent variable. But 229 

we wondered whether a stronger pattern may be found through combinations of these nucleotide 230 

positions, which can represent non-linear interactions.  231 

 Training the linear model to predict LFCs based only on the nucleotides in a window of ±4 bp 232 

from the TA site yielded nearly identical results to the regression predicting LFCs using all 40 nucleotides 233 

(R2 = 0.35 and the same coefficient pattern for nucleotides in range -4...+4) indicating that most of the 234 

influence on LFC predictions is within an 8 bp window (see Supplemental Figure S4). This is reinforced by 235 

the heatmaps, as a majority of the apparent effects occur within 4 bp from the TA site. If we use all the 236 

sequence combinations of the nucleotides in positions -4...+4 as features in our model, we will have 48 237 

=65,536 features (i.e., terms in a linear model, or inputs to a neural network). However, the patterns of 238 
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nucleotide biases are symmetrical (reverse-complement), as shown by the heatmaps, thus making the 239 

distinction between all 8 nucleotides unnecessary. The four nucleotides upstream of the TA appear to 240 

affect the insertion counts in the same way as the reverse-complement of the 4 nucleotides downstream 241 

of the TA site. Therefore, it is only necessary to capture the association of 4 nucleotides at a time on LFCs 242 

in the model. Hence, we shift to training our models based on combinations of 4 nucleotides, i.e., tetra-243 

nucleotides, which reduces the number of features in our model to 44 = 256.  244 

 As input to the STLM, each TA site is represented as a vector where all features are set to 0 245 

except for the upstream tetra-nucleotide and reverse-complemented downstream tetra-nucleotide (see 246 

Figure 6). This is essentially the same as adding two bit-vectors, one vector with the bit for the upstream 247 

tetra-nucleotide on and another separate vector with the bit for the downstream tetra-nucleotide on. The 248 

result is a sparse 256-bit vector with only 2 bits on (except when the two tetra-nucleotides are the same, 249 

in which case the single feature value for the tetra-nucleotide is set to 2). The result is a linear model that 250 

follows the equation 251 

𝐿𝐿𝐿𝐿𝐶𝐶 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝐼𝐼𝑖𝑖𝐼𝐼 +  𝑤𝑤1𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + ⋯+ 𝑤𝑤256𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 252 

where 𝑤𝑤1 … .𝑤𝑤256 are the weights associated with tetra-nucleotides (to be trained by the model) and 253 

𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 … . 𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are the bits corresponding to the presence of the adjacent tetra-nucleotide features for 254 

every TA site. Encoding both the upstream and reverse-complemented downstream tetra-nucleotides 255 

allows us to use the same model to represent the bias from both sides of the TA simultaneously as 256 

independent features, additively contributing equal weight. Assume for a given TA site, both upstream 257 

and downstream tetra-nucleotides are associated with high LFCs; then they will reinforce to predict an 258 

even higher insertion count for that site. But if the upstream tetra-nucleotide has a trend to contribute a 259 

high LFC and the reverse-complemented downstream tetra-nucleotide has a trend to contribute a low 260 

LFC, they will tend to cancel each other out.  261 
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 As seen in Figure 5A, 10-fold cross validation using the H37Rv data resulted in an average R2 262 

value of 0.469. This R2 value is slightly lower than, but nearly equal to, that of the neural network (p-value 263 

< 0.01 from two-tailed t-test). However, the STLM provides us more insight into patterns contributing to 264 

the prediction of the LFCs. In a regression with these tetra-nucleotide features, we expect each coefficient 265 

(i.e., weights) of the model to correlate with the average LFC associated with each tetra-nucleotide (over 266 

TA sites surrounded by these tetra-nucleotides). Figure 5B shows the relationship of the STLM coefficients, 267 

and the mean observed LFCs of the corresponding tetra-nucleotides (shifted on the y-axis by the bias 268 

(intercept) in our data). The strong linear trend visible adheres to the expectation of a high correlation 269 

and indicates our model accurately represents our data. The individual tetra-nucleotide coefficients are 270 

shown in Panel C, sorted in decreasing order (See Supplemental Table T4 for full table). Consistent with 271 

the patterns observed in the heatmaps in Figure 4, the bottom ten features associated with low 272 

coefficients (predictive of low mean LFCs) all have a ‘G’ in the 2nd position upstream of the TA sites and a 273 

‘C’ or ‘G’ in the 3rd position. The features associated with the top ten coefficients, thus higher LFC values, 274 

all have an ‘A’ in 3rd position upstream from the TA site. However, the strength of the STLM is that it 275 

accounts for combinations of 4 nucleotides together at a time, resolving cases where single-nucleotide 276 

patterns might conflict. 277 

While the STLM was able to partially predict the frequency of insertion at different TA sites 278 

(R2=0.47), a significant amount of variability remains between observed and predicted insertion counts. 279 

This can be attributed to stochastic variability in the insertion counts across the libraries, as well other 280 

factors that the model did not account for, such as GC content outside of the -4…+4 region and DNA 281 

bendability (Lampe, Grant et al. 1998). However, when the STLM was augmented with the addition of GC 282 

content as a feature, where GC content was calculated with the ±20 bp window, it only showed an 283 

improvement in R2 of 0.02. When the STLM was augmented with bendability as an additional feature, 284 

calculated for each TA site using the bend-it program (Goodsell and Dickerson 1994), the results were 285 
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nearly identical to that of the model with only the 256-bit vectors (R2=0.47). These experiments indicated 286 

that the tetra-nucleotides are a larger factor in the prediction of LFCs than GC content or bendability. 287 

Using only the GC content and bendability as two features to a linear model resulted in a R2 of nearly zero 288 

for all the datasets tested. Furthermore, plots of LFC vs. bendability and LFC vs. GC content showed little 289 

to no correlation. 290 

 291 

Application of STLM to other Himar1 TnSeq datasets 292 

 To evaluate whether the nucleotide biases derived from these 14 independent datasets in 293 

H37Rv are representative of generalized insertion preferences of the Himar1 transposon, we compared 294 

the biases seen so far to those in other Himar1 TnSeq datasets.  295 

 Staying within the Mycobacterium genus, we obtained datasets from Himar1 TnSeq libraries, 296 

grown in regular growth medium (7H9), of M. avium (Dragset, Ioerger et al. 2019), M. abscessus ATCC 297 

19977 (Akusobi et.al, https://www.biorxiv.org/content/10.1101/2021.07.01.450732v1), M. smegmatis 298 

mc2 155 ∆LepA (unpublished data, E.J. Rubin), and M. tuberculosis H37Rv ∆Rv0060 (Zaveri, Wang et al. 299 

2020). We extracted the LFCs from the datasets based on the insertion counts at TA sites in each genome 300 

along with tetra-nucleotide vectors based on the nucleotides surrounding each TA site. The heatmaps for 301 

each of the datasets in Figure 7 shows the mean LFCs associated with each nucleotide at each position 302 

within a ±20bp window of the TA Site. These heatmaps look nearly identical to the heatmap of H37Rv in 303 

Figure 4. They exhibit the same negative LFC bias for -3 ‘C’, +3 ‘G’, -2 ‘G’, +2 ‘G’, and the same -3 ‘A’, +3 ‘T' 304 

positive LFC bias. STLM LFC predictions for each of the new Tn-Seq datasets were adjusted by a simple 305 

regression-based procedure to correct for differences in the LFC distribution (further described in 306 

Methods). Results, calculated as correlations between predicted and observed LFCs with the regression 307 

adjustment (see Supplemental Figure S6), along with the nucleotide biases observed in the heatmaps, 308 

show that the STLM can help explain the variability in insertion counts at different TA sites for these 309 
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datasets (using coefficients trained on M. tuberculosis H37Rv data but applied to datasets from other 310 

mycobacterial species). The predictive power of our model on the M. abscessus dataset (R2 of 0.504) is 311 

slightly higher than, but about the same as, the Mtb test set. Thus, we can explain ~50% of the variance 312 

in insertion counts in this dataset based on the nucleotide biases. The predictive power of our model on 313 

some datasets, such as M. avium was lower (R2 of 0.262), but they still exhibited a correlation between 314 

observed and predicted LFCs (and hence insertion counts) and displayed a nucleotide pattern similar to 315 

the heatmaps from the other mycobacterial TnSeq datasets.  316 

 To examine whether these biases also occur outside of the Mycobacterium genus, we obtained 317 

Himar1 TnSeq datasets from Caulobacter crescentus (Murray, Panis et al. 2013), Rhizobium 318 

leguminosarum (Perry, Akter et al. 2016), and Vibrio cholera (Chromosome I only; Chromosome II behaves 319 

similarly) (Chao, Pritchard et al. 2013). We calculated LFCs (log-fold-change of insertion counts relative to 320 

local mean) at each TA site in these genomes and plotted the heatmaps as associations of nucleotides at 321 

specific positions around the TA with LFCs. As Figure 8 shows, the heatmaps associated with all three 322 

datasets reflect the same nucleotide patterns found in the mycobacterial datasets. Applying the STLM to 323 

these datasets yielded significant correlations between predicted and observed LFCs, with statistically 324 

significant R2 values (see Supplemental Figure S7). The correlation for Vibrio cholera is lower than the 325 

others (R2= 0.249) possibly due to sequence preferences in the fragmentase used for shearing during the 326 

sample prep for sequencing. This was done differently than other TnSeq experiments and could have 327 

introduced additional variance into the insertion counts for the Vibrio dataset. However, the heatmap 328 

shows a pattern consistent with the nucleotide biases we see with the Tn-Seq datasets from other 329 

organisms. This indicates that the nucleotide biases visible in the mycobacterial datasets also explains 330 

some of the insertion count variances present in non-mycobacterial datasets, thus supporting that the 331 

STLM captures generalized site-specific biases on insertion preferences of the Himar1 transposon. 332 

 333 
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SNPs around TA sites in an M. abscessus Clinical Isolate Exhibit Predictable Changes in Insertion Counts.334 

 To evaluate whether changes in nucleotides proximal to TA sites would have a predictable effect 335 

on transposon insertion counts, we obtained a Himar1 Tn library for a clinical isolate of M. abscessus 336 

Taiwan49 (Mab T49) and compared it to a Tn library in the reference strain, ATCC 19977 (generated by 337 

methods described in the accompanying manuscript by Akusobi et al. 338 

https://www.biorxiv.org/content/10.1101/2021.07.01.450732v1; see Availability for data files with raw 339 

insertion counts). These two strains of M. abscessus are fairly divergent, belonging to different subspecies 340 

(ATCC 19977 in Mab subsp. abscessus, and Taiwan49 in Mab subsp. massiliense); they have 114,335 SNPs 341 

between them based on a genome-wide alignment. However, at the level of functional genomics, they 342 

are similar. As determined through the HMM method in TRANSIT (DeJesus, Ambadipudi et al. 2015), 513 343 

out 4923 total genes in ATCC 19977 and 451 out 4225 total genes in T49 are predicted to be essential or 344 

growth defect genes. 417 of these genes overlap. Figure 9 shows that predicting insertion counts in this 345 

isolate with the STLM yielded an R2 value of 0.49. This is, as expected, quite similar to the results of the 346 

M. abscessus reference dataset reported above. After aligning the genomes M. abscessus Taiwan49 347 

clinical isolate and M. abscessus reference strain, we found 9303 TA sites where there was exactly one 348 

SNP in the 8-nucleotide window (±4 bp) surrounding the TA site.  349 

 A plot of the average changes in observed LFCs versus the average changes in predicted LFCs 350 

between the reference and isolate strain at these sites for every TA site with an adjacent SNP can be seen 351 

in Figure 10 (see Methods and Materials). We expected that when a nucleotide with a high negative bias 352 

was mutated, the observed LFC would increase, and when a nucleotide with a high positive bias was 353 

changed, the observed LFC would decrease. Figure 10 shows this effect. The colored points in the graph 354 

are the most significant nucleotide-position pairs that we have previously observed to have the highest 355 

LFC biases. When a nucleotide is switched from an ‘A’ in -3 position (blue) or a ‘T’ in the +3 position (green) 356 

to any other nucleotide, there is a decrease in observed LFC and when a ‘G’ in -2 position (orange) or ‘C’ 357 
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in +2 position (pink) is changed, there is an observed increase. The presence of this effect of SNPs on the 358 

LFC i.e., differences in insertion counts at corresponding TA sites in different clinical isolates, along with 359 

the high correlation of the observed and predicted LFC changes, provides further evidence that the STLM 360 

can represent the nucleotide biases on transposon insertion preferences with high accuracy.  361 

 The accompanying table in Figure 10 is a truncated view of the SNPs sorted in increasing order 362 

of mean observed LFC change (for full table see Supplemental Table T2). In addition to the general pattern 363 

observed in the plot, we see that the magnitudes of the LFC differences correspond to the magnitudes of 364 

nucleotide biases. In the previous heatmaps, ‘A’ in the -3 position (and the downstream reverse 365 

complemented pattern) shows the strongest bias for high LFCs and ‘C’ in the -3 position or ‘G’ in -2 position 366 

(and the downstream reverse complemented pattern) shows the strongest bias towards low LFCs. 367 

Following this pattern, the biggest decrease in mean observed LFC, occurred when an ‘A’ in the -3 position 368 

was changed to a ‘C’ and the biggest increase in mean observed LFCs occurred when ‘C’ in the -3 position 369 

was changed to an ‘A’. Thus, the effect of SNPs between a pair of moderately divergent strains correspond 370 

to the nucleotide biases observed within various Himar1 datasets and furthers the notion that these 371 

biases are general and can explain a significant portion of the variance in insertion counts of Himar1 Tn-372 

Seq datasets.  373 

 374 

Using Expected Insertion Counts to Improve Gene Essentiality Predictions 375 

 Previous methods of identifying essential genes within individual datasets have been based on 376 

the magnitude of insertion counts. For example, tools such as TnSeq-Explorer (Solaimanpour, Sarmiento 377 

et al. 2015) use the mean of insertion counts in sliding windows to classify genes by essentiality. The 378 

limitation of relying on raw insertion counts is that they can be highly variable among TA sites, and this 379 

noise can lead to inaccurate estimation of the relative level of fitness defects caused by transposon 380 

disruption. We describe a new method, called the TTN-Fitness method using the Gene+TTN model, which 381 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.01.450749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450749
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

considers the site-specific biases on Himar1 insertion preferences to correct the observed counts for 382 

expectations based on the nucleotides surrounding each site. 383 

 The Gene+TTN model incorporates nucleotide context into an insertion count based model, 384 

allowing us to decouple the two main causes for low insertion counts: biological, and Himar1 insertion 385 

preferences. This allows us to make a more informed assessment on the level of gene fitness defect for 386 

biological reasons. The input to the model for each TA site is a vector consisting of a binary encoding of 387 

the gene in which it is located, combined with the 256 tetra-nucleotide (TTN) features. Each TA site is 388 

represented as a bit vector, with 3981 features, one for each gene, and 256 features encoding the 389 

upstream and reverse-complemented downstream tetra-nucleotides adjacent to the site. We excluded 390 

TA sites from genes determined to be ‘Essential’ through the Gumbel analysis and Bernoulli Distribution. 391 

The model can be represented in matrix form as:  392 

𝑌𝑌 = 𝑏𝑏 + 𝐶𝐶G + 𝐷𝐷T         (M1) 393 

where Y is a vector of the log10 of insertion counts at every TA site, G is the matrix of 3981 gene covariates 394 

for each site, C is vector coefficients to be fit per gene, T is the matrix of 256 tetra-nucleotide covariates 395 

for each site and D is the vector of coefficients to be fit per tetra-nucleotide. The intercept b is close to 396 

the global average of log10 insertion counts and the coefficients (C) for every gene reflect the deviation 397 

of the gene’s mean log10 insertion count from the global average, adjusting for the effect of surrounding 398 

nucleotides (D). Essentially, we are finding the deviation of the gene’s mean insertion count from the 399 

global average based on biological reasons, i.e., subtracting out the effect of site-specific nucleotide based 400 

Himar1 insertion preferences. Thus, the gene-specific coefficients (C) represent adjusted estimates of the 401 

fitness level of each gene.  402 

 The regression model was trained on the Mtb H37Rv in-vitro dataset. The significance of genes 403 

(i.e. p-value) was calculated using a Wald test (Draper and Smith 1998), and then adjusted for multiple 404 

testing to limit the False Discovery Rate (FDR) to ≤5% using the Benjamini-Hochberg method (Reiner, 405 
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Yekutieli et al. 2003). Genes with an adjusted p-value < 0.05 and negative coefficient are interpreted as 406 

‘Growth Defect’ (GD) genes, and those with adjusted p-value < 0.05 and positive coefficient are 407 

interpreted as ‘Growth Advantaged’ (GA) genes. Genes with an insignificant coefficient near 0 (adjusted 408 

p-value > 0.05) are interpreted as ‘Non-Essential’ (NE). Genes identified a priori as essential by the Gumbel 409 

method in TRANSIT (DeJesus, Ambadipudi et al. 2015) were marked ‘Essential’ (ES) by the TTN-Fitness 410 

method and excluded from both training and testing. Gumbel identifies large essential genes well but 411 

tends to classify small genes (with <10 TA sites) as ‘Uncertain’, depending on the overall level of saturation 412 

of the dataset. Thus, we use the Bernoulli distribution to classify additional significant genes (p<0.05) 413 

lacking insertions that are likely essential as ‘Essential-B’ (ESB, as a subcategory of ES) (see Methods and 414 

Materials). The HMM+NP model, a modified HMM to account for non-permissive sites described by 415 

DeJesus (DeJesus, Gerrick et al. 2017), distinguishes between ‘ES’ and ‘ESD’ (Domain-Essential) genes, 416 

which our model does not. For model comparison, we have combined the two categories into one labeled 417 

‘ES/ESD’. As seen in Figure 11A, the TTN-Fitness method labels a similar number of genes essential as the 418 

HMM-NP method, though slightly fewer non-essential and more in the growth-defect and growth-419 

advantaged categories (DeJesus, Gerrick et al. 2017). The confusion matrix in Figure 11B shows that there 420 

are 345 genes labeled ‘Essential’ in both the TTN-Fitness method and the HMM+NP model (i.e. on the 421 

diagonal in the confusion matrix), showing a great deal of overlap. 1777 ‘Non-Essential’ genes also overlap 422 

between the 2 methods.  However, the biggest difference is that large number of genes labelled as ‘Non-423 

Essential’ (NE) by the HMM get reclassified as either ‘GD’ or ‘GA’ by the TTN-Fitness method. 14.7% of 424 

genes labeled ‘Non-Essential’ in the HMM+NP model have slightly lower than average insertion counts 425 

and are classified as ‘GD’ via the Gene+TTN (M1) model. 25.4% of genes labeled ‘Non-Essential’ by the 426 

HMM+NP model have insertion counts slightly higher than average and are classified as ‘GA’ through the 427 

Gene+TTN (M1) model. This shows that the TTN-Fitness method labels genes similarly to the HMM+NP 428 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.01.450749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450749
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

model for the most part, but is more sensitive to deviations from the average insertion count and 429 

consequently labels some genes more specifically as ‘GD’ or ‘GA’. 430 

  Figure 12A shows a linear relationship between the coefficients associated with tetra-431 

nucleotides features in the Gene+TTN (M1) model and the corresponding coefficients of the STLM, 432 

illustrating that the influence of tetra-nucleotides on predicted counts captured in this model is consistent 433 

with the effect previously discussed in the STLM. Panel B shows the difference in the fitness assessment 434 

of genes when compared to a Gene-Only (M0) model, dropping the TTN features and hence lacking the 435 

site-specific adjustments based on tetra-nucleotide covariates. The Gene-Only (M0) model encodes only 436 

the gene at every TA site and can be expressed in matrix form as: 437 

𝑌𝑌 = 𝑏𝑏 + 𝐶𝐶G          (M0) 438 

 The intercept (b) is the global average log10 insertion count in the genome and the coefficient C 439 

corresponding to each gene is the deviation of the gene’s mean insertion count from the global average. 440 

As this model does not incorporate the tetra-nucleotides, if there is a gene with a very negative coefficient, 441 

it will be interpreted to be ‘Growth Defect’ regardless of whether the suppression of insertions is due to 442 

true biological gene defect or nucleotide bias. The scatterplot of the gene coefficients between the two 443 

models in Panel A shows a strong linear trend, indicating estimated mean (log10) insertion counts for 444 

most genes are quite similar between the two models. However, the dispersion suggests that taking the 445 

nucleotide context into account changes the fitness estimate for a number of outlying genes. Genes that 446 

show the highest differences in coefficients between the two models are frequently labeled as ‘Uncertain’ 447 

by the HMM+NP model (DeJesus, Gerrick et al. 2017), a majority of which are small genes with fewer than 448 

5 TA sites. Details on the difference in the coefficients and their significance (determined through a 449 

Student t-test and an FDR adjusted p-value) can be found in the Supplemental Table T3.  450 

 An example of a gene whose fitness interpretation is changed via the Gene+TTN model in the 451 

TTN-Fitness method (compared to Genes-only model), to better reflect its biological significance, is 452 
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Rv0833 (PE_PGRS13). The gene is seen in Figure 12B is interpreted as ‘Growth Defect’ through model M0 453 

(Genes-only; C = -1.02, adjusted p-val = 2.95 𝑥𝑥 10−6) and as ‘non-essential’ by model M1 (Gene+TTN; C = 454 

-0.26, adjusted p-value = 0.109, hence not significantly different from 0). The difference in labeling 455 

indicates that, based on the surrounding nucleotides, the low insertion counts at TA sites in Rv0833 are 456 

expected. This is supported by the fact that the PE_PGRS genes are especially GC-rich (Gey van Pittius, 457 

Sampson et al. 2006). The gene contains 12 TA sites spanning 2250 base pairs. 81.3% of the nucleotides 458 

were ‘G’s or ‘C’s and 6 sites contained the non-permissiveness pattern. Thus, observed insertion counts 459 

in the gene are much lower than the global average insertion count, but they are expected to be. Although 460 

studies suggest that genes within the PE/PPE family may be involved in inhibition of antigen processing in 461 

hosts, PE_PGRS genes have been shown to be non-essential in-vitro (Gey van Pittius, Sampson et al. 2006). 462 

Thus, the Gene+TTN model was able to evaluate the fitness of PE_PGRS13 more accurately than the Gene-463 

Only model, demonstrating that incorporating the nucleotide context surrounding each TA site improves 464 

the fitness assessment of this gene. 465 

 To investigate genes that exhibit large differences in fitness assessment between the TTN-466 

Fitness method and the HMM+NP method, Figure 13 shows a volcano plot of the gene coefficients from 467 

the Gene+TTN model versus the –log10 of the FDR-adjusted p-value. The gray points in the plot are gene 468 

coefficients that were not seen to significantly deviate from 0. These are interpreted as ‘non-essential’ 469 

genes by the TTN-Fitness method. The genes that were found to be significant are colored according to 470 

their labels in the HMM+NP model. The vertical solid line at C=0 is where the colored genes on the left 471 

are interpreted as ‘GD’ and colored genes on the right are interpreted as ‘GA’ by the TTN-Fitness method. 472 

All significant genes labeled ‘GA’ or ‘GD’ by the HMM+NP model fall on their respective sides of the C=0 473 

line, but there are a few ‘non-essential’ and ‘Uncertain’ genes that are reclassified by the TTN-Fitness 474 

method.  475 
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 With improvements in fitness assessment from the incorporation of tetra-nucleotides, small 476 

genes (3 or less TA sites) labeled “Uncertain” by the HMM+NP model can be evaluated with greater 477 

confidence. Of the 71 genes labeled “Uncertain” by the HMM+NP model, most (65) have 3 or fewer TA 478 

sites, indicating the uncertainty comes from the short length of the gene. These genes are all concretely 479 

classified by the TTN-Fitness method (mostly as ‘Non-Essential’ (51) or ‘Growth-Defect’ (18); see Figure 480 

11B)  .Rv3461c (rpmJ, 50S ribosomal protein L36), a gene with 3 TA sites, is an example of such an 481 

“Uncertain” gene (DeJesus, Gerrick et al. 2017). The gene is seen in Figure 12B to be interpreted as ‘Non 482 

Essential’ by the Gene-Only model M0 (C = -0.87, adjusted p-val = 0.074, not significantly different from 0) 483 

and ‘Growth Defect’ by the Gene+TTN (M1) model(C = -1.02, adjusted p-val = 9.41 𝑥𝑥 10−4), indicating the 484 

insertions for the genes are lower than expected according to the surrounding tetra-nucleotides. Figure 485 

13 shows that the gene is similar to other genes labeled ‘Growth defect’ or ‘Essential’ by the HMM+NP 486 

model. Rv3461c is a part of the L3P family of ribosomal proteins. Other genes in this family have been 487 

labeled as ‘Essential’ or ‘Growth Defect’ by the HMM+NP model and ‘Growth Defect’ per the Gene+TTN 488 

model. In fact, rpmJ was categorized as a ‘Growth Defect’ gene in early TraSH experiments (Sassetti, Boyd 489 

et al. 2003). Therefore, this previously ‘Uncertain’ gene should be interpreted as ‘Growth Defect’ (possibly 490 

even ‘Essential’), as the TTN-Fitness method suggests, with confidence. 491 

 These examples show the improvement of fitness assessment with the incorporation of tetra-492 

nucleotides in an insertion-count only model. This enables the TTN-Fitness method to account for the 493 

effect of genomic context on the Himar1 transposon insertion preferences, and thus better assess a gene’s 494 

fitness defect due to genuine biological causes.  495 

 496 

Discussion 497 

 Previous studies have demonstrated the presence of some site-specific biases on Himar1 498 

transposon insertion preferences based on a non-permissive pattern that exists around TA sites with low 499 
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insertion counts in non-essential regions (DeJesus, Gerrick et al. 2017). This led us to hypothesize that 500 

perhaps insertion counts at different TA sites could be predicted based on surrounding nucleotides. We 501 

developed a model that captures nucleotide biases and uses them to predict changes in relative insertion 502 

counts i.e., LFCs. The LFC metric compares raw counts at a site to the local average, which allows us to 503 

predict the deviation in insertion counts from the neighborhood rather than the absolute insertion counts 504 

themselves. This method allows us to examine just the effect of the nucleotides on the insertion counts, 505 

independent of biological effects (e.g., genes with different levels of growth defect). The STLM developed 506 

for the task incorporated tetra-nucleotides upstream and downstream of the TA site, taking advantage of 507 

the symmetric nature of the bias patterns observed in the heatmaps. Furthermore, the tetra-nucleotide 508 

features ensured that the model could capture non-linear combinations (interactions) of nucleotides 509 

proximal to the TA site, not just incorporating the effects or individual nucleotides in an additive way. The 510 

STLM statistically performed as well as the neural network, and in addition was able to provide further 511 

insight into nucleotide patterns that influence insertion counts. 512 

The coefficients of the trained STLM showed that there was a pattern of insertion count 513 

suppression consistent with the non-permissive pattern previously observed (DeJesus, Gerrick et al. 514 

2017). In addition, a pattern of increased insertion counts in the presence ‘A’ in the -3 position or ‘T’ in 515 

the +3 position was also visible. But the linear model represents these patterns in a more general way so 516 

that they can be used to predict expected insertion counts at any TA site, conditioned on the surrounding 517 

nucleotides. These nucleotide biases were able to explain up to ~50% of insertion count variance in the 518 

other Himar1 datasets. These site-specific nucleotide biases were observed in a variety of TnSeq datasets 519 

from other mycobacterial and non-mycobacterial species. Comparing TA sites with substitutions in the ±4 520 

bp window between two divergent strains of M. abscessus showed changes in observed LFCs that 521 

corresponded to nearby SNPs as predicted by the STLM, providing further evidence of the generality of 522 

these biases.  523 
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There is a precedent for transposons in some families having insertion biases for certain sequence 524 

patterns. For example, even though the Tn5 transposase can insert anywhere in a genome, it tends to 525 

insert in GC-rich regions (Goryshin and Reznikoff 1998) (Green, Bouchier et al. 2012). Furthermore, a 526 

detailed pattern analysis applied to known Tn5 insertion sites suggested that the consensus pattern for 527 

preferred target sites is A-GNTYWRANC-T (Goryshin, Miller et al. 1998). Tc1 (also in mariner family) was 528 

shown to weakly prefer inserting at TA sites with this consensus pattern: CAYATATRTG (Korswagen, Durbin 529 

et al. 1996). The pattern included a coupled symmetric target site preference of an ‘A’ in position -3 and 530 

a ‘T’ in position +3, consistent with our model. We were able to identify similar sequence-dependent 531 

patterns and quantify them in a more general way with a model that can predict expected insertion counts 532 

for every TA site.  533 

Early studies in E. coli suggested that the Himar1 transposon tends to insert at TA sites in more 534 

“bendable” regions of the genome (Lampe, Grant et al. 1998), as measured experimentally. Bendability is 535 

a cumulative effect of specific nucleotides on local geometric parameters of the DNA helical axis; each 536 

nucleotide makes a small contribution, on the order of a few degrees, to angular distortion (bend, roll, 537 

tilt) of the axis, with different nucleotides (or combinations of nucleotides) having a different effect. This 538 

can accumulate over tens of nucleotides to produce a macroscopic bend or kink in the DNA. Goodsell and 539 

Dickerson (Goodsell and Dickerson 1994) parameterized the geometric effects for each trinucleotide and 540 

used this to generate a model which can be used to predict the bend and twist of the helical axis 541 

accumulated locally using a sliding window. It was speculated that local bendability could facilitate the 542 

melting of the double-helix, recognition/binding of the transposase, and formation of the pre-cleavage 543 

complex (Lampe, Grant et al. 1998). However, while it is possible that bendability contributes weakly to 544 

Himar1 insertion preferences, the effect likely spans a larger window of nucleotides than just ±4 bp around 545 

the TA sites; local bendability is not likely to be substantially affected by the 4 nucleotides on either side 546 

of the TA sites, which have a predominant influence according to our statistical analysis. In addition, we 547 
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computed this around the TA sites in our dataset and added it as a covariate in our linear models, but it 548 

did not improve the performance of the models. 549 

The patterns of nucleotide biases on Himar1 transposon insertion preferences may have emerged 550 

as a result of the physical interaction between the Himar-1 transposase and the DNA. Figure 14 displays 551 

the X-ray crystal structure of the complex between the Mos1 transposon (also in the mariner family) and 552 

the pre-cleavage state of the DNA double helix (Dornan, Grey et al. 2015). As expected, the components 553 

of the TA dinucleotide (T57, A58) interact with the protein (residues 119-124 (WVPHEL)-orange). 554 

However, the 4 adjacent nucleotides also make extensive contact with the protein in a small tunnel by 555 

packing against Asp284-His293 (green). Arg118 likely makes charged-polar interactions with the 556 

nucleotides at position -2 and -3. These positions are where different nucleotides proximal to TA 557 

dinucleotides are observed to have insertion biases in Himar1 datasets. The interactions between these 558 

TA-adjacent nucleotides and amino acid side chains in the transposase could influence the energetics and 559 

therefore the frequency of successful transposon reactions at TA sites. While it would be tempting to try 560 

to perform a detailed analysis of the hydrogen-bonding and other molecular interactions between 561 

nucleotides in the DNA fragment and amino acid side-chains of the transposase they contact to derive a 562 

structural explanation for the observed preferences for certain nucleotides surrounding the TA site, it 563 

must be remembered that this structure is of MosI (whose insertion biases are unknown, except for TA 564 

restriction), and a detailed analysis of molecular interactions relevant to the biases of the Himar1 565 

transposase, as we have characterized, will have to await determination of an X-ray crystal structure of a 566 

complex of the Himar1 transposase bound to a target DNA fragment (containing a TA site).  567 

 We demonstrated the utility of our model of nucleotide biases on Himar1 insertion frequencies 568 

by using it to improve gene essentiality predictions via the TTN-Fitness method. One way to determine 569 

the essentiality of a gene is to take the average count of insertions at all the TA sites in the gene, and 570 

determine the essentiality based on a set of cutoffs (Zomer, Burghout et al. 2012). This method treats all 571 
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TA sites as being equivalent a priori (i.e., as independent, and identically distributed observations, with 572 

equal prior probability of insertion), and does not allow for site-specific differences that can greatly affect 573 

the insertion count at each site. Incorporating these surrounding nucleotides takes out (or corrects for) 574 

the effect of insertion biases and focuses the analysis on true biological effects, thus increasing our 575 

certainty in fitness calls for these genes. In the TTN-Fitness method, we fit a linear model to the insertion 576 

counts at TA sites, incorporating the gene in which it resides and the surrounding nucleotides each site as 577 

covariates. The coefficients associated with genes in the regression model reflect how much the mean 578 

insertion counts in the gene deviate from the global average, after correcting for the expected insertion 579 

counts at each site in the gene. For most genes, predicted fitness did not change substantially between 580 

the ablative Genes-only model and the Gene+TTN model of the TTN-Fitness method. However, the 581 

assessment for some notable genes did change with the inclusion of tetra-nucleotide features. PGRS13 582 

was implied to be a ‘Growth Defect’ gene by the previous insertion count based methodology due to the 583 

low insertion counts at its TA sites. However, sites in the gene are surrounded by mostly ‘G’s and ‘C’s 584 

which have been determined by Himar1 preferences to suppress insertions. So, the insertions are low, 585 

but are expected to be low, and thus the gene is determined to be less essential than previously predicted. 586 

The Gene+TTN model used in the TTN-Fitness method has an advantage for small genes with less than or 587 

equal to 3 TA sites (220 in H37Rv genome) such as Rv3461c (rpmJ), previously undetermined by 588 

essentiality estimates. The model is less susceptible to noisy counts (high or low) at individual sites 589 

because we can compare the observed counts at those sites to expected counts from their nucleotide 590 

context, correcting for the effect of insertion biases, and thus improving the identification of conditionally 591 

essential genes and genetic interactions, i.e., to better distinguish true biological fitness effects by 592 

comparing the observed counts to expected counts using a site-specific model of insertion preferences.  593 

This method could also be helpful for analyzing differences in essentiality of genes between different 594 

strains (e.g. clinical isolates), where the TTN-Fitness model can correct for expected counts at TA sites to 595 
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account for differences in the surrounding nucleotides (e.g. due to the different genetic backgrounds of 596 

the libraries). 597 

 598 

Methods and Materials 599 

Dataset of 14 independent Himar1 insertion libraries of M. tuberculosis H37Rv grown in vitro 600 

 We obtained 14 independent TnSeq libraries in M. tuberculosis H37Rv previously analyzed 601 

(DeJesus, Gerrick et al. 2017), representing a combined total of 35,314,576 independent insertion events 602 

by the Himar1 transposon. All libraries were treated uniformly, grown in standard laboratory medium 603 

(7H9/7H10). Every library in the 14 replicates has a mean saturation i.e., percentage of TA sites in the 604 

genome with 1 or more transposon insertions, of 0.65, totaling to a saturation of 0.85 for the entire 605 

dataset. As these are 14 independent libraries, the probability of a non-essential site with zero insertions 606 

for stochastic reasons is quite small. However, there is a lack of insertions in non-permissive sites in non-607 

essential regions, which account for 9% of all TA sites. Most of the remaining sites with zero insertions 608 

correspond to essential regions. 609 

 This high level of saturation enabled us to reliably observe the nucleotide bias of insertion 610 

counts at different TA Sites. The dataset was normalized using TTR normalization in Transit (dividing by 611 

the total counts in each dataset, with top 1% trimmed to mitigate influence of outliers, and scaling back 612 

up so the mean count at non-zero sites is 100.0). We identified essential regions as consecutive sequences 613 

of 6 or more TA sites with counts of two or less and subsequently removed them. Using the resulting 614 

dataset, we were able to explain nucleotide bias at TA Sites not only for H37Rv but also for other 615 

mycobacteria and non-mycobacterial Himar1 TnSeq datasets. 616 

 617 

Significance of the Correlation of Insertion Counts between TnSeq Datasets 618 
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The correlation of insertion counts at TA sites between TnSeq datasets was calculated using a Pearson 619 

correlation coefficient. As mentioned previously, the log of insertion counts was used, since the Pearson 620 

Correlation Coefficient assumes that the input data is normally distributed. The two-tailed T-test for the 621 

means of two independent samples was used to measure whether the expected value differs significantly 622 

between samples. Since we do not assume population variance between the two datasets is equal, the 623 

Welch’s t-test is performed.  624 

 625 

10-Fold Cross Validation Linear Regression 626 

The data was split for 10-Fold cross validation using sklearn.model_selection.KFold. Within these 627 

folds, we used sklearn.Ridge with alpha=0.1 to train and test linear models (target values of log insertion 628 

counts or LFCs) with L2 regularization.  629 

 630 

Hyper parameter Tuning the Neural Network 631 

 The data was separated into training and testing using a 70-30 train-test split. We used 10-Fold 632 

cross validation on the 70% training split of the data to tune the number of nodes per hidden layer, 633 

number of hidden layers, the activation function, value of alpha and whether to use early stopping. We 634 

used scikit-learn’s GridSearchCV to perform this operation and checked the accuracy of the final hyper 635 

parameters set on the reserved 30% set. Afterwards, we used the tuned parameters to perform a 10-fold 636 

cross validation on the whole dataset to accurately judge the model and account for data biases.  637 

 638 

Mean LFCs per Nucleotide-Position pair 639 

For every position ±20 bp from the TA site, we filtered for nucleotides ‘A’, ’T’, ’C’, and ’G’. We took 640 

the mean LFC of the training samples (TA sites) with that nucleotide in that position. This calculation 641 
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yielded the mean LFC for each nucleotide at each position 20 bp from the TA site, which were then 642 

visualized as a heatmap with a diverging color palette. 643 

 644 

Model Adjustment Calculations 645 

 Each TnSeq dataset has a slightly different LFC distribution. Thus, the predictions of a TnSeq 646 

dataset from the STLM, trained on H37Rv data, had to be adjusted. This was accomplished by a simple 647 

regression-based procedure. First, we determined the linear relationship between the mean LFC for each 648 

tetra-nucleotide in H37Rv by regressing it against the mean LFC of each tetra-nucleotide in our target 649 

strain. The linear relationship could be represented as 𝐼𝐼𝐿𝐿𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐶𝐶𝐼𝐼 = 𝑚𝑚 ∗ 𝐻𝐻37𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐼𝐼 +650 

 𝑙𝑙𝑜𝑜𝑜𝑜𝐼𝐼𝐼𝐼𝐼𝐼. We used this relationship to adjust the LFC predictions made by the STLM using the target strain’s 651 

data 𝐿𝐿𝐿𝐿𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚 ∗ 𝐿𝐿𝐿𝐿𝐶𝐶𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 + 𝑙𝑙𝑜𝑜𝑜𝑜𝐼𝐼𝐼𝐼𝐼𝐼.  652 

 653 

Average Change in Observed LFC vs. Average Change in Predicted LFC Between Strains 654 

 In comparing the genome sequences of M. abscessus ATCC 19977 and the Taiwan49 clinical 655 

isolate, there are 9,303 TA sites with exactly one SNP in the surrounding ±4 bp window. There are 8 656 

positions and 12 possible substitutions per position, thus 96 possible SNPs that can occur. For each of 657 

these possible nucleotide changes, we calculated the difference between the observed LFC in the 658 

reference strain and the observed LFC in the isolate strain. The mean of this difference was determined 659 

to be the mean observed LFC difference for that SNP. We performed a similar calculation for the predicted 660 

LFCs. Using the STLM, we found the predicted LFCs at a TA sites in the reference strain and predicted LFCs 661 

at TA sites with a specific SNP in the clinical isolate. The average of the difference in these two predicted 662 

LFCs was the mean change in predicted LFC.  663 

 664 

Using the Bernoulli Distribution to filter small essential genes before training the Gene+TTN model 665 
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 The first step in fitness estimation is to identify and remove any essential genes. These genes 666 

are excluded from the Gene+TTN analysis. First, larger essential genes (with > ~10 TA sites) are identified 667 

using the Gumbel method in TRANSIT. Then smaller essential genes with no insertions are identified and 668 

removed based on a Bernoulli calculation.  Given the probability that an insertion does not occur (p=1.0- 669 

saturation), the probability of k TA sites out of n total having no insertions follows the Binomial 670 

Distribution: 671 

𝑃𝑃(𝑘𝑘) = �𝑛𝑛𝑘𝑘�𝑖𝑖
𝑘𝑘𝑞𝑞𝑛𝑛−𝑘𝑘  672 

Thus, the probability that all TA sites in a gene have 0 insertions is a Bernoulli distribution where k=n: 673 

𝑃𝑃(𝐼𝐼) = 𝑖𝑖𝑛𝑛(1 − 𝑖𝑖)0 =  𝑖𝑖𝑛𝑛 674 

We use this formula to determine the minimum n such that P(n)<0.05, and we then label any genes with 675 

n or more TA sites, all of which have insertion counts of 0, as ‘Essential-B’ (“ESB”). This method is a 676 

necessary additional step to the Gumbel method to find smaller genes that may have been missed, 677 

especially in datasets with lower saturation.  678 

 679 

Availability 680 

The source code (Python scripts) for performing the calculations described in this paper (including the 681 

TTN-Fitness model) are available at github.com/ioerger/TTN-Fitness.  The raw data files (wig files with 682 

insertion counts at TA sites) for the 14 replicate libraries of M. tuberculosis, along with 3 replicates for M. 683 

abscessus Taiwan49, can also be found in the demodata/ directory of the same github repository. 684 
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FIGURES and TABLES 749 

Figure 1: Insertion Counts across 14 H37Rv libraries in a region spanning 75 consecutive TA sites.  750 
In Panel A, a point is plotted for insertion counts at each coordinate for each replicate. This scatter plot 751 
is then overlayed with a box-and-whisker plot reflecting the mean and range of insertion counts at each 752 
site.  The region includes trpG for comparison, which is an essential gene, and hence insertion counts 753 
are 0 in this gene. In the non-essential genes, the insertion counts vary more between TA sites than 754 
within, supporting that some TA sites have a higher propensity for insertions than others. Panel B shows 755 
the same 75 sites after randomizing the insertion counts at all TA sites except those marked ES and 756 
those showing the non-permissive pattern.  The mean and range of counts at each non-essential TA site 757 
are much more uniform when randomized. 758 

  759 
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Figure 2: Nucleotide Probabilities at positions -20…+20 from the TA site, for three ranges of Insertion 761 
Counts. The 3 ranges of the log insertion counts depicted in Panels B,C,D were found by dividing the 762 
difference in the maximum log count (10.83) and minimum log count (-2.30) by 3. The boundaries of the 763 
splits were at 6.45 and 2.07. Panel A shows the pattern across all ~65000 TA sites in non-essential 764 
regions. Panel B shows the pattern across 8992 sites in the lower third of the range, Panel C shows the 765 
pattern across 51164 sites in the middle third of the range and Panel D shows the pattern across 1172 766 
sites in the higher third of the range.  767 

 768 

 769 
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Figure 3: Coefficients and Accuracy Assessment of Linear Regression Model trained on nucleotides as 772 
covariates  773 
Panel A shows Predicted Counts vs. Actual log Insertion Counts using Linear Regression. The average 774 
predictive power of the Linear Regression Model trained with one-hot-encoded nucleotides as the input 775 
and log insertion counts as the output using 10-fold cross validation. The predictive power is moderate 776 
(R2=0.318) , meaning  it is able to explain 31% of the variation in insertion counts based on surrounding 777 
nucleotides. Panel B shows Coefficients from the trained Linear Model. The coordinates along the x-axis 778 
give the positions relative to, but not including, the TA site. The model is trained on one-hot-encoded 779 
nucleotides and a target value of log Insertion Counts. The symmetry of the pattern is visible in positions 780 
-4, -3, -2, -1 and +1, +2, +3, +4. The non-permissive pattern (CG)GnTAnC(CG) is visible in this window, as 781 
well as high coefficients associated with “A” and “T”.  782 
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Figure 4: Enrichment and Depletion of Nucleotides surrounding TA sites for the 14 libraries of H37Rv 786 
in-vitro.  787 
The mean of each filtered nucleotide at every position in a 20-bp window of the TA site in H37Rv dataset 788 
is visualized here. The heatmap centered at the median of mean LFCs calculated with a median +1.5 max 789 
and median-1.5 minimum.  Nucleotides colored green at certain positions are enriched, while those 790 
colored purple are depleted (relative to the global average nucleotide content). 791 
 792 
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Figure 5: Predicted LFC vs. Actual LFC using STLM.  796 
Panel A shows a plot of the actual LFCs vs. the LFCs predicted by our model. The predictive power of this 797 
model is about the same as the Neural Network (R2=0.468) but Panel B shows there is a high correlation 798 
of mean LFCs of each tetra-nucleotide and the coefficient in the STLM of the same tetra-nucleotide, 799 
indicating our model represents our data well. Panel C shows the coefficients associated with each 800 
tetra-nucleotide (Supplemental Table T4), sorted by coefficient value.  801 
 802 

803 
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Figure 6: Illustration of the STLM.  807 
For each TA site the upstream tetra-nucleotide and reverse complemented (rc) downstream tetra-808 
nucleotide are extracted. The relative bits are set in a 256-bit vector that is given as an input to the 809 
STLM to predict LFCs. 810 
 811 
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Figure 7: Enrichment and Depletion surrounding TA sites for Mycobacterial Tn-Seq Datasets.  814 
The four heatmaps are calculated in the same manner that the H37Rv heatmap was calculated in Figure 815 
4. The mean of each filtered nucleotide at every position in a ±20 bp window around the TA sites is 816 
calculated. The patterns of all the heatmaps look very similar to both each other and to the H37Rv 817 
heatmap in Figure 4. 818 
 819 
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Figure 8:  Enrichment and Depletion surrounding TA sites for non-Mycobacterial Tn-Seq Datasets.  824 
The four heatmaps are calculated in the same manner that the H37Rv heatmap (Fig. 4) and 825 
mycobacterial heatmaps (Fig. 7) were calculated. The mean of each filtered nucleotide at every position 826 
in a ±20 bp window around each TA site is calculated, and centered on the median of mean LFCs.  827 
 828 
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Figure 9: M. abscessus Taiwan49 Clinical Isolate Dataset.  832 
The heatmap in Panel A is calculated in the same manner that the previous heatmaps were calculated. 833 
The pattern of this heatmap looks very similar to the H37Rv heatmap (Fig. 4) as well as the heatmap for 834 
the M. abscessus ATCC 19977 reference strain (Fig. 8). The predictive power of the STLM on the Mab 835 
T49 dataset in Panel B shows a high R2 value of 0.517, like that of the M. abscessus reference dataset. 836 
This indicates that nucleotide biases explain at least half of the variance in insertion counts for this 837 
dataset with nucleotide biases. 838 
 839 
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Figure 10: SNPs in M. abscessus Taiwan49 Clinical Isolate Exhibit Predictable Changes in Nucleotide 843 
Biases.  844 
Panel A shows the correlation of changes in observed vs predicted LFCs for the 96 possible SNPs in the -845 
4...+4 window from the TA site. The colored markers are the nucleotide-position pairs previously found 846 
to have the highest biases. The table in Panel B is sorted by increasing mean delta observed LFC, 847 
provides more details on these SNPs. As expected, the most extreme changes occur when the SNP 848 
occurs in the -3, -2, +2, or +3 positions. The top 10 and bottom 10 values i.e., the biggest decreases and 849 
biggest increases in LFC follow the heatmap patterns of the Himar1 datasets tested. 850 
 851 
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Figure 11: Distribution of HMM+NP and TTN-Fitness states for genes provided in the Mtb H37Rv 854 
dataset.  855 
Panel A shows the distribution of classification of genes by the two methods. Panel B  shows the 856 
confusion matrix of the classification of genes in the two methodologies. Most of genes are labeled NE 857 
in both models. Genes determined to be “Uncertain” in the HMM+NP model are assigned other states in 858 
the TTN-Fitness method. A fraction of genes labeled “NE” in the HMM+NP model (highlighted matrix 859 
components) are reassigned to be “GA” or “GD” using the TTN-Fitness method, indicating that the TTN-860 
Fitness method is more sensitive in estimating fitness than the HMM+NP model.  861 
 862 

 863 

 864 
 865 
Figure 12: Correlation of coefficients in Gene+TTN model (of the TTN-Fitness method) and coefficients 866 
in models using its components. Correlation of gene coefficients between the Gene-Only model and the 867 
TTN Fitness model (Panel A) show a linear trend, indicating that most genes behave in the same way 868 
and yield similar results in both models. However, there are a few that are show log fold change greater 869 
than this majority. The scale of coefficients in the Gene+TTN model is greater than the Gene-Only 870 
model, indicating a notable number of gene’s predicted fitness estimate changes with the inclusion of 871 
nucleotide context. The points with black outlines and labels are genes that we have explored. 872 
Correlation of coefficients of TTNs in the STLM and the TTN Fitness Model (Panel B) has a strong linear 873 
relationship as well as similar distributions, indicating that the models incorporate in the effects of TTNs 874 
on the insertion count in the same way.  875 
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 878 

Figure 13: Plots of gene coefficients versus adjusted p-values in Gene+TTN model, colored by states 879 
determined by the HMM+NP model.  880 
The HMM+NP methodology labels genes as “Non-Essential” (NE), “Essential” (ES/ESD), “Growth Defect” 881 
(GD), “Growth Advantage” (GA) and “Uncertain”. “Uncertain” genes are typically smaller genes. The 882 
horizontal dashed line is where adjusted p-value = 0.05 in the Gene+TTN model. By the TTN-Fitness 883 
method, genes below that line are insignificant (gray) and thus “NE”. The vertical solid line is where gene 884 
coefficient C=0 in the Gene+TTN model. By the TTN-Fitness method, colored points left of the line are 885 
“GD” genes and colored points to the right are “GA” genes. The genes with labels are discussed in the 886 
text. 887 
 888 
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Figure 14: Crystal structure of complex between the Mos1 transposon and DNA.  892 
DNA double helix, with denatured (single strand) end in the pre-cleavage state. This is a stylized 893 
(cartoon) representation of the interaction. The red nucleotides represent C53-T54-G55-A56 (sites -4...-894 
1). The yellow nucleotides represent the TA site, T57-A58. The blue nucleotide is G59, which is site +1. 895 
The transposase itself is shown as a molecular surface. Amino acids 119-124 (WVPHEL) are colored 896 
orange and Asp284-His293 are colored green. The two images are vertical 180-degree rotations 897 
illustrating front and back views of the transposon-DNA interaction. 898 
 899 
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Supplemental Figure S1: Heatmap of Correlation of Wig Files  903 
The correlation of log insertion counts in the 14-replicates wig files using the Pearson correlation 904 
coefficient as recorded in Supplemental Table T1. 905 
 906 
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Supplemental Figure S2: Coefficients from Linear Model Trained using nucleotides in all 40 positions 909 
to predict LFCs.  910 
Panel A shows Predicted Counts vs. Actual LFC using Linear Regression. The average predictive power of 911 
the linear regression model trained with one-hot-encoded nucleotides in 20 bp from the TA site as the 912 
input and LFCs as the output using 10-fold cross validation. The predictive power was not much higher 913 
than the previous Insertion Counts model, but the variance has decreased, indicating a better model. 914 
Panel B shows coefficients from the trained model. The coordinates along the x-axis give the positions 915 
relative to, but not including, the TA site. A symmetric pattern is visible in positions -4,-3,-2,-1 and +1, 916 
+2, +3, +4. The non-permissiveness pattern (CG)GnTAnC(CG) is visible in this window as well as high 917 
coefficients associated with “A” and “T”.  918 
 919 
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Supplemental Figure S3: Predicted LFC vs. Actual LFC using Feed Forward Neural Network.  923 
The input to this linear model was all the one-hot-encoded nucleotides, and the target value as the LFCs. 924 
Using 10-fold cross validation on 70% of the dataset, we found the ideal parameters:  'activation': 'tanh', 925 
'alpha': 0.05, 'early_stopping': True, 'hidden_layer_sizes': (100,), 'learning_rate': 'constant', 'max_iter': 926 
500, and 'solver': 'adam‘. We tested these hyper-parameters on the remaining 30% of the test data and 927 
got a fairly high performing model.  We applied these hyper parameters and assessed the model’s fit to 928 
the data by performing a 10-fold cross validation of the entire dataset. This yielded an average 929 
predictive power (i.e. R2) that was higher than the previous Insertion Counts Model and LFC Model and 930 
the variance has decreased, indicating a better model. 931 
 932 
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Supplemental Figure S4: LFC Prediction using linear regression with only nucleotides in -4...+4 936 
positions from the TA site.  937 
Panel A shows Predicted Counts vs. Actual LFC using Linear Regression. The average predictive power of 938 
the Linear Regression Model trained with one-hot-encoded nucleotides in 4 bp from the TA site as the 939 
input and LFCs as the output using 10-fold cross validation. The predictive power is moderate 940 
(R2=0.352), meaning it can explain 35% of the variation in insertion counts based on surrounding 941 
nucleotides, not much different than the LFC linear model trained using all 40 nucleotides, indicating the 942 
nucleotides in this window are very important. Panel B shows Coefficients from the trained model. The 943 
coordinates along the x-axis give the positions relative to, but not including the TA site. These 944 
coefficients are almost identical to the relative magnitudes of the nucleotides in the -4...+4 window of 945 
LFC linear model and the log insertion count linear model.  946 
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Supplemental Figure S5: Coefficients from the STLM.  951 
Coefficients of a linear model trained on one-hot-encoded TTN and a target value of LFCs. The highest 952 
values are for tetra-nucleotides XAXX and the lowest are XCXX and XGXX, where X is any nucleotide A, C, 953 
T or G. P-values obtained from the Wald test, with FDR adjustment showed that coefficients ≤ -0.234 954 
and ≥ 0.315 are significant.  955 
 956 
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Supplemental Figure S6: Predictive Power of STLM on Mycobacterial Datasets.  960 
The predictive power of the STLM on the Mycobacterial datasets have been varied. However, a R2 value 961 
greater than 0.25 for nearly all the datasets indicates that the nucleotide biases explain at least a fourth 962 
of the variance in insertion counts with nucleotide biases. 963 
 964 
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Supplemental Figure S7: Predictive Power of STLM on non-Mycobacterial Datasets.  968 
The predictive power of the STLM on non-Mycobacterial datasets have been more varied than the 969 
Mycobacterial datasets. Caulobacter has a high R2 value, whereas Vibrio has quite a low R2 value. 970 
However, a R2 value greater than 0.10 for nearly all the datasets indicates that the nucleotide biases 971 
explain at least some of the variance in insertion counts with nucleotide biases. 972 
 973 
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