1 Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and

- 2 the replication of human coronavirus **229E**
- 3
- 4 Yue Zhu¹, Frank Scholle², Samantha C. Kisthardt² De-Yu Xie¹*
- 5 1, Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC,
- 6 USA.
- 7 2, Department of Biology, North Carolina State University, Raleigh, NC, USA.
- 8
- 9 * Corresponding author, dxie@ncsu.edu

11 Abstract

12	Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2
13	(SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available
14	in the developed countries to prevent the infection of this virus, however, medicines are
15	necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the
16	common cold. The main protease (M^{pro}) is an essential enzyme required for the multiplication
17	of these two viruses in the host cells, and thus is an appropriate candidate to screen potential
18	medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In
19	this study, we report docking simulation with two M ^{pro} enzymes and five flavonols and three
20	dihydroflavonols, in vitro inhibition of the SARS-CoV-2 M ^{pro} , and in vitro inhibition of the
21	HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol,
22	(+)-dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercetin,
23	and rutin could bind to at least two subsites (S1, S1', S2, and S4) in the binding pocket and
24	inhibit the activity of SARS-CoV-2 M ^{pro} . Their affinity scores ranged from -8.8 to -7.4.
25	Likewise, these compounds were predicted to bind and inhibit the HCoV-229E M ^{pro} activity
26	with affinity scores ranging from -7.1 to -7.8. In vitro inhibition assays showed that seven
27	available compounds effectively inhibited the SARS-CoV-2 M ^{pro} activity and their IC50
28	values ranged from 0.125 to 12.9 μ M. Five compounds inhibited the replication of
29	HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and
30	dihydroflavonols are promising candidates for curbing the two viruses.
31 32 33	Keywords: (+)-dihydrokaempferol, (+)-dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercetin, rutin, flavan-3-ols

34 Introduction

35

36	SARS-CoV-2 is the abbreviation of the novel severe acute respiratory syndrome coronavirus
37	2. This virus was firstly reported to cause a severe pneumonia in December of 2019 in Wuhan,
38	China (Wang et al. 2020a; Zhu et al. 2020; Ding et al. 2020). On February 11, 2020, the
39	World Health Organization (WHO) designated this pneumonia as coronavirus disease 2019
40	(COVID-19). COVID-19 the rapidly spread different countries. On March 11, 2020, WHO
41	announced the COVID-19 pandemic (WHO 2020b, a). This pandemic has rapidly spread
42	across all over the world. By June 21, 2021, based on the COVID-19 Dashboard by Center
43	for Systems Science and Engineering at Johns Hopkins Coronavirus Resource Center,
44	117,553,726 infected cases and 3,867,641 deaths have been reported from more than 200
45	countries or regions. No strategy to stop the spread of this virus was available until January
46	2021, when several vaccines started to be approved for vaccination in several countries (Kim
47	et al. 2021; Knoll and Wonodi 2021; Painter et al. 2021; Dooling et al. 2021; CDC and FDA
48	2021; Gharpure et al. 2021). On one hand, since the start of vaccination, the number of
49	infections has started to decrease. On the other hand, due to the insufficient vaccine quantities
50	and vaccine hesitancy even where available, in the first week of February, 2021, the daily
51	infection cases and deaths were still more than 400,000 and 11,000, respectively. By Feb. 9,
52	the case numbers still increased by more than 300,000 daily. Meanwhile, the use of vaccines
53	has also indicated that developing effective medicines is necessary to stop COVID-19. A
54	recent study showed that mutations in the spike protein of SARS-CoV-2 might cause the
55	escape of new variants from antibody (McCarthy et al. 2020). The variant B.1.351 found in

56	South Africa was reported to be able to escape vaccines developed by AstraZeneca, Johnson
57	& Johnson (J&J), and Novavax (Cohen 2021). Merck & Co has stopped their race for
58	vaccines due to the lack of effectiveness of their products, instead, they continue to focus on
59	antiviral drug development (Kenilworth 2021). Unfortunately, to date, effective medicines are
60	still under screening. Although chloroquine and hydroxychloroquine were reported to be
61	potentially effective in helping to improve COVID-19 (Wang et al. 2020b), the use of these
62	two anti-malarial medicines has been arguable in USA because of potential risk concerns
63	(Bull-Otterson et al. 2020). Other potential candidate medicines are the combination of
64	α -interferon and anti-HIV drugs lopinavir/ritonavir (Cao et al. 2020), and remdesivir (Wang
65	et al. 2020b; Holshue et al. 2020). Given that the efficacy of all these medicines being
66	repurposed has not been conclusive, further studies are necessary to apply them for treating
67	COVID-19.
67 68	COVID-19.
	COVID-19. SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000
68	
68 69	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000
68 69 70	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000 nucleotides and forms a positive sense strand with a 5' methylated cap and a 3'
68 69 70 71	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000 nucleotides and forms a positive sense strand with a 5' methylated cap and a 3' polyadenylated tail that encodes at least six open reading frames (ORF) (Chen et al. 2020;
68 69 70 71 72	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000 nucleotides and forms a positive sense strand with a 5' methylated cap and a 3' polyadenylated tail that encodes at least six open reading frames (ORF) (Chen et al. 2020; Hussain et al. 2005). This feature allows it to be able to use the ribosomes of the host cells to
 68 69 70 71 72 73 	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000 nucleotides and forms a positive sense strand with a 5' methylated cap and a 3' polyadenylated tail that encodes at least six open reading frames (ORF) (Chen et al. 2020; Hussain et al. 2005). This feature allows it to be able to use the ribosomes of the host cells to translate proteins. The longest ORF (ORF1a/b) translates two polyproteins, which are cleaved
 68 69 70 71 72 73 74 	SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000 nucleotides and forms a positive sense strand with a 5' methylated cap and a 3' polyadenylated tail that encodes at least six open reading frames (ORF) (Chen et al. 2020; Hussain et al. 2005). This feature allows it to be able to use the ribosomes of the host cells to translate proteins. The longest ORF (ORF1a/b) translates two polyproteins, which are cleaved by one main protease (M ^{pro} , a 3C-like protease, 3CL ^{pro}) and another papain-like protease

80 essential role in81 to the human an	al. 2011; Ren et al. 2013). The S protein is a type of glycoprotein and plays an the attachment and the infection of the host cells (Zhao et al. 2020). It binds agiotensin converting enzyme 2 to help the virus enter the human cells
81 to the human an	
	giotensin converting enzyme 2 to help the virus enter the human cells
82 (Hoffmann et al	
,	. 2020; Yan et al. 2020). Since May 2020, the mutations of amino acids of the
83 S protein has cr	eated a large number of variants, of which the emergence of alpha, beta,
84 gamma, and del	ta variants has shown more pathogenic and transmissible, thus caused
85 potential challer	nges to use vaccines to completely control the pandemic (Abdool Karim and
de Oliveira 202	1; Walensky et al. 2021; Fontanet et al. 2021; Altmann et al. 2021; Petra et al.
87 2021).	
88	
89 Human coronav	virus 229E (HCoV-229E) is a pathogenic virus in the genus Alphacoronavirus
90 (Woo et al. 201	0). It is one of the causative viral agents of the common cold (Gaunt et al.
91 2010; Shirato et	t al. 2017). Its genome consists of a positive sense and single-stranded RNA
92 with 27,317 nuc	cleotides (nt). Its genome size commonly varies in different clinical isolates.
93 For example, H	CoV-229E strains 0349 and J0304 were two clinical isolates causing the
94 common cold (l	Farsani et al. 2012). The entire genome of these two clinical isolates were
95 reported to be a	bout 27, 240 nt, which included 38.07 % GC content is in 0349 and 38.13 %
96 GC content in J	0304. In general, the genome of HCoV-229E is characterized with a gene
97 order of 5'-repl	icase ORF1a/b, spike (S), envelope (E), membrane (M), nucleocapsid (N)-3'
98 (Fehr and Perlm	nan 2015), Like SARS-CoV-2, the spike protein is the determinant of
99 infections to ho	st cells (Shirato et al. 2012). The ORF1a/b of HCoV-229E encodes 16

100	non-structural proteins (NSPs). The NSP5 encodes the M ^{pro} that is required for the replication
101	in the host cells (Farsani et al. 2012). Given that HCoV-229E is allowed to be studied in
102	BSL2 laboratories, this pathogenic virus is an appropriate model to screen therapeutics for the
103	treatment of both common cold and COVID-19.
104	
105	Given that the SARS-CoV-2 M ^{pro} not only plays a vital role in the cleavage of polyproteins,
106	and there is no human homolog, it is an ideal target for anti-SARS-CoV-2 drug screens and
107	development (Yang et al. 2005; Kim et al. 2016). It belongs to the family of cysteine
108	proteases and has a Cys-His catalytic dyad, which is an appropriate site to design and screen
109	antiviral drugs (Dai et al. 2020). Its high-resolution crystal structure was elucidated in April
110	2020 (Jin et al. 2020). Based on the crystal structure, screening the existing antiviral
111	medicines or designed chemicals revealed that cinanserin, ebselen, GC376, 11a, and 11b
112	showed inhibitory effects on the M ^{pro} activity (Ye et al. 2020; Dai et al. 2020; Jin et al. 2020;
113	Chen et al. 2005; Zhang and Liu 2020). A common feature is that these molecules deliver
114	their carbonyl group (aldehyde group or ketone group) to the thiol of the 145 cysteine residue
115	to form a covalent linkage, thus inhibit the M ^{pro} activity. The potential application of these
116	molecules is still under studies to evaluate their effectiveness and side effects. In addition, we
117	recently found that flavan-3-ol gallates, such as (-)-epigallotechin-3-gallate,
118	(-)-catechin-3-gallate, and (-)-epicatechin-3-gallate, and dimeric procyanidins promisingly
119	inhibited the M ^{pro} activity (Zhu and Xie 2020). Docking simulation indicated that their
120	inhibitory activity likely resulted from the formation of hydrogen bonds between these
121	compounds and several amino acids in the binding domain of M ^{pro} .

122

123	Flavonols and dihydroflavonols (Fig. 2) are two main groups of plant flavonoids (Fowler and
124	Koffas 2009; Hostetler et al. 2017). Quercetin, kaempferol, and myricetin are three flavonol
125	molecules widely existing in plants. Likewise, dihydroquercetin, dihydrokaempferol, and
126	dihydromyricetin are three dihydroflavonol molecules in plants (Xie et al. 2004; Xie and
127	Dixon 2005). In general, flavonols and dihydroflavonols are strong antioxidants with multiple
128	benefits to human health (Moon et al. 2001; Murota and Terao 2003; Egert et al. 2008;
129	Chopra et al. 2000; Hertog et al. 1993b; de Vries et al. 1998; Kolhir et al. 1996; Teselkin et al.
130	1998; Teselkin et al. 2000; Weidmann 2012). Furthermore, studies have reported that
131	quercetin and its derivatives have antiviral activity (Mehrbod et al. 2021; dos Santos et al.
132	2014; Cheng et al. 2015). Based on these previous findings, we hypothesized that flavonols
133	and dihydroflavonols might inhibit the M ^{pro} activity of SARS-CoV-2 and HCoV-229E. In this
134	study, to test this hypothesis, we performed docking simulation for three dihydroflavonols,
135	three flavonols, and two glycosylated quercetins. Then, we tested these compound's
136	inhibition against the recombinant M ^{pro} activity of SARS-CoV-2 in vitro. More importantly,
137	five available compounds were evaluated to determine their inhibitive activity against the
138	replication of HCoV-229E in Huh-7 cells. The resulting data showed eight compounds
139	effectively inhibited the M ^{pro} activity of SARS-CoV-2 and five tested compounds inhibited
140	the replication of HCoV-229E in Huh-7 cells.
141	

7

142 Materials and methods

144 Dihydroflavonols, flavonols, cell line, and coronavirus

145

- 146 Flavonols used in this study included kaempferol, quercetin, myricetin,
- 147 quercetin-3-O-glycoside, and rutin. Dihydroflavonols used were (+)-taxifolin
- 148 (dihydroquercetin, DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydromyricetin (DHM).
- 149 Two flavan-3-ols, (-)-epicatechin and (+)-catechin, were used as compound controls. The
- 150 ebselen was used as a positive control. These compounds were purchased from
- 151 Sigma-Aldrich (https://www.sigmaaldrich.com/)

152

- 153 Huh-7 cells, a human hepatocellular carcinoma cell line, are an appropriate to study the
- replication of different viruses (Nakabayashi et al. 1984; Shih et al. 1993; Dewi et al. 2020;
- 155 Thongsri et al. 2019; Logue et al. 2019). This cell line was used for infection and propagation
- 156 of virus and for testing antiviral activity of compounds. Human coronavirus 229E
- 157 (HCoV-229E) is a positive sense and single-stranded RNA virus that infects the human
- respiratory system (Bucknall et al. 1972; Kennedy and Johnsonlussenburg 1976; Hierholzer
- 159 1976; Macnaughton and Madge 1978; Friedman et al. 2021). HCoV-229E was propagated on
- 160 Huh-7 cells and tittered by TCID50 assay.
- 161

162 Docking simulation of the SARS-CoV-2 M^{pro}

- 164 We recently reported the docking simulation of flavan-3-ols, such as epicatechin and catechin
- 165 (Fig. 2) (Zhu and Xie 2020). Herein, we used the same steps for docking simulation of

166	flavonols and dihydroflavonols in this experiment. In brief, three main steps were completed,
167	protein preparation, ligand preparation, and protein-ligand docking. The first step was protein
168	preparation. The SARS-CoV-2 M ^{pro} was used as a receptor to test ligands. Its ID is PDB ID:
169	6LU7 at Protein Data bank (<u>https://www.rcsb.org/</u>), from which its 3D structure was
170	downloaded to a desktop computer and then was prepared as a receptor of ligand via the
171	Dock Prep tool of UCSF-Chimera (<u>https://www.cgl.ucsf.edu/chimera/</u>). Because M ^{pro}
172	contains the inhibitor peptide N3, we removed N3 prior to docking simulation. Hydrogens
173	and charges were added and optimized to allow determining the histidine protonation state.
174	The second step was ligand preparation. The 3D structures of compounds (Fig. 2) were
175	obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and then used as ligands. All
176	structures were minimized by using the minimize structure tool of UCSF-Chimera.
177	Hydrogens and charges were added to the ligands, which were then saved as mol2 format for
178	the protein-ligand docking simulation. The third step was protein-ligand docking. The
179	modeling of protein-ligand docking was performed via the publically available AutoDock
180	Vina (http://vina.scripps.edu/) software. The protein and ligand files were loaded to the
181	AutoDock Vina through the UCSF-Chimera surface binding analysis tools. A working box
182	was created to contain the whole receptor. The box center was set at $x = -27$, $y = 13$, and $z =$
183	58. The box size was set as $x = 50$, $y = 55$, and $z = 50$, which framed the entire receptor to
184	allow free position changes and ligand binding to the receptor at any potential positions.
185	
186	Docking simulation of the HCoV-229E M ^{pro}

188	HCoV-229E needs a M^{pro} (3C-like protease) for its replication in the host cells (Ziebuhr et al.
189	1997; Ziebuhr et al. 1995; Ziebuhr et al. 1998). The M ^{pro} is also a target for screening
190	anti-HCoV-229E medicines (Prior et al. 2013; Chuck et al. 2013; Lee et al. 2009). The
191	sequence of the HCoV-229E M^{pro} was obtained from the GenBank and then used for an
192	alignment and docking simulation. The steps of simulation were the same as described above.
193	
194	Inhibition assay of the SARS-CoV-2 M ^{pro} activity
195	
196	(+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside,
197	rutin, (-)-epicatechin, and (+)-catechin were dissolved in DMSO to prepare a 1.0 M solution.
198	A SARS-CoV-2 Assay Kit (BPS bioscience, https://bpsbioscience.com/) was used to test the
199	inhibitory activity of these compounds. The steps of in vitro assay followed the
200	manufacturer's protocol as performed in our recent report (Zhu and Xie 2020). In brief, each
201	reaction was carried out in a 25 μ l volume in 384-well plates. Each reaction solution contains
202	150 ng recombinant M^{pro} (6 ng/µl), 1 mM DDT, 50 µM fluorogenic substrate, and one
203	compound (0, 0.02, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 150, and 200 $\mu M)$ in pH 8.0 mM
204	Tris-HCl and 5 μ M EDTA buffer. GC376 (50 μ M) was used as a positive control, while
205	(-)-epicatechin and (+)-catechin were used as two negative controls. The reaction mixtures
206	were incubated for 2 hrs at room temperature. The fluorescence intensity of each reaction was
207	measured and recorded on a microtiter plate-reading fluorimeter (BioTek's Synergy H4 Plate
208	Reader for detect fluorescent and luminescent signals). The excitation wavelength was 360
209	nm and the detection emission wavelength was 460 nm. Each concentration of every

210	compound was tested five times. A mean value was calculated with five individual replicates.
211	Plots were built with the percentiles of catalysis versus log $[\mu M]$ values of concentrations to
212	show the effect of each compound on the M^{pro} activity. Statistical evolution is described
213	below.
214	
215	Inhibition assay of Human coronavirus 229E
216	
217	Huh-7 cells were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with
218	10% fetal bovine serum (10% FBS) and 1% antibiotics. HCoV-229E was propagated on
219	Huh-7 cells. Virus containing supernatants were harvested 72h post infection and stored at
220	-80°C. The virus titer was determined by the Median Tissue Culture Infectious Dose 50
221	(TCID50) assay in Huh-7 cells.
222	
223	Then, we performed virus inhibition assays. Huh-7 cells were seeded in 96 well plates at a
224	density of 25,000 cells/well and incubated overnight. HCoV 229-E was diluted in MEM with
225	1% FBS, 1% HEPES buffer, and 1% antibiotic solution (MEM 1+1+1). The cells were
226	inoculated with HCoV-229E at an MOI of 1 in a total volume of 50 μ l. The infected plates
227	were incubated at 35°C with 5% CO2 for one hour. Phytochemicals dissolved in DMSO were
228	added in cell culture medium to the following concentrations: 0 μ M, 2.5 μ M, 5 μ M, 10 μ M,
229	20 µM, and 50 µM.
230	

231 After one hour, virus and medium were removed from the infected cells and washed once

232	with 200ul of PBS. 100 μl of each compound master mix was added to triplicate wells for
233	each concentration. Virus was allowed to grow in the presence of each compound at 35 $^\circ \text{C}$
234	and 5% CO2 for 24 hours. Supernatants were harvested and virus titers on Huh-7 cells were
235	determined by TCID50 assay (Barrett et al. 1996). Plates were incubated at 37°C and 5%
236	CO2 for 96 hours, inspected visually for cytopathic effect (CPE) and TCID50/mL was
237	calculated using the Spearman-Kaerber method (Kärber 1931; Spearman 1908). A mean
238	value was calculated using three replicates. Plots were built with TCID50/mL versus
239	concentrations to show the effect of each compound on the replication of virus in Huh-7 cells.
240	The minimum level of detection in this assay was 632 TCID50/ml.
241	
242	Statistical evaluation
243	
244	One-way analysis of variance (ANOVA) was performed to evaluate the statistical
245	significance. The P-value less than 0.05 means significant differences.
246	
247	Results
248	
249	Ligand-receptor docking of flavonols and dihydroflavonols to the M^{pro} of SARS-CoV-2
250	
251	Docking simulation was completed with the UCSF-Chimera and AutoDock Vina software to
252	evaluate the binding abilities of flavonols and dihydroflavonols to the SARS-CoV-2 M ^{pro} .
253	The M ^{pro} structure is featured with a substrate-binding pocket (Fig.3). When the 3D structure

254	of the protein was downloaded from the public database, the peptide inhibitor N3 was shown
255	to bind to this pocket. During protein preparation, N3 was removed for docking. The
256	simulation results showed that (+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol,
257	myricetin, quercetin-3-O-glycoside, rutin, (-)-epicatechin, (+)-catechin, and ebselen bound to
258	the binding pocket (Fig. 3). The resulting affinity scores for (+)-DHQ, (+)-DHK, (+)-DHM,
259	quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, and rutin ranged from -8.8 to -7.4,
260	lower and better than the score of ebselen (-6.6) (Table 1). The scores among the aglycones
261	of (-)-epicatechin, (+)-catechin, three dihydroflavonols, and three flavonol aglycones were
262	close, either -7.4 or -7.5. These data suggested that dihydroflavonols, flavonols, and
263	glycosylated flavonols could potentially inhibit the M ^{pro} activity.
264	
265	Docking features at the binding pocket of the SARS-CoV-2 M^{pro}
	Docking features at the binding pocket of the SARS-CoV-2 M ^{pro}
265 266 267	Docking features at the binding pocket of the SARS-CoV-2 M ^{pro} As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four
266	
266 267	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four
266 267 268	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four subsites, S1', S1, S2, and S4. Cys145 is a critical residue located at the space among subsites
266 267 268 269	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four subsites, S1', S1, S2, and S4. Cys145 is a critical residue located at the space among subsites S1, S1', and S2 (Fig.4a) (Dai et al. 2020; Jin et al. 2020). Several studies have reported that
266 267 268 269 270	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four subsites, S1', S1, S2, and S4. Cys145 is a critical residue located at the space among subsites S1, S1', and S2 (Fig.4a) (Dai et al. 2020; Jin et al. 2020). Several studies have reported that the thoil of the Cys145 residue is crucial for the catalytic activity of M ^{pro} and if a compound
266 267 268 269 270 271	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four subsites, S1', S1, S2, and S4. Cys145 is a critical residue located at the space among subsites S1, S1', and S2 (Fig.4a) (Dai et al. 2020; Jin et al. 2020). Several studies have reported that the thoil of the Cys145 residue is crucial for the catalytic activity of M ^{pro} and if a compound binds to this residue, it can inhibit the M ^{pro} activity (Dai et al. 2020; Chen et al. 2005;
266 267 268 269 270 271 272	As we reported recently (Zhu and Xie 2020), the M ^{pro} substrate-binding pocket includes four subsites, S1', S1, S2, and S4. Cys145 is a critical residue located at the space among subsites S1, S1', and S2 (Fig.4a) (Dai et al. 2020; Jin et al. 2020). Several studies have reported that the thoil of the Cys145 residue is crucial for the catalytic activity of M ^{pro} and if a compound binds to this residue, it can inhibit the M ^{pro} activity (Dai et al. 2020; Chen et al. 2005; Ramajayam et al. 2011). When ebselen was used as our positive compound for simulation, as

276	subsites via the Cys145 residue. In three dihydroflavonols tested, (+)-DHK and (+)-DHQ
277	showed a difference in their occupation in the binding site. The A and B rings of (+)-DHK
278	and (+)-DHQ dwelled in the S1' and S2 subsites and their heterocycle C ring resided in the
279	space between the S1 and S2 subsites (Fig. 4 c-d). The A and B rings of DHM occupied the
280	S1 and S4 subsites and the heterocycle C ring resided in the space between the S1 and S2
281	subsites (Fig. 4 e). In three flavonol aglycones tested, the occupation of kaempferol was
282	different from that of quercetin and myricetin. The A-ring, B-ring, and heterocycle C-ring of
283	kaempferol resided in the S1', S2, and the space between S1 and S2, respectively (Fig. 4f).
284	The A-ring, B-ring, and the heterocycle C-ring of quercetin and myricetin dwelled in the S1,
285	S4, and the space between S1 and S2 (Fig. 4 g-h). In comparison, the residing positions of
286	isoquercitrin and rutin were more complicated. The A-ring, B-ring, heterocycle C-ring, and
287	3-glucose of isoquercitrin occupied the S2, S1', the space between S1 and S2, and S1 (Fig. 2
288	i). The A-ring, B-ring, heterocycle C-ring, 6- β -glucopyranose, and 1-L- α -rhamnopyranose of
289	rutin occupied S4, S1', the space between S1/S2, S1, and S4 (Fig. 4 j). These occupations in
290	the binding sites suggested that these compounds might have an inhibitive activity against
291	M ^{pro} .
292	
293	Ligand-receptor docking of flavonols and dihydroflavonols to the M^{pro} of HCoV-229E
294	
295	The M ^{pro} of HCoV-229E was also used for docking simulation. A sequence alignment
296	revealed that the identity of between the two M ^{pro} homologs of HCoV-229E and
007	CADS C-W2 mar 42.910 (Eigen 5 c) The hinding demains man highly

14

SARS-CoV-2 was 42.81% (Figure 5 a). The binding domains were highly conserved.

298	Furthermore, a 3D modeling revealed that the conformation and binding pocket of the
299	HCoV-229E M^{pro} were similar to those of SARS-CoV-2 M^{pro} (Fig. 5 b and c). The simulation
300	results were the same as those of the M ^{pro} of SARS-CoV-2 described above. (+)-DHQ,
301	(+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, rutin,
302	(-)-epicatechin, (+)-catechin, and ebselen could bind to the binding pocket of the HCoV-229E
303	M^{pro} (Fig. 6). The affinity scores of these compounds ranged from -7.8 to - 7.1 (Table 1). The
304	scores of rutin and isoquercitrin (two glycosides) binding to the HCoV-229E M ^{pro} were -7.8
305	and -7.5, higher than -8,8 and -8.7, the scores of the two compounds binding to the
306	SARS-CoV-2 M ^{pro} (Table 1). This result indicates that compared with the affinity score of
307	quercetin, these two types of glycosylation reduce the affinity scores binding to the
308	SARS-CoV-2 M ^{pro} , but do not affect the affinity scores binding to the HCoV-229E M ^{pro} .
309	
309 310	In vitro inhibitory effects of five flavonols and two dihydroflavonols on the SARS-CoV-2
	In vitro inhibitory effects of five flavonols and two dihydroflavonols on the SARS-CoV-2 ${ m M}^{ m pro}$ activity
310	
310 311 312	
310 311 312	M ^{pro} activity
310311312313	M ^{pro} activity (+)-DHQ, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin
 310 311 312 313 314 	M ^{pro} activity (+)-DHQ, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin (quercetin-3-O-glycoside), and rutin were used to test their inhibitory effects on the M ^{pro}
 310 311 312 313 314 315 	M ^{pro} activity (+)-DHQ, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin (quercetin-3-O-glycoside), and rutin were used to test their inhibitory effects on the M ^{pro} activity. In addition, based on our recent report (Zhu and Xie 2020), (-)-epicatechin and
 310 311 312 313 314 315 316 	M ^{pro} activity (+)-DHQ, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin (quercetin-3-O-glycoside), and rutin were used to test their inhibitory effects on the M ^{pro} activity. In addition, based on our recent report (Zhu and Xie 2020), (-)-epicatechin and (+)-catechin were used as negative controls. The resulting data showed that (+)-DHQ,

320	seven compounds, rutin had the lowest IC5 value with the most effectiveness to inhibit the
321	M ^{pro} activity (Fig. 7 g), while (+)-DHQ had the highest IC50 value with the lowest inhibitive
322	activity (Fig. 7 d). One hundred μM was used to further compare the inhibitive effects of
323	these compounds on the M^{pro} activity in a given time. The resulting data showed the most
324	effectiveness of rutin (Fig. 7 h). In addition, as we reported previously, (+)-catechin and
325	(-)-epicatechin did not show an inhibitory effect on the M ^{pro} activity in the range of
326	concentrations from 0-200 μ M. For example, the two compounds did not inhibit the catalytic
327	activity of the M^{pro} at 100 μ M (Fig. 7 h).
328	
329	Inhibitory effects of five compounds on the replication of HCoV-229E in Huh-7 cells
330	
331	Quercetin, isoquercetin, taxifolin, were tested their inhibitory effects on the replication of
332	HCoV-229E in Huh-7 cells. In addition, epigallocatechin gallate (EGCG), and epicatechin
333	two examples of flavan-3-ols, were tested. The reason was that we recently reported that
334	EGCG effectively inhibited the SARS-CoV-2 M ^{pro} activity, while epicatechin could not (Zhu
335	and Xie 2020), however whether they could inhibit coronavirus replication in the host cells
336	was untested. It was essential to test them. The resulting data indicated that all five
337	compounds showed an inhibition against the replication of HCoV-229E in Huh-7 cells
338	(Figure 8). Based on TCID50/ml values, taxifolin started to show its inhibition at 2.5 μM and
339	its inhibitory activity increased as its concentration was increased. Quercetin started to have
340	inhibition at 5 µM. As its concentrations were increased, its inhibitive activities were more
	inhibition at 5 μ M. As its concentrations were increased, its inhibitive activities were more

342	replication of the virus. Its EC50 value was estimated to be 4.88 μ M (Figure 8 b).
343	Isoquercitrin strongly inhibited the replication starting with 2.5 μ M. EGCG started to show
344	its inhibition against the replication of the virus at 2.5 μ M and its inhibition became stronger
345	as its concentrations were increased. It was interesting that epicatechin could strongly inhibit
346	the replication starting at 20 μ M.
347	
348	Discussion
349	
350	The development of medicines is necessary to complement the use of vaccines to control
351	COVID-19. The SARS-CoV-2 M ^{pro} is one of the targets to screen, repurpose, or develop
352	drugs to treat or prevent SARS-CoV-2 (Ren et al. 2013; Dai et al. 2020; Ramajayam et al.
353	2011). One strategy is to inhibit the M ^{pro} activity via delivering a compound to the Cys145
354	residue at the space across the region of S1' and S1 subsites (Dai et al. 2020). Ebselen is a
355	small molecule candidate that has been found to inhibit the M^{pro} activity with an IC ₅₀ 0.46
356	μM (Jin et al. 2020). Its structure featured with three rings was revealed to be an effective
357	vessel to deliver its carbonyl group to the CYS145 residue (Fig. 4 b). We recently reported
358	another strategy. We have found that epicatechin gallate, epigallocatechin gallate,
359	gallocatechin gallate, catechin gallate, and procyanidin B2 could effectively inhibited the
360	activity of M^{pro} via the formation of hydrogen bonds with different amino acids in the binding
361	pocket (Zhu and Xie 2020). Our findings indicated that the formation of peptide bonds was
362	effective to screen more flavonoids to intervene COVID-19. Quercetin and other flavonols
363	are common nutraceuticals with antiviral activities, such as influenza virus, hepatitis B virus,

364	Zika virus, and Ebola viruses (Mehrbod et al. 2021; Parvez et al. 2020; Wong et al. 2017; Qiu
365	et al. 2016). In this study, we took advantage of our recent strategy to perform this docking
366	simulation of flavonols and dihydroflavonols. These two groups of compounds (Figs. 2 and 4)
367	have C4 keto and 3-OH structures in the heterocycle C-ring. Like flavan-3-ol gallates, the
368	structures of these two groups might have a potential to reside in the space S1 and S2 subsites.
369	In the present study, our ligand-docking simulation showed that these two groups of
370	compounds could bind to the substrate-binding pocket of M ^{pro} and occupied their heterocyclic
371	C ring in the crossing region between S1 and S2. Furthermore, the docking results predicted
372	the A-ring and B-ring of two, three, two, and one compounds could bind to S1' and S2, S1
373	and S4, S2 and S1', and S4 and S1', respectively (Fig. 4). The docking results further showed
374	that a glycosylation of quercetin increased the dwelling capacity in the binding site. Rutin
375	was predicted to occupy all four subsites (Fig. 4 j). The increase of binding subsites was also
376	reflected by the affinity scores of M ^{pro} -ligands. Rutin and isoquercitrin had the lowest and
377	second lowest score values (Table 1). These data indicated that not only might these
378	compounds have an inhibitive activity but also a lower and better affinity score might
379	indicate a strong inhibition against the M ^{pro} activity. Further in vitro assays substantiated the
380	prediction of docking simulation. Seven available compounds inhibited the activity of M^{pro}
381	with IC5 values from 0.125 to 12.9 μ M. These data imply that these compounds might be
382	potential therapeutics.
283	

383

384 Given that SARS-CoV-2 can be only handled in the BSL-3 laboratories, we cannot access

this deadly virus to test the effects of these compounds on its replication in host cells. Instead,

386	we selected the less pathogenic HCoV-229E to test the inhibitory activity of these compounds.
387	We hypothesized that inhibitory compounds screened against this virus might be appropriate
388	for the potential therapy of COVID-19. The reason is that like SARS-CoV-2, the replication
389	of HCoV-229E also depends on its M ^{pro} activity in human cells and the active site is highly
390	conserved between HCoV229E and SARS-CoV-2. Accordingly, the resulting data might help
391	design medicines for the therapy of both COVID-19 and HCoV-229E respiratory diseases. An
392	amino sequence alignment revealed that the identity of HCoV-229E and SARS-CoV-2 M ^{pro}
393	homologs was approximately 48%. The binding domain of substrates between the two
394	homologs was conserved. Docking simulation and the resulting affinity scores further
395	indicated that these compounds could reside in the binding pocket to potentially inhibit the
396	activity of the M ^{pro} of HCoV-229E (Fig. 4 and Table 1). Based on these data, we could test
397	five compounds with HCoV-229E. In tested concentrations, taxifolin and isoquercitrin
398	starting from 2.5 μ M showed a significant inhibition of HCoV-229E replication in Huh-7
399	cells. Quercetin could slightly reduce the replication of HCoV-229E at 2.5 μ M and
400	significantly inhibited the replication of this virus at higher concentrations (Fig. 8 a). These
401	positive results not only supported the docking simulation results that these compounds
402	bound to the M ^{pro} of HCoV-229E (Table 1), but also substantiated the results of <i>in vitro</i>
403	assays that these compounds effectively inhibited the SARS-CoV-2 M ^{pro} activity (Fig. 7). We
404	previously demonstrated that EGCG could effectively inhibit the activity of the SARS-CoV-2
405	M ^{pro} (Zhu and Xie 2020). Herein, we used it as a positive control. The resulting data showed
406	that EGCG starting with 2.5 μ M could significantly inhibit the replication of HCoV-229E in
407	Huh-7 cells. This positive control result further supported that taxifolin, isoquercitrin and

408	quercetin inhibited the replication of HCoV-29E via the reduction of the M ^{pro} activity. In
409	addition, we tested epicatechin, which was not shown to have an inhibitive activity against
410	the SARS-CoV-2 M ^{pro} in our vitro assays. It was interesting that epicatechin starting with 20
411	µM tested could inhibit the replication of HCoV-229E (Fig. 8 a), which was supported by the
412	results of the docking simulation and its affinity score (Fig. 6 and Table 1). Accordingly, this
413	datum indicates the difference between HCoV-229E and SARS-CoV-2. Taken together, these
414	data indicate that HCoV-229E is appropriate substitute to screen inhibitors of SARS-CoV-2
415	by targeting the M ^{pro} of these two viruses.

416

417 Quercetin, isoquercitrin and rutin are three common supplements, given that their nutritional

values benefit human health (Xu et al. 2021; Ragheb et al. 2020; da Silva et al. 2019;

Kolarevic et al. 2019; Seifert 2013; Amanzadeh et al. 2019). Our data suggest that quercetin,

isoquercitrin, and rutin might be helpful to intervene COVID-19. These compounds are plant

421 natural flavonoids that their bio-availability, metabolism, and toxicity have been studied

422 extensively (Hostetler et al. 2017). In general, these compounds are safe nutrients sold as

supplements or in food products such as onion and common dinner table fruits (Burak et al.

424 2017; Egert et al. 2012; Careri et al. 2003; Meng et al. 2004; Erlund et al. 2002; Snyder et al.

425 2016). More importantly, quercetin can be absorbed into the human body from the intestines.

426 A large number of human health studies have reported the presence of quercetin and its

- 427 derivatives in the blood plasma and their nutritional benefits after consumption (Day and
- 428 Williamson 2001; Shi and Williamson 2016; Mohammadi-Sartang et al. 2017; Huang et al.
- 429 2020). For example, the quercetin concentration in plasma was reported to reach $5.0\pm1.0 \ \mu M$

430	after the intake of 150 mg in one hour (Olthof et al. 2000; de Whalley et al. 1990). In addition,
431	these compounds are potent antioxidants (Justino et al. 2002; Terao et al. 2001). The intake of
432	quercetin can inhibit the oxidation of LDL and prevent the cardiovascular diseases (de
433	Whalley et al. 1990; Hertog et al. 1993a) (Manach et al. 1998). Moreover, quercetin and its
434	derivatives have strong anti-inflammation activity (Sato and Mukai 2020; Carullo et al. 2017;
435	Tejada et al. 2017; Li et al. 2016; Chen et al. 2016). All of these functions can benefit
436	people's health.
437	
438	Figure legends
439	
440	Figure 1 A diagram showing the function of the SARS-CoV-2 main protease in the virus
441	replication in the host cells. Once the virus enters into the host cells. Its positive sense and
442	single stranded RNA uses the ribosomes to translate open reading frames 1a and 1b to
443	polyproteins (PP), in which the main protease and papain-like protease cleaves PPs to
444	non-structural proteins (NSPs). Three NSPs, RNA dependent RNA polymerase (RdRp), RNA
445	helicase, and exoribonuclease, are involved in the transcription of the positive RNA to
446	negative sense and single stranded RNA, which is further transcribed to positive sense and
447	single stranded RNA. Finally, structural proteins and a positive single stranded RNA
448	assembly together to form a virus progeny.
449	
450	Figure 2 Structures of ebselen and 10 flavonoids. Two flavan-3-ols: (-)-epicatechin and
451	(+)-catechin; three dihydroflavonol aglycones: (+)-dihydroquercetin, (+)-dihydrokaempferol,

452	and (+)-dih	vdroquercetin:	three flavonols	aglycones.	kaempferol.	quercetin, a	nd myricetin:
102	and () am	yuroquorooun.	, unce navonois	ugiyconco,	Rucinpicioi,	quoicouni, a	ma myriceum

- 453 two glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.
- 454
- 455 Figure 3 Ligand-receptor docking modeling showing the binding of eleven compounds to the
- substrate pocket of the SARS-CoV-2 main protease (M^{pro}). The first image shows the 3D
- 457 surface view of the SARS-CoV-2 M^{pro}, on which the red rectangular frame indicates the
- substrate-binding pocket. Eleven flavonoids and ebselen bind to this pocket. Two flavan-3-ols:
- 459 (+)-catechin (CA) and (-)-epicatechin (EC); three dihydroflavonol aglycones:
- 460 (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin
- 461 (DHM); three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated
- 462 flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.
- 463
- 464 Figure 4 Orientation features of compounds binding to subsites. a, a surface image shows the
- four subsites in the binding pocket. b-j, images show the binding positions of nine
- 466 compounds. Two flavan-3-ols: (+)-catechin (CA) and (-)-epicatechin (EC); three
- dihydroflavonol aglycones: (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and
- 468 (+)-dihydroquercetin (DHM); three flavonols aglycones, kaempferol, quercetin, and
- 469 myricetin; two glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.
- 470
- 471 Figure 5 Amino acid sequence alignment of the SARS-CoV-2's and HCoV-229E's M^{pro}
- 472 homologs and comparison of their three dimensional (3D) models. a, amino sequence
- alignment, in which three rectangle frames highlight three conserved domains forming the

474	substrate binding pocket; b, a comparison of the 3D models of the SARS-CoV-2's (bronze
475	color) and HCoV-229E's (blue color) M ^{pro} homologs; c, yellowish, orange, and reddish colors
476	showing the binding pocket formed from three conserved binding domains highlighted with
477	three rectangle frames in a, in which the reddish and yellowish spaces include Cys-His
478	catalytic dyad.
479	
480	Figure 6 Ligand-receptor docking modeling showing the binding of eleven compounds to the
481	substrate pocket of the HCoV-229E main protease. The first image shows the 3D surface
482	view of the HCoV-229E M ^{pro} , on which the red rectangular frame indicates the
483	substrate-binding pocket. Eleven flavonoids and ebselen bind to this pocket. Two flavan-3-ols:
484	(+)-catechin (CA) and (-)-epicatechin (EC); three dihydroflavonol aglycones:
485	(+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin
486	(DHM); three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated
487	flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.
488	
489	Figure 7 Inhibitory effects of nine compounds on the M ^{pro} activity of SARS-CoV-2. a-g,
490	seven plots show the inhibitory curves of seven compounds against the M ^{pro} activity. All dots
491	in each plot are an average value calculated from five replicates. IC50 value for each
492	compound is inserted in each plot. "95% Cl" means 95% confidence internal. "(value 1, value
493	2)" means values in the range with 95% Cl. h, a comparison shows the inhibitory effects of
494	11 compounds at 100 μ M on the M ^{pro} activity. GC376 is an inhibitor used as positive control.
495	(+)-catechin, (-)-epicatechin, and water are used as negative controls. Two flavan-3-ols:

496 (+)-catechin (Ca) and (-)-epicatechin (Ep); three di	iydroflavonol aglycones:
--	--------------------------

- 497 (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin
- 498 (DHM); three flavonols aglycones, kaempferol (Ka), quercetin (Qu), and myricetin (My); two
- 499 glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin, Iso), and rutin.
- 500
- 501 Figure 8 Inhibition of five compounds on the replication of HCoV-229E in Huh-7 cells. a,
- 502 plots were built with TCID50/mL versus concentrations of each compound. b, this plot was
- built with the inhibition rate (%) versus log $[\mu M]$ values to estimate the EC50 of quercetin.
- ⁵⁰⁴ "95% Cl" means 95% confidence internal. "(value 1, value 2)" means values in the range
- with 95% Cl. Bars labeled with "*" means were significant difference compared with control
- ⁵⁰⁶ without adding compounds (P-value less than 0.05).
- 507

508 Table 1 Affinity scores of 11 compounds binding to the main proteases of SARS-CoV-2 and

509 HuCoV-229E

Compounds	Affinity score	Affinity score (229E)	Molecular weight
	(SARS-CoV-2)		(Da)
Rutin	-8.8	-7.8	610.5
Isoquercitrin	-8.7	-7.5	464.1
Kaempferol	-7.7	-7.6	286.2
DHK	-7.6	-7.6	288.2
DHM	-7.5	-7.6	320.2
Myricetin	-7.4	-7.1	318.2
Quercetin	-7.4	-7.7	302.2
(+)-Taxifolin	-7.4	-7.8	304.2
(+)-catechin	-7.5	-7.6	290.2
(-)-epicatechin	-7.5	-7.6	290.2
Ebselen	-6.6	-6.0	274.2

510

512 **Reference**

- Abdool Karim SS, de Oliveira T (2021) New SARS-CoV-2 variants Clinical, Public Health, and
 Vaccine Implications. New England Journal of Medicine 384 (19):1866-1868.
 doi:10.1056/NEJMc2100362
- 516 Altmann DM, Boyton RJ, Beale R (2021) Immunity to SARS-CoV-2 variants of concern. Science 371
- 517 (6534):1103-1104. doi:10.1126/science.abg7404
- 518 Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M (2019) Application of quercetin in
- 519 neurological disorders: from nutrition to nanomedicine. Rev Neurosci 30 (5):555-572.
- 520 doi:10.1515/revneuro-2018-0080
- 521 Barrett PN, Meyer H, Wachtel I, Eibl J, Dorner F (1996) Determination of the inactivation kinetics of
- 522 hepatitis A virus in human plasma products using a simple TCID50 assay. J Med Virol 49

523 (1):1-6. doi:10.1002/(sici)1096-9071(199605)49:1<1::Aid-jmv1>3.0.Co;2-a

524 Bucknall RA, Chanock RM, Kapikian AZ, King LM (1972) Studies with human coronaviruses. 2. Some

525 properties of strains 229E and OC43. Proc Soc Exp Biol Med 139 (3):722-&

- 526 Bull-Otterson L, Gray EB, Budnitz DS, Strosnider HM, Schieber LZ, Courtney J, García MC, Brooks JT,
- 527 Kenzie WRM, Gundlapalli AV (2020) Hydroxychloroquine and Chloroquine Prescribing
- 528 Patterns by Provider Specialty Following Initial Reports of Potential Benefit for COVID-19
- 529 Treatment United States, January–June 2020. Morbidity and Mortality Weekly Report 69 530 (35):1210–1215
- Burak C, Brull V, Langguth P, Zimmermann BF, Stoffel-Wagner B, Sausen U, Stehle P, Wolffram S,
 Egert S (2017) Higher plasma quercetin levels following oral administration of an onion skin
- 533 extract compared with pure quercetin dihydrate in humans. Eur J Nutr 56 (1):343-353.

534 doi:10.1007/s00394-015-1084-x

535	Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N,
536	Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu
537	Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X,
538	Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang
539	J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG,
540	Horby PW, Zhang D, Wang C (2020) A Trial of Lopinavir-Ritonavir in Adults Hospitalized with
541	Severe Covid-19. N Engl J Med 382 (19):1787-1799. doi:10.1056/NEJMoa2001282
542	Careri M, Corradini C, Elviri L, Nicoletti I, Zagnoni I (2003) Direct HPLC analysis of quercetin and
543	trans-resveratrol in red wine, grape, and winemaking byproducts. J Agric Food Chem 51
544	(18):5226-5231
545	Carullo G, Cappello AR, Frattaruolo L, Badolato M, Armentano B, Aiello F (2017) Quercetin and
546	derivatives: useful tools in inflammation and pain management. Future Med Chem 9 (1):79-93.
547	doi:10.4155/fmc-2016-0186
548	CDC, FDA (2021) Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna
549	COVID-19 Vaccine — United States, December 21, 2020–January 10, 2021. Morbidity and
550	Mortality Weekly Report 70 (4):125–129
551	Chen L, Gui C, Luo X, Yang Q, Gunther S, Scandella E, Drosten C, Bai D, He X, Ludewig B, Chen J,
552	Luo H, Yang Y, Yang Y, Zou J, Thiel V, Chen K, Shen J, Shen X, Jiang H (2005) Cinanserin is
553	an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and
554	strongly reduces virus replication in vitro. J Virol 79 (11):7095-7103.
555	doi:10.1128/JVI.79.11.7095-7103.2005

- 556 Chen S, Jiang HM, Wu XS, Fang J (2016) Therapeutic Effects of Quercetin on Inflammation, Obesity,
- 557 and Type 2 Diabetes. Mediat Inflamm 2016:5. doi:10.1155/2016/9340637
- 558 Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: Genome structure, replication, and
- 559 pathogenesis. J Med Virol. doi:10.1002/jmv.26234
- 560 Cheng ZK, Sun G, Guo W, Huang YY, Sun WH, Zhao F, Hu KH (2015) Inhibition of hepatitis B virus
- replication by quercetin in human hepatoma cell lines. Virol Sin 30 (4):261-268.
 doi:10.1007/s12250-015-3584-5
- 563 Chopra M, Fitzsimons PEE, Strain JJT, Thurnham DI, Howard AN (2000) Nonalcoholic red wine
- extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and
 carotenoid concentrations. Clin Chem 46 (8):1162-1170
- 566 Chuck CP, Chen C, Ke ZH, Wan DCC, Chow HF, Wong KB (2013) Design, synthesis and
- 567 crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for
- 568 coronavirus 3C-like proteases. Eur J Med Chem 59:1-6. doi:10.1016/j.ejmech.2012.10.053
- 569 Cohen J (2021) South Africa suspends use of AstraZeneca's COVID-19 vaccine after it fails to clearly
- 570 stop virus variant. Science. AAAS, News
- da Silva ER, Brogi S, Lucon JF, Campiani G, Gemma S, Maquiaveli CD (2019) Dietary polyphenols
- 572 rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase.
- 573 Food Funct 10 (6):3172-3180. doi:10.1039/c9fo00265k
- 574 Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H,
- 575 Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang
- 576 H, Liu H (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2
- 577 main protease. Science 368 (6497):1331-1335. doi:10.1126/science.abb4489

578	Day AJ, Williamson G (2001) Biomarkers for exposure to dietary flavonoids: a review of the current
579	evidence for identification of quercetin glycosides in plasma. Br J Nutr 86:S105-S110.
580	doi:10.1079/bjn2001342
581	de Vries JHM, Hollman PCH, Meyboom S, Buysman M, Zock PL, van Staveren WA, Katan MB (1998)
582	Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and
583	kaempferol as biomarkers for dietary intake. Am J Clin Nutr 68 (1):60-65
584	de Whalley CV, Rankin SM, Hoult JR, Jessup W, Leake DS (1990) Flavonoids inhibit the oxidative
585	modification of low density lipoproteins by macrophages. Biochem Pharmacol 39
586	(11):1743-1750. doi:10.1016/0006-2952(90)90120-a
587	Dewi BE, Desti H, Ratningpoeti E, Sudiro M, Fithriyah, Angelina M, Iop (2020) Effectivity of quercetin

- 588as antiviral to dengue virus-2 strain New Guinea C in Huh 7-it 1 cell line. In: 3rd International589Conference on Natural Products and Bioresource Sciences, vol 462. IOP Conference590Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol.
- 591 doi:10.1088/1755-1315/462/1/012033
- Ding Q, Lu P, Fan Y, Xia Y, Liu M (2020) The clinical characteristics of pneumonia patients coinfected
 with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol.
 doi:10.1002/jmv.25781
- Dooling K, Marin M, Wallace M, McClung N, Chamberland M, Lee GM, Talbot HK, Romero JR, Bell BP,
 Oliver SE (2021) The Advisory Committee on Immunization Practices' Updated Interim
 Recommendation for Allocation of COVID-19 Vaccine United States, December 2020.
 Morbidity and Mortality Weekly Report 69 (5152):1657-1660
- 599 dos Santos AE, Kuster RM, Yamamoto KA, Salles TS, Campos R, de Meneses MDF, Soares MR,

600	Ferreira D (2014) Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.)
601	Steud. show anti-Mayaro virus activity. Parasites Vectors 7:7. doi:10.1186/1756-3305-7-130
602	Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G,
603	Mueller MJ (2008) Daily quercetin supplementation dose-dependently increases plasma
604	quercetin concentrations in healthy humans. J Nutr 138 (9):1615-1621
605	Egert S, Wolffram S, Schulze B, Langguth P, Hubbermann EM, Schwarz K, Adolphi B, Bosy-Westphal
606	A, Rimbach G, Muller MJ (2012) Enriched cereal bars are more effective in increasing plasma
607	quercetin compared with quercetin from powder-filled hard capsules. Br J Nutr 107
608	(4):539-546. doi:10.1017/s0007114511003242
609	Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA, Aro A (2002) Plasma concentrations of the
610	flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual
611	diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr 56 (9):891-898.
612	doi:10.1038/sj.ejcn.1601409
613	Farsani SMJ, Dijkman R, Jebbink MF, Goossens H, Ieven M, Deijs M, Molenkamp R, van der Hoek L
614	(2012) The first complete genome sequences of clinical isolates of human coronavirus 229E.
615	Virus Genes 45 (3):433-439. doi:10.1007/s11262-012-0807-9
616	Fehr AR, Perlman S (2015) Coronaviruses: An Overview of Their Replication and Pathogenesis. In:
617	Maier HJ, Bickerton E, Britton P (eds) Coronaviruses: Methods and Protocols. Springer New
618	York, New York, NY, pp 1-23. doi:10.1007/978-1-4939-2438-7_1
619	Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D (2021) SARS-CoV-2 variants and
620	ending the COVID-19 pandemic. The Lancet 397 (10278):952-954.
621	doi:10.1016/S0140-6736(21)00370-6

622	Fowler ZL, Koffas MA (2009) Biosynthesis and biotechnological production of flavanones: current state
623	and perspectives. Appl Microbiol Biotechnol 83 (5):799-808. doi:10.1007/s00253-009-2039-z
624	Friedman N, Jacob-Hirsch J, Drori Y, Eran E, Kol N, Nayshool O, Mendelson E, Rechavi G,
625	Mandelboim M (2021) Transcriptomic profiling and genomic mutational analysis of Human
626	coronavirus (HCoV)-229E-infected human cells. PLoS One 16 (2):15.
627	doi:10.1371/journal.pone.0247128
628	Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE (2010) Epidemiology and clinical
629	presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3
630	years using a novel multiplex real-time PCR method. J Clin Microbiol 48 (8):2940-2947.
631	doi:10.1128/jcm.00636-10
632	Gharpure R, Guo A, Bishnoi CK, Patel U, Gifford D, Tippins A, Jaffe A, Shulman E, Stone N, Mungai E,
633	Bagchi S, Bell J, Srinivasan A, Patel A, Link-Gelles R (2021) Early COVID-19 First-Dose
634	Vaccination Coverage Among Residents and Staff Members of Skilled Nursing Facilities
635	Participating in the Pharmacy Partnership for Long-Term Care Program — United States,
636	December 2020–January 2021. Morbidity and Mortality Weekly Report 70() (5):178–182
637	Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993a) Dietary antioxidant flavonoids
638	and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342 (8878):1007-1011.
639	doi:10.1016/0140-6736(93)92876-u
640	Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993b) Dietary antioxidant
641	flavonols and risk of coronary heart disease- the Zutphen elderly study. Lancet 342:1007-1011
642	Hierholzer JC (1976) Purification and biophysical properties of human coronavirus 229E. Virology 75
643	(1):155-165. doi:10.1016/0042-6822(76)90014-3

- 644 Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G,
- 645 Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry
- 646 depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell
- 647 **181 (2):271-280.e278. doi:https://doi.org/10.1016/j.cell.2020.02.052**
- Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S,
- 549 Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S,
- 650 Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State -nCo VCIT
- 651 (2020) First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 382
- 652 (10):929-936. doi:10.1056/NEJMoa2001191
- Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: Food Sources, Bioavailability, Metabolism,
 and Bioactivity. Adv Nutr 8 (3):423-435. doi:10.3945/an.116.012948
- Huang HH, Liao D, Dong Y, Pu R (2020) Effect of guercetin supplementation on plasma lipid profiles,
- blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev 78
- 657 (8):615-626. doi:10.1093/nutrit/nuz071
- 658 Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, Li Z, Zhu Y, Tien P, Guo D (2005) 659 Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of 660 severe syndrome 79 (9):5288-5295 acute respiratory coronavirus. .1 Virol 661 doi:10.1128/JVI.79.9.5288-5295.2005
- Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L,
- 663 Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W,
- Kiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Structure of M(pro) from SARS-CoV-2
- and discovery of its inhibitors. Nature 582 (7811):289-293. doi:10.1038/s41586-020-2223-y

- 666 Justino G, Santos M, Mira L (2002) Plasma metabolites of quercetin and their antioxidant potential.
- 667 Free Radic Biol Med 33:S203-S203
- 668 Kärber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche.
- 669 Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 162
- 670 (4):480-483. doi:10.1007/BF01863914
- 671 Kenilworth NJ (2021) Merck discontinues development of SARS-CoV2/COVID-19 vaccine candidates;
- 672 continues development of two investigational therapeutic candidates. BUSINESS WIRE,
- 673 Kennedy DA, Johnsonlussenburg CM (1976) Isolation and morphology of internal component of
- human coronavirus, strain 229E. Intervirology 6 (4-5):197-206
- Kim JH, Marks F, Clemens JD (2021) Looking beyond COVID-19 vaccine phase 3 trials. Nature
 Medicine. doi:10.1038/s41591-021-01230-y
- 677 Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO,
- 678 Pedersen NC (2016) Reversal of the Progression of Fatal Coronavirus Infection in Cats by a
- 679 Broad-Spectrum Coronavirus Protease Inhibitor. PLoS Pathog 12 (3):e1005531. 680 doi:10.1371/journal.ppat.1005531
- 681 Knoll MD, Wonodi C (2021) Oxford-AstraZeneca COVID-19 vaccine efficacy. The Lancet 397
- 682 (10269):72-74. doi:10.1016/S0140-6736(20)32623-4
- 683 Kolarevic A, Pavlovic A, Djordjevic A, Lazarevic J, Savic S, Kocic G, Anderluh M, Smelcerovic A (2019)
- 684 Rutin as Deoxyribonuclease I Inhibitor. Chem Biodivers 16 (5):9. doi:10.1002/cbdv.201900069
- 685 Kolhir VK, Bykov VA, Baginskaja Al, Sokolov SY, Glazova NG, Leskova TE, Sakovich GS, Tjukavkina
- 686 NA, Kolesnik YA, Rulenko IA (1996) Antioxidant activity of a dihydroquercetin isolated from
- 687 Larix gmelinii (Rupr) Rupr wood. Phytother Res 10 (6):478-482

- 688 Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC, Shih SR,
- 689 Liang PH, Wang AHJ (2009) Structural Basis of Inhibition Specificities of 3C and 3C-like
- 690 Proteases by Zinc-coordinating and Peptidomimetic Compounds. J Biol Chem 284
- 691 (12):7646-7655. doi:10.1074/jbc.M807947200
- 692 Li Y, Yao JY, Han CY, Yang JX, Chaudhry MT, Wang SN, Liu HN, Yin YL (2016) Quercetin,
- 693 Inflammation and Immunity. Nutrients 8 (3):14. doi:10.3390/nu8030167
- Logue J, Licona WV, Cooper TK, Reeder B, Byrum R, Qin J, Murphy ND, Cong Y, Bonilla A, Sword J,
- 695 Weaver W, Kocher G, Olinger GG, Jahrling PB, Hensley LE, Bennett RS (2019) Ebola virus
- 696 isolation using Huh-7 cells has methodological advantages and similar sensitivity to isolation
- 697 using other cell types and suckling BALB/c laboratory mice. Viruses-Basel 11 (2):14.
- 698 doi:10.3390/v11020161
- 699 Macnaughton MR, Madge MH (1978) Genome of human coronavirus strain 229E. J Gen Virol 39
- 700 (JUN):497-504. doi:10.1099/0022-1317-39-3-497
- 701 Manach C, Morand C, Crespy V, Demigne C, Texier O, Regerat F, Remesy C (1998) Quercetin is
- recovered in human plasma as conjugated derivatives which retain antioxidant properties.
- 703 FEBS Lett 426 (3):331-336. doi:10.1016/s0014-5793(98)00367-6
- McCarthy KR, Rennick LJ, Nambulli S, Robinson-McCarthy LR, Bain WG, Haidar G, Duprex WP (2020)
 Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape.
 bioRxiv:2020.2011.2019.389916. doi:10.1101/2020.11.19.389916
- 707Mehrbod P, Hudy D, Shyntum D, Markowski J, Los MJ, Ghavami S (2021) Quercetin as a natural708therapeutic candidate for the treatment of influenza virus. Biomolecules 11 (1):29.
- 709 doi:10.3390/biom11010010

710	Meng XF, Maliakal P, Lu H, Lee MJ, Yang CS (2004) Urinary and plasma levels of resveratrol and
711	quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. J
712	Agric Food Chem 52 (4):935-942. doi:10.1021/jf030582e
713	Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D (2017) Effects of
714	supplementation with quercetin on plasma C-reactive protein concentrations: a systematic
715	review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 71 (9):1033-1039.
716	doi:10.1038/ejcn.2017.55
717	Moon JH, Tsushida T, Nakahara K, Terao J (2001) Identification of quercetin 3-O-beta-D-glucuronide
718	as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic
719	Biol Med 30 (11):1274-1285. doi:10.1016/s0891-5849(01)00522-6
720	Murota K, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and
721	metabolism. Archives of Biochemistry an Biophysics 417:12-17

- 722 Nakabayashi H, Taketa K, Yamane T, Miyazaki M, Miyano K, Sato J (1984) Phenotypical stability of a
- human hepatoma-cell line, Huh-7, in long-term culture with chemically defined medium. Gann
 724 75 (2):151-158
- Olthof MR, Hollman PC, Vree TB, Katan MB (2000) Bioavailabilities of quercetin-3-glucoside and
 quercetin-4'-glucoside do not differ in humans. J Nutr 130 (5):1200-1203.
 doi:10.1093/jn/130.5.1200
- Painter EM, Ussery EN, Patel A, Hughes MM, Zell ER, Moulia DL, Scharf LG, Lynch M, Ritchey MD,
- Toblin RL, Murthy BP, Harris LQ, Wasley A, Rose DA, Cohn A, Messonnier NE (2021)
- 730 Demographic Characteristics of Persons Vaccinated During the First Month of the COVID-19
- 731 Vaccination Program United States, December 14, 2020–January 14, 2021. Morbidity and

732 Mortality Weekly Report 70 (5):174–177

753

733	Parvez MK, Al-Dosari MS, Arbab AH, Al-Rehaily AJ, Abdelwahid MAS (2020) Bioassay-guided
734	isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from
735	Guiera senegalensis leaves. Saudi Pharm J 28 (5):550-559. doi:10.1016/j.jsps.2020.03.006
736	Petra M, Steven K, Mahesh Shanker D, Guido P, Bo M, Swapnil M, Charlie W, Thomas M, Isabella F,
737	Rawlings D, Dami AC, Sujeet S, Rajesh P, Robin M, Meena D, Shantanu S, Kalaiarasan P,
738	Radhakrishnan VS, Adam A, Niluka G, Jonathan B, Oscar C, Partha C, Priti D, Daniela C, Tom
739	P, Dr Chand W, Neeraj G, Raju V, Meenakshi A, The Indian S-C-GC, Citiid-Nihr BioResource
740	Covid-19 Collaboration AM, o Hyeon L, Wendy SB, Samir B, Seth F, Leo J, Partha R, Anurag
741	A, Ravindra KG (2021) SARS-CoV-2 B.1.617.2 Delta variant emergence and vaccine
742	breakthrough. Nature Portfolio. doi:10.21203/rs.3.rs-637724/v1
743	Prior AM, Kim YJ, Weerasekara S, Moroze M, Alliston KR, Uy RAZ, Groutas WC, Chang KO, Hua DH
744	(2013) Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors. Bioorg
745	Med Chem Lett 23 (23):6317-6320. doi:10.1016/j.bmcl.2013.09.070
746	Qiu XG, Kroeker A, He SH, Kozak R, Audet J, Mbikay M, Chretienc M (2016) Prophylactic Efficacy of
747	Quercetin 3-beta-O-D-Glucoside against Ebola Virus Infection. Antimicrob Agents Chemother
748	60 (9):5182-5188. doi:10.1128/aac.00307-16
749	Ragheb SR, El Wakeel LM, Nasr MS, Sabri NA (2020) Impact of rutin and vitamin C combination on
750	oxidative stress and glycemic control in patients with type 2 diabetes. Clin Nutr ESPEN
751	35:128-135. doi:10.1016/j.clnesp.2019.10.015
752	Ramajayam R, Tan KP, Liang PH (2011) Recent development of 3C and 3CL protease inhibitors for

36

anti-coronavirus and anti-picornavirus drug discovery. Biochem Soc Trans 39 (5):1371-1375.

754 doi:10.1042/BST0391371

- Ren Z, Yan L, Zhang N, Guo Y, Yang C, Lou Z, Rao Z (2013) The newly emerged SARS-like
- 756 coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a
- 757 3C-like protease. Protein Cell 4 (4):248-250. doi:10.1007/s13238-013-2841-3
- 758 Sato S, Mukai Y (2020) Modulation of chronic inflammation by quercetin: The beneficial effects on
- 759 obesity. J Inflamm Res 13:421-431. doi:10.2147/jir.S228361
- Seifert J (2013) Role of Quercetin in Sports Nutrition. Nutrition and Enhanced Sports Performance:
- 761 Muscle Building, Endurance, and Strength. Elsevier Academic Press Inc, San Diego.
- 762 doi:10.1016/b978-0-12-396454-0.00052-7
- 763 Shi YL, Williamson G (2016) Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a
- randomised, double-blinded, placebo-controlled, cross-over trial. Br J Nutr 115 (5):800-806.

765 doi:10.1017/s0007114515005310

- 766 Shih CM, Lo SCJ, Miyamura T, Chen SY, Lee YHW (1993) Suppression of hepatitis-B virus expression
- and replication by hepatitis-C virus core protein in Huh-7 cells. Journal of Virology 67
- 768 (10):5823-5832. doi:10.1128/jvi.67.10.5823-5832.1993
- Shirato K, Kanou K, Kawase M, Matsuyama S (2017) Clinical isolates of human coronavirus 229E
 bypass the endosome for cell entry. Journal of Virology 91 (1):12. doi:10.1128/jvi.01387-16
- 771 Shirato K, Kawase M, Watanabe O, Hirokawa C, Matsuyama S, Nishimura H, Taguchi F (2012)
- 772 Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E
- isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. J Gen
- 774 Virol 93:1908-1917. doi:10.1099/vir.0.043117-0
- 775 Snyder SM, Zhao BX, Luo T, Kaiser C, Cavender G, Hamilton-Reeves J, Sullivan DK, Shay NF (2016)

776	Consumption of Quercetin and Quercetin-Containing Apple and Cherry Extracts Affects Blood			
777	Glucose Concentration, Hepatic Metabolism, and Gene Expression Patterns in Obese			
778	C57BL/6J High Fat-Fed Mice. J Nutr 146 (5):1001-1007. doi:10.3945/jn.115.228817			
779	Spearman C (1908) THe method of 'Right and Wrong Cases' ('Constant stiumuli') without Gauss's			
780	formulae. Br J Psychol 2:227-242. doi:10.1111/j.2044-8295.1908.tb00176.x			
781	Tejada S, Nabavi SM, Capo X, Martorell M, Bibiloni MD, Tur JA, Pons A, Sureda A (2017) Quercetin			
782	effects on exercise induced oxidative stress and inflammation. Curr Org Chem 21 (4):348-356.			
783	doi:10.2174/1385272820666161017122202			
784	Terao J, Yamaguchi S, Shirai M, Miyoshi M, Moon JH, Oshima S, Inakuma T, Tsushida T, Kato Y			
785	(2001) Protection by quercetin and quercetin 3-O-beta-glueuronide of peroxynitrite-induced			
786	antioxidant consumption in human plasma low-density lipoprotein. Free Radic Res 35			
787	(6):925-931. doi:10.1080/10715760100301421			
788	Teselkin YO, Babenkova IV, Kolhir VK, Baginskaya Al, Tjukavkina NA, Kolesnik YA, Selivanova IA,			
789	Eichholz AA (2000) Dihydroquercetin as a means of antioxidative defence in rats with			
790	tetrachloromethane hepatitis. Phytother Res 14 (3):160-162.			
791	doi:10.1002/(sici)1099-1573(200005)14:3<160::Aid-ptr555>3.0.Co;2-y			
792	Teselkin YO, Babenkova IV, Tjukavkina NA, Rulenko IA, Kolesnik YA, Kolhir VK, Eichholz AA (1998)			
793	Influence of dihydroquercetin on the lipid peroxidation of mice during post-radiation period.			
794	Phytother Res 12 (7):517-519.			
795	doi:10.1002/(sici)1099-1573(199811)12:7<517::Aid-ptr342>3.0.Co;2-d			
796	Thongsri P, Sa-ngiamsuntorn K, Sithisarn P, Chomnawang MT, Thirapanmethee K (2019) Cladogynos			
797	orientalis Zipp. extracts inhibit cell culture-derived hepatitis C virus genotype 2a replication in			

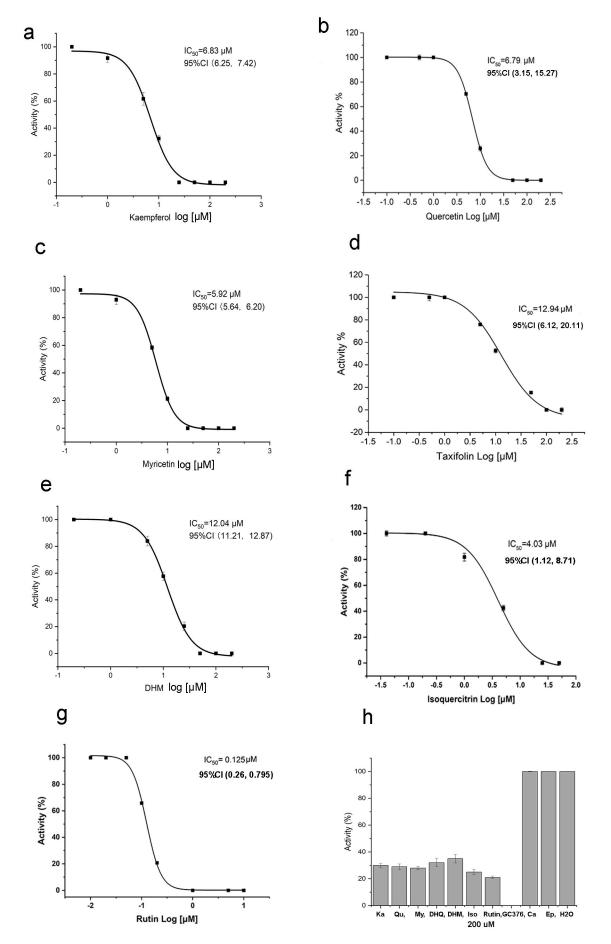
- Huh-7 cells through NS5B inhibition. Asian Pac Trop Biomed 9 (8):346-352.
 doi:10.4103/2221-1691.262079
- 800 Walensky RP, Walke HT, Fauci AS (2021) SARS-CoV-2 Variants of Concern in the United
- 801 States—Challenges and Opportunities. JAMA 325 (11):1037-1038.
- 802 doi:10.1001/jama.2021.2294
- 803 Wang C, Horby PW, Hayden FG, Gao GF (2020a) A novel coronavirus outbreak of global health
- 804 concern. Lancet 395 (10223):470-473. doi:10.1016/S0140-6736(20)30185-9
- 805 Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020b) Remdesivir and
- 806 chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
- 807 Cell Res 30 (3):269-271. doi:10.1038/s41422-020-0282-0
- 808 Weidmann AE (2012) Dihydroquercetin: More than just an impurity? Eur J Pharmacol 684 (1-3):19-26.
- 809 doi:10.1016/j.ejphar.2012.03.035
- 810 WHO (2020a) Director-General's opening remarks at the media briefing on COVID-19-11 March 2020.
- 811 WHO (2020b) Statement on the second meeting of the International Health Regulations (2005)
- 812 Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World
- 813 Health Organization,

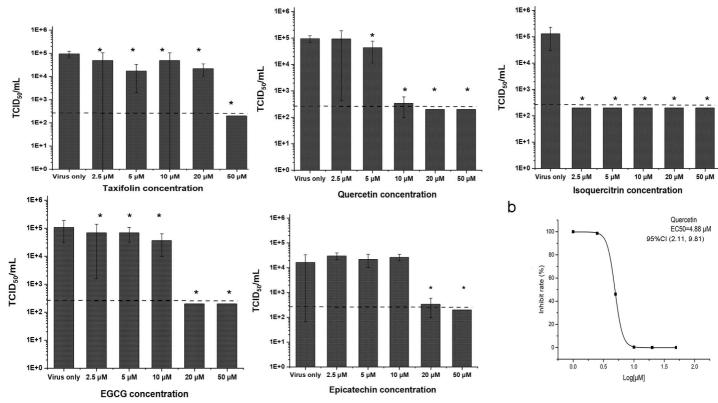
818

- Wong G, He SH, Siragam V, Bi YH, Mbikay M, Chretien M, Qiu XG (2017) Antiviral activity of
- quercetin-3-beta-O-D-glucoside against Zika virus infection. Virol Sin 32 (6):545-547.
- 816 doi:10.1007/s12250-017-4057-9

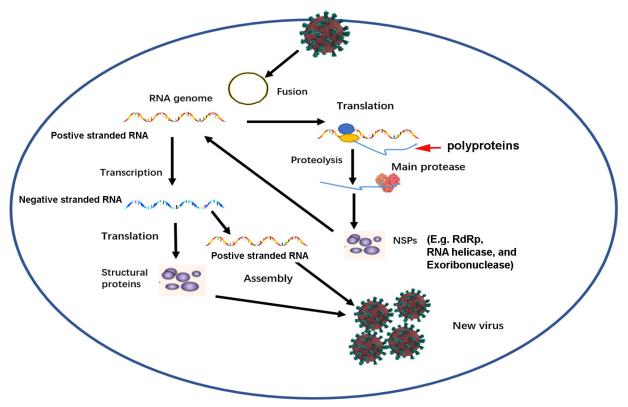
Viruses 2 (8):1804-1820

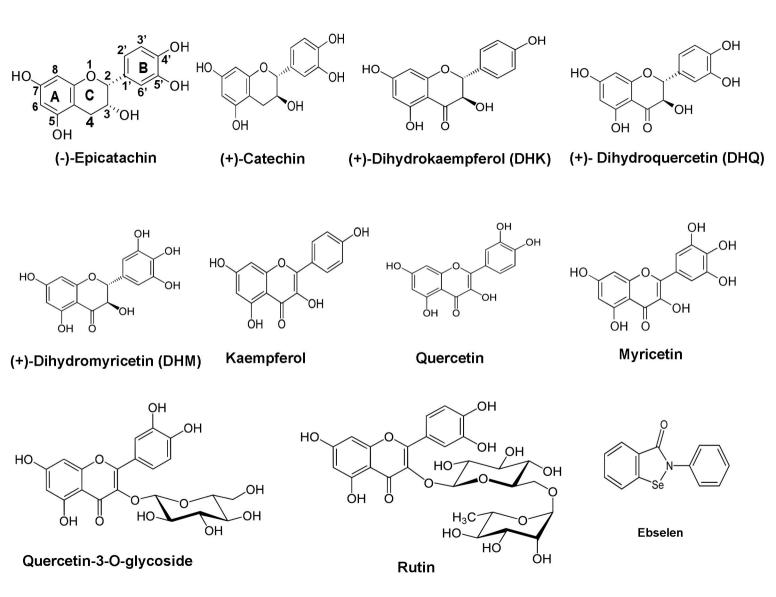
- 817 Woo PCY, Huang Y, Lau SKP, Yuen K-Y (2010) Coronavirus genomics and bioinformatics analysis.
- 819 Xie D-Y, Dixon RA (2005) Proanthocyanidin biosynthesis still more questions than answers?

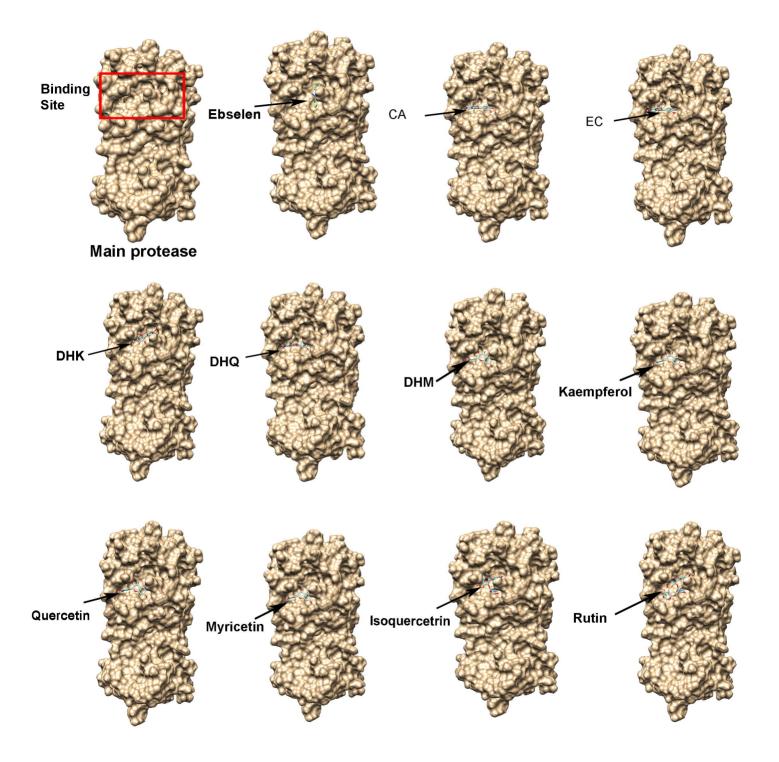

39


820 Phytochemistry 66 (18):2127-2144

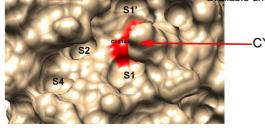
- Xie D-Y, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from *Medicago truncatula*. Plant
- 823 Physiol 134 (3):979-994. doi:10.1104/pp.103.030221
- 824 Xu Z, Li XQ, Yang H, Poolsawat L, Wang P, Leng XJ (2021) Dietary rutin promoted the growth, serum
- antioxidant response and flesh collagen, free amino acids contents of grass carp
 (Ctenopharyngodon idella). Aquac Nutr 27 (2):544-555. doi:10.1111/anu.13205
- 827 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2
- 828 by full-length human ACE2. Science 367 (6485):1444-1448. doi:10.1126/science.abb2762
- 829 Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, Zhao Q, Zhou Z, Pei D, Ziebuhr J, Hilgenfeld R, Yuen
- 830 KY, Wong L, Gao G, Chen S, Chen Z, Ma D, Bartlam M, Rao Z (2005) Design of
- 831 wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3 (10):e324.
- 832 doi:10.1371/journal.pbio.0030324
- 833 Ye G, Wang X, Tong X, Shi Y, Fu ZF, Peng G (2020) Structural Basis for Inhibiting Porcine Epidemic
- Biarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. Viruses 12 (2).
 doi:10.3390/v12020240
- Zhang L, Liu Y (2020) Potential interventions for novel coronavirus in China: A systematic review. J
 Med Virol 92 (5):479-490. doi:10.1002/jmv.25707
- Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R,
- 839 Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L (2020)
- 840 Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell
- 841 Host Microbe 28 (4):586-601.e586. doi:10.1016/j.chom.2020.08.004


- 842 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X,
- 843 Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus I, Research T (2020) A
- 844 Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382
- 845 (8):727-733. doi:10.1056/NEJMoa2001017
- 846 Zhu Y, Xie D-Y (2020) Docking characterization and in vitro inhibitory activity of flavan-3-ols and
- 847 dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Front Plant Sci
- 848 11 (1884). doi:10.3389/fpls.2020.601316
- 849 Ziebuhr J, Herold J, Siddell SG (1995) Characterization of a human coronavius (strain 229E) 3C-like
- 850 proteinase activity. Journal of Virology 69 (7):4331-4338. doi:10.1128/jvi.69.7.4331-4338.1995
- Ziebuhr J, Heusipp G, Seybert A, Siddell SG (1998) Substrate specificity of the human coronavirus
- 852 229E 3C-like proteinase. In: Enjuanes L, Siddell SG, Spaan W (eds) Coronaviruses and
- 853 Arteriviruses, vol 440. Advances in Experimental Medicine and Biology. Plenum Press Div
- 854 Plenum Publishing Corp, New York, pp 115-120
- Ziebuhr J, Heusipp G, Siddell SG (1997) Biosynthesis, purification, and characterization of the human
- coronavirus 229E 3C-like proteinase. Journal of Virology 71 (5):3992-3997.
- doi:10.1128/jvi.71.5.3992-3997.1997

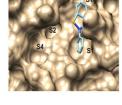

858

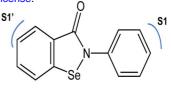


а



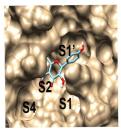
b

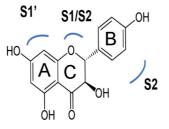

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.01.450756; this version posted July 2, 2021. The copyrightsholder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 programmal license.


d

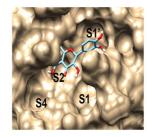
f

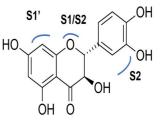
CYS145

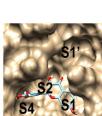


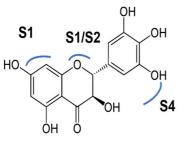


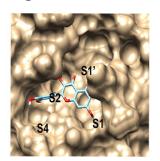
С

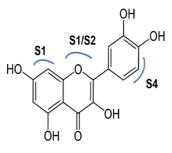

е

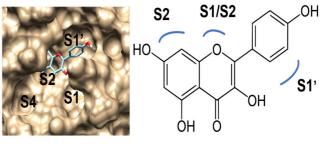

i


(+) DHK

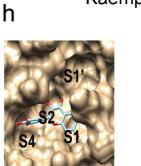


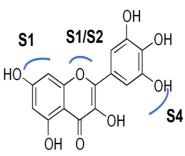

(+)-DHQ

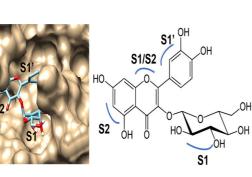

Ebselen

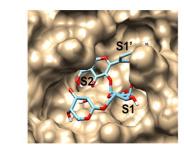


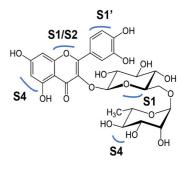
g (+) DHM




Quercetin


Kaempferol




j

Myricetin

Isoquercitrin

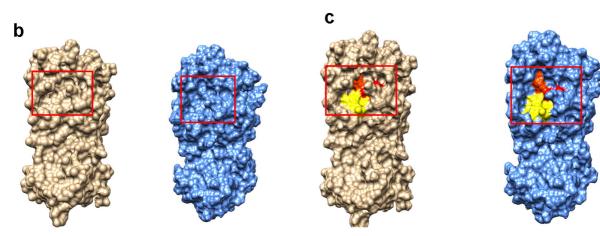
Rutin

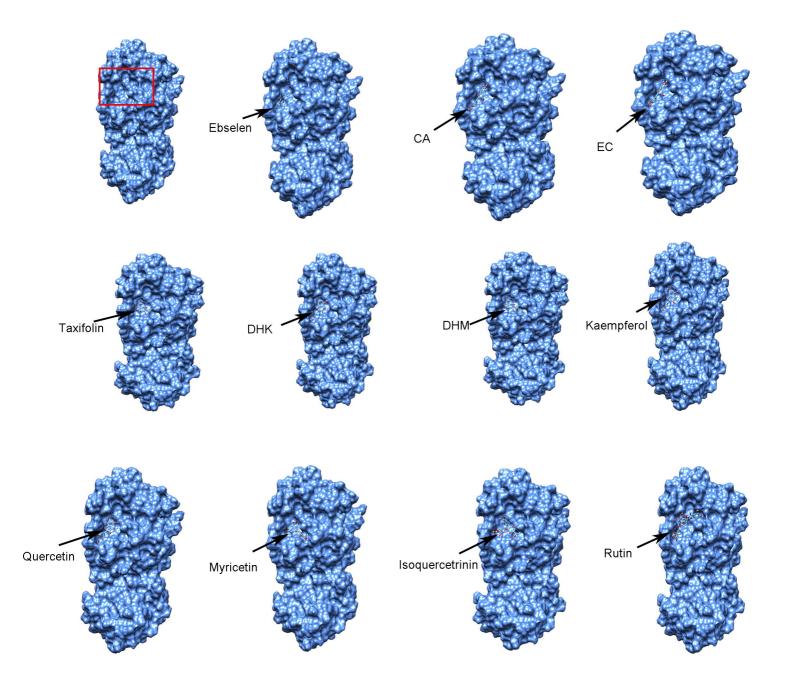
hCov-229E SARS-Cov-2	AGLRKMAQPSGFVEKCVVRVCYGNTVLNGLWLGDI SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDV :*:**** *** ** *:*:* *.*.******.*: :*:***** *** ** *:*:* *.*.
hCov-229E SARS-Cov-2	MRLHNFSIISGTAFLGVVGATMHGVTLKIKVSQTNMHTPRHSFRTLKSGEGFNILACYDG KSNHNFLVQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFVRIQPGQTFSVLACYNG *** : :* * *:* :*:**:**. :* :**:.* :: *: *: *: *:****:*
hCov-229E	CAQGVFGVNMRTNWTIRGSFIN ACGSPC YNLKNGEVE FVYMHQIEL GSGSHVGSSFDGV

SARS-Cov-2 SPSGVYQCAMRPNFTIKGSFLN SCGSVCFNIDYDCVSFCYMHHMELPTGVHAGTDLEGN 180 hCov-229E MYGGFEDQPNLQVESANQMLTVNVVAFLYAAILNGCTWWLKGEKLFVEHYNEWAQANGFT 239

59

60


119


120

179

- SARS-Cov-2 FYGPFVDRQTAQAAGTDTTITVNVLAWLYAAVINGDRWFLNRFTTTLNDFNLVAMKYNYE 240
- hCov-229E AMNG--EDAFSILAAKTGVCVERLL-HAIQVLNNGFGGKQILGYSSLNDEFSINEVVKQM 296 SARS-Cov-2 PLTQDHVDILGPLSAQTGIAVLDMCASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQC 300 * : *:*:**: * : ::*:***: *: *:****: :*:****: :*:****:

hCov-229E	FGVNLQ	302
SARS-Cov-2	SGVTFQ	306
	**. :*	

