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Abstract 25 

Neural circuits must both function reliably and flexibly adapt to changes in their 26 

environment. We studied how both biological neurons and computational models 27 

respond to high potassium concentrations. Pyloric neurons of the crab stomatogastric 28 

ganglion (STG) initially become quiescent, then recover spiking activity in high 29 

potassium saline. The neurons retain this adaptation and recover more rapidly in 30 

subsequent high potassium applications, even after hours in control saline. We 31 

constructed a novel activity-dependent computational model that qualitatively captures 32 

these results. In this model, regulation of conductances is gated on and off depending on 33 

how far the neuron is from its target activity. This allows the model neuron to retain a 34 

trace of past perturbations even after it returns to its target activity in control 35 

conditions. Thus, perturbation, followed by recovery of normal activity, can hide cryptic 36 

changes in neuronal properties that are only revealed by subsequent perturbations.  37 

38 
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 39 
Introduction 40 

An enigmatic property that all nervous systems share is their ability to maintain 41 

proper physiological function despite ongoing perturbations to their activity and 42 

constant turnover of their ion channels and other cellular components.  At the same 43 

time, neural circuits must be able to adapt to varying internal and external 44 

environments.  45 

For all organisms, maintaining the appropriate ionic composition of the 46 

extracellular milieu is critical for normal physiological function, and the potassium 47 

gradient is particularly important for the maintenance of resting membrane potential 48 

and normal activity levels. It is therefore unsurprising that altered potassium 49 

homeostasis occurs in a wide array of conditions including heart disease, kidney failure, 50 

thermal stress, epilepsy, traumatic brain injury and stroke 1-7. In addition to these 51 

pathological disease states, altered extracellular potassium levels are routinely used by 52 

researchers as a physiologically relevant depolarizing stimulus to increase neuronal 53 

activity or as a proxy for excitatory inputs 8-11. Nonetheless, many studies employing 54 

high potassium do not record the physiological response of neurons. Those that do 55 

record physiologically often look only at long-term, chronic changes of populations of 56 

neurons over days to weeks12-14. But changing extracellular potassium concentration will 57 

immediately affect neuronal membrane potentials, and thus may activate rapid 58 

adaptation mechanisms. Given this, we were interested to observe how elevations in 59 

extracellular potassium levels would affect individual neurons over time.  60 

By studying how extracellular potassium concentrations affect identified 61 

neurons, we have an opportunity to observe mechanisms of adaptation to a global 62 
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depolarization. Typically, researchers classify activity-dependent adaptation into several 63 

distinct timescales. The shortest activity-dependent adaptation processes such as spike 64 

frequency adaptation emerge from ion channel properties that occur on the millisecond 65 

timescale. Over longer timeframes, activity-dependent homeostatic mechanisms actively 66 

regulate ion channel expression and synaptic weights to maintain stable function in the 67 

face of physiological perturbation15-25. These homeostatic processes are commonly 68 

thought to act over hours to days and require protein synthesis. However, similar 69 

feedback mechanisms can also drive more rapid adaptation over intermediate 70 

timescales on the order of minutes. For instance, changes in effective conductance 71 

density can occur quickly through phosphorylation of ion channels26-28 or rapid 72 

insertion of ion channels29.  73 

Models of activity-dependent plasticity or homeostasis generally involve feedback 74 

mechanisms that monitor internal calcium dynamics to modify the conductance 75 

densities of specific ion channels. Using these rules, one can build neurons with given 76 

target activities that can recover from perturbation 23, 30. However, all current models of 77 

homeostatic plasticity have some limitations. For instance, in models using a single 78 

calcium sensor, neurons can be robust to some perturbations, but vulnerable to targeted 79 

deletion or changes in specific conductances31. Conversely, models involving more than 80 

one calcium sensor can be inherently unstable23, 30. Finally, conventional computational 81 

models of neurons are far more vulnerable to perturbation than biological neurons 20, 23, 82 

30, 32-34. This suggests that some mechanisms of activity-dependent adaptation must be 83 

included in computational models to study how neurons respond to perturbations.  84 

The crustacean stomatogastric ganglion (STG) is an excellent model system in 85 

which to study underlying network dynamics and mechanisms of circuit robustness both 86 
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through recording from well-studied identified neurons and computational models of 87 

those neurons33, 35-38.  Importantly, the physiological behavior of each neuron within the 88 

STG is relatively stereotyped, allowing us to determine whether a given pattern of 89 

activity is normal. This system therefore provides an excellent paradigm in which to 90 

study how a neural circuit can achieve stable adaptation to global perturbation while 91 

maintaining its characteristic physiological function. Taking advantage of this tractable 92 

and well-defined system, we investigated the response of neurons to high potassium and 93 

describe a case of intermediate-term (minutes) adaptation to a global perturbation 94 

which is retained over long time periods (hours). We then used these observations to 95 

modify a computational model of homeostatic adaptation.  These studies demonstrate a 96 

mechanism by which adaptation can lead to cryptic changes in neuronal excitability that 97 

become visible only in response to a subsequent environmental challenge.   98 
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Results  99 

Short-term adaption of pyloric neurons to elevated potassium concentrations 100 

The pyloric central pattern generator within the STG drives filtering of food 101 

particles through the foregut in vivo 39. The same network activity persists in vitro 40 102 

and can be monitored using a combination of intracellular and extracellular recordings. 103 

The pyloric network is driven by the anterior burster (AB) neuron together with the two 104 

pyloric dilator (PD) neurons, which together form a pacemaker kernel. In this study we 105 

focused on the regular bursting activity of the PD neuron as a proxy for robustness of 106 

the pyloric circuit (Fig. 1a(i)). For all experiments, the stomatogastric nervous system 107 

(STNS) was dissected intact from the stomach of the crab, Cancer borealis, and pinned 108 

in a dish, allowing us to change the composition of continuously superfused saline.  109 

We previously demonstrated that pyloric neurons depolarize, temporarily 110 

become silent in high potassium saline, and subsequently recover spiking activity 111 

through a change in cell-intrinsic excitability 38. In this work we studied repeated 112 

applications of high potassium to ask if neurons retain a long-term trace or memory of 113 

this adaptation. When PD neurons are first exposed to 2.5 times the physiological 114 

concentration of extracellular potassium (2.5x[K+] saline), the neuron depolarizes and 115 

becomes quiescent (Fig. 1aii) before recovering spiking and later bursting activity over 116 

20 minutes in elevated extracellular potassium (Fig. 1aiii-v). This change in activity can 117 

be visualized by the raw voltage traces (Fig. 1a, top) and simple raster plots where a line 118 

is plotted for each action potential in the respective PD neuron (Fig. 1a, bottom).  119 

We superfused the STNS with three 20-minute 2.5x[K+] saline exposures 120 

interspersed with 20-minute washes in physiological (control) saline (Fig. 1b). Repeated 121 

exposure to elevated extracellular potassium resulted in shorter or diminished periods 122 
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of quiescence and more robust PD neuron spiking activity compared to the initial 123 

application (Fig. 1b, c). In all animals (N=14), PD neurons exhibited more spiking and 124 

bursting behavior in high [K+] applications #2 and #3 compared to the first application 125 

(Fig. 1d, Friedman’s test, Q(2) = 23.57, multiple comparisons with Bonferroni 126 

correction. The number of spikes during the first application differs from second and 127 

third for minutes 4 – 13 after beginning of application (p <0.0025 for all)). Nonetheless, 128 

significant individual variability can also be observed across animals. 129 

Under normal physiological conditions, pyloric neurons produce bursts of action 130 

potentials, which are necessary to drive rhythmic contractions of muscles within the 131 

stomach of the crab41. Therefore, we also characterized the “burstiness” of pyloric 132 

neurons during exposure to high potassium saline using Hartigan’s dip statistic, in 133 

which higher numbers indicate more burst-like activity. For all PD neurons, the dip 134 

statistic was higher throughout the second and third high potassium applications 135 

compared to the first (Fig. 1e, Friedman’s test, Q(2) = 16.87, multiple comparisons with 136 

Bonferroni correction. Dip value during the first application differs from second and 137 

third for minutes 6 – 12 after beginning of application (p <0.005 for all)). Overall, the 138 

improved spiking activity and “burstiness” of PD neurons in high potassium saline upon 139 

repeated applications indicates that the intrinsic properties of pyloric neurons are 140 

altered by a single exposure to high potassium, and that these changes are maintained 141 

after 20-minute washes in control saline.  142 

 143 

Pyloric activity in control saline is unchanged following potassium perturbation 144 

 Given that pyloric neurons rapidly adapt to the high potassium perturbation, we 145 

might expect that this change in excitability would affect the neurons’ overall activity 146 
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level. To see if this was the case, we directly compared the bursting activity of each PD 147 

neuron in control saline and after each high potassium application (Wash #1-3). Figure 148 

2a depicts example traces from PD neurons from three preparations. Here the animal 149 

number to the left corresponds to the animal numbers shown in Figure 1. Although all 150 

the PD neurons shown here had distinct sensitivities to high potassium saline (see Fig. 151 

1c), the baseline activity of the neurons is similar across animals. Additionally, within 152 

each preparation the activity in the washes appears similar to baseline. For all PD 153 

neurons, we analyzed the bursting activity in the last ten minutes of baseline and washes 154 

#1-3. The burst frequency of PD neurons was unchanged in control saline regardless of 155 

the wash number (Fig. 2b, Friedman’s test, Q(3) = 2.45, p = 0.46). Similarly, there was 156 

no change in the average number of spikes per burst (Fig. 2c, Friedman’s test Q(3) = 157 

4.66, p = 0.17). In summary, although PD neurons show robust adaptation to high 158 

potassium saline, we observe no differences in bursting behavior under control 159 

conditions.  160 

 161 

Adaptation to elevated potassium is maintained long-term after several hours in 162 

control saline 163 

 Because our potassium applications are relatively brief, one might expect a PD 164 

neuron to return to their baseline sensitivity after a period of time under control 165 

conditions and lose the enhanced robustness to high potassium saline.  166 

To test this, we performed additional experiments in which we applied the same 167 

three rapid 20-minute applications of 2.5x[K+] saline interspersed with 20-minute 168 

washes in control saline, followed by a three-hour wash, and finally a fourth 20-minute 169 

2.5x[K+] saline application. Here, unlike in the previous set of experiments, the third 170 
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wash is many times longer than the perturbation that drove the change in robustness. 171 

Again, PD neurons showed improved robustness over the first three applications of high 172 

potassium saline (example traces of activity at 15 minutes in 2.5x[K+] saline, Fig. 3Aii, 173 

iii, iv). After the three-hour wash in control saline, the representative PD neuron 174 

(animal 15) shown in Figure 3a maintained and improved this robust response to 175 

2.5x[K+] saline (Fig. 3av, 3b). All PD neurons in this set of six experiments retained their 176 

decreased sensitivity to high potassium saline after extended wash (Fig. 3c). Overall, the 177 

number of spikes per minute in 2.5x[K+] saline increased across the first three 178 

applications, and was maintained in the fourth application after the extended wash (Fig. 179 

3d, Friedman’s test Q(3) = 18.54,  multiple comparisons with Bonferroni correction. The 180 

number of spikes per minute during the first application differs from second, third and 181 

fourth for minutes 2 – 14 after beginning of application (p <0.0025 for all)). PD neurons 182 

exhibited more bursting activity in high potassium saline in applications #2-4 compared 183 

to the first (Fig. 3e, Friedman’s test Q(3) = 10.39,  multiple comparisons with Bonferroni 184 

correction. Dip statistic during the first application differs from second, third and fourth 185 

for minutes 2 – 12 after beginning of application (p <0.005 for all)). Thus, pyloric 186 

neurons retain an imprint of past exposures to high potassium saline, even after a wash 187 

period much longer than the perturbation itself and despite the fact that unperturbed 188 

recordings show little overt sign of this adaptation.  189 

 190 

Modeling bursting neurons exposed to high potassium 191 

We constructed a computational model of a neuron that captures the main qualitative 192 

observations in the previous experiments, and which reveals features of adaptation 193 

mechanisms that are difficult to see directly. To this end, we evaluate how several 194 
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models with different long-term regulation properties respond to the same high 195 

potassium perturbation.  These include (a) a conventional conductance-based model 196 

with no regulation, (b) a three-sensor homeostatic model modified from Liu et al 197 

(1998)30, and (c) a new three-sensor homeostatic model with novel conductance 198 

regulation properties. Figure 4 shows simulations in which we applied the high 199 

potassium perturbation (shifted 𝐸! from -80mV to -40mV) to the three different model 200 

neurons in intervals of 20 minutes. We also simulated a long wash period of 3 hours, 201 

followed by a final 20-minute application of high potassium, similar to the experiments 202 

in Figure 3. For all panels, the membrane potential is shown on top, and the 203 

conductance densities of the currents are shown below. The numerals below the voltage 204 

trace indicate the type of activity pattern (Fig. 4i-iv) at different temporal segments.  205 

 206 

The model neuron becomes quiescent in the first exposure to high potassium 207 

Figure 4a depicts a conventional conductance-based neuronal model. In this 208 

model, when the potassium reversal potential is changed the membrane potential 209 

depolarizes and the cell becomes quiescent. The model remains quiescent during the 210 

high potassium condition, recovers bursting activity in wash, and unsurprisingly, the 211 

model does not adapt and becomes quiescent again when subsequently exposed. This 212 

simulation strongly suggests that to replicate the experimental data the conductance 213 

densities in the model neuron must change. Note that the maximal conductances in this 214 

model do not change over time.  215 

 216 

A homeostatic model with bounded current densities can rapidly adapt to the high 217 

potassium perturbation, but does not retain a long-term memory 218 
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This led us to revisit a family of models with homeostatic regulation that have 219 

been used for many years to understand how neurons develop proper bursting behavior 220 

and adapt to changes in the environment 20, 30, 34, 42. We devised a modification of the 221 

model by Liu et al. 30 which uses three sensors (fast, slow and DC filter of the calcium 222 

current) that monitor calcium currents and employs them to modify the neuron’s 223 

effective conductance densities and achieve a target activity. The model can be 224 

expressed as follows, 225 

𝜏"�̇� = 𝐀𝛅𝐠. (1) 226 

 227 

Here A is a fixed matrix that defines how the sensor outputs translate into conductance 228 

changes. 𝜹(𝑡) is a vector that measures how close each sensor is to its set point (see 229 

methods). Ideally, the conductances stay constant when all components 𝛿# 	= 	0, which 230 

occurs when each sensor is at its set point. This model can recover from several 231 

perturbations including changes in the reversal potential of potassium currents 43. 232 

However, one drawback of model as implemented in Liu et al. 30 is that if all three 233 

sensors are not satisfied at the same time, this can result in run-away activity which 234 

leads conductances to increase rapidly, causing it to diverge 30, 43. In other words, over 235 

long time periods model (1) will often become unstable. Despite this limitation, the 236 

three sensors are useful in distinguishing between different patterns of activity. For 237 

example, in the case of a neuron with a periodically bursting target activity, a 238 

perturbation could switch the activity to a tonic spiking state. For the cell to recover 239 

back to the bursting state, it must be able to sense a difference between the bursting 240 

state and the tonic spiking state. As Liu et al. 30 shows, when using only one calcium 241 

sensor it is not always possible to tease apart these two activity patterns because the 242 
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average calcium in the model cell can be similar in both regimes. In this situation the 243 

conductances would stay constant and the model neuron would not recover from such a 244 

perturbation. The high extracellular potassium perturbation studied here runs into the 245 

same difficulty: the average calcium levels in the cell during bursting in control and the 246 

quiescent state in high potassium saline are similar. Therefore, we sought a modification 247 

of the model that would allow it to operate in a stable fashion with the multiple sensors 248 

needed to distinguish tonic spiking from bursting activity. 249 

 Hence, we incorporated explicitly in this model the biological assumption that 250 

conductances can't grow indefinitely and must be bounded by some maximum value. 251 

This modification prevents the model from diverging, but preserves many of its 252 

properties such as the possibility of recovering spiking during the high potassium 253 

condition, 254 

 255 

𝜏"�̇� = 𝐀𝛅𝐠 − γ𝒈𝟑. (2) 256 

  257 

With this modification, model (2) will respond to perturbations in a similar way as the 258 

original formulation (𝛾	 = 	0) unless some conductances are too large. If 𝒈 is too large, 259 

the cubic term will dominate and �̇�  <  𝟎, meaning that 𝒈 will decrease. The parameter  260 

𝛾 can be used to set a bound for how much a conductance can grow. We chose a cubic 261 

term for simplicity but note that any function that satisfies �̇�  <  𝟎 for 𝒈 sufficiently large 262 

would prevent the model from diverging. 263 

Model (2), Figure 4b, retains a transient memory of prior adaptation to high 264 

potassium saline. There are multiple regions in conductance space that correspond to 265 

bursting patterns under control and wash conditions, but our recovery mechanism 266 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.07.01.450770doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450770
http://creativecommons.org/licenses/by-nc-nd/4.0/


July 1, 2021 

 13 

favors some regions over others because of the details of the control scheme and other 267 

parameters (See Methods) 43. When model (2) is returned to the control condition after 268 

the first high potassium exposure (wash), the values of the conductances and the 269 

bursting waveform are slightly different from those before the first exposure (compare 270 

Fig. 4i and 4iv) As time unfolds in control saline, the conductances trend back to their 271 

starting values. Because of our chosen timescale for conductance changes, 𝜏% 	=272 

	2	minutes, over the 20-minute wash period the conductances do not reach their original 273 

set-points. Therefore, over the first three applications of high potassium saline in Figure 274 

4b, the neuron is more robust to the second and third application compared to the first. 275 

Nevertheless, the conductances will trend back to their starting values if given sufficient 276 

time, as happens in the long three-hour wash period. For this reason, in Figure 4b the 277 

response to high potassium in the fourth application of high potassium is akin to the 278 

first response. This contrasts with the biological data showing that PD neurons can 279 

maintain robustness to the high potassium perturbation over a long wash period (Fig. 280 

3).  281 

 282 

Addition of a novel activity-dependent gating mechanism for homeostatic plasticity 283 

allows the model neuron to retain long-term memory of past perturbation 284 

 To allow the model neuron to retain its adaptation to previous perturbations, we 285 

next wanted to enforce the condition that the bursting patterns in control (Fig. 4i) and 286 

in wash (Fig. 4iv) are equally acceptable, and that the cells' conductances need not drift 287 

back to their starting values. In the model by Liu et al. 30, the readings from the three 288 

sensors are used to drive changes in conductances; equilibrium is expected when the 289 

sensors are simultaneously at their set points. In a sense, the sensors in this model are 290 
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playing a dual role: they drive changes in conductances in a specific way, and they also 291 

monitor that the cell is at its target pattern, because the equilibrium condition (�̇�  =  𝟎) 292 

requires all sensors to be at their set points. Here we explored a new modification: that 293 

the specific way in which the model modifies its conductances is independent of the 294 

equilibrium condition. In this way, we incorporate the possibility that there are two 295 

pathways: one that drives changes in the conductances (possibly but not necessarily 296 

using sensor readings), and another that controls whether the regulation mechanism is 297 

active or not. For this we hypothesized that there is a feedback signal that combines the 298 

readings of the sensors, and that this signal modulates the timescale of conductance 299 

regulation. We implemented this idea using a state variable 𝛼 that takes values between 300 

zero and one. If the model is bursting periodically, the feedback signal is high and 𝛼	 →301 

	0. If the feedback signal is low and the model's activity is other than the target pattern, 302 

then	𝛼	 → 1.	  303 

 304 

𝜏"�̇� = {𝐀𝛅𝐠 − γ𝒈𝟑}		𝛼(𝑡). (3) 305 

 306 

Figure 4c shows a simulation of model (3) subjected to the same experimental paradigm 307 

as before. In control conditions the feedback signal is high (𝛼 ≈ 	0), so the conductances 308 

stay constant until the first exposure to high potassium. When the cell becomes 309 

quiescent, the feedback signal is low (𝛼 ≈ 1), so the recovery mechanism is activated 310 

similarly to Fig. 4b and allows the cell to recover spiking activity in high potassium 311 

saline. As before, the cell recovers bursting upon wash, but now the feedback signal is 312 

high, and the recovery mechanism is turned off (𝛼 ≈ 	0). Instead of returning to their 313 
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control values the conductances stay constant during the wash intervals regardless of 314 

the duration of the wash period. In this way, model (3) will remain robust to the high 315 

potassium saline application after a long wash period, and for this reason response to 316 

perturbation in application four is different from that in the first application. 317 

 318 

Time course of recovery in high potassium depends on starting conductance densities 319 

In our experiments, the amount of time it takes for PD neurons to recover spiking 320 

activity upon the first exposure to high potassium saline varies widely across animals; 321 

some neurons regain spiking almost immediately while others remain silent for almost 322 

20 minutes (Fig. 1c). In identified neurons from the STG, mRNA copy number for ion 323 

channels and recorded currents can vary 2 to 6-fold accross individuals 44-48. Therefore, 324 

one way to account for the variability in recovery time is to assume that individual 325 

differences between PD neurons determine the sensitivity to high potassium saline. To 326 

test this hypothesis, we used our newly devised model (3) to investigate whether 327 

individual differences in conductance density between neurons may be sufficient to 328 

explain the observed variability.  329 

We generated 9 model neurons that use the same adaptation mechanisms as 330 

model (3). Previous studies have demonstrated that model neurons with different 331 

underlying parameters can nonetheless have similar activity patterns23, 33, 49, and we 332 

replicate these findings here. Figure 5 shows the response of five representative model 333 

neurons (models P, Q, R, S and T) to the high potassium perturbation. The example 334 

traces show the membrane potential of the models in control conditions (Fig. 5ai) and at 335 

ten minutes into the first high potassium exposure (Fig. 5aii). Note that all models 336 

exhibit similar bursting patterns of activity, although each has a different set of starting 337 
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conductance densities (Fig. 5ai, control conditions). The compressed membrane 338 

potential traces for each model are shown in Figure 5b. All five models become 339 

quiescent immediately after exposure to high potassium saline recover spiking activity 340 

after a variable amount of time.  341 

To investigate the reasons behind this variability, we plotted the evolution of each 342 

of the conductances for the five models in Figure 5c. The recovery mechanism in each 343 

model responds differently to the same perturbation because in each case the neuron 344 

must regain spiking activity starting from a different point in conductance space. Across 345 

all models, note that the specific conductance changes in response to high potassium 346 

differ, and that in all cases the potassium conductances increase. This increase in 347 

potassium conductances makes intuitive sense, as the high potassium perturbation has 348 

the effect of reducing the driving force for all potassium currents in the model neuron. 349 

Hence, a subsequent increase in total potassium conductance might bring the neuron 350 

closer to the baseline activity state.  In Figure 5c, the H conductance is not shown 351 

because 𝑔& 	< 	 10'(µ𝑆.  352 

 353 

Models with different conductance densities all retain robustness to high potassium 354 

saline, but specific changes in currents and recovery patterns vary 355 

For each of the 9 of models described above we simulated the entire experiment 356 

of four high potassium applications, including the long wash period between 357 

applications three and four (Figs. 3, 4). Despite the variability in time to recovery in the 358 

first high potassium application (Fig. 5), all models regained spiking activity in high 359 

potassium saline and retained this enhanced robustness over subsequent applications of 360 

high potassium saline. Figure 6 shows the membrane potential of two representative 361 
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models (model Q – Fig. 6a and model T, Fig. 6b) over the entire experiment. To 362 

visualize the differences in current contribution and dynamics, we plotted the 363 

currentscapes50 for each model below the voltage traces at some time stamps of interest: 364 

baseline (Fig. 6i), 10 minutes in first high potassium application (Fig. 6ii), 10 minutes in 365 

the fourth high potassium application (Fig. 6iii) and in the final wash (Fig. 6iv). Because 366 

the initial conductances are different for these two models, so are the contributions of 367 

each current to the baseline activity. In model Q the control activity shows a sizeable 368 

contribution of 𝐼&, (Fig. 6ai) but in model T, 𝐼& is negligible and is replaced by larger 369 

contributions of 𝐼)*+ , 𝐼)*, and leak (Fig. 6bi) The A current, 𝐼-, contributes substantially 370 

to the activity in model Q (Fig. 6bi) but its contribution in model T (Fig. 6bi) is small. In 371 

response to the first high potassium perturbation, both models become quiescent but 372 

model T (Fig. 6b) recovers spiking more quickly (Fig. 6bii).   373 
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Discussion 374 

Neurons are long-lived cells that must perform reliably to ensure an animal’s 375 

survival. However, their components such as ion channels and synaptic proteins last 376 

days to weeks and must be constantly replaced. Thus, nervous systems are both blessed 377 

and cursed with flexibility. To maintain stable function and respond appropriately to 378 

changes in the environment, neurons and neural circuits can adapt and change over 379 

timescales ranging from milliseconds to a lifetime. Therefore, there are a plethora of 380 

activity-dependent mechanisms that regulate neuronal excitability.  381 

Many studies focus on homeostatic mechanisms in neural circuits involving 382 

changes in gene expression and insertion of new ion channels into the membrane, 383 

typically occurring over hours to days12, 18, 42, 51, 52. However, there are also many 384 

examples of faster adaptation, sometimes described as rapid homeostatic plasticity29, 38, 385 

53. Very rapid plasticity on the order of milliseconds to seconds, such as spike frequency 386 

adaptation or facilitation can arise from ion channel properties. These processes are 387 

critical for shaping neuronal responses, and may play a role in shaping working 388 

memory, signal transduction and many behaviors54, 55. Activity-dependent changes in 389 

excitability can also occur on the timescale of several minutes20, too long to depend on 390 

the kinetics of ion channels. On these timescales, changes in effective conductance 391 

densities can occur through calcium-dependent signaling cascades leading to 392 

phosphorylation or insertion of ion channels26, 27, 29. 393 

 These different activity-dependent processes, occurring on different timescales, 394 

have often been classified and segregated accordingly. However, real neurons must 395 

transition between multiple adaptation mechanisms seamlessly. This study highlights a 396 
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bridge between timescales of adaptation in which rapid activity-dependent adaptation to 397 

global perturbation is retained long-term.  398 

 399 

Rapid and long-lasting adaptation in a conductance-based neuron model 400 

In this study, we describe rapid adaptation in pyloric neurons following global 401 

depolarization by high potassium; this adaptation has a long-lasting effect on the circuit 402 

and affects the neuron’s response to future high potassium applications although the 403 

baseline activity appears unchanged in control saline. To better understand how this 404 

could occur, we evaluated several computational models with different properties and 405 

their response to a high potassium perturbation. Importantly, the model of a 406 

conventional conductance-based model failed to recover spiking activity in high 407 

potassium saline (Fig. 4a). This suggests that the very rapid adaptation processes 408 

determined by ion channel properties are not sufficient to account for the response of 409 

neurons to high potassium saline. Therefore, we turned to models of homeostatic 410 

plasticity which allow conductance densities to change in an activity-dependent fashion. 411 

Recent models of homeostatic plasticity link activity-dependent changes in internal 412 

calcium concentrations to changes in channel mRNA and thus conductance densities23, 413 

31, 33. But changes in conductance need not rely on relatively slow changes in gene 414 

expression and subsequent translation. Here we considered how rapid changes to 415 

effective conductance density could also be activity-dependent and change the long-416 

term excitability of a model neuron.  417 

We propose two biologically plausible modifications to an existing homeostatic 418 

model30 that allow for rapid, long-lasting adaptation to perturbation while preserving 419 

normal baseline activity. This model implements three sensors that monitor the calcium 420 
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current over different timescales. Specifically, each calcium sensor can be thought to 421 

represent a calcium-dependent process in the cell with different dynamics. For example, 422 

the three sensors could each represent a different calcium binding protein. In the 423 

original formulation of the model30, if any of the three sensors diverges from its set-424 

point, conductance densities in the model neuron will change until the sensor returns to 425 

its calcium target. One modification we made is to assume that neuronal conductances 426 

cannot grow infinitely. Aside from obvious physical limitations on the number of ion 427 

channels that a neuron can contain, neurons may also limit their maximum conductance 428 

density to balance appropriate signaling with energy efficiency56, 57. This modification 429 

allows us to create model neurons with three calcium sensors whose target activity is 430 

stable over long periods of time23.  431 

The most salient modification we made is to implement a gating mechanism that 432 

combines the readings of the three sensors to turn the homeostatic regulation of 433 

effective conductances on or off. Importantly, this new rule allows a model neuron to 434 

escape the requirement that all three sensors be satisfied and can turn off homeostatic 435 

regulation when target activity is “good enough”. This is in keeping with numerous 436 

studies demonstrating that many neuronal properties such as ion channel composition, 437 

synaptic weights and dendrite morphology can be sloppily tuned, and neurons can still 438 

function properly58-60. Biologically, the linking of the three calcium filters in the model 439 

could represent interactions between the different calcium binding processes within a 440 

cell. Given the vast complexity of calcium signaling processes, it would be unsurprising 441 

if multiple calcium binding processes were needed to initiate changes in effective 442 

channel conductance. Investigation into the specific signaling cascades or biological 443 

determinants of this adaptation are a topic for future experimental investigation.  444 
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Our results establish that using this feedback system, long-lasting adaptation to 445 

diverse perturbations and stimuli can be achieved in model neurons. Because the 446 

scheme does not require that neurons return to an exact equilibrium point, the model 447 

neurons can now retain a trace memory of past experiences even when they return to 448 

normal baseline activity. This sort of adaptation can result in degenerate circuits. For 449 

instance, models with identical starting conductances can acquire different neuronal 450 

properties despite maintaining similar activity patterns, depending on the perturbations 451 

each model is subject to. The gating scheme also opens the possibility of having more 452 

freedom in the way conductances are modified. Undoubtedly there will be rules that will 453 

be more efficient at recovering from specific perturbations, and this study provides a 454 

framework for activity-dependent models that can recover from any number of 455 

challenges, much like biological neurons. The ability to flexibly change the feedback 456 

rules would guarantee that if recovery is possible, it will happen if the neuron is kept in 457 

the perturbed condition for long enough.  458 

 459 

High potassium perturbations in experiments and medicine  460 

The concentration of potassium both inside and outside cells is a critical 461 

component to proper physiological function.  Despite this, few studies have focused on 462 

the acute and long-term effects of changing potassium levels. Our study highlights the 463 

possible consequences of even brief shocks of high potassium saline to a nervous 464 

system. Acute elevation of potassium concentrations is often used in experiments to 465 

rapidly excite or depolarize neurons as a proxy for excitatory inputs 8-10.  Here, we 466 

demonstrate that adaptation to elevated high potassium saline can occur rapidly, and 467 

significantly change the excitability and intrinsic properties of neurons within 468 
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minutes38. Therefore, studies using high potassium saline or other depolarizing stimuli 469 

should consider the possibility of rapid changes in neuronal excitability. Notably, 470 

adaptation acquired when neurons are stimulated with high potassium can be retained 471 

long after the perturbation has passed, even if baseline activity reverts and appears to be 472 

unchanged.  Thus, long-term adaptation could have implications for a host of disease 473 

states involving repeated insults associated with high extracellular potassium. This 474 

phenomenon could be particularly important for understanding the long-term effects of 475 

epileptic seizures and kindling of localized seizures61. Within a seizure locus, 476 

extracellular potassium levels rapidly increase62, 63. Neurons experiencing this 477 

perturbation may change their conductance densities in response, and these changes 478 

may be maintained even after activity returns to normal levels. This sort of adaptation 479 

could exacerbate or ameliorate the severity of repeated seizures in the same locus. 480 

Similarly, these dynamics have been shown to affect peripheral nerves in patients with 481 

chronic kidney disease7.  482 

 483 

Persistent, cryptic memory in neurons following perturbation 484 

Theoretical and experimental evidence shows that seemingly identical activity 485 

patterns in neurons can arise from widely variable underlying parameters 33, 44, 49, 50, 53, 59, 486 

64-67. It has been observed that individual differences between human patients lead to 487 

different outcomes in cases of stroke68, 69 and traumatic brain injury70, 71. Similarly, the 488 

pyloric rhythm of the STG responds stereotypically and robustly to many perturbations 489 

including temperature35, 72 and pH36, 37 within a permissive range; outside this universal 490 

permissive range, each individual circuit can be more or less robust to a given 491 

perturbation and is disrupted in a unique way42, 79, 44. The pyloric rhythm is also variable 492 
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in its response to high potassium saline38 (Fig. 1C), and this variability likely arises from 493 

different initial conductance densities (Fig. 5). In all these cases, individual variability 494 

between circuits is invisible at baseline conditions and only revealed by a critical 495 

perturbation.  496 

The origin of individual variability in neuronal circuits is a topic of ongoing 497 

exploration and debate 53, 66, 73. Here we show that neurons can rapidly adapt to changes 498 

in the environment without maintaining precise levels of any given conductance. An 499 

interesting suggestion of this study is that circuits may evolve over time in response to 500 

environmental perturbations, while retaining their normal physiological function. Here, 501 

we show rapid adaptation to a high potassium perturbation in both biological and model 502 

neurons where the activity pattern returns to the baseline state after the perturbation is 503 

removed. We show that even though baseline neuronal activity appears unchanged, the 504 

robustness of neurons to future perturbation is altered. In this way, past exposure to 505 

high potassium saline acts as a prior, e.g. a past experience will bias the outcome of a 506 

future output74-76. Hence, adaptation in response to perturbation can be long-lasting and 507 

invisible when observing only baseline activity.   508 
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Figure Legends 706 

Figure 1: PD neurons adapt to elevated potassium concentrations and are 707 

more robust to the perturbation upon repeated exposure.  708 

(a) Two-second segments of a PD neuron’s activity in control physiological saline (i), 709 

five (ii), ten (iii), fifteen (iv) and twenty (v) minutes into the first application of 2.5x[K+] 710 

saline and during the first wash period (vi). Below each trace is shown the spike raster 711 

with a vertical line plotted for every action potential in the trace. (b) Voltage trace for 712 

the same PD neuron over the entire experiment. Green shaded boxes indicate time of 713 

2.5x[K+] saline superperfusion. Below this trace is shown is a raster plot of spiking 714 

activity for the entire first application of 2.5x[K+] saline, with bursting activity plotted in 715 

a darker shade and tonic firing plotted in a lighter shade. (c) Raster plots of spiking 716 

activity in 2.5x[K+] saline for fourteen PD neurons exposed to three repeated exposures. 717 

For all plots, bursting activity is plotted in a darker shade and tonic firing in a lighter 718 

shade. (d) Average PD spikes per minute for all three applications are plotted in the 719 

dark line with SEM shaded regions around them. (e) Average PD dip value for all three 720 

applications are plotted in the dark line with SEM shaded regions around them.  721 

 722 

Figure 2: Bursting activity of PD neurons in control saline is unchanged 723 

after high potassium applications.  724 

(a) Three-second segments of three PD neurons’ activity in baseline, wash #1, wash #2, 725 

and wash #3 after high potassium applications. All traces are in control saline with 726 

normal physiological potassium concentration. The animal numbers on the left 727 

correspond to the animal numbers in Figure 1C. (b) Average burst frequency in each 728 

condition for all PD neurons with error bars representing standard deviation. Individual 729 
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experiments are connected with light grey lines. The mean of all PD burst frequencies 730 

for each time point is indicated by a thick red line.  (c) Average spikes per burst in each 731 

condition for all PD neurons; error bars represent standard deviation. Individual 732 

experiments are connected with light grey lines. The mean of all PD spikes per burst for 733 

each time point is indicated by a thick red line.   734 

 735 

Figure 3: PD neurons retain adaptation to high potassium saline even after 736 

several hours of wash in control saline.  737 

(a) Four-second segments of a PD neuron’s activity in control physiological saline (i), 738 

and at fifteen minutes into the first (ii), second (iii), third (iv), and fourth (v) 739 

applications of 2.5x[K+] saline, and upon the final wash in control saline (vi).  (b) 740 

Voltage trace for the same PD neuron over the entire experiment. Green shaded boxes 741 

indicate time of 2.5x[K+] saline superperfusion. Below this trace is shown is a raster plot 742 

of spiking activity for each of the four applications of 2.5x[K+] saline, with bursting 743 

activity plotted in a darker shade and tonic firing plotted in a lighter shade. (c) Raster 744 

plots of spiking activity in 2.5x[K+] saline for six PD neurons (15-20) exposed to the 745 

same four repeated exposures. For all plots, bursting activity is plotted in a darker shade 746 

and tonic firing in a lighter shade. The top raster (15) is the same animal as that shown 747 

in a and b above (d) Average PD spikes per minute for all four applications are plotted 748 

in the dark line with SEM shaded regions around them (e) Average PD dip value for all 749 

three applications are plotted in the dark line with SEM shaded regions around the 750 

lines.   751 

 752 
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Figure 4: Model bursting neuron response to high potassium. The top panels 753 

show representative voltage traces (i-iv) for all models (a-c) and green bars above the 754 

voltage trace represent the high potassium perturbation. The compressed voltage trace 755 

of the model neuron is shown in the top panel and the evolution of that model’s 756 

conductance densities are shown below (a) The model does not have a regulation 757 

mechanism, and the conductances are fixed. The model becomes quiescent in the high 758 

potassium condition regardless of its history. (b) The model regulates its conductances 759 

in an activity dependent manner to stabilize the control bursting pattern. The model 760 

becomes quiescent in high potassium but recovers spiking over ten minutes. During the 761 

long wash, conductances return to the control values, and history dependance is 762 

erased. (c) The model is identical to b, with an additional feedback signal (Sf) that 763 

monitors if the cell is bursting or not. The model regulates its conductances only if 764 

the feedback signal is low. The conductances stay constant during the long wash because 765 

the cell is bursting, and the feedback signal turns off the regulation mechanism.  766 

 767 

Figure 5:  Time course of recovery depends on starting conductance 768 

densities. Response of five model bursting neurons (models P, Q, R, S and T) with 769 

different conductance densities exposed to a high potassium perturbation, represened 770 

by the green bars. (a) Representative traces of five models in control (i) and in elevated 771 

extracellular K (ii). (b) Membrane potential trace over the high potassium perturbation. 772 

All models become quiescent upon perturbation and recover spiking over a variable 773 

amount of time. (c) Conductance densities for each model over time.  774 

 775 

 776 
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Figure 6. Models with different starting conductance densities retain 777 

robustness to high potassium saline, but specific changes in currents and 778 

recovery patterns vary. The green bars above the voltage traces represent the time  779 

of high potassium perturbation (a) The response of model Q to the entire high 780 

potassium experiment. (b) The response of model T to the entire high potassium 781 

experiment. Timepoints of interest are consistent between models- baseline (i), 10 782 

minutes in first high potassium application (ii), 10 minutes in the fourth high potassium 783 

application (iii) and final wash (iv). Top panels: Membrane potential over 784 

time. Bottom panels: Currentscapes (i-iv). The colored panels show the percentage 785 

contribution of each individual current to the total inward or outward current over 786 

time. The black filled curves on the top and bottom indicate total inward or outward 787 

currents respectively on a logarithmic scale. 788 
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Methods 1 

Animals and dissections  2 

Adult male Jonah Crabs, Cancer borealis, (N = 20) were obtained from Commercial 3 

Lobster (Boston, MA) from January to August 2020 and maintained in artificial 4 

seawater at 10-12˚C in a 12-hour light/dark cycle. On average, animals were acclimated 5 

in the laboratory for one week before use. Prior to dissection, animals were placed on ice 6 

for at least 30 minutes. Dissections were performed as previously described1. The 7 

stomach was dissected from the animal and the intact stomatogastric nervous system 8 

(STNS) was removed from the stomach including the commissural ganglia, esophageal 9 

ganglion and stomatogastric ganglion (STG) with connecting motor nerves. The STNS 10 

was pinned in a Sylgard-coated (Dow Corning) dish and continuously superfused with 11 

11˚C saline.   12 

 13 

Solutions  14 

Physiological (control) Cancer borealis saline was composed of 440 mM NaCl, 11 15 

mM KCl, 26 mM MgCl2, 13 mM CaCl2, 11 mM Trizma base, 5 mM maleic acid, pH 7.4-16 

7.5 at 23˚C (approximately 7.7-7.8 pH at 11˚C). High [K+] saline (2.5x[K+], 17 

27.5mM KCl) was prepared by adding more KCl salt to the normal saline.  18 

 19 

Electrophysiology   20 

Intracellular recordings from STG somata were made in the desheathed STG with 10–30 21 

MΩ sharp glass microelectrodes filled with internal solution: 10 mM MgCl2, 400 mM 22 

potassium gluconate, 10 mM HEPES buffer, 15 mM NaSO4, 20 mM NaCl2. Intracellular 23 

signals were amplified with an Axoclamp 900A amplifier (Molecular Devices, San Jose). 24 
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Extracellular nerve recordings were made by building wells around nerves using a 25 

mixture of Vaseline and mineral oil and placing stainless-steel pin electrodes within the 26 

wells to monitor spiking activity. Extracellular nerve recordings were amplified using 27 

model 3500 extracellular amplifiers (A-M Systems). Data were acquired using 28 

a Digidata 1440 digitizer (Molecular Devices, San Jose) and pClamp data acquisition 29 

software (Molecular Devices, San Jose, version 10.5). For identification of Pyloric 30 

Dilator (PD) neurons, somatic intracellular recordings were matched to extracellular 31 

action potentials on the pyloric dilator nerve (pdn) and/or the lateral ventricular nerve 32 

(lvn).   33 

 34 

Elevated [K+] saline application  35 

For all preparations, baseline activity of the PD neuron was first recorded for 30 36 

minutes in control saline. Following the baseline recording, the STNS 37 

was superfused with 2.5x[K+] saline for 20 minutes, followed by a 20-minute wash in 38 

control saline. This pattern was repeated, alternating between 20 minute 2.5x[K+] saline 39 

and physiological control saline three times. In some experiments, the preparation was 40 

then washed in physiological saline for three hours before a final fourth 20-minute 41 

2.5x[K+] saline application and a final 20-minute wash.  42 

 43 

Data acquisition and analysis  44 

Recordings were acquired using Clampex software (pClamp Suite by Molecular Devices, 45 

San Jose, version 10.5) and visualized and analyzed using custom MATLAB analysis 46 

scripts. These scripts were used to detect and measure voltage response amplitudes and 47 
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membrane potentials, plot raw recordings and processed data, generate raster plots, and 48 

perform some statistical analyses.  49 

 50 

Analysis of interspike interval distributions 51 

To extract spike times, we used a custom spike identification and sorting software 52 

(called “crabsort”) which uses a TensorFlow based machine-learning algorithm. 53 

Crabsort is freely available at https://github.com/sg-s/crabsort  and its use is described 54 

in Powell et al. (2021)3. Distributions of inter-spike intervals (ISIs) were calculated 55 

within 2-minute bins. Hartigan’s dip test of unimodality4 was used to obtain the dip 56 

statistic for each of these distributions. This dip statistic was compared to Table 1 57 

in Hartigan and Hartigan4 to find the probability of multi-modality. The test creates a 58 

unimodal distribution function that has the smallest value deviations from the 59 

experimental distribution function. The largest of these deviations is the dip statistic. 60 

The dip statistic shows the probability of the experimental distribution function being 61 

bimodal. Larger value dips indicate that the empirical data are more likely to have 62 

multiple modes4. For visualizing spiking activity in raster plots, if the dip statistic was 63 

0.05 or higher the neuron was considered to be bursting. If the dip statistic was lower 64 

than 0.05 the neuron was considered to be tonically firing. In neurons with less than 30 65 

action potentials per minute, there were too few spikes to calculate an accurate dip 66 

statistic and the neurons are labeled as tonically firing.  67 

 68 

Computational modeling of bursting neurons 69 

In this work we implemented modifications of the model by Liu et al. (1998). The model 70 

neuron has a sodium current, I!"; transient and slow calcium currents I#"$ and I#"%; a 71 
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transient potassium current, I&; a calcium dependent potassium current, I'#"; a delayed 72 

rectifier potassium current, I'(; a hyperpolarization-activated inward current, I); and a 73 

leak current I*+",. The model uses its calcium currents to modify its conductance 74 

densities to achieve a target activity. The model has three sensors that monitor the 75 

calcium currents over different time scales and are named accordingly as fast (F), slow 76 

(S) and dc (D). The activity of these sensors are used to drive changes in the maximal 77 

conductances using the following equation, 78 

𝜏-
𝑑𝑔.
𝑑𝑡

= [𝐴.(𝐹+ − 𝐹) + 𝐵.(𝑆̅ − 𝑆) + 𝐶.(𝐷4 − 𝐷)]𝑔. . (4) 79 

Here 𝐹+, 𝑆̅ and 𝐶̅ are target values for the average activity of the sensors and 𝜏- is the 80 

time scale of conductance evolution and index i specifies the current type. The 81 

coefficients Ai, Bi and Ci determine what the model will do with each conductance when 82 

the average activity of the corresponding sensor is off-target. Hereafter, we refer to these 83 

coefficients as the “control scheme” or “scheme”.  The scheme used by Liu et al. (1998) is 84 

reproduced in table IIIA. 85 

 86 

We can rewrite the equations in vector notation by introducing the maximal 87 

conductance vector 𝒈	 = 	 {𝑔.}	with 𝑔. the maximal conductance of channel type i and 88 

error vector 𝜹 as follows, 89 

𝜹 = [(𝐹+ − 𝐹), (𝑆̅ − 𝑆), (𝐷4 − 𝐷)] (5) 90 

𝜏-�̇� = 𝐀𝛅𝐠.  91 
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In this notation the control scheme in table IIIA is represented by a matrix A and the 92 

distance between each sensor and its target is represented by vector 𝜹(𝒕). 93 

We added a cubic term in each component of 𝒈	̇ to prevent the model’s 94 

conductances from growing exponentially large. We found that there is a range of values 95 

of  𝛾 for which the model neuron always settles into a periodic bursting regime. For 96 

Figure 4b we used 𝛾. = 10/ for all currents except IA where we used 𝛾0 = 60	𝑥	101/ 97 

𝜏-�̇� = 𝐀𝛅𝐠 − γ𝒈𝟑. (6) 98 

To modulate the timescale of conductance change, 𝜏-, we defined a feedback signal Sf as 99 

follows, 100 

𝑆3(𝑡) = 𝑒
1(567	1	69)!

; 	 × 𝑒
1(5<̅	1	<9)!

; × 𝑒
1(5>?	1	>9)!

; . (7) 101 

 102 

This quantity is the product of three gaussian functions that will take values close to 1 if 103 

the corresponding sensor is near its set point and values close to 0 otherwise. By 104 

definition, 𝑆3 takes values close to 1 if all three sensors are near their targets at the same 105 

time, and close to 0 otherwise. Parameter Δ determines how close the sensors need to be 106 

to their set points to produce a high feedback. In this work we set Δ = 0.001. 107 

The timescale for evolution of conductance densities is modulated by a state 108 

variable α as follows, 109 

𝜏-�̇� = {𝐀𝛅𝐠 − γ𝒈𝟑}	𝛼  110 

𝜏@�̇� = 𝛼AP𝑆3Q − 𝛼, (8) 111 

with 112 

𝛼AP𝑆3Q =
B

B	C	D"#$$	∗'"()	*	+#/!-
.   113 
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The parameters in function 𝛼A	were chosen so that 𝛼A 	≈ 	0	if 𝑆3 	> 	0.2 and 𝛼A(𝑆3) 	≈115 

	1	otherwise. In this way high feedback switches 𝛼(𝑡) → 0 over a timescale 𝜏@ 	=116 

	1000	𝑚𝑠𝑒𝑐. In this equation, 𝛼B/F is the half-maximal activation of 𝛼. We set 𝛼B/F 	=117 

	0.075 to allow gating of conductance regulation. Notice that using this parameter, we 118 

can switch between models with and without conductance regulation. If 	𝛼B/F 	= 	−1, 119 

𝛼	 → 0 and there is no gating. If 	𝛼B/F 	= 	10, then 𝛼	 → 1	and the regulation mechanism 120 

is always on.  121 

 We simulated the application of high potassium saline in the models by changing 122 

the equilibrium potential, EK, of the potassium currents from -80mV (control) to -40mV 123 

(high potassium). In addition, we changed the reversal potential of the leak conductance 124 

from -50mV (control) to -40mV (high potassium) because the leak current is a non-125 

specific cation current with a sizable potassium contribution.   126 

All the equations and parameters of the sensors, and the activation functions are 127 

identical to those in Liu et al. (1998). The models were simulated using an exponential-128 

Euler scheme with step 𝑑𝑡	 = 	0.1	msec	5. All simulations were performed in 129 

commercially available computers using python. Code to reproduce the simulations is 130 

available upon request.  131 

 132 

Generating multiple models 133 

We obtained multiple models by simulating equation (3) starting from small random 134 

initial conductances and allowing them to evolve under control conditions until they 135 

settled into their target bursting regimes.  136 
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 137 

Statistics 138 

Statistical analysis and plotting were carried out using MATLAB 2020b built in 139 

functions for all analyses as described above. All electrophysiology analysis scripts are 140 

available at the Marder lab GitHub (https://github.com/marderlab).  141 

 142 

 143 
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